
HAL Id: hal-00489955
https://hal.science/hal-00489955v1

Submitted on 7 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Enumeration for Conjunctive Queries over
X-underbar Structures

Guillaume Bagan, Arnaud Durand, Emmanuel Filiot, Olivier Gauwin

To cite this version:
Guillaume Bagan, Arnaud Durand, Emmanuel Filiot, Olivier Gauwin. Efficient Enumeration for
Conjunctive Queries over X-underbar Structures. 19th EACSL Annual Conference on Computer
Science Logic, Aug 2010, Brno, Czech Republic. pp.80-94, �10.1007/978-3-642-15205-4_10�. �hal-
00489955�

https://hal.science/hal-00489955v1
https://hal.archives-ouvertes.fr

Efficient Enumeration for Conjunctive Queries over
X-underbar Structures

Guillaume Bagan1, Arnaud Durand2, Emmanuel Filiot3, and Olivier Gauwin4

1 INRIA Lille – Mostrare
2 ELM, CNRS FRE 3233 – Université Paris Diderot

3 Université Libre de Bruxelles
4 Université de Mons – UMONS

Abstract. We investigate efficient enumeration algorithms for conjunctive queries
for databases over binary relations that satisfy the Xproperty. Tree-like relations
such as XPath axes or grids are natural examples of such relations. We first show
that the result of ann-ary conjunctive queryQ over an XstructureS can be enu-
merated with a delay inO(n·|S|·|Q|) between two consecutiven-tuples. Then,
we consider acyclic conjunctive queries and show that such queries admit an enu-
meration algorithm with delayO(|Q| · |D|) and a preprocessing inO(|Q| · |S|)
whereD is the domain ofS. The delay can even be improved toO(n·|D|) with a
slightly more expensive preprocessing step. As an application of our method, we
also show that anyn-ary XPath acyclic conjunctive queryQ over an unranked
treet can be enumerated with a preprocessing and delayO(|Q|·|t|). In the sec-
ond part of the paper, we consider conjunctive queries with possible inequalities
(6=) between variables. In this case, we show that query evaluation is NP-hard
and, unlessP = NP, these queries do not admit enumeration algorithms with
a combined polynomial time delay. However, we also show thathardness relies
only on the numberℓ of variables that appear in inequalities. We propose efficient
enumeration procedures for acyclic and general conjunctive queries whose delay
is exponential inℓ but polynomial (even quasi-linear) in|Q| and|S|.

1 Introduction

Querying is a core task in database processing. Given a relational structureS, ann-
ary query retrievesn-tuples of elements in the domain ofS. For XML databases, the
structureS is a tree modeling an XML document, and ann-ary query selectsn-tuples
of nodes of this tree.

Query computing can be seen as a generation process. In this case, one tries to out-
put selected tuples one after the other, without duplicates, while minimizing the delay
between successive answers. Good enumeration algorithms then carry additional infor-
mation on the problem: it shows that the query is not only tractable but that the result
can be obtained step by step in a very regular way. A nice feature is that enumera-
tion permits to start a pipeline process, and thus allow tasks based on querying to start
processing answers without waiting for the whole evaluation to be done.

More precisely, an enumeration algorithm is the process of generating one after the
other the tuples of a given queryQ(S) for some given order< [4]. In particular, the

enumeration process does not generate duplicates. The so-calledpreprocessingis a pre-
liminary step performed before the enumeration phase. Thedelayof such an algorithm
is the maximum between(i) the time to get the first tuple after preprocessing(ii) the
maximal interval of time between the generation of two consecutive solutions for<.

In [13], a tractability frontier is established for conjunctive queries defined using
XPath axes as predicates. This dichotomy relies on the Xproperty (see Section 2 for a
definition): if a structureS has the Xproperty w.r.t. some total order< on the domain
D of the structure, then it can be checked in PTIME combined complexity whether the
result of a conjunctive queryQ overS is empty or not. IfQ is ann-ary query, then the
proof provides an evaluation algorithm with time complexity O(|D|n · |S| · |Q|). This
holds for any conjunctive queries using unary and binary predicates, not only XPath
expressions. For all conjunctive queries based on XPath axes combinations that do not
have the Xproperty, checking whetherQ selects some tuples onS is NP-complete.

Based on the aforementioned dichotomy, we investigate enumeration of conjunctive
queries over Xstructures, by providing enumeration algorithms (see Fig.1) and hard-
ness results. Enumeration complexity of query problems, inparticular on tree structures
and on tree-like queries, has deserved some attention recently [3, 7, 4]. However grids
also have the Xproperty, hence new tools are needed for such kind of structures.

Prior to this investigation, we show that deciding whether astructureS is X for some
order on its domain is NP-hard whenS contains two binary relations. IfS contains only
one binary relation, the problem is known to be in PTIME.5

Our first algorithm enumerates answers of ann-ary conjunctive queryQ over an X
structureS without preprocessing and with a delay inO(n·|S|·|Q|). The method relies
on the computation of maximal arc-consistent pre-valuations proposed in [13]. We then
turn toacyclicn-ary conjunctive queries (ACQS) Q over X structuresS, and propose
an algorithm with preprocessingO(|Q| · |S|) and delay inO(|Q| · |D|), whereD is the
domain ofS. We first reason on a conceptually simpler notion of tree-shaped queries,
namely tree patterns. ACQS are then mapped to tree patterns. With a slightly more
expensive preprocessing inO(|Q|·|D|2), this delay can be reduced toO(n·|D|). This is
to be compared with Yannakakis’ algorithm [18] turned into an enumeration algorithm
in [4], which computes all answersQ(S) of an acyclic conjunctive queryQ over an
arbitrary structureS with delayO(|Q|·|S|), hence in total timeO(|Q|·|S|·|Q(S)|).

The set of XPath axes does not have the Xproperty (only some combinations of
them have it). However we show that the main ideas of the enumeration algorithm for
ACQS over X can also be applied to ACQS over XPath axes. Given an unranked tree
t and an ACQQ over XPath axes,Q(t) can be enumerated with a preprocessing and
delayO(|Q|·|t|), where|t| is the number of nodes. This is particularly relevant to XML
processing as XPath has become one of the main query languagefor XML. Moreover,
as XML documents can be very large in practice, even a square in the size of the tree
for preprocessing and delay would not be feasible.

It is a natural question to ask whether the delay can be made polynomial in the
size of the query only (and independent of the size of the Xstructure) in the case of
conjunctive or even acyclic conjunctive queries. While this is still an open question, we
obtain hardness results and tight algorithms when allowinginequalities in predicates.

5 personal communication with Pavol Hell and Arash Rafiey. To be published.

2

Source Queries Structures Preprocessing Delay

[13] CQ X O(1) O(|D|n ·|Q|·|S|)
Section 3 CQ X O(1) O(n·|Q|·|S|)

Section 5 CQ(6=) X O(1) O(ℓO(ℓ) ·|Q|·n·|S|·log |D|)
[4] ACQ all O(1) O(|Q|·|S|)

Section 4 ACQ X O(|Q|·|S|) O(|Q|·|D|)
Section 4 ACQ X O(|Q|·|D|2) O(n·|D|)
Section 4 ACQ (XPath axes) treet O(|Q|·|t|) O(|Q|·|t|)

Section 5 ACQ (6=) X O(|Q|·|S|) O(ℓO(ℓ) ·|Q|·|D|·log |D|)

Fig. 1. Enumeration algorithms forn-ary queriesQ over structuresS with domainD. ℓ is the
number of variables used in inequalities, while|t| denotes the number of nodes of the treet.

For conjunctive queries with inequalities over Xstructures, satisfiability is NP-hard,
even when the query restricted to Xpredicates is acyclic. As a consequence, these
queries may not be enumerated with a polynomial delay, in terms of combined com-
plexity. However, we propose an enumeration algorithm for such queries without pre-
processing, and with a delay inO(ℓO(ℓ) ·|Q|·n·|S|·log |D|) where the blowup is only
in the numberℓ of distinct variables in inequalities. In the acyclic case,when allowing
a preprocessing phase inO(|Q|·|S|), we obtain a delay inO(ℓO(ℓ) ·|Q|·|D|·log |D|).

