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CONVERSE LYAPUNOV THEOREMS FOR SWITCHED

SYSTEMS IN BANACH AND HILBERT SPACES

FALK M. HANTE AND MARIO SIGALOTTI

Abstract. We consider switched systems on Banach and Hilbert spaces gov-
erned by strongly continuous one-parameter semigroups of linear evolution

operators. We provide necessary and sufficient conditions for their global ex-
ponential stability, uniform with respect to the switching signal, in terms of
the existence of a Lyapunov function common to all modes.

1. INTRODUCTION

It is well known that the existence of a common Lyapunov function is neces-
sary and sufficient for the global uniform asymptotic stability of finite-dimensional
switched dynamical systems [12]. In the linear finite-dimensional case, the ex-
istence of a common Lyapunov function is actually equivalent to global uniform
exponential stability [15] and, provided that the system has finitely many modes,
the Lyapunov function can be taken polyhedral or polynomial [2, 3, 7]. A spe-
cial role in the switched control literature has been played by common quadratic
Lyapunov functions, since their existence can be tested rather efficiently (see the
surveys [11, 19] and the references therein). It is known, however, that not only
the existence of a common quadratic Lyapunov function is not necessary for the
global uniform exponential stability of a linear switched system with finitely many
modes, but also that there exists no uniform upper bound on the minimal degree
of a common polynomial Lyapunov function [13].

The scope of this paper is to understand the relationships between global uniform
exponential stability and the existence of a common Lyapunov function for infinite-
dimensional switched systems of the type







d

dt
x(t) = Aσ(t)x(t), t > 0

x(0) = x ∈ X
(1)

where each Aj is a (possibly unbounded) operator generating a strongly continuous
semigroup Tj(t) on a Banach space X and σ(·) belongs to the class of piecewise
constant switching signals with values in an index set Q.

Such systems provide a convenient design paradigm for modeling a wide variety
of complex processes comprising distributed parameters, see [9] and the references
therein for examples in the context of networked transport systems.

Except for special cases, that is, when X has a Hilbert structure and the infini-
tesimal generators Aj commute pairwise [18], when the switching signals satisfy a
dwell-time constraint [14] or when Aj is a linear convection-reaction operator with
reflecting boundary conditions [1], global uniform exponential stability of systems
such as (1) has not been investigated (up to our knowledge).
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The characterization of exponential stability for a single linear dynamical system
on Banach and Hilbert spaces dates back to Datko [6] and Pazy [16] and has, since
then, seen a broad range of applications in control theory for partial differential
equations (see, for instance, [21]). However, we recall that exponential stability of
all subsystems (with σ(t) ≡ j fixed in (1)) is of course necessary but not sufficient
for the global uniform exponential stability with respect to all possible switching
laws σ(·). This is a classical result for the finite dimensional case and we give an
infinite dimensional variant with interesting destabilizing properties in Example 1
below.

Our starting point will be a switching system of the general form
{

x(tk+1) = Tσ(tk)(tk+1 − tk)x(tk), k ∈ N,

x(0) = x ∈ X,
(2)

where σ : [0,∞) → Q is a piecewise constant right-continuous switching signal with
switching times 0 = t0 < t1 < · · · < tk < · · · . Each t 7→ Tj(t), j ∈ Q, is
a strongly continuous semigroup on a Banach space X . If t ∈ (tk, tk+1), then
x(t) = Tσ(tk)(t − tk)x(tk). In particular, our results apply to switched dynamical
systems such as (1), even with the infinitesimal generatorsAj not sharing a common
domain and also in the case of infinitely many available modes Q. (The semigroup
formulation (2) can be seen as a choice of the notion of solution to the Cauchy
problem (1).)

The construction of a common Lyapunov function, under the assumption that
global uniform exponential stability holds true, follows the same lines as in finite
dimension. In particular, a possible choice of the Lyapunov function is

V (x) = sup

{
∫ ∞

0

‖x(t)‖2dt : x(·) solution to (2) for some σ

}

.

(Alternatively, one could take V (x) =
∫∞

0
supσ(·) ‖x(t)‖

2dt, as done in [10].)
Then one proves that the left Dini derivatives of V at x along the evolution of

each semigroup Tj are bounded from above by −‖x‖2. Moreover, V (x) ≤ C‖x‖2

for some C > 0 independent of x. The converse implication is not true, i. e.,
even if some nonnegative function V satisfies these two properties, global uniform
exponential stability may fail. This is illustrated in Remark 4 where an explicit
counterexample is discussed.

The converse implication becomes true if we add the requirement that the system
is globally uniformly exponentially bounded, i. e., there exist K,µ > 0 such that
‖x(t)‖ ≤ Keµt‖x(0)‖ for every t > 0, σ(·) and x(0). We obtain in this way a first
characterization: global uniform exponential stability is equivalent to the existence
of a Lyapunov function satisfying the properties mentioned above together with
global uniform exponential boundedness (Theorem 3).

A second result is obtained by dropping the global uniform exponential bound-
edness and by strengthening the requirements on V , namely, by asking it to be
comparable with respect to the squared norm, that is,

c‖x‖2 ≤ V (x) ≤ C‖x‖2, x ∈ X,

for some c, C > 0 independent of x (Theorem 6).
From the point of view of applications, Theorem 3, imposing less conditions

on V , is better suited for proving the global uniform exponential stability of a
switched system (although the uniform exponential growth boundedness needs also
be proved), while Theorem 6 provides more information on a globally uniformly
exponentially stable switched system.

