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Abstract. We investigate efficient enumeration algorithms for conjive queries
for databases over binary relations that satisfy thgraperty. Tree-like relations
such as XPath axes or grids are natural examples of suclorelatVe first show
that the result of an-ary conjunctive query) over an XstructureS can be enu-
merated with a delay iD(n-|S|-|Q|) between two consecutive-tuples. Then,
we consider acyclic conjunctive queries and show that suehigs admit an enu-
meration algorithm with delay)(|Q|-|D|) and a preprocessing i0(|Q|-|S|)
whereD is the domain of5. The delay can even be improvedd@gn-|D|) with a
slightly more expensive preprocessing step. As an apjgitaf our method, we
also show that any.-ary XPath acyclic conjunctive quer® over an unranked
treet can be enumerated with a preprocessing and deldg|-|¢|). In the sec-
ond part of the paper, we consider conjunctive queries vossible inequalities
(#) between variables. In this case, we show that query ewaiua NP-hard
and, unles® = NP, these queries do not admit enumeration algorithms with
a combined polynomial time delay. However, we also show liaatiness relies
only on the numbef of variables that appear in inequalities. We propose efftcie
enumeration procedures for acyclic and general conjuncfileries whose delay
is exponential ir¢ but polynomial (even quasi-linear) || and|S|.

1 Introduction

Querying is a core task in database processing. Given aomddistructureS, ann-
ary query retrieves-tuples of elements in the domain 8f For XML databases, the
structureS is a tree modeling an XML document, and aary query selecta-tuples
of nodes of this tree.

Query computing can be seen as a generation process. Irag@sane tries to out-
put selected tuples one after the other, without duplicatbe minimizing the delay
between successive answers. Good enumeration algorittemsarry additional infor-
mation on the problem: it shows that the query is not onlyt#iale but that the result
can be obtained step by step in a very regular way. A nice feasuthat enumera-
tion permits to start a pipeline process, and thus allowstéisised on querying to start
processing answers without waiting for the whole evaluetiobe done.

More precisely, an enumeration algorithm is the proces&négating one after the
other the tuples of a given que€y(S) for some given ordex [4]. In particular, the



enumeration process does not generate duplicates. Traledgreprocessings a pre-
liminary step performed before the enumeration phase dekayof such an algorithm
is the maximum betweefi) the time to get the first tuple after preprocessifig the

maximal interval of time between the generation of two consige solutions fok.

In [13], a tractability frontier is established for conjuive queries defined using
XPath axes as predicates. This dichotomy relies on tipeagerty (see Section 2 for a
definition): if a structureS has the Xproperty w.r.t. some total order on the domain
D of the structure, then it can be checked in PTIME combinedpaterity whether the
result of a conjunctive quer§ over.S is empty or not. IfQ) is ann-ary query, then the
proof provides an evaluation algorithm with time complgx@(|D|™-|S|-|Q|). This
holds for any conjunctive queries using unary and binargligeges, not only XPath
expressions. For all conjunctive queries based on XPath @xmbinations that do not
have the Xproperty, checking wheth&p selects some tuples ghis NP-complete.

Based on the aforementioned dichotomy, we investigate eration of conjunctive
gueries over Xstructures, by providing enumeration algorithms (see Bignd hard-
ness results. Enumeration complexity of query problemgaiticular on tree structures
and on tree-like queries, has deserved some attentionthe§®rv, 4]. However grids
also have the Xproperty, hence new tools are needed for such kind of strestu

Prior to this investigation, we show that deciding whethstractureS is X for some
order on its domain is NP-hard whéicontains two binary relations. § contains only
one binary relation, the problem is known to be in PTIME.

Our first algorithm enumerates answers ofiaary conjunctive query) over an X
structureS without preprocessing and with a delay®n-|S|-|Q|). The method relies
on the computation of maximal arc-consistent pre-valuatjsroposed in [13]. We then
turn toacyclicn-ary conjunctive queries (ACS) () over X structuresS, and propose
an algorithm with preprocessir@(|Q|-|S|) and delay inO(|Q|-|D|), whereD is the
domain ofS. We first reason on a conceptually simpler notion of tregpstajueries,
namely tree patterns. ACQare then mapped to tree patterns. With a slightly more
expensive preprocessingi|Q|-| D|?), this delay can be reduced@(n-|D|). This is
to be compared with Yannakakis’ algorithm [18] turned intoesaumeration algorithm
in [4], which computes all answei@(.S) of an acyclic conjunctive querg) over an
arbitrary structures with delayO(|Q|-|S|), hence in total tim&(|Q|-|S|-|Q(S)]).