Related work.Enumeration of acyclic conjunctive queries has been studied in [4].
It is shown that the result of such a query can be enumerated with a delay linear in
|S| · |Q| (dependency on|Q| is exponential when inequalities are allowed). They also
formulate conditions on free variables to have a delay depending on|Q| only. Monadic
second order queries on structures of bounded treewidth areconsidered in [7, 3] where
enumeration algorithms are exhibited with a delay depending on|Q| (non elementarily)
and on the size of each tuple.

For acyclic conjunctive queries, Koch [16] provides an enumeration algorithm with
preprocessing inO(|S| · |Q|) (for computingΘ) and delayO(|D|), where|D| is the
domain size. For tree structures and tree-like queries overchild/descendant axes, the
delay can be improved toO(1) with the algorithmTwigStack[5]. However in both
works, all variables are considered as free. In our work, variables can be existentially
quantified, so that it may be an exponential number of valuations (in the size of the
domain) for a single answer tuple. However we can still achieve a polynomial delay
between two successive tuples.

Conjunctive queries over child/descendant axes are considered in [6] for the class
of graphs. No enumeration algorithms are provided, but query evaluation algorithms.
In the case of tree-like queries over graphs the time complexity is O(|Q| · |D| · |E| +
|Q(S)|), where|V | is the size of the domain and|E| is the number of edges in the graph.
However it is exponential in the number of variables in the case of graph queries. In [9],
XPath dialects that can definen-ary queries are introduced. No enumeration algorithm
is given, but a fragment that corresponds to union of ACQS over treest is defined, for
which evaluation is in timeO(n·|Q|·|t|2 ·|Q(t)|).

3

2 X Structures

We consider relational structures over binary relational symbols only6. Formally letσ
be a signature{R1, . . . , Rm} of binary relational symbolsRi (equality= is part of
the language too). A (finite)σ-structureS consists of a finite domainD together with
an interpretation ofσ-symbolsRi as binary relationsRS

i on D (when it is clear from
the context we do not distinguish a symbol from its interpretation). LetR be the set
{RS

1 , . . . , R
S
m}. The size|D| of a domainD is its cardinality. The size of aσ-structure

S overD, is |S| = |D| +
∑

R∈R |R|, where|R| = |{(v, v′) ∈ D × D | R(v, v′)}|
Given two binary relationsR1 andR2 of R, one defines the relationsR1 ◦R2,R1∩R2,
R1 ∪ R2 andR−1

1 for the composition, intersection, union and inverse in thestandard
way. Given a setA ⊆ D, we denote byR(A) the set{b | ∃a ∈ A. R(a, b)}.

The computation model used in this paper is a{+}-RAM with uniform cost mea-
sure as in [3, 4]. It takesσ-structure as input (with each tuple in a distinct input register)
and uses, during the computation, register contents and addresses always bounded by
O(D) (hence the correspondence with logarithmic cost is immediate).

The Xproperty [14]. A binary relationR overD has theX propertyw.r.t. a total
order< onD iff for all elementsv0, v1, v2, v3 of D the following holds:

(X property) R(v0, v1) ∧R(v2, v3) =⇒ R(min(v0, v2),min(v1, v3))

A binary relation having the Xproperty is also called anX relation. We say that a
set of binary relationsR overD has the Xproperty if there is a total order< on D

such that all relations ofR have the Xproperty w.r.t.<. Similarly, a structure has the X
property if its relations have the Xproperty. We call it an Xstructure.

Example 1.Over tree structures, XPath axes define classical binary relations such as
child, parent, descendant, ancestor, next-sibling, etc. There is no order< on the set of
nodes such that all XPath axes are Xw.r.t. to the same<. However, such orders exist
when considering some subsets of axes. For instance,{child, next-sibling} are X for
the order induced by a breadth-first left to right traversal of the tree. A complete list of
subsets of tree relations (XPath axes) having the Xproperty is established in [13].

Example 2.The n × n-grid graphG = (V,E) with V = {1, ..., n}2 and for all
i, i′, j, j′ ∈ {1, ..., n}, ((i, j), (i′, j′)) ∈ E if and only if {|i− i′|, |j − j′|} = {0, 1}, is
X for the lexicographic extension of the natural ordering< on{1, ..., n}.

Lemma 1. The class of Xrelations is closed by composition, intersection, and inverse
(even for the same order). However, it is not closed by union and complement (even for
different orders).

Proof. Closure by composition, intersection and inverse are easy to check. For union,
suppose thatv0 < v1 and consider the relationsR1 = {(v0, v1)} andR2 = {(v1, v0)}.
Both have the Xproperty w.r.t.<, but notR1 ∪ R2 (for both linear orders onv0, v1).
For complement, consider the identity relation{(v0, v0), (v1, v1)}, its complement is
exactlyR1 ∪R2. ⊓⊔

6 To ease notations, we do not consider unary relation symbols, but all the results of the paper
carry over to a signature with both binary and unary relationsymbols.

4

Sorted representation of Xrelations.In this paper, for Xstructures, we assume that
the order< is given and that comparison can be done inO(1). Relations are given by
sets of pairs of elements and the domainD is given as a list of elements sorted accord-
ing to<. To perform some operations more efficiently, we use the following so-called
sorted representationfor a relation structureS. Every elementu of D is represented
by an integeriu ∈ {1, . . . , |D|}. Moreover, we require thatiu <N iv iff u < v. Ev-
ery relationR is represented by two arraysA andA−1 of size |D| such that for all
iu ∈ {1, . . . , |D|}, A[u] is the sorted (increasing) list (for<) of successors ofu in R,
andA−1[u] is the increasing list of successors ofu in R−1. In other words,A is an
adjacency list representation ofR, viewed as a directed graph with vertex setD. We
also require that the list is doubly-linked, so that we can traverse the list in both orders.

Lemma 2. For every structureS with some total order< on its domainD, whose
domain and relations are represented by a sorted list and lists of pairs of elements
respectively, one can compute a sorted representation ofS in timeO(|S|).

Proof. One first renames the elements ofD andS into integers. We do it such that for
all iu, iv ∈ {1, . . . , |D|}, iu <N iv iff u < v. This can be done inO(|S|) sinceD is
assumed to be given as a sorted list of elements (for<). Then for each relationR, one
has to construct two arraysA andA−1 of size|D| such that for allu ∈ D, A[iu] is the
sorted list of successors ofu in R. It is known thatA can be computed inO(|R|) by
applying two times the following algorithm: for alliu from 1 to |D| and for alliv such
thatR(u, v), appendiu to A[iv]. Applying this algorithm a second time onA results
in sorted lists of successors for eachu. This is done inO(|R|). One can computeA−1

similarly. ⊓⊔

Given a subsetA ⊆ D, we show that, for Xstructures, this representation allows us
to computeR(A) andR−1(A) efficiently.

Lemma 3. For every XrelationR over a setD in sorted representation, and every set
A ⊆ D given as a list,R(A) andR−1(A) can be computed in timeO(|D|).

Proof. See Algorithm 1. The setA can be sorted inO(|D|) as we know that there are
at most|D| integers inA with maximal value|D|. The assumed orders onv andw
elements ensure that each elementv ∈ A andw ∈ R(A) is processed only once. The X
property allows to skipw elements lower thanw elements already processed. Note that
the algorithm computes a sorted set. SinceR−1 is also Xfor <, one can apply the same
algorithm on the representation ofR−1. ⊓⊔

Thanks to Lemma 3, we obtain the following proposition:

Proposition 1. The composition of two binary relations overD can be computed in
timeO(|D|2), whenever one of them is X. In other terms, the product of twon × n

Boolean matrices is computable in linear time when one of them satisfies the Xproperty.

Proof. One first computes a sorted representation inO(|R1|+|R2|) = O(|D|2) (Lemma
2). ForR1 ◦ R2, R1(R2(v)) (for v ∈ D) can be computed in timeO(|D|) according
to Lemma 3, soR1 ◦ R2 can be computed in timeO(|D|2). For R2 ◦ R1, we have:
R2 ◦ R1 = (R−1

1 ◦ R−1
2)−1. Inverting a relation can be done inO(|D|2), and Xrela-

tions are closed under inverse (Lemma 1). ⊓⊔

5

Algorithm 1 ComputingR(A)

procedure IMAGE(R,A)
sortA
S ← empty list; max← −∞
for v ∈ A w.r.t.< increasingdo

for w ∈ R(v) w.r.t.< decreasingdo
if w ≤ max then

exit inner for-loop

S.append(w)

max← max(R(v))

sortS
return S

Finding Xorders.In this part, one considers the problem of checking whether,for a
given relationR, there exists an order for whichR satisfies the Xproperty. This problem
has been considered under different angles in the CSP literature (see for example [15]).