In the case of a single mode (Q = {0}), it was observed by Pazy [16] that
x 7→

∫∞

0 ‖T0(t)x‖
2 dt defines a Lyapunov function that is comparable with the
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squared norm if and only if T0 extends to an exponentially stable strongly contin-
uous group. Theorem 6 states that, even if T0 does not admit an extension to a
group, a Lyapunov function comparable with the squared norm can still be found
(see Remark 8).

Concerning the regularity of the Lyapunov functions obtained through the con-
struction described above we prove that they are always convex and continuous. In
the special case in which X is a Hilbert space, we also prove the Fréchet directional
differentiability of V and we establish a characterization of the directional Fréchet
derivatives.

The paper is organized as follows. In Section 2 we provide the two different nec-
essary and sufficient conditions for global uniform exponential stability in terms of
the existence of a common Lyapunov function for switched systems whose dynamics
are described by strongly continuous semigroups on Banach spaces (Theorems 3 and
6). We also discuss the possible redundancy of the two-points condition equivalent
to global uniform exponential stability appearing in the statement of Theorem 3,
showing that point i) cannot be removed (Remark 4). Section 2 ends by the proof of
the Fréchet differentiability of the common Lyapunov function when X is a Hilbert
space (Proposition 9). In Section 3 we suggest some possible future research direc-
tion.

2. CONVERSE THEOREMS

By N, Q and R we denote the set of natural, rational and real numbers, respec-
tively. Further, let X be a Banach space, L(X) be the space of bounded linear
operators on X , Q be a countable set and, for all j ∈ Q, let t 7→ Tj(t) ∈ L(X),
t ≥ 0 be a strongly continuous semigroup.

We wish to investigate the qualitative behavior of

x(t) = Tσ(·)(t)x (3)

for x ∈ X , where σ : [0,∞) → Q is a piecewise constant switching signal and

Tσ(·)(t) = Tjp(t− τp)Tjp−1(τp − τp−1) · · ·Tj1(τ1) (4)

for σ(·) equal to jk on (τk−1, τk) for k = 1, . . . , p+ 1 and

0 = τ0 < τ1 < · · · < τp+1 = t.

In particular, we wish to study the asymptotic behavior of x(t) as t tends to +∞,
uniformly with respect to the switching law σ(·) in the set Σ of all piecewise constant
switching signals. We note that, for any given σ(·) ∈ Σ, the operator Tσ(·)(t) ∈
L(X) is strongly continuous with respect to t (limt↓t0 ‖Tσ(·)(t)−Tσ(·)(t0)‖ = 0) and
satisfies

Tσ(·)(t+ s) = Tσs(·)(t)Tσ(·)(s) (5)

for some switching signal σs(·) ∈ Σ depending on s, but in general, Tσ(·)(t) does
not satisfy the semigroup property, i. e., equation (5) with σs(·) replaced by σ(·)
(independently of s).

For a function V : X → [0,∞) we define the generalized derivative

¯
LjV (x) = lim inf

t↓0

V (Tj(t)x) − V (x)

t
, (6)

noting the possibility that |
¯
LjV (x)| = ∞ for some x ∈ X and j ∈ Q. Further, we

call a switched system (3) (completely determined by {Tj}j∈Q) globally uniformly
exponentially stable when there exist constants K ≥ 1 and µ > 0 such that

‖Tσ(·)(t)‖L(X) ≤ Ke−µt, t ≥ 0, σ(·)-uniformly. (7)
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Figure 1. Illustration of Tj(t), j = 1, 2, (left) and the blow up of
the operator norm of Tσ(·)(t) (right) in Example 1.

It is clear that (7) implies

‖x(t)‖X ≤ Ke−µt‖x‖X , t ≥ 0

globally for all x ∈ X and uniformly for all σ(·) ∈ Σ justifying the terminology. We
point out that (7) implies strong attractivity at the origin, i. e.,

lim
t→∞

‖Tσ(·)(t)x‖X = 0, x ∈ X, σ(·) ∈ Σ, (8)

and uniform stability, i. e.,










for all ε > 0 there exists a δ > 0,

independent of σ(·), such that ‖x‖X < δ implies

‖Tσ(·)(t)x‖X < ε, t ≥ 0, σ(·)-uniformly

(9)

but that the converse implication is false in general, even for a single mode: As a
counterexample it suffices to take the left translation semigroup defined by

(T (t)f)(s) := f(s+ t)

on the Lebesgue space X = L1(R+). This is in contrast to the equivalence of (8)
and (7) when X is a n-dimensional real coordinate space, Q is finite, and Tj(t) is
given by the matrix exponential eAjt for some real n×n-matrixAj , as a consequence
of Fenichel’s Uniformity Lemma (see, for instance, [5, §5.2]).

Before turning our attention to necessary and sufficient conditions for global
uniform exponential stability, we give an example of a switched system exhibiting
illustrative instability properties, though the subsystems are exponentially stable.
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Example 1. Consider the bimodal system {Tj(t)}j=1,2 with Tj(t) defined on the
Lebesgue space X = L1(−1, 1) by

(T1(t)f) (s) =











2f(s+ t), s ∈ [−1, 1− t] ∩ [−t, 0]

f(s+ t), s ∈ [−1, 1− t] \ [−t, 0]

0, s ∈ (1− t, 1]

and

(T2(t)f) (s) =











2f(s− t), s ∈ [−1 + t, 1] ∩ [0, t]

f(s− t), s ∈ [−1 + t, 1] \ [0, t]

0, s ∈ [−1,−1 + t).

Notice that both T1(·) and T2(·) are nilpotent semigroups, since T1(t) = T2(t) = 0
for t ≥ 2. In particular, each of them is exponentially stable.

