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1
hAS + 5{5, S} =0,
S=Yg>0, 772g71+'.5g,,- where
Sg.i € Symmi (Gi[1—d]), Gy = (82((V[1]¥)")247)
-the symmetric/exterior, powers for odd/even d, of cyclic cochains
{S0,1.S0,1} =0,
so Sp1 = ma,- Calabi-Yau A —algebra, (= As—algebra with invariant

scalar product of degree d)
e ([B2],2006) solution S — matrix integrals

/exp S(X,A)dX

X € gl(N|N) ® V[1] in the odd d case, X € q(N) ® V[1] in the even d case,



The noncommutative Batalin-Vilkovisky formalism

e V -Z /27 graded vector space, /- scalar product on V'V of degree d,
@ The noncommutative Batalin-Vilkovisky equation ([B1],2005),

1
hAS + {8, 5} =0,
S =Y,50i hE 1S, i where
S

5 € Symml (1= d]). Gy = (& o((VI™))?/77)

-the symmetric/exterior, powers for odd/even d, of cyclic cochains
°
{S0,1. 80,1} =0,
so Sg,1 = ma,,- Calabi-Yau A —algebra, (= A —algebra with invariant
scalar product of degree d)
e ([B2],2006) solution S —matrix integrals

/exp S(X,A)dX

X € gl(N|N) ® V[1] in the odd d case, X € q(N) ® V[1] in the even d case,
@ In the case of the algebra e - e = e, the answer is the matrix Airy integral
Jexp(3Tr(Y3) = 3 Tr(AY?))dY
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The A-infinity equivariant matrix integrals ([B2],2006)

The asymptotic expansion as A — oo =>sum over stable ribbon

graphs=-cohomology classes in H*(Mgn) (in H*(M;n,ﬁ) for odd d)

This is the higher genus counterpart of the (nc)Hodge theory integration on
CY projective manifolds, (hAy + dy + %['y 1] =0, 9€ Q% (M AT))

(Amatrix + "gl) eng(Xr A)=0

= exp ?(X A) corresponds to gl—equivariantly closed differential form.

By setting A = A@® AV[d] | extend the formalism to nonCY Ae,—algebras,
including weak CY algebras.

My As equivariant matrix integrals give an integration framework in the
noncommutative (derived algebraic) geometry, particularly adobted to the
equation {ma_, ma_} =0

/exp 5(X, A)pdX

¢ € Ker(hA+{S."}), ¢,;€ Symm' (Cy[1 — d])



CY complex projective variety (g=0 calculations)

@ M- projective manifold/C, ¢;(Ty) =0
= 1
hAy 40y + 5[7,')/] =0,

v(h) e Q% (M, AT)



CY complex projective variety (g=0 calculations)

@ M- projective manifold/C, ¢;(Ty) =0
= 1
hAy 40y + 5[7,')/] =0,

Y(h) € Q% (M, AT)

o 7y & Ac—deformations of D Coh(M) (deformations of the As—algebra
A = Ext(C), C—compact generator)



CY complex projective variety (g=0 calculations)

@ M- projective manifold/C, ¢;(Ty) =0
= 1
hAy 40y + 5[7,')/] =0,

Y(h) € Q% (M, AT)

o 7y & Ac—deformations of D Coh(M) (deformations of the As—algebra
A = Ext(C), C—compact generator)
°

Q(t, h) = /M exp(7)@

Y(t,h) =Ty, t € MaT, @ € T(M, Ky)



CY complex projective variety (g=0 calculations)

@ M- projective manifold/C, ¢;(Ty) =0
hAY + 07 + = [’y 7] =0,

7(h) € Q¥* (M, AT)
o 7y & Ac—deformations of D Coh(M) (deformations of the As—algebra
A = Ext(C), C—compact generator)
°

Q(t, h) = /M exp(7)@
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CY complex projective variety (g=0 calculations)

@ M- projective manifold/C, ¢;(Ty) =0
hAY + 07 + = [’y 7] =0,

Y(h) € Q% (M, AT)

o 7y & Ac—deformations of D Coh(M) (deformations of the As—algebra
A = Ext(C), C—compact generator)

