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Département de Recherche en Électromagnétisme
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Abstract—A new inverse method for real time eddy current
testing is introduced. It is based on particle swarm optimization
coupled with a metamodel. This metamodel is generated by
interpolating data from an adaptive database. Linear and radial
basis function interpolations are compared as means to generate
the metamodel. The inverse method gives a result combined with
an approximation of the likelihood function to help for decision
analysis. It is finally compared to a state-of-art inverse method
using support vector machine on a 3D case on simulated data
with very promising results.

I. INTRODUCTION

Eddy current testing (ECT) principle is to induce currents

into a conductive piece, the pattern of which is modified by

possible defects, inducing changes of impedance of a ECT

probe nearby. So, defects can be detected and characterized

from measurements of this impedance. In a number of cases,

its application requires a database including many simulated

cases for comparisons. Constructing this database might be too

expensive if the number of parameters to describe the anomaly

is high and if the database is contructed and used without

proper strategy.

The few past years, great efforts have been made to generate

adaptive databases for ECT [1], [2]. These databases minimize

the number of points needed to fit the response surface

by adding new points iteratively where the output is not

properly approximated by the database. In consequence, in

the final database, the faster the output varies, the denser the

distribution of points is.

How to use the database is also crucial. The end-user

needs in ECT are generally a fast response obtained in few

seconds, and reliable results. Thus, the adaptive databases are

usually employed to feed learning algorithms [3], [4] that

give real-time inverse results. Also, one might bypass adaptive

databases, via direct application of neural networks (NN) [5]

or support vector machines (SVM) [6], [7]. This is investigated

in [8] and the authors conclude that SVM are more efficient

than NN for ECT.

A trade-off of learning algorithms is that they yield the

inverted result without confidence interval or error probability,

even if confidence learning machines could fill in this gap [9].

Therefore, another use is proposed for the adaptive database: a

metamodel is created from the database, then a metaheuristic

is applied to the inverse problem. The latter requires many

forward simulations, which usually cannot be performed in

reasonable time. Using the metamodel instead of the full

simulations drastically decreases the computational load but

degrades the accuracy of the inversion. This degradation

depends on the accuracy of the metamodel. This is the reason

for which it is at least as important as the metaheuristic itself.

II. THE TEST CASE

A. Tube Properties

The work piece under testing is a ferromagnetic tube

characterized by a conductivity σtube = 3.5× 106 Sm−1

and imprecise relative permeability. There is air (σair =
1× 10−10 Sm−1, µr = 1) inside and outside of the tube. The

latter is ideally infinitely extended along the y−axis with an

internal radius equal to rtube = 11.66mm and a wall thickness

ttube = 4.29mm.

B. Measurement System

The measurement system is made of a transmitter bobbin of

internal radius rtx = 7.75mm, thickness ttx = 2mm, height

htx = 15mm, and it is realized through 2700 wrappings. The

probe is powered by a current I0 = 740.74A at f = 150Hz.

The receivers are a couple of bobbins of same shape as the

one of the transmitter, but now characterized by an height

hrx = 5mm and involving 900 wrappings. They are set

at 3mm from each other and distant of 118mm from the

transmitter along the axis of the tube. The signal is obtained

in a differential mode at P = 202 different positions. The

bobbins are inside the tube along the axial center and the

set of complex measurements is collected from y = 0 to

y = 201mm Therefore, the data to invert is a complex vector

of dimension 202.

C. Crack

The crack is an external erosion of variable dimensions

set at ypos = 100.5mm. The defects are full grooves and

therefore they have an angular extension fixed to 360 ◦C. They

are characterized by σcrack = 0Sm−1, µr = 1. Their height

and width are variables.

In that setting, the three parameters to invert are the internal

radius (parameter P1) and width (parameter P2) of the crack,

and the relative permeability of the tube (parameter P3).
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III. GENERATION OF THE DATABASE

The procedure to generate the database is based on [10].

First an initial coarse mesh of simplices is defined. Then

simulations are carried out at each node. The accuracy of

each simplex is tested by comparing a simulation result with a

linear interpolation at the middle of each edge of the simplex.