It is easy to see that for suitable switching signals σ(·) ∈ Σ, e. g., switching at
τk = kδ, k ∈ N, for a fixed δ < 1,

‖Tσ(·)(t)‖L(X) → +∞ as t→ +∞.

In fact, the speed of blow-up is not uniformly exponentially bounded over the set
of all possible σ(·), i. e., for any fixed t > 0, we have

‖Tσ(·)(t)‖L(X) ≥ 2⌈
t
δ
⌉ → +∞ as δ → 0,

with ⌈τ⌉ = min{k ∈ N : τ ≤ k} for τ > 0 (see Figure 1). This can be seen by taking
L1(−1, 1)-functions f of norm one, identically constant near x = 0 on progressively
smaller intervals and zero elsewhere. �

The following lemma, related to the blow-up phenomenon illustrated in Exam-
ple 1 is a variant of a result obtained in [20] in the framework of strongly continuous
semigroups. While extending the property to switched system of the form (3), the
proof given in [20] should be modified in order to replace the semigroup property
by (5). We include the modified proof for the sake of completeness.

Lemma 2. Assume that

i) there exist constants M ≥ 1 and ω > 0 such that

‖Tσ(·)(t)‖L(X) ≤Meωt, t ≥ 0, σ(·)-uniformly;

ii) there exists a constant C > 0 and some p ∈ [1,∞) such that
∫ ∞

0

‖Tσ(·)(t)x‖
p
X dt ≤ C‖x‖pX , x ∈ X, σ(·)-uniformly.

Then, there exist constants K ≥ 1 and µ > 0 such that

‖Tσ(·)(t)‖L(X) ≤ Ke−µt, t ≥ 0, σ(·)-uniformly.

Proof. First, we show that under the assumptions i) and ii), for every x ∈ X , there
exists a constant Cx > 0 such that

‖Tσ(·)(t)x‖X ≤ Cx, t ≥ 0, σ(·)-uniformly (10)

and that, for all σ(·) and for all x ∈ X ,

lim
t→+∞

‖Tσ(·)(t)x‖X = 0. (11)

To this end, let t > 1
ω

and set ∆(t) = [t − 1
ω
, t]. Observe that, for every σ(·) and

every τ ∈ ∆(t), there exists a στ (·) such that

‖Tσ(·)(t)x‖X = ‖Tστ (·)(t− τ)Tσ(·)(τ)x‖X

≤ ‖Tστ (·)(t− τ)‖L(X)‖Tσ(·)(τ)x‖X .
(12)
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Moreover, by assumption i) and by definition of ∆(t), we have

‖Tστ (·)(t− τ)‖L(X) ≤Meω(t−τ) ≤Meω
1
ω =Me, (13)

yielding

‖Tσ(·)(τ)x‖X ≥
‖Tσ(·)(t)x‖X

Me
, τ ∈ ∆(t). (14)

Now suppose (10) does not hold. Then, there exist x ∈ X , a sequence of switching
signals (σi(·))i∈N in Σ and a sequence of times (ti)i∈N such that

δi = ‖Tσi(·)(ti)x‖X → +∞ as i→ +∞. (15)

Assumption i) guarantees that ti is diverging. Without loss of generality, ti >
1
ω

for every i ∈ N.
For τ ∈ ∆(ti), (14) yields

‖Tσi(·)(τ)x‖X ≥
δi

Me
, τ ∈ ∆(ti). (16)

Hence, using (16) and again the size of ∆(ti), we obtain from (15)
∫ ∞

0

‖Tσi(·)(τ)x‖
p
X dτ ≥

∫

∆(ti)

‖Tσi(·)(τ)x‖
p
X dτ

≥

(

δi

Me

)p
1

ω
→ ∞

as i→ ∞. This contradicts assumption ii). Hence, (10) holds true.
Next, suppose (11) does not hold. Then, there exist x ∈ X , σ(·) ∈ Σ, δ > 0 and

a diverging sequence of times (ti)i∈N such that

‖Tσ(·)(ti)x‖X ≥ δ for all i. (17)

Without loss of generality ti > ti−1 +
1
ω
for every i ∈ N with t0 = 0. For τ ∈ ∆(ti),

(14) yields

‖Tσ(·)(τ)x‖X ≥
δ

Me
, τ ∈ ∆(ti). (18)

Hence, using (16) and again the size of ∆(ti), we obtain
∫ ∞

0

‖Tσ(·)(τ)x‖
p
X dτ ≥

∞
∑

i=1

∫

∆(ti)

‖Tσ(·)(τ)x‖
p
X dτ

≥

(

δ

Me

)p ∞
∑

i=1

1

ω
= ∞.

This again contradicts assumption ii) and hence (11) holds true.
Let

tx,σ(·)(ρ) = max{t : ‖Tσ(·)(t)x‖X ≥ ρ‖x‖X , 0 ≤ s ≤ t}.

By (11), tx,σ(·)(ρ) is finite (and positive) for every σ(·) and x ∈ X \ {0}. By strong
continuity,

‖Tσ(·)(tx,σ(·)(ρ))x‖X = ρ‖x‖X .