The set of XPath axes does not have thergperty (only some combinations of
them have it). However we show that the main ideas of the eratina algorithm for
ACQs over X can also be applied to AC€over XPath axes. Given an unranked tree
t and an ACQQ over XPath axes()(¢) can be enumerated with a preprocessing and
delayO(|Q|-|t]), where|t| is the number of nodes. This is particularly relevant to XML
processing as XPath has become one of the main query lanfpragklL. Moreover,
as XML documents can be very large in practice, even a squateisize of the tree
for preprocessing and delay would not be feasible.

It is a natural question to ask whether the delay can be malyagmial in the
size of the query only (and independent of the size of th&tr¥cture) in the case of
conjunctive or even acyclic conjunctive queries. While tisistill an open question, we
obtain hardness results and tight algorithms when allowiegualities in predicates.

5 personal communication with Pavol Hell and Arash Rafiey. &pbblished.



Source | Queries | Structures| Preprocessing Delay

[13] CcQ X o(1) o(IDI™-|QI-|ST)
Section 3 cQ X o(1) O(n-Q[-|S])
Section 5 CQ) X o(1) 0(°".|Q|-n-|S|-log |D|)

(4] ACQ all o(1) o(|QI-[S)
Section 4 ACQ X o(lQl-15]) o(|Ql-|D])
Section 4 ACQ X o(|Ql-|D[?) O(n-|DY)
Section 4| ACQ (XPath axes) treet o(QI-1¢]) o(QI-1¢))

Section 5 ACQ () X o(Ql-18]) | o¢°®.1Q|-|D|-log |D|)

Fig. 1. Enumeration algorithms far-ary queries) over structuresS with domainD. ¢ is the
number of variables used in inequalities, whiledenotes the number of nodes of the ttee

For conjunctive queries with inequalities oves¥uctures, satisfiability is NP-hard,
even when the query restricted to pfedicates is acyclic. As a consequence, these
queries may not be enumerated with a polynomial delay, imgesf combined com-
plexity. However, we propose an enumeration algorithm fmhsqueries without pre-
processing, and with a delay @(¢°) -|Q|-n-|S|-log | D|) where the blowup is only
in the number of distinct variables in inequalities. In the acyclic casbgen allowing
a preprocessing phase(|Q|-|S|), we obtain a delay i®(¢°“)-|Q|-|D|-log | D|).

Related workEnumeration of acyclic conjunctive queries has been stuidi¢4].
It is shown that the result of such a query can be enumeratddanielay linear in
|S]-1Q| (dependency ofQ)| is exponential when inequalities are allowed). They also
formulate conditions on free variables to have a delay deipgron|Q| only. Monadic
second order queries on structures of bounded treewiditoasdered in [7, 3] where
enumeration algorithms are exhibited with a delay dependim@| (non elementarily)
and on the size of each tuple.

For acyclic conjunctive queries, Koch [16] provides an eetation algorithm with
preprocessing i (]S|-|Q|) (for computing®) and delayO(|D|), where|D| is the
domain size. For tree structures and tree-like queries dviél/descendant axes, the
delay can be improved t@(1) with the algorithmTwigStack[5]. However in both
works, all variables are considered as free. In our workialsdes can be existentially
quantified, so that it may be an exponential number of vaduatiin the size of the
domain) for a single answer tuple. However we can still aghig polynomial delay
between two successive tuples.

Conjunctive queries over child/descendant axes are cerexidn [6] for the class
of graphs. No enumeration algorithms are provided, butygeealuation algorithms.
In the case of tree-like queries over graphs the time contplexO(|Q|- |D|- |E| +
|Q(S)]), where|V] is the size of the domain anfl| is the number of edges in the graph.
However it is exponential in the number of variables in theesoaf graph queries. In [9],
XPath dialects that can defimeary queries are introduced. No enumeration algorithm
is given, but a fragment that corresponds to union of A@Qer treeg is defined, for
which evaluation is in tim&(n-|Q|-|¢|?-|Q(t)|).