If one interpolation is not accurate enough, a node is added at

the middle of the longest edge of the simplex. The database

used in this study is shown on the left of figure 1 during its

generation at the 2nd iteration (15 nodes) and in figure 2 at the

12th and last iteration (101 nodes). The gray scale corresponds

to the width, in order to emphasize depth in the 3D figure. At

the right of the figures, the vectorial output data are plotted in a

2D space that preserves the distances using a multidimensional

scaling [11]. This method allows to visualize high dimensional

data in a low dimensional space. The axes have no physical

meaning neither dimension, and they correspond to normalized

distances.

The aim of the adaptive database generation is to make

it homogeneous in the output space. One can observe that

during the generation, the homogeneity in the output space

is made better. In consequence, there are areas in the input

space where the points are denser, particularly here for high

internal radii and widths and for low relative permeabilities,

which corresponds to signals with the highest amplitudes.
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Fig. 1: Adaptive database at the 2nd iteration (15 nodes) in

the input (left) and output (right) space. The width is in mm,

the internal radius in % of the thickness of the tube, and the

relative permeability is dimensionless.
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Fig. 2: Same as figure 1 at the 12th iteration (101 nodes).

To visualize how the database tends to homogeneity with

this method, it is compared to a database of same size (101

points) generated by Latin hypercube sampling (LHS) [12],

plotted in figure 3. The data generated by LHS are much less

homogeneous in the output space and thus, it should be less

efficient to approximate output from them. Some parts of the

output space are oversampled and others are undersampled,

something that adaptive databases tends to avoid.
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Fig. 3: Database generated by LHS (101 nodes) in the input

(left) and output (right) space. The width is in mm, the internal

radius in % of the thickness of the tube, and the relative

permeability is dimensionless.

IV. METAMODEL

A. Linear interpolation

Two approaches to create the metamodel from the adaptive

database are tested. The first, and more obvious, method

is a linear interpolation. For each interpolated point, one

looks for the simplex that contains the point and applies a

linear interpolation from the vertices of the simplex. This

interpolation method naturally follows the database generation.

B. RBF interpolation

An interpolation that is now using all points (xi,yi)i=1,...,N

of the database is the radial basis function (RBF) interpolation

[13]. The principle is to express the vector to be interpolated,

ŷ, by

ŷ =

N
∑

i=1

wiK(x,xi) (1)

where K is a kernel function [14], and the weights wi are

computed by learning on the training database. The thin plate

spline (TPS) kernel is chosen. It is rather classical for data

interpolation and since it has no intrinsic parameter, a tuning

step is not required. The TPS kernel can be expressed as

K(x1,x2) =

{

‖x1 − x2‖
2
ln(‖x1 − x2‖) if x1 6= x2

0 if x1 = x2

(2)

C. Comparing metamodels

The normalized quadratic error of interpolation has been

computed for 200 test cases picked up by LHS. The mean error

is 1.27 % for the linear interpolation and 0.24 % for the RBF

interpolation. More significant, the maximum error is 31.2 %

for linear interpolation and 2.1 % for RBF interpolation.

Actually, most points are well approximated by both methods,

but linear interpolation may give poor results for some specific
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points, where the density is lower in the output space (figure

2).

One can also visually judge of the relevancy of the in-

terpolation methods for the metamodel. In figure 4, 10 out

of the 200 test cases are plotted in a low dimensional space

using MDS (disks). In the same low dimensional space, the

data obtained by linear interpolation (triangles) and RBF

interpolation (crosses) are plotted. This figure illustrates the

better accuracy of RBF and shows that the error is high with

the linear interpolator where the distribution of points is of

low density in the output space.
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Fig. 4: In a low dimensional space, 10 simulated data with the

approached data obtained by linear interpolation and by RBF

interpolation.

V. OPTIMIZATION METHOD

The metamodels are used to feed an optimization algorithm.

Particle swarm optimization (PSO) [15] under its Balanced

PSO [16] variant is chosen for that purpose. The key idea

of PSO is to put M particles in the input space at positions

x1, . . . ,xM . Then, they move on each dimension d according

to their best personal position p and their best local position

l following the expression

vd ← w × vd + r1c1(pd − xd) + r2c2(ld − xd)
xd ← xd + vd

(3)

The best local position is the best position that the particle

shares with k random particles. Here, as recommended in [15],

k is fixed to 3, w is set to 0.7, and c1 and c2 are both set to

1.193. r1 and r2 are picked up uniformly into [0,1] at each

iteration.

In its Balanced PSO variant, one particle moves to a local

area of interest, which means around a local minimum. This

version gives a satisfying compromise between exploration of

the input space and exploitation of the area of interest [16].