Using assumption ii),

tx,σ(·)(ρ)ρ
p‖x‖pX ≤

∫ tx,σ(·)(ρ)

0

‖Tσ(·)(t)x‖
p
X dt

≤

∫ ∞

0

‖Tσ(·)(t)x‖
p
X dt ≤ C‖x‖pX

whereby,

tx,σ(·)(ρ) ≤
C

ρp
=: t0, independent of σ(·).
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By the principle of uniform boundedness, (10) implies that there exists a constant
k > 0 such that

‖Tσ(·)(t)‖L(X) ≤ k, t ≥ 0, σ(·)-uniformly. (19)

Hence, for t > t0, we have

‖Tσ(·)(t)x‖X ≤ sup
σ̃(·)

‖Tσ̃(·)(t− tx,σ(·)(ρ))‖L(X)ρ‖x‖X

≤ kρ‖x‖X , σ(·)-uniformly.

Choose ρ > 0 such that β := kρ < 1, so that

‖Tσ(·)(t)x‖X ≤ β‖x‖X , t ≥ t0, σ(·)-uniformly.

Finally, let t1 > t0 be fixed and let t = nt1 + s, 0 ≤ s < t1. Then,

‖Tσ(·)(t)‖L(X) ≤ sup
σ̃(·), σ̂(·)

‖Tσ̃(·)(s)‖L(X)‖Tσ̂(·)(nt1)‖L(X)

≤ k

(

sup
σ̂(·)

‖Tσ̂(·)(t1)‖L(X)

)n

≤ kβn ≤ Ke−µt, t ≥ 0, σ(·)-uniformly

with K = C
β
and µ = −

(

1
t1

)

lnβ > 0. �

Lemma 2 allows us to prove the first of the converse Lyapunov theorems that
are the object of this paper.

Theorem 3. The following conditions:

i) there exist constants M ≥ 1 and ω > 0 such that

‖Tσ(·)(t)‖L(X) ≤Meωt, t ≥ 0, σ(·)-uniformly, (20)

ii) there exists a continuous convex function V : X → [0,∞) such that

V (x) ≤ C‖x‖2X (21)

for a constant C > 0 and

¯
LjV (x) ≤ −‖x‖2X , for all j ∈ Q, (22)

with
¯
LjV (x) defined as in (6)

are necessary and sufficient for the existence of constants K ≥ 1 and µ > 0 such
that

‖Tσ(·)(t)‖L(X) ≤ Ke−µt, t ≥ 0, σ(·)-uniformly. (23)

Proof. Assume that the conditions i) and ii) hold. For all σ(·) ∈ Σ, x ∈ X and for
t ≥ 0 small enough so that the restriction of σ(·) to the interval [0, t] is constant,
we have

0 ≤ V (Tσ(·)(t)x) ≤ V (x)−

∫ t

0

‖Tσ(·)(τ)x‖
2
X dτ

as it follows from (22) and [17, §VI.7] (see also [8]). Thus, for all σ(·) and x ∈ X ,
∫ ∞

0

‖Tσ(·)(τ)x‖
2
X dτ ≤ V (x) ≤ C‖x‖2X . (24)

The uniform exponential decay (23) now follows from (20) and (24), thanks to
Lemma 2 with p = 2.
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Conversely, assume that (23) holds for some constants K ≥ 1 and µ > 0. Then,
(20) holds for M = K and arbitrary ω > 0. Define V : X → [0,∞) by

V (x) = sup
σ(·)∈Σ

∫ ∞

0

‖Tσ(·)(t)x‖
2
X dt. (25)

Then, by assumption, V (x) satisfies

V (x) ≤ sup
σ(·)

∫ ∞

0

K2e−2µt‖x‖2X dt =
K2

2µ
‖x‖2X ,

establishing (21) with C = K2

2µ . In particular, V is well-posed. Moreover, since

each

x 7→

∫ ∞

0

‖Tσ(·)(t)x‖
2
X dt

is convex, it follows that x 7→ V (x) is convex. We are left to prove that V is
continuous and satisfies (22).

In order to verify the continuity of V , let (xn)n∈N be a sequence in X converging
to x in X . By definition of V ,

∫ ∞

0

‖Tσ(·)(t)xn‖
2
X dt ≤ V (xn), (26)

for all σ(·) ∈ Σ. So taking the lim inf over n ∈ N in (26) on both sides and using
the continuity of Tσ(·)(t) for all t ≥ 0, we have

∫ ∞

0

‖Tσ(·)(t)x‖
2
X dt ≤ lim inf

n→∞

∫ ∞

0

‖Tσ(·)(t)xn‖
2
X dt ≤ lim inf

n→∞
V (xn). (27)

Taking the sup over σ(·) in (27) then yields

V (x) = sup
σ(·)

∫ ∞

0

‖Tσ(·)(t)x‖
2
X dt ≤ lim inf

n→∞
V (xn),

proving that V is lower semi-continuous. On the other hand, for a fixed ε > 0,
there exist σε(·) ∈ Σ such that

V (xn)−
ε

2
<

∫ ∞

0

‖Tσε(·)(t)xn‖
2 dt

≤ (1 +m)

∫ ∞

0

‖Tσε(·)(t)(xn − x)‖2 dt+

(

1 +
1

m

)
∫ ∞

0

‖Tσε(·)(t)x‖
2 dt,

for any m > 0. Notice that, by definition of V ,
∫ ∞

0

‖Tσε(·)(t)(xn − x)‖2 dt ≤ V (xn − x) ≤ C‖xn − x‖2X ,

∫ ∞

0

‖Tσε(·)(t)x‖
2 dt ≤ V (x).

Thus, for any m > 0, we have

V (xn)−
ε

2
< C(1 +m)‖xn − x‖2X +

(

1 +
1

m

)

V (x). (28)

In particular, choosingm such that (1+ 1
m
)V (x) < V (x)+ ε

4 and taking n sufficiently

large, so that (1 +m)C‖xn − x‖2X ≤ ε
4 , we have from (28)

V (xn) < V (x) + ε, n sufficienty large.

