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Abstract—In this paper, the characterization of electromag-
netic inverse problems is addressed. As it is well known, an
inverse problem can be ill-posed, i.e., its solution is not necessarily
unique and might be quite sensitive to the measured data.
To characterize such an inverse problem a combination of a
surrogate model —based on an optimal database— and an inverse
mapping of some sort, both using kriging prediction as tools, is
proposed. The database (a kind of discrete representation of the
electromagnetic model) is generated using an adaptive sampling
strategy aiming to find a set of optimal input parameter–output
data pairs. Once the latter has been computed, both qualitative
and quantitative conclusions about the related inverse problem
can be drawn.

The illustrative examples are drawn from eddy-current non-
destructive testing.

I. INTRODUCTION

Nowadays more and more emphasis is being put on the

surrogate modeling of electromagnetic phenomena [1]. The

main goal of surrogate modeling is to reduce the computa-

tional burden imposed by the precise simulation of numerical

models. A natural manner is to store pre-computed results in a

database and to fit an interpolator to these samples. To improve

the quality of the surrogate model, the choice of the samples

should obviously be adapted to the problem. To achieve an

“optimal” sampling (in a certain sense), several methods have

been proposed. Mesh-based strategies (inspired by the mesh

of Finite Element Methods) are discussed in [2] and [3]. A

meshless method is proposed in [4] –this approach is recast

and extended in [5], [6].

Such databases (being adapted to the problem) makes pos-

sible not only the fast approximation of a complex model, but

the behavior of the underlying physical problem can also be

studied: the structure of the databases bears valuable meta-

information about the model. In this paper, we present a

sampling strategy for the generation of adaptive databases and

propose methods to make use the available meta-information

in the characterization of the related inverse problem.

II. GENERATION OF ADAPTIVE DATABASES

The method is formalized in a general manner. Let us define

a well-behaved forward operator F representing a forward

problem with a unique solution. This makes the connection

between the input vector x = [x1, x2, . . . , xp]
T

consisting of

p real parameters, and the output scalar function y(t):

y(t) = F{x}, t ∈ T ⊂ R. (1)

Let us assume that each xk (k = 1, 2, . . . , p) input parameter

has a lower and an upper bound, so the input space X is a

p dimensional hyper-cuboid. The output space is defined via

the forward operator, as the codomain of F{x}:

Y = {y(t) : y(t) = F{x}, ∀x ∈ X} . (2)

Both X and Y are equipped with a norm: ||·||x and ||·||y ,

respectively.

Let us define a database Dn as a set of n samples, each

of them being a pair of input sample (xi) and output sample

(yi(t) = F{xi}) , ∀i ∈ N . N is the index set of the database:

N = {1, 2, . . . , n}. Formally:

Dn = {(x1, y1(t)), (x2, y2(t)), . . . , (xn, yn(t))} . (3)

The main idea of our sampling strategy is to build an

“optimal” database Dn such as its output samples yi (t) , i ∈ N
are evenly spread all over the output space Y. By introducing

the distance function Qi(x):

Qi (x) = ||F{x} − yi(t)||y ,x ∈ X, ∀i ∈ N, (4)

the criteria of optimality are formalized as

max
i∈N

[

min
j∈N\{i}

Qi (xj)

]

= min
i∈N

[

min
j∈N\{i}

Qi (xj)

]

(5)

and

max
x∈X

[

min
i∈N

Qi (x)

]

≤ ∆, (6)

where ∆ is a parameter to be chosen, according to the sought

“resolution” (depending on the user’s needs). The criterion
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(5) expresses the equi-spacing of output samples, whereas (6)

imposes that the output space Y is sampled everywhere, i.e.,

no unexplored region can be found.

A similar idea of such an “output space filling” is introduced

in [4] and referred as “response diversity”. However, [4]

focuses only on the criterion (6), moreover, a functional output

is not considered.

A. Iterative-incremental sampling strategy

The generation of an optimal database is recast as an

optimization problem which can be solved iteratively. Starting

with an initial database consisting of one sample D1, the

iterative “addition” procedure can be described as follows:

a) find xn+1 the most remote point from all points already

present in Dn in terms of the distance function (4) by

solving

xn+1 = argmax
x∈X

[

min
i∈N

Qi(x)

]

(7)

b) compute the output yn+1 (t) = F {xn+1}
c) insert the sample (xn+1, yn+1 (t)) in Dn and increase n =

n+ 1
d) repeat steps a) to c) until the criterion (6) is met.

However, even if such a procedure yields a database satis-

fying (6), the equi-spacing of samples –criterion (5)– is not

necessarily fulfilled. So, a “removal strategy” is introduced,

removing one of the two closest samples in the output space.

The whole procedure is defined as an alternating use of two

successive “addition” and one “removal” steps. Heuristically,

we might expect that such a procedure converges to the “opti-

mal” database, but no formal proof can be proposed, however.