X-ENUMERATION(n)
Input: a finite domainD andR1, . . . , Rn ⊆ D2

Question:does there exist a common X-enumeration forR1, . . . , Rn (i.e. a total order
< onD such thatR1, . . . , Rn are Xfor <)?

We prove that deciding whether two relations are Xfor some total order isNP-
complete. Hardness is proved by reduction from BETWEENNESS[17, 11].

Proposition 2. The problemX-ENUMERATION(2) isNP-complete.

Proof. Given a linear order, one can check in polynomial time whether the two rela-
tions are Xwith respect to this order, thus proving easiness. The hardness is proved by
reduction from theNP-complete problem named BETWEENNESS[17, 11].

BETWEENNESS

Input: a finite setA and a collectionI of ordered triples(a, b, c) of distinct elements
fromA

Question:is there a betweenness orderingf of A for I, that is, a one-to-one function
f : A → {1, 2, ..., |A|} such that for each(a, b, c), eitherf(a) < f(b) < f(c) or
f(c) < f(b) < f(a)?

LetA be a finite set andI ⊆ A3. Let |I| = m. One constructsm copiesA1, ..., Am

of A (with A = A1) and two relationsS andR as follows.

– relationS is (the graph of) a bijection fromAi toAi+1 for i < m.
– let ti = (a, b, c) be theith triple ofI (for some arbitrary enumeration of the triples),

then constructR(ai, bi) andR(bi, ci) whereai, bi, ci belong toAi and are the
unique elements related to, respectively,a, b andc by aS-path of lengthi− 1.

6

Let ≺ be a linear ordering of elements of
⋃n

i=1 Ai and suppose thatS andR are X
for ≺. By construction of relationS, for eachi < m and allxi, yi in Ai, their images
xi+1 andyi+1, byS, are such that :

xi ≺ yi ⇐⇒ xi+1 ≺ yi+1. (1)

If not, suppose we havexi ≺ yi andxi+1 ≻ yi+1 then, sinceS(xi, xi+1) and
S(yi, yi+1) holds but notS(xi, yi+1), relationS would not be Xfor ≺. Similarly, for
xi ≻ yi andxi+1 ≺ yi+1 the same conclusion holds. It follows that≺ preserves
the ordering ofA in its various copies (note however that this does not imply that
elements of distinct copies always compare the samei.e. thatAi ≺ Ai+1). Now, an
easy calculation shows that in each copyAi of A, since relationR is X for ≺ then
ai ≺ bi ≺ ci or ci ≺ bi ≺ ai. Hence, the betweenness property holds forI and the
successor function associated to≺ onA.

For the converse, suppose thatI satisfies the betweenness property for some func-
tion f . Let ≺ be the linear order that extends the successorf . Now extend≺ on all
copies ofA such that Equivalence 1 is preserved. Assume also that the copies are or-
dered in the following way :A1 ≺ A2 ≺ ... ≺ An. In that case, it is easily checked that
S is X for ≺. Also, since for all triplesti = (a, b, c), it holds thatf(a) < f(b) < f(c)
or f(c) < f(b) < f(a), it also holds thatai ≺ bi ≺ ci or ci ≺ bi ≺ ai. Hence, again
by easy calculation,R is X. ⊓⊔

For the case of one binary reflexive relation, it has been shown [8] that one can
check in polynomial time whetherR has an Xenumeration. Recently, Hell and Rafiey
(personal communication) proved that the problem X-ENUMERATION(1) is inP.

3 Conjunctive queries over Xstructures

Queries.An n-ary queryQ over a structureS = (D,R) is a mapping fromS to 2D
n

.
The setQ(S) is also called theanswer setoverS. Conjunctive queries are defined in the
normal way [1]. In particular, ann-ary conjunctive queryoverS is a query defined by
an existential first-order formula without negation nor disjunction, withn free variables
and using relations fromR as predicates. A0-ary conjunctive query is called aBoolean
conjunctive query. We recall that all the relations considered in this paper are binary.
We write vars(Q) for the variables occurring inQ, and varsfree(Q) for then free ones.
We also writeR(x, y) ∈ Q if R(x, y) appears inQ. Throughout this paper, we assume
that formulas defining conjunctive queries are in prenex normal form. Thebodyof Q is
obtained fromQ by removing its quantifiers. The size of a conjunctive queryQ, denoted
by |Q|, is the number of symbols of its first-order formula.

Pre-valuations and valuations.Given a conjunctive queryQ over a structureS =
(D,R), we say thatΘ is apre-valuationfor Q if it is a total functionΘ : vars(Q) → 2D

assigning a nonempty set of elements ofD to each variable ofQ. A pre-valuationΘ
is arc-consistenton S iff for each binary predicateR(x, y) of Q, for eachv ∈ Θ(x),
R(v, w) is true for somew ∈ Θ(y), and for eachw ∈ Θ(y), R(v, w) is true for some
v ∈ Θ(x).

7

A valuationθ is a total functionθ : vars(Q) → D assigning an element ofD to each
variable ofQ. A valuation isconsistentif it satisfies the body ofQ. Conjunctive queries
definen-ary queries in the following sense:Q(S) is the set of tuples(θ(x1), . . . , θ(xn))
such thatθ satisfiesQ and varsfree(Q) = {x1, . . . , xn}. Theminimumvaluationθ in Θ

w.r.t. some total order< onD is writtenmin< Θ and given by:θ(x) = min< Θ(x) for
all x ∈ vars(Q). Valuations are ordered according to the lexicographical extension of
<. The following properties will be the basis of our enumeration algorithm.

Lemma 4 (Gottlob, Koch, Schulz [13]).Let S be a structure andQ a conjunctive
query onS.

1. the unique subset-maximal arc-consistent pre-valuation ofQ onS can be computed
in timeO(|S|·|Q|).

2. if all the relations inS are X w.r.t. the same order<, then for any arc-consistent
pre-valuation ofQ onS, the corresponding minimum valuation is consistent.

This lemma provides a procedure to decide whetherQ(S) = ∅ for everyn-ary
conjunctive queryQ over an XstructureS, in timeO(|S|·|Q|). It suffices to compute the
subset-maximal arc-consistent pre-valuationΘ of Q onS, and check thatΘ(x) 6= ∅ for
all x ∈ varsfree(Q). Equivalently, whenQ has no free variable (i.e.n = 0), evaluating
Q onS can be done in timeO(|S|·|Q|).

In [13], a first evaluation algorithm is proposed forn-ary queriesQ(x1, . . . , xn)
over Xstructures. It consists in enumerating all tuples(u1, . . . , un) ∈ Dn, and for each
of them, check the satisfiability ofQ(u1, . . . , un)where free variables are interpreted by
u1, . . . , un respectively. This algorithm outputs the answers ofQ onS in timeO(|D|n·
|S|·|Q|). However the delay may beO(|D|n ·|S|·|Q|).

In this section, we explain how to extend this algorithm intoan enumeration algo-
rithm without preprocessing, and a delay inO(n·|S|·|Q|). The core idea is to consider
distinct domainsD1, . . . , Dn for the free variablesx1, . . . , xn of Q. This allows us to
update these domains, in order to avoid duplicate answers and to ensure the enumeration
of all answers in lexicographical order w.r.t.<.

In the sequel we will consider arc-consistent pre-valuations forS restricted to do-
mains defined byD = (D1, . . . , Dn), with Di ⊆ D for all 1 ≤ i ≤ n. To define
this formally, we introduce fresh unary relation symbols̃Di, and consider the signature
σ′ = σ ⊎ D̃1 ⊎ . . . ⊎ D̃n. Consider the queryQ′ = Q ∧ D̃1(x1) ∧ . . . ∧ D̃n(xn) and
theσ′-structureS′ that is similar toS, but extends it by interpreting̃Di in the follow-

ing way: D̃i

S′

= Di. Then we definepvmax(Q,S,D) as the unique subset-maximal
arc-consistent pre-valuation forQ′ overS′, i.e. pvmax(Q,S,D) = pvmax(Q

′, S′). The
computation ofpvmax(Q,S,D) can still be performed inO(|S|·|Q|). The next lemma
ensures that the subset-maximal arc-consistent pre-valuation on some domainsD keeps
all the answers inD1 × . . .×Dn. Let ansSQ(D) = (D1 × . . .×Dn) ∩Q(S) be the set
of answers ofQ onS using only values compatible withD.