2 X Structures

We consider relational structures over binary relatiogattsols onlyf. Formally leto
be a signaturd Ry, ..., R,,} of binary relational symbol®2; (equality= is part of
the language too). A (finitey-structureS consists of a finite domaif together with
an interpretation of-symbolsR; as binary relationg? on D (when it is clear from
the context we do not distinguish a symbol from its intergtiet). LetR be the set
{R?,...,R3}. The sizg¢ D| of a domainD is its cardinality. The size of a-structure
SoverD,is|S| = [D| + > per |R|, where|R| = [{(v,v") € D x D | R(v,v")}|
Given two binary relation#; andR, of R, one defines the relatio®, o Ry, R1 N Ro,
RiURy ande1 for the composition, intersection, union and inverse indtamdard
way. Given a sefl C D, we denote byR(A) the set{b | Ja € A. R(a,b)}.

The computation model used in this paper is4a}-RAM with uniform cost mea-
sure as in [3, 4]. It takes-structure as input (with each tuple in a distinct input ség)
and uses, during the computation, register contents anessls always bounded by
O(D) (hence the correspondence with logarithmic cost is imnteflia

The _Xproperty [14]. A binary relationR over D has theX propertyw.r.t. a total
order< on D iff for all elementsvg, vy, v2, v3 Of D the following holds:

(X property R(vg,v1) A R(v2,v3) = R(min(vg, v2), min(vy, v3))

A binary relation having the Xroperty is also called aK relation. We say that a
set of binary relation®R over D has the Xproperty if there is a total ordet on D
such that all relations dR have the Xproperty w.r.t.<. Similarly, a structure has the X
property if its relations have the property. We call it an Yétructure.

Example 1.Over tree structures, XPath axes define classical binaayioak such as
child, parent, descendant, ancestor, next-sibling, éterd’is no ordex on the set of
nodes such that all XPath axes aran.t. to the same<. However, such orders exist
when considering some subsets of axes. For instafuteld, next-sibling are X for
the order induced by a breadth-first left to right travergdhe tree. A complete list of
subsets of tree relations (XPath axes) having thproperty is established in [13].

Example 2.The n x n-grid graphG = (V,E) with V. = {1,...,n}? and for all
i, 4.7 € {1,...n}, ((.9), (i".5)) € Eifand only if {|i — |, |j — j'[} = {0,1}is
X for the lexicographic extension of the natural orderingn {1, ..., n}.

Lemma 1. The class of Xelations is closed by composition, intersection, andisee
(even for the same order). However, it is not closed by uni@h@mplement (even for
different orders).

Proof. Closure by composition, intersection and inverse are easféck. For union,
suppose thaty < v; and consider the relatior®; = {(vo, v1)} andRs = {(v1,v0)}.
Both have the Xproperty w.r.t.<, but notR; U R» (for both linear orders omg, v1).
For complement, consider the identity relatiffvo, vo), (v1,v1)}, its complement is
exactlyR; U Rs. a

% To ease notations, we do not consider unary relation symbotsall the results of the paper
carry over to a signature with both binary and unary relasigmbols.



Sorted representation of i¢lations.In this paper, for Xstructures, we assume that
the order< is given and that comparison can be don®ifl). Relations are given by
sets of pairs of elements and the domaAiis given as a list of elements sorted accord-
ing to <. To perform some operations more efficiently, we use thefatig so-called
sorted representatiofor a relation structurey. Every element, of D is represented
by an integeti,, € {1,...,|D|}. Moreover, we require that, <y i, iff u < v. Ev-
ery relationR is represented by two arrays and A~! of size|D| such that for all
iv € {1,...,|D|}, A[u] is the sorted (increasing) list (fat) of successors af in R,
and A~![u] is the increasing list of successorswin R~1. In other words,A is an
adjacency list representation &f viewed as a directed graph with vertex &tWe
also require that the list is doubly-linked, so that we candrse the list in both orders.