The stopping criterion to obtain an “optimal” database can be

related to the expression (5) and/or (6). In our examples, a

simple upper limit for n is used as stopping rule.

B. Realization by kriging

The solution of the optimization problem (7) involves a

quite high computational cost since the evaluation of the

distance functions Qi(x) needs the solution of a forward

problem. To reduce this cost, not the exact functions Qi(x)
but their kriging predictions Q̂i(x) (i = 1, 2, . . . , n) are used.

Kriging is not discussed in details herein (see e.g., [7] for

an exhaustive overview or [8] as a recent review), we just

mention that it computes a linear prediction Q̂(x) of an

unknown scalar function Q(x) based on some of its samples

Q(x1), Q(x2), . . . , Q(xm):

Q̂(x) =
m
∑

j=1

λj(x)Q(xj). (8)

The coefficients λj(x) are computed in a stochastic frame-

work, as the main idea of kriging is to model the unknown

function by a Gaussian random process (GP). The same coef-

ficients λj(x) can be used to predict each distance functions

since the modeling GP is the same. By replacing the prediction

of all distance functions according to (8) into the original

optimization problem (7), the resulted simpler problem can

be solved even by performing an exhaustive search on a fine

grid or a Latin hypercube point-set in X.

III. INVERSE PROBLEM CHARACTERIZATION

Such “quasi-optimal” databases provide some meta-

information about the involved forward operator F as well:

a) F must vary rapidly within the regions of X where the

distribution of input samples is dense, whereas a sparsely

sampled region of X signals the flatness of F
b) any unknown output y(t) ∈ Y can be found not farther

than ∆ from one of the already computed output samples

yi(t) of Dn.

To draw quantitative conclusions concerning the point a), i.e.,

the sensitivity of F , two approaches are proposed in the

following.

A. Inverse mapping of “noise cells”

The measured output ỹ(t) is always corrupted by noise, due

to either the inaccuracy of the measurements, the uncertainty

of the modeling assumptions, or the numerical inaccuracy of

the applied forward simulator. Let us assume that a uniform

noise level δ affects all measurements. For a given measured

output ỹ(t), one has to consider all outputs y(t) satisfying

||y(t)− ỹ(t)||y ≤ δ as possible real (noise-free) data.

For instance, by using a database Dn, the sub-region Φδ
i of

X consisting of possible inputs x such as their corresponding

outputs are closer to yi(t) than δ can easily be assigned.

Formally, let us define the set Φδ
i ∈ X so that

Φδ
i =

{

x ∈ X : ||F{x} − yi(t)||y ≤ δ
}

=
{

x ∈ X : Qi(x) ≤ δ
}

.
(9)

This is the inverse mapping of a “noise cell” of level δ,

a sub-region of Y is projected back onto a sub-region of

X. The shape and the dimensions of the different cells Φδ
i

show how the noise influences the uncertainty of the solution

of the inverse problem. This formalization gives an explicit

expression of the attainable precision at a given noise level.

In the realization, due to the high computational cost, not

the exact distance functions but their kriging predictions are

used in (9). Thus, the approximate noise-cells Φ̂δ
i can be

determined.

B. Inverse mapping of Voronoi cells

Let us define Ωi the output Voronoi cell related to the i-th
output sample yi(t) of Dn as

Ωi =

{

y(t) ∈ Y : i = argmin
j∈N

||y(t)− yj(t)||y

}

, (10)

i.e., the set of outputs being closer to the i-th output sample

than to any other output sample. The inverse mapping of Ωi for

each i ∈ N to the corresponding subset Ψi of the input space
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X can then be done using the distance functions. Formally, let

Ψi be a subset of X, so that

Ψi =

{

x ∈ X : F{x} ∈ Ωi

}

=

{

x ∈ X : i = argmin
j∈N

Qj(x)

}

.
(11)

This inverse mapping can be very effective for the characteri-

zation of the inverse problem. Provided that the database Dn is

approximately output-equidistant and the distance between the

output samples is roughly 2δ, the dimensions of Ψi represent

the attainable precision of the solution in each region of X.

Here again the kriging prediction of Qi(x) is used in (11) to

reduce the computational burden, so the approximate images

Ψ̂i are computed.

Quantitative meta-information can then be provided by the

knowledge of Ψ̂i via the estimation of their dimensions. To

some extent, it gives the attainable precision in each input

parameter. Let us define ∆xi as the vector of the maximum

distance between the i-th input sample xi and all the possible

x ∈ Ψ̂i, defined as ∆xi = [∆xi,1,∆xi,2, . . . ,∆xi,p]
T

, where

∆xi,k = max
x∈Ψ̂i

|xk − xi,k| . (12)

xk and xi,k is the k-th component (parameter) of the inputs

x and xi, respectively. The components of ∆xi are related to

the confidence in the solution of the inverse problem.

IV. ILLUSTRATIVE EXAMPLES

The illustrative examples are chosen from the domain of

Eddy-Current Testing (ECT), a technique for revealing and

characterizing material flaws within conductive specimens.