Lemma 5. LetΘ = pvmax(Q,S,D). Then ansSQ(D) = ansSQ(Θ(x1)× . . .×Θ(xn)).

Proof. Aspvmax(Q,S,D) ⊆ D1×. . .×Dn, we haveansSQ(pvmax(Q,S,D)) ⊆ ansSQ(D).
Conversely, suppose that(x1, . . . , xn) ∈ ansSQ(D) \ ansSQ(pvmax(Q,S,D)). Consider

8

(DΘ
1 , . . . , D

Θ
n) = pvmax(Q,S,D). Then the pre-valuation(DΘ

1 ∪{x1}, . . . , DΘ
n ∪{xn})

is arc-consistent, and bigger thanpvmax(Q,S,D), which contradicts its maximality.⊓⊔

We now present Algorithm 2, our enumeration algorithm. Thisalgorithm outputs
all elements ofQ(S) in lexicographical order w.r.t.< (the order of Xrelations) for the
chosen order on the free variables ofQ.

Algorithm 2 Enumeration algorithm for conjunctive queries over Xstructures
procedure MAIN (Q,S,<)

2: (D,R)← S; τ ← FIRST(D,Q)
while τ 6= ⊥ do output(τ); τ ← NEXT(τ,D,Q)

4: function FIRST(D,Q)
Θ ← pvmax(Q,S, (D, . . . ,D))

6: if Θ 6= (∅, . . . , ∅) then return min< Θ else return⊥

function NEXT((v1, . . . , vn), D,Q)
8: j ← n− 1

repeat
10: Θ ← pvmax(Q,S, ({v1}, . . . , {vj}, D

>
vj+1

, D, . . . ,D)); j ← j − 1
until Θ 6= (∅, . . . , ∅) or j < 0

12: if Θ 6= (∅, . . . , ∅) then return min< Θ else return⊥

We first usepvmaxon the whole domainD for all free variables, and get a first answer
(v1, . . . , vn) by taking the minimum valuation. Then we excludevn from the domain of
xn, and all smaller elements, by runningpvmaxon the domains({v1}, . . . , {vn−1}, D>

vn
),

whereD>
vi

= {v ∈ D | v > vi}. If no answer is returned, we runpvmax on
({v1}, . . . , {vn−2}, D>

vn−1
, D), and so on. Proposition 3 shows that the solution re-

turned by the functionnext is indeed the next answer inQ(S) in lexicographical order.
This proves the correctness of Algorithm 2.

Proposition 3. For all tuples of elements(v1, ..., vn) ∈ Dn, the successor of(v1, ..., vn)
by<lex, if it exists, is min

0≤j<n
min
<

pvmax(Q,S, ({v1}, . . . , {vj}, D>
vj+1

, D, . . . , D)).

Proof. Let succlex denote the next solution in lexicographical order, that is to say:
succlex(v1, . . . , vn) = min<{(v′1, . . . , v

′
n) ∈ Q(S) | (v′1, . . . , v

′
n) >lex (v1, . . . , vn)}.

We have, for every0 ≤ j < n,
min< ans({v1}, . . . , {vj}, D>

vj+1
, D, . . . , D)

= min< ans(pvmax(Q,S, ({v1}, . . . , {vj}, D>
vj+1

, D, . . . , D)))

= min< pvmax(Q,S, ({v1}, . . . , {vj}, D>
vj+1

, D, . . . , D))
The first equality is by Lemma 5, and the second by Lemma 4. Thus,
succlex(v1, . . . , vn) = min0≤j<n min< ans({v1}, . . . , {vj}, D>

vj+1
, D, . . . , D)

= min0≤j<n min< pvmax(Q,S, ({v1}, ..., {vj}, D>
vj+1

, D, ..., D))
The first equality is due to the lexicographical order, and the second to the equalities
above. ⊓⊔

We callpvmax at mostn times between two successive answers,i.e.Algorithm 2 has
a delay in timeO(n·|S|·|Q|).

9

Theorem 1. LetS be an Xstructure andQ ann-ary conjunctive query overS. Then
Q(S) can be enumerated without preprocessing, and with a delay inO(n · |S| · |Q|)
between two successive answers.

4 Acyclic conjunctive queries over Xstructures

A conjunctive queryQ is acyclic if it admits a join-tree [1], or equivalently (for binary
relations) if the following undirected graphGQ is acyclic:GQ = (VQ, EQ) with VQ =
vars(Q) andEQ is the set of edges s.t.{x, y} ∈ EQ iff R(x, y) occurs inQ for some
R. In this section, we present an enumeration algorithm for ACQS over X relations
(ACQS(X)). It works with a preprocessingO(|Q|·|S|) and a delayO(|Q|·|D|), where
Q is the query andD the domain. Then we show that when paying a preprocessing in
timeO(|D|2 · |Q|), one can reduce the delay toO(n · |D|), wheren is the arity of the
query. As the associated graphGQ of an ACQQ over a binary signature is nothing else
than a forest, we define a notion of tree-like queries into which ACQS over a structure
S can be naturally encoded (in linear-time), while preserving X properties of relations.

4.1 Tree patterns

Definition 1. A tree pattern over a binary signatureσ and a countable set of variables
V is an ordered binary tree whose nodes are labeled inV ∪ σ ∪ σ× σ. It is inductively
defined by terms generated by the following grammar:

T ::= x | R(T ′) | (R,R′)(T1, T2) wherex ∈ V andR,R′ ∈ σ

Moreover, the variables occurring at the leaves are all pairwise distinct.

The semantics of tree patterns overσ is given by means of ACQS overσ. Intuitively,
every inner-node corresponds to an existentially quantified variable, every leaf to a free
variable, and every branching to a conjunction. Therefore to define the semantics in
terms of ACQS, one needs to introduce a new bound variable for every inner-node. We
denote by varsfree(T) the variables occurring inT (necessarily at the leaves). For any
variablex and fresh variablesy, z, x′ 6∈ varsfree(T), we denote byQT,x the CQ:

QT,x =

x = y if T = y

∃x′ R(x, x′) ∧QT ′,x′ if T = R(T ′)
∃y∃z R(x, y) ∧R′(x, z) ∧QT1,y ∧QT2,z if T = (R,R′)(T1, T2)

The ACQQT associated with a tree patternT is defined byQT = ∃x·QT,x, for any
variablex 6∈ varsfree(T) (the choice of the variable does not matter as equivalence ispre-
served when choosing another variable). E.g. letT = (R1, R2)((R3, R4)(x1, x2), x3).
ThenQT (x1, x2, x3) = ∃x∃yR1(x, y) ∧R3(y, x1) ∧R4(y, x2) ∧R2(x, x3), for some
variablesx, y. Since the variables ofT are all distinct,QT is acyclic. We extend the no-
tion of answer set to tree patterns naturally. For a structureS overσ, T (S) = QT (S).
The size of a tree pattern is its number of nodes.

We now show that for any tree patternT and any Xσ-structureS with domainD,
T (S) can be enumerated with a preprocessingO(|S|+ |D|·|T |) and a delayO(|D|·|T |).

10

Let x 6∈ varsfree(T), and consider the ACQQT,x as defined before. For alla ∈
D, we denote byQT,a the ACQQT,x where each occurrence ofx is replaced bya.
We denote byT (S, a) the answer setQT,a(S). Clearly,T (S, a) ⊆ T (S). Informally,
T (S, a) is the set of tuples that can be obtained by mapping the root ofT to a.

We denote by Sub(T) the set of subtrees (subterms) ofT . The first step of the
algorithm is to compute a mappingsat : Sub(T) → 2D such that for allT ′ ∈ Sub(T)
and for alla ∈ D, a ∈ sat(T ′) iff T ′(S, a) 6= ∅. Informally,sat(T ′) is the set of
elements such that there exists a solution ofT ′ in S that can be obtained when mapping
the root ofT ′ to a. This mapping can be computed efficiently:

Lemma 6. For every tree patternT overσ and every Xσ-structureS over a domain
D given in sorted representation,sat can be computed in timeO(|D|·|T |).