This implies the upper semi-continuity of V . Resuming, we proved the continuity
of V .

Finally, fixing t > 0, j ∈ Q and letting

Σt,j = {σ(·) ∈ Σ : σ|[0,t] ≡ j}
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Figure 2. Illustration of Tj(t), j ∈ Q, of the example in Remark 4.

be the set of switching signals whose restriction to the interval [0, t] is constantly
equal to j, we have, since Σt,j ⊆ Σ,

V (x) ≥ sup
σ(·)∈Σt,j

∫ ∞

0

‖Tσ(·)(τ)x‖
2
X dτ

=

∫ t

0

‖Tj(τ)x‖
2
X dτ + sup

σ(·)∈Σt,j

∫ ∞

t

‖Tσ(·)(τ)x‖
2
X dτ. (29)

Moreover, thanks to (5) and the invariance of Σ by time-shift,

V (Tj(t)x) = sup
σ(·)∈Σ

∫ ∞

0

‖Tσ(·)(τ)Tj(t)x‖
2
X dτ

= sup
σ(·)∈Σ

∫ ∞

t

‖Tσ(·)(τ − t)Tj(t)x‖
2
X dτ

= sup
σ(·)∈Σt,j

∫ ∞

t

‖Tσ(·)(τ)x‖
2
X dτ.

This and (29) yield

V (Tj(t)x) − V (x) ≤ −

∫ t

0

‖Tj(τ)‖
2
X dτ,

for all j ∈ Q and t > 0. Therefore

¯
LjV (x) = lim inf

t↓0

V (Tj(t)x) − V (x)

t

≤ − lim sup
t↓0

1

t

∫ t

0

‖Tj(τ)x‖
2
X dτ = −‖x‖2X

for all j ∈ Q, establishing (22). �

Remark 4. We show here, through an example, that condition i) appearing in the
statement of Theorem 3 cannot be removed.

Consider the family of semigroups {Tj(t)}j∈Q with Q = N and Tj(t) defined on
the Lebesgue space X = Lp(0, 1), p ∈ [1,∞), by

(Tj(t)f) (s) =











2
1
p f(s+ t), s ∈ [0, 1− t] ∩ [0, 4−j)

f(s+ t), s ∈ [0, 1− t] \ [0, 4−j)

0, s ∈ (1− t, 1],

(30)
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cf. also Figure 2. Notice that, for all j ∈ Q, Tj(·) is a nilpotent semigroup, since
‖Tj(t)f‖X = 0 for t > 1. In particular, each of them is exponentially stable.
Moreover, for all σ(·) ∈ Σ, we have

∣

∣

(

Tσ(·)(t)f
)

(s)
∣

∣ ≤ 2
k
p |f(s+ t)|, with k = #{l ∈ N : s < 4−l ≤ s+ t}.

In particular,
∣

∣

(

Tσ(·)(t)f
)

(s)
∣

∣ ≤ 2
k
p |f(s+ t)|, if 4−k−1 ≤ s < 4−k,

yielding
∫ ∞

0

‖Tσ(·)(t)f‖
p
X =

∫ 1

0

∫ 1−t

0

∣

∣

(

Tσ(·)(t)f
)

(s)
∣

∣

p
ds dt

=

∫ 1

0

∫ 1−s

0

∣

∣

(

Tσ(·)(t)f
)

(s)
∣

∣

p
dt ds

≤

∞
∑

k=0

∫ 4−k

4−k−1

2k
(
∫ 1−s

0

|f(s+ t)|p dt

)

ds

≤

∞
∑

k=0

(

1

4k
−

1

4k+1

)

2k
∫ 1

0

|f(t)|p dt =
3

2
‖f‖pX .

Hence, defining V (x) as in (25), we have

V (x) = sup
σ(·)

∫ ∞

0

‖Tσ(·)(t)x‖
2
X dt ≤

3

2
‖x‖2X

and, by the same arguments as in the proof of Theorem 3,

¯
LjV (x) ≤ −‖x‖2X , for all j ∈ Q,

so condition ii) in Theorem 3 holds with C = 3
2 .

Nevertheless, for a sequence of switching signals (σn(·))n∈N ⊂ Σ with switching
times τk = 1

4k
and modes jk = k + 1, 0 ≤ k ≤ n, we have for functions 1[s,1] of L

p

norm one concentrated on the interval [s, 1],

Tσn(·)(1− ǫ)1[s,1] = 2
n
p 1[s−1+ǫ,ǫ], if 1 ≥ s ≥ 1− ǫ > 1− 4−n.

Therefore, for ǫ < 4−n,

‖Tσn(·)(1− ǫ)‖L(X) = sup
‖f‖X=1

‖Tσn(·)(1 − ǫ)f‖X

≥ lim
s↑1

‖Tσn(·)(1− ǫ)1[s,1]‖X = 2
n
p .