Eddy-currents are generated within the examined specimen

by exciting with alternating magnetic field. The magnetic field

due to the eddy-currents is measured, and, might vary near the

damaged zones.

In our examples, a simple ECT setup is considered (Fig. 1).

An infinitesimally thin crack affects a non-magnetic, homoge-

neous metal plate with an electrical conductivity σ = 106 S/m.

The thickness of the plate is d = 1.25mm, the other di-

mensions are assumed to be infinite. An air-cored probe coil

(driven by a time-harmonic current of frequency f = 150 kHz)

is scanning a centered rectangular surface of 5mm× 20mm
above the damaged zone. The impedance change of the coil

(influenced by the crack) is measured at 11 × 41 regularly

spaced positions along α and β. The output signal y(t) is

then the impedance of the coil, t being related to the position

of the coil. The EM phenomenon is modeled using a surface

integral approach. The numerical simulation –representing F–

is based on the Method-of-Moments (for details, see [9]).

The crack is perpendicular to the surface of the plate and the

configuration is described by three parameters: L and D are

the length and the depth (in % of d) of the crack, respectively;

A is the co-ordinate of the center of the crack along α. Our

approach is illustrated using two configurations. In the 2D

example only two parameters (L and D) are varying, A is

0; in the 3D example, the x co-ordinate of the center of the

crack (A) is added as input parameter. The minimum and the

maximum values of each parameter are defined in Table I.

The criterion of sample insertion (7) –approximated by

using (8)– is evaluated by performing an exhaustive search

in X. In the 2D example, a fine regular grid of 100 × 100 =
10 000 nodes is used, whereas in the 3D example, a set of

223 = 10648 points is generated by Latin hypercube sampling.

The initial sample in the database D1 corresponds to the

largest crack in both examples. In the 3D case, its position

is A = 1.5mm. The stopping criterion is simply an upper

limit for n.

α

ββ

γ γ

d

LL

DA

coil
scanned area

crack

Fig. 1: Sketch of the configuration: cross-sections in the αβ
and in the βγ planes.

TABLE I: Bounds of the input parameters.

Ex.
A (mm) L (mm) D (%)

min max min max min max
2D 0 1 10 10 90
3D −1.5 1.5 1 10 5 90

a) 2D-example: the predicted inverse-mapped Voronoi

cells Ψ̂i in Fig. 2 and the noise levels Φ̂δ
i for three different

δ in Fig. 3 are shown (n = 25). Let us note that D25 is

quasi output-equidistant, even so the shape and the dimensions

of the different cells Ψ̂i in the input-space are very diverse

and illustrate the behavior of F in the different regions of

X. The large cells in the region of small cracks highlight the

difficulties of inverting for such a kind of defects using our

measurement configuration. On the contrary, the small cells

in the region of large cracks show that such defects can be

characterized precisely.

b) 3D-example: the predicted inverse-mapped noise cells

Φ̂δ
i are now depicted (Fig. 4, n = 216). Only two different

levels are drawn for three samples. This configuration is an

extension of the previous 2D case and, as expected, the distri-

bution of the input samples leads to the same conclusion for

the two common parameters L and D: a quite homogeneous

and fine sampling in the L-A surface for high values of D
and a sparse sampling for low D values. The inverse mapping

shows a quite small volume around the points belonging to a

dense region of D216 whereas a large volume is related to the

samples in a sparse region.
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Fig. 2: 2D: inverse mapping of the Voronoi cells (dots: input

samples).
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Fig. 3: 2D: inverse mapping of the noise cells for three

different δ (dots: input samples).

V. CONCLUSION

The optimal database links an input space to an output space

and it is built such that the latter is evenly filled by samples.

The generation of the database is recast as an optimization

problem, which is solved iteratively, by inserting the next input

sample with respect to the distance between points in the

output space. This is an expensive-to-compute optimization

problem, thus, the use of a kriging-based interpolator is

proposed.

The structure of the databases yields meta-information about

the underlying problem to be emulated. Two inverse mappings

are then proposed, one is related to the Voronoi cell mapping,

the second links to a noise cell mapping. Both contribute

to quantify the attainable precision in the solution of the

corresponding inverse problem.

Such an approach can be extended to some other physical

problems and so, its application to the characterisation of

forest using radar observation data is under development.

xa

xc

xb

Fig. 4: 3D: inverse mapping of Φ̂δ
i for two different δ. xa =

[−1.48mm ; 8.34mm; 68.1%], xb = [0.56mm ; 6.12mm;

51.2%], xc = [−0.86mm ; 9.59mm; 86.4%] characterized

by [A;L;D] (dots: input samples).
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[2] J. Pávó and S. Gyimóthy, “Adaptive inversion database for electromag-
netic nondestructive evaluation,” NDT&E International, vol. 40, no. 3,
pp. 192–202, 2007.
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