Proof. The mappingsat can be computed inductively in a bottom-up manner, as

sat((R1, R2)(T1, T2)) = R−1
1 (sat(T1)) ∩R−1

2 (sat(T2))
sat(R1(T1)) = R−1

1 (sat(T1))
sat(x) = D

The result follows by Lemma 3 and since intersection can be computed inO(|D|). ⊓⊔

Similar techniques have also been used to evaluate XPath (unary) queries [12].
Let T be a tree pattern over a binary signatureσ, and letx1, . . . , xn be the vari-
ables occurring at the leaves ofT in left-to-right order (i.e. from the left-most leaf
to the right-most leaf). Given an Xσ-structureS for some total order< on the do-
main D, we define an algorithm that enumeratesT (S) in lexicographic order with
respect tox1, . . . , xn and<. We denote by<lex this order. For allA ⊆ D, we let
T (S,A) =

⋃
a∈A T (S, a). Let T ′ ∈ Sub(T) andu ∈ T ′(S). The tupleu defines the

setB(u, T ′, S) = {a ∈ D | u ∈ T ′(S, a)}. Informally,B(u, T ′, S) is the set of nodes
from which we can obtainu.

Lemma 7. If T = (R1, R2)(T1, T2), then for allA ⊆ D:

T (S,A) =
⋃

u∈T1(S,R1(A))

{u} × T2(S,R2(R
−1
1 (B(u, T1, S)) ∩A))

Proof. Let w ∈ T (S,A). By definition ofT (S,A), there isa ∈ A such thatw ∈
T (S, a). Therefore there existsa1, a2 ∈ D such thatw can decomposed intou and
v, (a, a1) ∈ R1, (a, a2) ∈ R2, u ∈ T1(S, a1) and v ∈ T2(S, a2). Clearly,a1 ∈
R1(A), and a1 ∈ B(u, T1, S). Thereforea ∈ R−1

1 (B(u, T1, S)) ∩ A, and a2 ∈
R2(R

−1
1 (B(u, T1, S)) ∩ A). Thereforev ∈ T2(S,R2(R

−1
1 (B(u, T1, S)) ∩ A).

Conversely, let us take two tuplesu andv such thatu ∈ T1(S,R1(A)) andv ∈
T2(S,R2(R

−1
1 (B(u, T1, S))∩A)). Therefore there existsa2 ∈ R2(R

−1
1 (B(u, T1, S))∩

A) such thatv ∈ T2(S, a2). There isa ∈ A ∩ R−1
1 (B(u, T1, S)) such that(a, a2) ∈

R2. There is alsoa1 ∈ B(u, T1, S) such that(a, a1) ∈ R1. Sincea1 ∈ B(u, T1, S),
u ∈ T1(S, a1). Moreover,a1 ∈ R1(A) since(a, a1) ∈ R1 anda ∈ A. Therefore we
have founda, a1, a2 such thata ∈ A, (a, a1) ∈ R1, (a, a2) ∈ R2, u ∈ T1(S, a1) and
v ∈ T2(S, a2). In other words,u.v ∈ T (S, a) ⊆ T (S,A). ⊓⊔

11

�������
�������
�������
�������

�����
�����
�����
�����

R2(R
−1
1

(A1) ∩ A)A1 = B(u, T1, S)

R1(A) ∩ sat(T1)

A ∩ sat(T)

Fig. 2.Branching management for tree patterns enumeration

Similar lemmas hold whenT is a single variable node, or the root ofT is branching-
free. In particular,T (S,A) = A if T is a variable. We now have the main ingredient of
a recursive enumeration algorithm that we illustrate for the caseT = (R1, R2)(T1, T2):
for each tupleu ∈ T1(S,R1(A)) enumerated recursively in lexicographic order, we
have to compute the setA1 = B(u, T1, S), and then the setA2 = R2(R

−1
1 (A1) ∩ A).

Then we recursively enumerate the tuplesv of T2(S,A2) in lexicographic order. In-
stead of computing the setA1 onceu has been computed,A1 can be computed recur-
sively when applying the enumeration algorithm onT1. This is becauseB(w, T, S) =
R−1

1 (B(u, T1, S)) ∩ R−1
2 (B(v, T2, S)), wherew = u.v. The enumeration algorithm

is therefore defined by a recursive procedure that outputs the next tuplew of T (S,A)
and outputs the setB(w, T, S). However it might be the case thatA2 is empty. In
this case, one has to enumerate the tuples ofT1(S,R1(A)) until there is a tupleu
such thatR2(R

−1
1 (B(u, T1, S)) ∩ A) 6= ∅. This can lead to an unbounded delay be-

tween two consecutive tuples. Therefore we add one more constraint on the sets to
ensure the following invariant: at each recursive call of the procedure, we must have
A 6= ∅ and A ⊆ sat(T). Hence we are sure that there is at least one tuple in
T (S,A). If A ⊆ sat(T), when we call the procedure onT1, instead of calling it on
T1, S, R1(A), we call it onT1, S, R1(A) ∩ sat(T1). Since∅ 6= A andA ⊆ sat(T),
R1(A) ∩ sat(T1) 6= ∅ and the invariant is satisfied. Similarly, for the right subtree, we
call the procedure onT2, S, A2 ∩ sat(T2). This is depicted on Fig. 2.

If the root of T is branching-free, the enumeration works similarly. WhenT is
reduced to a single node labeled by a variablex, the algorithm enumerates all elements
a of A w.r.t. the order< onD and for each element returnsa and{a} (i.e.B(a, x, S)).

The enumeration algorithm (Algorithm 3) is presented in a Python-like style, which
allows us to write it in a very concise and readable way. In particular, we define an
enumeratorENUM(T,A) that enumeratesT (S,A). The instructionyield passes its ar-
gument to the parent enumerator call, which outputs the yielded values and freezes
the computation by storing the evaluation context. Therefore, when an instructionfor
(u,B) ∈ ENUM(T,A) is executed, it passes through the loop each timeENUM(T,A)
yields a new element. In other words,ENUM(T,A) is evaluated in a by-need lazy fash-
ion. This comes without extra cost in time complexity.

Lemma 8 (Completeness and Soundness).Given a tree patternT and an Xstructure
S for some total order< on its domainD and a subsetA ⊆ D, ENUM(T,A) enumer-
ates all elements ofT (S,A) in lexicographic order, and only those tuples. Moreover for
each enumerated tupleu, it yields the setB(u, T, S).

12

Algorithm 3 Enumeration algorithm for tree patterns over Xstructures
function MAIN (T, S,<) ⊲ T :tree pattern,S:X structure for some order< on its domainD

2: compute a sorted representation forS

compute the functionsat
4: for (u, B) ∈ ENUM(T,sat(T)) do

outputu

6: function ENUM(T,A)
if T = (R1, R2)(T1, T2) then

8: for (u1, B1) ∈ ENUM(T1, R1(A) ∩ sat(T1)) do
for (u2, B2) ∈ ENUM(T2, R2(R

−1
1 (B1) ∩A) ∩ sat(T2)) do

10: yield (u1.u2, R
−1
1 (B1) ∩R−1

2 (B2))

if T = R1(T1) then
12: for (u1, B1) ∈ ENUM(T1, R1(A) ∩ sat(T1)) do

yield (u1, R
−1
1 (B1))

14: if T = x then
for a ∈ A w.r.t.< do

16: yield (a, {a})

Lemma 9. Given a tree patternT and an XstructureS for some total order< on
its domainD and a setA ⊆ D such thatA 6= ∅ andA ⊆ sat(T), ENUM(T,A)
enumeratesT (S,A) with preprocessing inO(|S| + |D|·|T |) and delay inO(|D|·|T |).

Proof. The first two steps (lines 2 and 3) are obtained by Lemma 2 and Lemma 6. This
gives the preprocessing step.