Hence,

sup{‖Tσn(·)(1− ǫ)‖L(X) : ǫ ∈ [0, 1], n ∈ N} = +∞ (31)

violating any uniform bound of the form (23).
This example also shows that assumption i) appearing in Lemma 2 is necessary

for the validity of the lemma. �

If one wishes to conclude that a switched system is globally uniformly expo-
nentially stable, Theorem 3 requires the knowledge of a nonnegative function V (·)
satisfying (21), (22) for all modes j ∈ Q and the knowledge of a global uniform
exponential bound (20). As an alternative, we will, in Theorem 6, obtain the exis-
tence of a function V (·) that is equivalent to the squared norm in X and allows to
conclude global uniform exponential stability without knowledge of a global uniform
exponential bound of the type (20). The latter is not obvious, since the Lyapunov
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function V (·) constructed in the proof of Theorem 3 (see definition (25)) is in gen-
eral not equivalent to the squared norm in X , i. e., in general V (·) does not satisfy
a lower bound of the form

c‖x‖2X ≤ V (x), x ∈ X (32)

for a constant c > 0. Such a lower bound always holds, on the contrary, when X has
finite dimension, as it is exploited in [15, 7]. The bound (32) may fail to hold even
in the case of a single strongly continuous semigroup, as it is the case, for instance,
of the semigroups T1(·) and T2(·) introduced in Example 1. (For a characterization
of exponentially stable strongly continuous semigroups whose Lyapunov function
defined as in (25) satisfies (32), see [16].)

In order to obtain a Lyapunov function equivalent to the squared norm for infinite
dimensional switched systems, we make use of the following lemma imposing a
stronger assumption on the family of semigroups Tj(·).

Lemma 5. Assume that there exists j∗ ∈ Q such that Tj∗(·) can be extended
to a group of bounded linear operators on X. Moreover, assume that there exist
constants K ≥ 1 and µ > 0 such that

‖Tσ(·)(t)‖L(X) ≤ Ke−µt, t ≥ 0, σ(·)-uniformly. (33)

Then there exists a continuous convex function V : X → [0,∞) such that

c‖x‖2X ≤ V (x) ≤ C‖x‖2X (34)

for constants c, C > 0 and

¯
LjV (x) ≤ −‖x‖2X , for all j ∈ Q, (35)

with
¯
LjV (x) defined as in (6).

Proof. Assume that (33) holds for some constants K ≥ 1 and µ > 0 independent
of σ(·). Define V (·) by (25). As seen in the proof of Theorem 3, (33) guarantees
that V is convex, continuos, satisfies (35) and that there exist C > 0 such that
V (x) ≤ C‖x‖2X .

The remaining bound c‖x‖2 ≤ V (x) for some constant c > 0 is a consequence of
the assumption that Tj∗(·) can be extended to a group. Indeed, Tj∗(t) is then invert-
ible for every t ≥ 0 and satisfies ‖Tj∗(t)x‖X ≥ (‖Tj∗(−t)‖L(X))

−1‖x‖X (cf. [16]).
Hence

V (x) = sup
σ(·)

∫ ∞

0

‖Tσ(·)(t)x‖
2
X dt ≥

∫ ∞

0

‖Tj∗(t)x‖
2
X

≥

∫ ∞

0

(‖Tj∗(−t)‖L(X))
−2 dt‖x‖2X = c‖x‖2X

with c =
∫∞

0 (‖Tj∗(−t)‖L(X))
−2 dt <∞. �

We can now state and prove our second converse Lyapunov theorem.

Theorem 6. The existence of a continuous convex function V : X → [0,∞), such
that

c‖x‖2X ≤ V (x) ≤ C‖x‖2X (36)

for constants c, C > 0 and

¯
LjV (x) ≤ −‖x‖2X , for all j ∈ Q, (37)

with
¯
LjV (x) defined as in (6) is necessary and sufficient for the existence of con-

stants K ≥ 1 and µ > 0 such that

‖Tσ(·)(t)‖L(X) ≤ Ke−µt, t ≥ 0, σ(·)-uniformly. (38)
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Proof. Assume that there exists a function V : X → [0,∞) such that (36) and (37)
hold for c, C > 0. Then, for all x ∈ X , σ(·) ∈ Σ, and t ≥ 0,

c‖Tσ(·)(t)x‖
2
X ≤ V (Tσ(·)(t)x) ≤ V (x) −

∫ t

0

‖Tσ(·)(τ)x‖
2
X dτ,

so, using again (36) and dividing by c,

‖Tσ(·)(t)x‖
2
X ≤

C

c
‖x‖2X −

1

c

∫ t

0

‖Tσ(·)(τ)x‖
2
X dτ.

From Gronwall’s Lemma, we obtain

‖Tσ(·)(t)x‖
2
X ≤

C

c
e−

1
c
t‖x‖2X , t ≥ 0, σ(·)-uniformly.

Hence,

‖Tσ(·)(t)‖L(X) ≤ Ke−µt, t ≥ 0, σ(·)-uniformly,

for the constants K =
√

C
c
≥ 1 and µ = 1

2c > 0, establishing (38).

Conversely, assume that (38) holds for K ≥ 1 and µ > 0 and consider the
switched system with σ∗(·) taking values in Q∗ = Q ∪ {j∗}, where

Tj∗(t) = e−µtI (39)

and I : X → X denotes the identity. Then,

Tj∗(t)Tj(s) = Tj(s)Tj∗(t), t, s ≥ 0, j ∈ Q.

Moreover, for t∗ = |{τ ∈ [0, t] : σ∗(τ) = j∗}| and some σ(·) just taking values in Q,

‖Tσ∗(·)‖L(X) = ‖Tσ(·)(t− t∗)e−µt∗‖L(X) ≤ Ke−µ(t−t∗)e−µt∗

= Ke−µt, t ≥ 0, σ(·)-uniformly (40)

where we have used (38). The existence of a continuous convex function V : X →
[0,∞) and constants c, C > 0 such that (36) and (37) hold now follows from (40)
and Lemma 5, noting that (39) actually defines a group. �

Remark 7. Both Theorems 3 and 6 provide equivalent conditions to the global
uniform exponential stability of a linear switched system on a Banach space in
terms of the existence of a common Lyapunov function. We already noticed that
a Lyapunov function V (·) satisfying condition ii) of the statement of Theorem 3
does not necessarily satisfy the stronger conditions appearing in the statement of
Theorem 6.