Q(t, h :/ @
(t.7) = | exp(r)
Y(t,h) =Ty, t € MaT, @ € T(M, Ky)

o for ¥, normalized via a filtration W opposite to FHo98¢([B5]):
0° 1 ks O
—0 ="h" C QO
otiot) (t )a k

Ckij(t) =9 (genus = 0 GW-potential of Mmiff°f>
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Noncommutative Hodge structures ([B5])

o The class [exp(7Y")@] = Q(t, ) is obtained as intersection
Q(t, ) = L(t) N (Affine space(W))
L(t) C Hpr(M)((1) @O,
@ The semi-infinite subspace L(t), t € M7, is defined for arbitrary projective
manifold/C

1,
L(0): (exp 5i20) (90 + Ty + .. 9; € Qg

9
"ot

%ﬁ(t) CH2L(t), L(h) DL(Blg_qt)

hL(t) C L(t), =—L(t) € h1L(t)

(implies tt*—equations, remarkably D 3 —modules over A with similar
J

h
properties appeared many years ago in works of Birkhoff, Malgrange, K.Saito
and M.Saito)
@ Over moduli space of complex structures

L(t) = Y (FHod%e) n=[[]]

r
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proven (Kaledin) for A—smooth and compact, Z; —graded, then HC~ C HP,



Noncommutative Hodge structures ([B5]), cont'd

e L(t) corresponds via HKR and formality isomorphisms for C*(A, A) +
k[E, a%]—module C«(A) to

L(t) = HC™(A;) C HP(Ay)

o Recall HP : C.(A)((h)), b+ hB, HC~(A) : C.(A)[[H]], b+ 1B
o Let A be an arbitrary A —algebra, the S subspace HC™(A) — HP(A),

hHC™ (A) C HC™(A)

o, Y
57 HC™(A) C 72HC(A)
%HC‘(At) C hHC (Ar), % — Getzler flat connection on HP(A;)
where

rkC[["hH HC™ (A) = rkc((—h)) HP

assumed, i.e. the degeneration of nc Hodge -to-De Rham spectral sequence,
proven (Kaledin) for A—smooth and compact, Z; —graded, then HC~ C HP,
@ Real structure on HP in the case of arbitrary A, —algebra?



Noncommutative Batalin-Vilkovisky operator ([B1])

e V -Z /27 graded vector space, /- scalar product on V'V of degree d,
F = Symm(Cy(V)[1 —d])

-symmetric/exterior, powers for odd/even d, of cyclic cochains:

G = (&2, ((V[1]¥)")#H%)



Noncommutative Batalin-Vilkovisky operator ([B1])

e V -Z /27 graded vector space, /- scalar product on V'V of degree d,
F = Symm(Cy(V)[1 —d])

-symmetric/exterior, powers for odd/even d, of cyclic cochains:
G = (&2, ((V[1]¥)¥)#H%)
@ Define the noncommutative BV differential on F via

A(Xpl---Xp,)/\(Xﬁ XTt)A =

“M

/pqu Xoy o X, 1 Xtgar - Xrq_1 X0, 1 "'XPr)A+
Y (—1)€/pppq (%o, - X, 1 Xpgn ..Xpr)A(pr+1 -'~qu,1)A(XT1 ce XA
pEl#q

Z (=1)hpr, (xp1 ...xpr))\(xf1 e X, Xrg ...XTt)A(XTerl ...qufl);\
pEl#q
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@ signs are the standard Koszul signs taking into account that

(%, - X0 )a = (1 =d) + L%, x; € V[1].

A2 =0

A=A+ Ay,

A —differential of Lie algebra on C, (—non-commutative symplectic
geometry, ribbon graph complex, open moduli space H,(M,,)(M.K.,1992))

A1 + 'hAy —non-commutative Batalin—Vilkovisky geometry, stable ribbon
graphs, compactified moduli spaces H, (M K ) ([B1])



Noncommutative Batalin-Vilkovisky differential cont'd

@ signs are the standard Koszul signs taking into account that
(%, - X0 )a = (1 =d) + L%, x; € V[1].