For the delay, the proof is very similar for the cases of two consecutive tuples and
first tuple, we do it for two consecutive tuples only. It is done by induction onT . If T is
a leaf labeledx, then it is clear that all elements ofA can be enumerated with a delay
O(|D|). Since|T | = 1, we get the result. IfT = (R1, R2)(T1, T2), by Lemma 8, we
know that exactly all tuples ofT (S,A) are enumerated in lexicographic order. Let us
take two consecutive tuplesu <lex v such thatu, v ∈ T (S,A). Those two tuples can
be decomposed intou = u1.u2 andv = v1.v2 whereu1 is matched byT1, u2 by T2, v1
by T1 andv2 by T2. We consider two cases:

If u1 = v1 andu2 <lex v2, then letA2 = R2(R
−1
1 (B1) ∩A) ∩ sat(T2) whereB1

is the set returned at line 8. We know by Lemma 8 thatB1 = B(u1, T1, S). We prove
thatA2 6= ∅ andA2 ⊆ sat(T2) (in order to apply the induction hypothesis). It is clear
thatA2 ⊆ sat(T2). By Lemma 8,u1 ∈ T (S,R1(A)), therefore there existsa ∈ A and
a1 ∈ R1(A) such that(a, a1) ∈ R1 andu1 ∈ T (S, a1). Moreover,a1 ∈ B(u1, T1, S).
SinceA ⊆ sat(T), there existsa2 such that(a, a2) ∈ R2 anda2 ∈ sat(T2). In
particular,a2 ∈ A2 andA2 6= ∅. Moreover,A2 ⊆ sat(T2), thereforeT (S,A2) 6= ∅.
Since by Lemma 8 the tuples are enumerated in lexicographic order, the tuplev2 is the
successor ofu2 in the setT2(S,A2). Therefore by induction hypothesis,v2 is obtained
afteru2 with a delayO(|D| · |T2|). A fortiori, v1.v2 = u1.v2 is obtained with a delay
O(|D|·|T2|) = O(|D|·|T |).

Suppose thatu1 <lex v1. It is clear thatR1(A) ∩ sat(T1) 6= ∅, sinceA 6= ∅
andA ⊆ sat(T1). ThereforeT1(S,R1(A)) 6= ∅. Since by Lemma 8 the tuples are

13

enumerated in lexicographic order,v1 is necessarily the successor ofu1 in the set
T1(S,R1(A)). By induction hypothesis, it is obtained after a delayO(|D| · |T1|). We
let B1 be the set returned at line 8 afterv1 has been computed. By Lemma 8, we
know thatB1 = B(v1, T1, S). Similarly as the previous case, one can show that the
setA2 = R2(R

−1
1 (B1) ∩ A) ∩ sat(T2) is non-empty and satisfiesA2 ⊆ sat(T2).

ThereforeT2(S,A2) 6= ∅ andv2 is necessarily the first element ofT2(S,A2). By hy-
pothesis, this first element can be obtained with a delayO(|D| · |T2|). In order to give
the overall delay to outputu2.v2 afteru1.v1, one finally needs to give the time com-
plexity to compute the setA2. Since we have first computed a sorted representation of
S, by Lemma 3 all operations can be done inO(|D|). The overall delay is therefore
O(|D|·|T1|+ |D|·|T2|+ |D|) = O(|D|·|T |).

Finally, if the root ofT is branching-free, the proof similar and easier than for binary
branching. ⊓⊔

Therefore one obtains the following theorem:

Theorem 2. For every tree patternT and every X-structureS for some total order<
on its domainD, T (S) can be enumerated with preprocessingO(|S| + |T | · |D|) and
delay inO(|T |·|D|).

As a matter of fact, the delay mentioned in the previous theorem can be reduced to
O(n · |D|), wheren is the number of free variables, with the cost of a preprocessing
in O(|T | · |D|2). This is done by transforming the tree pattern in a full binary tree:
the branching-free paths are replaced by a unique edge. The source of this edge is
then labeled by a relational predicate interpreted by the composition of all the relations
occurring along the path. Therefore one changes the patternand the structure on which
its relational symbols are interpreted. As we have to perform the composition of X
relations, the time complexity of this reduction isO(|T |·|D|2) (Prop. 1). The resulting
tree pattern is a binary tree of sizeO(n). Then we can apply Algorithm 3.

Theorem 3. For every tree patternT with n (free) variables and every X-structureS,
T (S) can be enumerated with a preprocessingO(|T |·|D|2) and a delay inO(n·|D|).

Remark 1.Note that Algorithm 3 also works for any kind of structure over binary pred-
icates (if we remove the computation of a sorted representation). The complexity of the
preprocessing and delay depends on the following operations: computingR(A) and
R−1(A) for any relationR and subsetA of the domain. In the general case of ACQS

over an arbitrary structure where the (binary) relations are represented as pairs of ele-
ments,R(A) andR−1(A) can be computed inO(|R| + |A|) = O(|S|). This results in
an enumeration algorithm with preprocessing and delayO(|S|·|T |).

4.2 From ACQS to tree patterns

Given an acyclic conjunctive queryQ and an XstructureS, one first transformsQ and
S into a tree patternTQ and a structureS′ with the same domain such that|S′| =
O(|Q| · |S|) andQ(S) = TQ(S

′). Then we apply the enumeration algorithm for tree
patterns. The transformation works on the labeled (directed) graphHQ of Q defined by

14

HQ = (VQ, EQ, λ) whereVQ = vars(Q), EQ = {(x, y) | R(x, y) ∈ Q for someR}
and for all(x, y) ∈ EQ, λ(x, y) = {R | R(x, y) ∈ Q}. SinceQ is acyclic, this graph is
acyclic as well (acyclicity in this case being defined without considering the orientation
of edges). Therefore it is a forest, but it is not a tree pattern for one (or more) of the
following reasons:(i) there might be several disconnected components,(ii) edges are
labeled by several relational symbols,(iii) a vertex may have several incoming edges,
(iv) a free variable may not be a leaf,(v) the branching is arbitrary.

Suppose first that there is only one connected component. Thefirst step is to choose
a particular vertex that will be the root of the tree pattern.Then we have to adapt the
orientation of the edges so that the unique path from the rootto any vertex consists
of edges that have the same orientation. This is done by taking the inverse of some
relations (which remains X) that are badly oriented. For instance, when changing the
orientation of an edge(x, y) to (y, x), we change all its labelsR ∈ λ(x, y) by a new
relation symbolR−1 that will later be interpreted by the inverse ofRS . The second
step is to replace multiple labels by a single relational symbol that will denote the
intersection of relations. For instance, if(x, y) is labeled by the following predicates
{R1, . . . , Rk} ⊆ σ, we replace it by a new relational symbol(R1 ∩ · · · ∩ Rk) that
will later be interpreted as

⋂
i R

S
i . Finally, free variables may not be necessarily at the

leaves. Letx such thatx is free but not a leaf. We replacex by some new variablex1 in
the query and add∃x1 · I(x1, x) whereI is a new relational symbol interpreted by the
identity relational (which is Xfor any order). In the graph, it amounts to create a new
vertex, to rename the vertexx by x1 and to connectx1 to x by an edge labeledI. By
this transformation, all the free variables are at the leaves, but there are still leaves that
are not free variables. We apply the following transformation exhaustively: if(x, y) is
an edge labeledR ∈ σ and every variable reachable fromy is bound, then we remove
the subtreet rooted aty and replaceR by a new relational symbol(R ∩ t). It will be
interpreted by{(u, v) ∈ RS | v ∈ Qt(S)}, whereQt is the unary query represented
by t, wherey is considered as free (it can be evaluated in timeO(|D| · |Q|) by using
the same algorithm as in Lemma 6 and it is easy to see that the resulting relation is still
X). Applying this transformation exhaustively results in a tree whose leaves are all free
variables. The resulting graph is almost a tree pattern, butits branching may be more
than binary. Again we can duplicate some of its vertices to make it binary, by using the
identity relational symbolI. The last step to get a tree pattern is to put the labels of the
edges into their source node.

If there are several disconnected components, one first transforms each of them into
a tree pattern, and create a new element connected to the roots of each tree pattern by
a relationC interpreted for somer ∈ D asCS = {(r, d) | d ∈ D} (it is X). The
branching is not binary but we can apply the same technique asbefore to get a binary
tree.

The syntactical construction of the tree pattern can be donein time O(|Q|). We
have to compute a new structureS′ in which every new introduced relational symbols
is interpreted. This structure has the same domain asS. We assume thatS is in sorted
representation (done via a processing inO(|S|)). As shown by the construction, the
interpretation of the new relation symbols is the result of taking intersection or inverse
of X relations, as well as evaluating a unary acyclic conjunctive query over Xrelations,

15

R3, R
′

4

x y

R1 ∩R−1
2

φ ≡ ∃x1∃x2∃x3. R1(x1, x2) ∧ R2(x2, x1) ∧ R3(x2, x) ∧R4(x2, y) ∧R5(y, x3)

R′

4 is interpreted as{(u, v) | R4(u, v) ∧ ∃w. R5(v, w)}.