Hence, Theorem 3 is better suited for proving the global uniform exponential
stability of a switched system (although the uniform exponential growth bound-
edness should also be proved), while Theorem 6 provides more information on a
switched system that is known to be globally uniformly exponentially stable, by
tightening the properties satisfied by V (·).

In the same spirit—following the same proofs presented above—we can charac-
terize the global uniform exponential stability of a switched system by (a priori)
loosening the hypotheses on V (·), replacing inequalities (22) and (37) by

¯
LjV (x) ≤ −κ‖x‖2X , for all j ∈ Q, for some κ > 0.

We can also remove the hypotheses of continuity and convexity on V . Conversely,
we can (a priori) tighten the same hypotheses replacing

¯
LjV (x) by

L̄jV (x) = lim sup
t↓0

V (Tj(t)x) − V (x)

t
. �
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Remark 8. In the case of a single strongly continuous semigroup T (·), Theorem 6
shows that its global exponential stability is equivalent to the existence of a con-
tinuous convex Lyapunov function comparable with the squared norm of X .

When T (·) is globally exponentially stable, such a Lyapunov function can be
obtained by the construction suggested in the proof of Theorem 6.

A more explicit expression for V is obtained following the alternative construc-
tion of a common Lyapunov function proposed in [10], where (25) is replaced by

V (x) =

∫ ∞

0

sup
σ(·)∈Σ

‖Tσ(·)(t)x‖
2
X dt. (41)

In the case of a single mode and following the strategy of augmenting Q by adding
a group corresponding to a diagonal operator, we get

V (x) =

∫ ∞

0

(

max
s∈[0,τ ]

e2µ(s−τ)‖T (s)x‖2X

)

dτ,

for any fixed µ > 0.
It should be noticed that, although not stated in [10], the definition of V given

in (41) identifies a function which is continuous and convex. The proof of this fact
can be rather easily obtained by adapting the proof of Theorem 3. �

The following proposition allows to improve the regularity of the common Lya-
punov function in the case in which X is a Hilbert space. The proof adapts similar
arguments presented in [4, §4.3.1].

Proposition 9. Let X be a Hilbert space with scalar product 〈·, ·〉 and assume that
there exist constants K ≥ 1 and µ > 0 such that

‖Tσ(·)(t)‖L(X) ≤ Ke−µt, t ≥ 0, σ(·)-uniformly. (42)

Then, there exists a weakly-∗-compact subset B of self-adjoint operators in L(X)
such that the function V : X → R given by

V (x) = max
B∈B

〈x,Bx〉 (43)

satisfies condition ii) of Theorem 3. In particular, V is convex and directionally
differentiable in the sense of Fréchet and its derivative in the direction ψ ∈ X is
given by

DV (x)(ψ) = max
B̂∈S(x)

2〈ψ, B̂x〉, (44)

where

S(x) = argmaxB∈B〈x,Bx〉. (45)

Proof. For a fixed σ(·) ∈ Σ and all t ≥ 0, let T ∗
σ(·)(t) ∈ L(X) be the adjoint operator

of Tσ(·)(t) ∈ L(X), uniquely defined by

〈Tσ(·)(t)x, x
′〉 = 〈x, T ∗

σ(·)(t)x
′〉, x, x′ ∈ X.

If Tσ(·)(t) has the expression given in (4), then

T ∗
σ(·)(t) = T ∗

j1
(τ1) · · ·T

∗
jp−1

(τp − τp−1)T
∗
jp
(t− τp),

where T ∗
j (t) denotes the adjoint semigroup of Tj(t), t ≥ 0, j ∈ Q.

Assuming that there exist constants K ≥ 1 and µ > 0, independent of σ(·), such
that (42) holds, the operator Bσ(·) : X → X , given by

Bσ(·)x =

∫ ∞

0

T ∗
σ(·)(t)Tσ(·)(t)x dt,
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is linear, self-adjoint, and satisfies

‖Bσ(·)x‖X ≤

∫ ∞

0

‖T ∗
σ(·)(t)‖L(X)‖Tσ(·)(t)‖L(X)‖x‖X dt

≤

∫ ∞

0

K2e−2µt‖x‖X dt =
K2

2µ
‖x‖X ,

where we have used (42). In particular, Bσ(·) ∈ L(X) for all σ(·) ∈ Σ and

‖Bσ(·)‖L(X) ≤
K2

2µ
, σ(·)-uniformly. (46)

Therefore, the set

B = {B ∈ L(X) : there exists a sequence (σn(·))n∈N ⊂ Σ such that Bσn(·)
∗
⇀ B}

is weakly-∗-compact, as it follows from the Banach-Alaoglu theorem. Moreover, B
consists of self-adjoint operators.

Notice that if Bσn(·)
∗
⇀ B and (xn, yn) → (x, y) in X ×X , then

lim
n→∞

〈xn, Bσn(·)yn〉 = 〈x,By〉. (47)

Define V as in (43). The maximization makes sense because of (47) (with xn =
yn = x) and of the compactness of B. Moreover,

V (x) = max
B∈B

〈x,Bx〉 = sup
σ(·)∈Σ

〈x,Bσ(·)x〉 = sup
σ(·)∈Σ

〈x,

∫ ∞

0

T ∗
σ(·)(t)Tσ(·)(t)x dt〉

= sup
σ(·)∈Σ

∫ ∞

0

〈x, T ∗
σ(·)(t)Tσ(·)(t)x〉dt = sup

σ(·)

∫ ∞

0

‖Tσ(·)(t)x‖
2 dt,

for all x ∈ X . Comparing with (25), we recover that V satisfies the condition ii) of
Theorem 3. In particular, V is convex and continuous.