0 A2=0

o A=A+ Ay,

e A;—differential of Lie algebra on C) (—non-commutative symplectic
geometry, ribbon graph complex, open moduli space H,(M,,)(M.K.,1992))

@ A1 4+ hAy —non-commutative Batalin—Vilkovisky geometry, stable ribbon
graphs, compactified moduli spaces H, (M K ) ([B1])

o KerA1+ Ay =ImA1 +A>
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Solutions to nc BV equation

o Conjecture ([B1]). Counting of holomorphic curves (£, 0%, p;) — (M,
[ 1L ®H-(Li(L}))., with Z/2Z-graded local systems, gives solution to
the nc-BV equations.

@ Theorem ([B6]). Summation over ribbon graphs—solution to the nc
Batalin-Vilkovisky equation from dg-associative algebras (summation over
trees— A-infinity algebra structure)



Strange associative superalgebra with odd trace and

psi-classes.

@ V- associative algebra, odd/even scalar product



Strange associative superalgebra with odd trace and

psi-classes.

@ V- associative algebra, odd/even scalar product

@ Assume: | - an odd derivation acting on V/, preserving the scalar product: ,
in general 12 # 0 (1), 31, [I,1] =1, str([a,-]) =0 for any a € A.



Strange associative superalgebra with odd trace and

psi-classes.

@ V- associative algebra, odd/even scalar product
@ Assume: | - an odd derivation acting on V/, preserving the scalar product: ,
in general 12 # 0 (1), 31, [I,1] =1, str([a,-]) =0 for any a € A.

@ Theorem ([B2],[B3]) This data —Cohomology classes in H* (ﬂ;n)



Strange associative superalgebra with odd trace and

psi-classes.

@ V- associative algebra, odd/even scalar product
@ Assume: | - an odd derivation acting on V/, preserving the scalar product: ,
in general 12 # 0 (1), 31, [I,1] =1, str([a,-]) =0 for any a € A.

@ Theorem ([B2],[B3]) This data —Cohomology classes in H* (ﬂ;n)

e Example g(N), g(N) = {[X, ] =0|X € gl(N|N)} ,where m—odd
involution, g(N) has odd trace otr, | = [E, -], E- odd element
E=(0 |diag(A1,....An)), (12 #£0(1))



Strange associative superalgebra with odd trace and

psi-classes.

@ V- associative algebra, odd/even scalar product
@ Assume: | - an odd derivation acting on V/, preserving the scalar product: ,
in general 12 # 0 (1), 31, [I,1] =1, str([a,-]) =0 for any a € A.

@ Theorem ([B2],[B3]) This data —Cohomology classes in H* (ﬂ;n)

e Example g(N), g(N) = {[X, ] =0|X € gl(N|N)} ,where m—odd
involution, g(N) has odd trace otr, | = [E, -], E- odd element
E=(0 |diag(A1,....An)), (12 #£0(1))

@ Theorem ([B2],[B3]) This is the generating function for products of classes
Cl(T,').



Strange associative superalgebra with odd trace and

psi-classes.

@ V- associative algebra, odd/even scalar product
@ Assume: | - an odd derivation acting on V/, preserving the scalar product: ,
in general 12 # 0 (1), 31, [I,1] =1, str([a,-]) =0 for any a € A.

@ Theorem ([B2],[B3]) This data —Cohomology classes in H* (ﬂ;n)

e Example g(N), g(N) = {[X, ] =0|X € gl(N|N)} ,where m—odd
involution, g(N) has odd trace otr, | = [E, -], E- odd element
E=(0 |diag(A1,....An)), (12 #£0(1))

@ Theorem ([B2],[B3]) This is the generating function for products of classes
Cl(T,').

@ Similarly, with even scalar product and an odd derivation, in particular for
gl(N|N) and | =[E, ], E € gl(N|N)oqq-
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