Fig. 3. Tree pattern resulting from the translation of the ACQφ.

which can again be done inO(|D| · |Q|). The new relational symbols are interpreted
by relations of sizeO(|S|) at most. Moreover, we have introduced at mostO(|Q|)
new relational symbols. Therefore|S′| = O(|S| · |Q|). Finally, S′ can be computed
in timeO(|Q| · |S|), as taking the intersection of two relationsR1, R2 can be done in
O(|R1| + |R2|), taking the inverse is done in constant time (for sorted representation),
and evaluating a unary query overS is inO(|D|·|Q|).

We provide an example in Fig. 3.
The complexity of this transformation depends on the complexity of intersection

and inverse of relations, as well as evaluation of unary queries.

Lemma 10. For every acyclic conjunctive queryQ over an Xσ-structureS, one can
construct in timeO(|S|·|Q|) a tree patternTQ over a signatureσ′ and an Xσ′-structure
S′ with same domain such that|TQ| = O(|Q|), |S′| = O(|S|·|Q|) andTQ(S) = Q(S′).

As a corollary of Theorem 2, Theorem 3 and Lemma 10, we obtain

Theorem 4. For everyn-ary acyclic conjunctive queryQ over an Xσ-structureS,
Q(S) can be enumerated with a preprocessingO(|S| · |Q|) and a delayO(|Q| · |D|).
This delay reduces toO(n·|D|) with a preprocessing inO(|D|2 ·|Q|).

Remark 2.The translation of ACQS to tree patterns also works for the general case of
ACQS over an arbitrary structure of binary relations. Its complexity depends on the time
needed to compute intersection and inverse of relations, aswell as the time to evaluate
unary queries. The latter is known to be inO(|S|·|Q|) [18], the former remains the same
as the case of X. Therefore by Remark 1, we get an enumeration algorithm for general
ACQS over a binary structure with a preprocessingO(|S|·|Q|) and a delayO(|S|·|Q|)
(similar to that of [4]). Considering Xrelations, this delay reduces toO(|D|·|Q|).

16

child = fc ◦ ns∗ parent = child−1

descendant = child+ ancestor = descendant−1

descendant-or-self= descendant∪ It ancestor-or-self = descendant-or-self−1

following-sibling = ns+ preceding-sibling= following-sibling−1

following = ancestor-or-self◦ ns+◦ preceding = following−1

descendant-or-self

Fig. 4.XPath axes

4.3 Enumeration of acyclic conjunctive XPathn-ary queries

In this section, we show that the ideas developed in the enumeration algorithm of ACQ
(X) can be adapted to an enumeration algorithm for ACQS over XPath axes interpreted
on unranked trees. The case of XPath axes however differs in that the relations are
not explicitly represented.Unranked treesis the widely accepted model of XML doc-
uments. In such trees, the nodes are labeled by elements of a finite alphabetΣ, sibling
nodes are ordered, and a node may have an arbitrary number of children. We view un-
ranked trees as a structure over the signatureσunr = {(laba)a∈Σ , fc, ns} where for
all a ∈ Σ, laba is a unary predicate that denotes the nodes labeleda, fc is a binary
predicate that relates a node and itsfirst-child, andns is a binary predicate that relates
a node and itsnext-sibling. For any unranked treet, we let Dom(t) be its set of nodes
and|t| = |Dom(t)| its number of nodes.

XPath axesare listed in Fig. 4 together with their semantics by means ofexpressions
over inverse, union, composition and iteration.∗ and.+ of the relationsfc, nsandIt the
identity relation on Dom(t). XPath axes are not X, and only some subsets of them are
X, as shown in [13]. However as we will show, ACQS over XPath axes still enjoy good
enumeration properties, mainly because of the following fact:

Lemma 11 (Gottlob, Koch, Pichler [12]).For all unranked treest, all XPath axesχ,
and all setsA ⊆ Dom(t), χ(A) can be computed in timeO(|t|).

In the context of XPath queries, it is important to consider the unary predicates
laba that test the labels of the nodes. We can slightly extend the tree patterns with
optional unary predicateslaba attached to the nodes of the tree pattern. They just restrict
the domain of the variables (bound and free) of the associated ACQ. As the unary
predicates can be integrated into the binary relations, Algorithm 3 can also be used for
tree patterns with both unary and binary predicates.

Consider now a tree patternT over the XPath axes and the unary predicateslaba,
a ∈ Σ, and an unranked treet (represented by aσunr-structure). We can choose an
arbitrary total order on the nodes and apply Algorithm 3 directly on t (without con-
sidering line 2). In contrast to ACQ (X) however, the predicates that appear inT are
not explicitly represented in theσunr-structuret (otherwise its size would beO(|t|2).
Thanks to Lemma 11 and the fact that XPath axes are closed under inverse, tree patterns
over XPath axes can be enumerated with a preprocessing and delayO(|T |·|t|).

When going from ACQS to tree patterns over XPath axes, we apply the same con-
struction as for ACQ (X). As XPath axes are closed under intersection and inverse, the
resulting tree pattern is a tree pattern over XPath axes. Therefore we do not need to
precompute the interpretation of the axes and we can apply the enumeration algorithm
as done for tree patterns over XPath axes. We obtain the following complexity:

17

Theorem 5. For everyACQQ over the XPath axes and the unary predicates(laba)a∈Σ

and all unranked treet represented as a structure over ns and fc,Q(t) can be enumer-
ated with a preprocessing and delay inO(|Q|·|t|).

5 Conjunctive queries with inequalities

In this section, one considers conjunctive queries over Xstructures where in addition
6= is allowed in the signature. Note that a conjunctive query with such inequalities is
acyclic if the query obtained by ignoring inequalities is acyclic. In other words, inequal-
ities play no role in defining acyclicity. We first show that even in the case of acyclic
conjunctive queries, such queries are hard to evaluate for combined complexity. The
proof is by reduction from POSITIVE 1-3 SAT [11].

Proposition 4. The problem of checking whether a Boolean conjunctive querywith
inequalities is true on an Xstructure isNP-complete for combined complexity. The
result remains true even if the query restricted to the Xpredicates is acyclic.

Proof. Let us consider the following well-knownNP-complete problem [11].

POSITIVE 1-3 SAT

Input: a positive3-CNF formulaϕ
Question:is there a model ofϕ such that each clause is satisfied by exactly one variable?

Membership toNP is straightforward. We prove hardness by reduction from the
problem POSITIVE 1-3 SAT. Letϕ be a positive3-CNF formula over variablesx1, ..., xn.
Let c1, ..., cm be an enumeration of its clauses. Fori ≤ n, let o(i) be the number of oc-
currences ofxi in ϕ.

First, one builds an ordering≺ and an XstructureS for ≺ as follows. StructureS
has for domainD the disjoint union of setsD1,...,Dn,C1,...,Cm that we now construct.
For each variablexi, subdomainDi contains two elementsx0

i andx̄0
i with x0

i ≺ x̄0
i . Let

us consider an enumeration of clauses ofϕ and letcj = xj1 ∨ xj2 ∨ xj3 , j ≤ m, be the
jth clause. Suppose, that therth, sth andtth occurrences of respectivelyxj1 , xj2 and
xj3 appears incj . One will denote the clause bycj = xr

j1
∨ xs

j2
∨ xt

j3
. One constructs a

subdomainCj containing the following elements in that order:

xr
j1

≺ xs
j2

≺ xt
j3

≺ αj ≺ x̄r
j1

≺ x̄s
j2

≺ x̄t
j3

≺ βj ≺ γj.

The ordering between sets is depicted by:

D1 ≺ . . . ≺ Dn ≺ C1 ≺ . . . Cm

It remains to describe relations onD. For each variablexi, one introduces a relation
nexti which is made of two paths starting respectively fromx0

i andx̄i
0 and joining the

different occurrences ofxi andx̄i. More precisely :

– for all 0≤k<o(i), nexti(xk
i , x

k+1
i) andnexti(x̄k

i , x̄
k+1
i)

18

It is easy to check that the relationsnexti are X for ≺. Finally, a relationC is
introduced that maps for allj ≤ m, xr

j1
, xs

j2
, xt

j3
to αj andx̄r

j1
, x̄s

j2
, x̄t

j3
to βj andγj.