VI. THE RESULTS OF INVERSIONS

In the following, PSO-LIN denotes the PSO method with a

metamodel that is obtained by linear interpolation and PSO-

RBF the same with RBF interpolation. The PSO results are

compared to a SVM inversion. 200 configurations of defects

are tested (the same cases as in section IV-C). We focus on the

mean and maximum normalized quadratic error q̂ and qmax on

each parameter (P1, P2, and P3), and on the mean computation

time T̂ .

TABLE I: Results obtained on the 200 test cases by PSO-LIN,

PSO-RBF, and SVM.

PSO-LIN PSO-RBF SVM
P1 P2 P3 P1 P2 P3 P1 P2 P3

q̂ 0.8 2.8 0.5 0.6 1.9 0.5 0.5 0.6 0.2
qmax 22.1 74.4 4.7 9.3 22.7 23.1 4.2 14.8 1.7

T̂ (s) 218.4 1.8 10
−4

The use of RBF interpolation much improves the PSO

method compared to the linear interpolation. Moreover, it

is faster. Indeed, for linear interpolation the search of the

simplex containing the input takes time. PSO-RBF, in a

reasonable time, presents even comparable results with SVM.

The advantage of PSO is that many points are explored during

the optimization. Thus, an approximation of the likelihood

function can be obtained. Meanwhile, SVM only gives the

inversion results without any further information.

To illustrate how the PSO-RBF provides useful information,

let us take two crack configurations as examples. The crack

dimensions and results on these two cases are summarized in

table II. Notice that crack 1 corresponds to qmax on P3 using

PSO-RBF.

TABLE II: Crack configurations and results for the two

examples.

Crack 1 Crack 2
P1 P2 P3 P1 P2 P3

True parameters 2.67 75.7 52.6 6.71 55.5 53
Error q (%) 0.02 0.01 23.1 0.03 0.24 0.00

Figure 5 shows the likelihood functions obtained by PSO-

RBF plotted with respect to the parameters in pairs. Only

level lines are plotted. The circles indicate the true value of

the parameters, and the squares indicate the maximum of the

likelihood. On the left are plotted the results for the crack 1,

and on the right for the crack 2.

In the case of the crack 1, the true parameters P1 and P2

are very well approximated by PSO. For parameter P3, it is

on the edge of the most likely area. The level lines spread

on large areas, indicating that the uncertainty is high. Even if

the inverted result is not accurate for parameter P3, the high

uncertainty helps the end-user not to be too confident in the

maximum of likelihood.

In the case of the crack 2, the inversion result is clear and

one can be confident in it because the most likely areas are

concentrated around the maximum of likelihood. Actually, the

inverted results (crosses) are very close to the true parameters

(squares). For this case, the method provides an accurate

inversion with high confidence.

The presented inverse method is in general accurate and

gives information on the reliability of the inversion. So, it is
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(a) Crack 1

2 4 6 8 10
30

40

50

60

70

80

20 40 60 80 100
30

40

50

60

70

80

20 40 60 80 100
2

4

6

8

10

in
te

rn
al

ra
d

iu
s

(P
2

)
in

te
rn

al
ra

d
iu

s
(P

2
)

w
id

th
(P

1
)

width (P1)

relative permeability (P3)

relative permeability (P3)

(b) Crack 2

Fig. 5: For the two studied cracks, level lines of the likelihood

functions with respect to the input parameters in pairs. Real

parameters are indicated with a circle, maximum of likelihood

with a square.

useful as a decision analysis tool.

VII. CONCLUSION

An original method to invert ECT signals has been pre-

sented. It is based on PSO combined with a metamodel. The

method deals with ill-posedness. It highlights the indetermi-

nate cases by providing an approximation of the likelihood

function. It is illustrated on a specific 3D ECT problem with

simulated data.

The use of adaptive generation helps to create efficient

databases for metamodels since the output data are well

approximated in the whole output space, unlike more classical

methods as LHS. RBF is shown to be an efficient and

fast interpolation, even with vectorial data. So, employing

a metamodel created from an adaptive database with RBF

interpolation is an efficient method, particularly for vectorial

data. It can be used to feed an optimization method, here PSO.

During the optimization, the cost function is evaluated for

many configurations, which enables to highlight ill-posedness,

if any.

Work in progress includes the processing of laboratory-

controlled data.
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