In order to verify the directional differentiability in the sense of Fréchet and to
prove (44), first observe that the map x 7→ 〈x,Bx〉 is differentiable on X in the
sense of Fréchet for all B ∈ L(X). For B self-adjoint, the derivative is given by
2〈·, Bx〉. Fix now some x0 ∈ X and define

Φ(B, x) = 2‖Bx−Bx0‖X .

We claim that

lim
x→x0

Φ(B, x) = 0, uniformly with respect to B ∈ B. (48)

Indeed, suppose by contradiction that there exists some ε > 0, a sequence (xn)n∈N

converging to x0 in X and a sequence (Bn)n∈N in B such that

Φ(Bn, xn) > ε for all n ∈ N. (49)

Since B is weakly-∗-compact, there exist B ∈ B and a subsequence n(k) such that

Bn(k)
∗
⇀ B as k → ∞.

Then, thanks to (47),
Φ(Bn(k), xn(k)) = 0,

contradicting (49).
The Mean Value Theorem then gives

|〈x0 + ψ,B(x0 + ψ)〉 − 〈x0, Bx0〉 − 2〈ψ,Bx0〉|

≤ ‖ψ‖X

∫ 1

0

Φ(B, x0 + ξψ) dξ ≤ ε‖ψ‖X
(50)

for ε > 0, ψ sufficiently close to zero, and uniformly with respect to B ∈ B, as it
follows from (48).
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Let S(·) be defined as in (45). Notice that S(x) is weak-∗-compact for every

x ∈ X . For any B̂ ∈ S(x0), V (x0) = 〈x0, B̂x0〉 and V (x0+ψ) ≥ 〈x0+ψ, B̂(x0+ψ)〉.
Thus, using (50),

V (x0 + ψ)− V (x0) ≥ max
B̂∈S(x0)

2〈ψ, B̂x0〉 − ε‖ψ‖X .

In order to prove (44), it therefore remains to show that for all ε > 0 and ψ close
to zero,

V (x0 + ψ)− V (x0) ≤ max
B̂∈S(x0)

2〈ψ, B̂x0〉+ ε‖ψ‖X . (51)

So, suppose (51) not to hold. Then there exist ε > 0 and a sequence (ψn)n∈N in X
converging to zero such that

V (x0 + ψn)− V (x0) > max
B̂∈S(x0)

2〈ψn, B̂x0〉+ ε‖ψn‖X . (52)

By definition of V , there exist B0, B̂n ∈ B such that

V (x0 + ψn)− V (x0) = 〈x0 + ψn, B̂n(x0 + ψn)〉 − 〈x0, B0x0〉

≤ 〈x0 + ψn, B̂n(x0 + ψn)〉 − 〈x0, B̂nx0〉.

Again by the Mean Value Theorem,

|〈x0 + ψn, B̂n(x0 + ψn)〉 − 〈x0, B̂nx0〉 − 2〈ψn, B̂nx0〉|

≤ ‖ψn‖X

∫ 1

0

Φ(B̂n, x0 + ψn) dt ≤
ε

2
‖ψn‖X

for all n large enough. Thus,

V (x0 + ψn)− V (x0) ≤ 2〈ψn, B̂nx0〉+
ε

2
‖ψn‖X .

Using one more time the weak-∗-compactness of B, there exist a subsequence n(k)

such that B̂n(k)
∗
⇀ B̂ for some B̂ ∈ B. Moreover, by continuity of V and because

of (47), B̂ ∈ S(x0). Hence,

V (x0 + ψn(k))− V (x0) ≤ 2〈ψn(k), B̂x0〉+ 2〈ψn(k), (B̂n(k) − B̂)x0〉+
ε

2
‖ψn(k)‖X

≤ max
B∈S(x0)

2〈ψn(k), Bx0〉+
3

4
ε‖ψn(k)‖

where we used that 2〈ψn(k), (B̂n(k) − B̂)x0〉 ≤ ε
4‖ψn(k)‖X for k sufficiently large.

This contradicts (52) and completes the proof. �

3. CONCLUSIONS AND FUTURE WORKS

We presented necessary and sufficient conditions for a (possibly infinite) family
of semigroups to be globally uniformly exponentially stable for arbitrary switching
signals σ(·), in terms of the existence of a common Lyapunov-function. In particu-
lar, our results apply to switched dynamical systems such as (1), involving (possibly
unbounded) operators on a Banach space X .

We have shown that the existence of a positive continuous function V (·), decaying
uniformly along trajectories and either bounded from above by a multiple of the
squared norm in presence of a uniform exponential growth bound for the switched
system or comparable with the squared norm is equivalent to the switched system
being globally uniformly exponentially stable. The latter generalizes a well-known
result for switched linear dynamical systems in Rn, n ∈ N.

As an application, our results answer for example the question of existence of a
common Lyapunov function for the switched linear hyperbolic system with reflect-
ing boundaries considered in [1].
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The common Lyapunov function is shown to be Fréchet directionally differen-
tiable in the case in which X is a Hilbert space.

Future work involves the investigation of further regularity properties for V (·).
For the finite-dimensional case, it is for instance known that V (·) can be taken
polyhedral or polynomial [2, 3, 7]. It would be interesting to recover results in the
same direction for infinite dimensional switched systems.
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