Here again, this relation is Xfor ≺.
We now construct the following queryQ:

(∃xj
i)

j=0,...,o(i)
i=1,...,n (∃ajbjcj)j=1,...,m

∧n

i=1 Di(x
0
i) ∧

∧n

i=1

∧
0≤j<o(i) nexti(x

j
i , x

j+1
i)∧∧

cj=xr
j1

∨xs
j2

∨xt
j3

C(xr
j1
, aj) ∧ C(xs

j2
, bj) ∧ C(xt

j3
, cj)∧

aj 6= bj ∧ aj 6= cj ∧ bj 6= cj

The formula states that there exists an assignment of variables (those chosen asxj
i

are set to true, the variablesyji are set to false) such that, for eachi, following the path
to each clause ends in three distinct elementsaj , bj andcj whose only interpretation
can beαj , βj andγj . This means that only one over the three paths corresponds toa
positive variable. Note that the structure and the formula have comparable sizes. Note
also, that once restricted to Xpredicates, the constructed formula is acyclic. ⊓⊔

In contrast with the preceding result, we show that the hardness only relies roughly
on the number of variables involved in at least one inequality.

Theorem 6. LetS be an Xstructure for some order<, letQ be ann-ary conjunctive
(resp. acyclic conjunctive) query with inequalities with at mostℓ variables involved in
at least one inequality. Then,Q(S) can be enumerated with a delayO(ℓO(ℓ)·|Q|·n·|S|·
log |D|) (resp. a delayO(ℓO(ℓ)·|Q|·|D|·log |D|) and preprocessing cost inO(|Q|·|S|)).

Proof. The bound is obtained by partial application of techniques related to the color
coding method of [2]. We will constructh = O(ℓℓ · log |D|) conjunctive (resp. acyclic
conjunctive) queriesQi, i = 1, . . . , h, on some X-structuresSi for order< such that
Q(S) =

⋃
i≤h Qi(Si). Is it known (see for example [4]) that if each predicate of a

union of sizeh can be enumerated by a bounded delay algorithm for some delayk and
w.r.t. the same order, here<lex, then the union can be enumerated by a bounded delay
algorithm with delayO(h·k) for this same order. Hence the result will follow.

More precisely, the body ofQ can be written asQ0 ∧
∧

(i,j)∈I xi 6= xj for some
set of pairsI, whereQ0 is acyclic (ifQ is acyclic) and free of inequalities. We write
{x1, . . . , xℓ} for the variables appearing in inequalities (some of them may be free in
Q), and[ℓ] for {1, . . . , ℓ}.

Let λ : D −→ [ℓ], be a properℓ coloring ofD. Let (S, λ) be the extension ofS by
the coloringλ with each colori encoded by a new monadic predicateUi. Obviously, if
two elements have two different colors in a proper coloring then they are distinct. Let
us consider queryQ′ whose body is:Q0 ∧

∧
(i,j)∈I

∧ℓ
k=1 ¬(Uk(xi) ∧ Uk(xj))

Claim. One can enumerate the elements ofQ′(S, λ) with delayO(ℓℓ·|Q|·|S|). Moreover,
if Q is acyclic then the delay can be improved toO(ℓℓ ·|Q|·|D|).

Proof (of the claim).Since the interpretation is taken on a structure where the col-
oring is proper, then the number of possible colorings forx1, ..., xℓ compatible with∧

(i,j)∈I

∧ℓ
k=1 ¬(Uk(xi) ∧ Uk(xj)) is bounded byℓℓ. The queryQ′ is equivalent to a

19

disjunction of conjunctive queriesQf of bodyQ0 ∧Uf(1)(x1)∧ · · · ∧Uf(ℓ)(xℓ) for all
functionsf : [ℓ] → [ℓ] such thatf(i) 6= f(j) for all (i, j) ∈ I. EachQf is acyclic ifQ0

is acyclic. The result follows from Theorem 1 and 4. ⊓⊔

It is known (see [2] and also [10]) that there exists anℓ-perfect familyΛ of size
2O(ℓ) · log |D| of hash functions fromD to [ℓ], i.e. Λ is such that for everyC ⊆ D

with |C| = ℓ, there existsλ ∈ Λ such thatλ(c) 6= λ(c′) for all distinctc, c′ ∈ C (i.e.
the restriction ofλ to C is one-to-one). The following holds:Q(S) =

⋃
λ∈Λ Q′(S, λ).

Clearly, if a tuplea = (a1, . . . , an) ∈ Q′(S, λ) for someλ ∈ Λ thena ∈ Q(S).
Conversely, leta ∈ Q(S) andA be a satisfying assignment of variables ofQ such that
the free variables ofQ are assigned toa. Letbi be the assignment ofxi, i = 1, ..., ℓ in A.
Then, it holds that

∧
(i,j)∈I bi 6= bj . Asλ is anℓ-perfect family, there existsλ ∈ Λ such

that all distinct elements amongb1, ..., bℓ have distinct images (i.e. colors) byλ. Then
a ∈ Q(S, λ). Then, the theorem follows by enumerating the union

⋃
λ∈Λ Q′(S, λ). ⊓⊔

Conclusion. As a conclusion, we would like to address some further questions. First,
we would like to characterise the complexity of the enumeration algorithms in terms
of amortized delay, which we conjecture is smaller than the worst-case delay. Another
question is to see whether the delays are tight. Finally, we will investigate the general-
ization to relations of arbitrary arity, as the Xnotion can be extended ton-ary relations.

Acknowledgments. We thank Joachim Niehren for fruitful discussions. This work was
partially supported by the project ANR ENUM (ANR-07-BLAN-0327).

References

1. S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison-Wesley, 1995.
2. N. Alon, R. Yuster, and U Zwick. Color-coding.Journal of the ACM, 42(4):844–856, 1995.
3. G. Bagan. MSO queries on tree decomposable structures arecomputable with linear delay.

In Computer Science Logic, LNCS 4646, pp 208–222. Springer, 2006.
4. G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant delay

enumeration. InCSL, LNCS 4646, pp 208–222. Springer, 2007.
5. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern matching.

In Proceedings of the ACM SIGMOD, pp 310–321, 2002.
6. F. Bry, T. Furche, B. Linse, and A. Schröder. Efficient evaluation ofn-ary conjunctive queries

over trees and graphs. InWorkshop on Web Information and Data Mining, 2006.
7. B. Courcelle. Linear delay enumeration and monadic second-order logic.Discrete Applied

Mathematics, 2007.
8. T. Feder, P. Hell, J. Huang, and A. Rafiey. Adjusted interval digraphs. Electronic Notes in

Discrete Mathematics, 32:83 – 91, 2009.
9. E. Filiot, J. Niehren, J.-M. Talbot, and S. Tison. Polynomial time fragments of XPath with

variables. InACM Symposium on Principles of Database Systems, pp 205–214. 2007.
10. J. Flum and M. Grohe.Parameterized Complexity Theory. Texts in Theoretical Computer

Science. Springer, 2006.
11. M. R. Garey and D. S. Johnson.Computers and Intractability, a Guide to the Theory of

NP-Completness. W.H. Freeman and Co, San Francisco, 1979.
12. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithmsfor processing XPath queries.ACM

Transactions on Database Systems, 30(2):444–491, 2005.

20

13. G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries over trees.Journal of the ACM,
53(2):238–272, 2006.

14. W. Gutjahr, E. Welzl, and G. Woeginger. Polynomial graph-colorings. Discrete Applied
Mathematics, 35:29–45, 1992.

15. P. Hell and J. Nešetřil. Colouring, constraint satisfaction, and complexity.Computer Science
Review, 2(3):143 – 163, 2008.

16. Christoph Koch. Processing queries on tree-structureddata efficiently. InACM Symposium
on Principles of Database Systems, pp 213–224, 2006.

17. J. Opatrny. Total ordering problem.SIAM Journal on Computing, 8(1):111–114, 1979.
18. M. Yannakakis. Algorithms for acyclic database schemes. In Proceeding of VLDB, pp 82–94.

IEEE Computer Society, 1981.

21