Lemma 2. For every structureS with some total ordex: on its domainD, whose
domain and relations are represented by a sorted list antd kig pairs of elements
respectively, one can compute a sorted representatishiofime O(|S]).

Proof. One first renames the elements/ofand.S into integers. We do it such that for
all iy, i, € {1,...,|D|}, tu <n %y Iff w < v. This can be done i®(|S]) sinceD is
assumed to be given as a sorted list of elements<joiThen for each relatiof, one
has to construct two arraysand A~! of size|D| such that for all. € D, A[i,] is the
sorted list of successors ofin R. It is known thatA can be computed iO(|R|) by
applying two times the following algorithm: for al), from 1 to | D| and for alli, such
that R(u, v), append, to Ali,]. Applying this algorithm a second time of results
in sorted lists of successors for eachThis is done inO(| R|). One can computd !
similarly. a

Given a subsett C D, we show that, for Xstructures, this representation allows us
to computeR(A) and R~1(A) efficiently.

Lemma 3. For every Xrelation R over a setD in sorted representation, and every set
A C D givenas alistR(A) and R~1(A) can be computed in tim@(|D|).

Proof. See Algorithm 1. The set can be sorted ii¥)(]D|) as we know that there are
at most|D| integers inA with maximal value|D|. The assumed orders anand w
elements ensure that each elemert A andw € R(A) is processed only once. The X
property allows to skipv elements lower tha elements already processed. Note that
the algorithm computes a sorted set. Sifce is also_ Xfor <, one can apply the same
algorithm on the representation Bf . O

Thanks to Lemma 3, we obtain the following proposition:

Proposition 1. The composition of two binary relations ov&r can be computed in
time O(|D|?), whenever one of them is ¥ other terms, the product of twe x n
Boolean matrices is computable in linear time when one ohtbatisfies the Mroperty.

Proof. One first computes a sorted representatian(jR; |+| Rz|) = O(|D|?) (Lemma
2). ForRy o Ry, Ri(R2(v)) (for v € D) can be computed in tim@(|D|) according
to Lemma 3, saRk; o Ry can be computed in tim@&(|D|?). For Ry o Ry, we have:
Ry o Ry = (Ry!' o Ry')~!. Inverting a relation can be done (| D|?), and Xrela-
tions are closed under inverse (Lemma 1). O



Algorithm 1 ComputingR(A)
procedure IMAGE(R, A)

sortA

S + empty list; max + —c0
for v € Aw.r.t. < increasingdo

for w € R(v) w.r.t. < decreasingio
if w < maxthen
exit inner for-loop

S.append(w)

maz <+ max(R(v))

sortS
return S

Finding X orders.In this part, one considers the problem of checking whefbeg
given relationR, there exists an order for whidh satisfies the Xproperty. This problem
has been considered under different angles in the CSPtliterésee for example [15]).

X-ENUMERATION(n)

Input: a finite domainD andRy, ..., R, C D?

Question:does there exist a commonehumeration fo?,, . .., R, (i.e. a total order
<onD suchthatRk,,..., R, are Xfor <)?

We prove that deciding whether two relations ardaX some total order iNP-
complete. Hardness is proved by reduction froemB/EENNESS[17, 11].

Proposition 2. The problenX-ENUMERATION(2) is NP-complete.

Proof. Given a linear order, one can check in polynomial time whethe two rela-
tions are Xwith respect to this order, thus proving easiness. The feaslis proved by
reduction from theNP-complete problem namedeBBWEENNESS[17, 11].

BETWEENNESS

Input: a finite setA and a collectior? of ordered triplega, b, ¢) of distinct elements
from A

Question:is there a betweenness orderifigf A for I, that is, a one-to-one function
f A= {1,2,..,|A|} such that for eaclfa, b, c), either f(a) < f(b) < f(c) or
F(e) < f(b) < f(a)?

Let A be a finite set and C A3. Let|I| = m. One constructs: copiesA, ..., A,
of A (with A = A;) and two relations$s and R as follows.

— relationS is (the graph of) a bijection from; to 4,4, fori < m.

— lett; = (a, b, ¢) be theith triple of I (for some arbitrary enumeration of the triples),
then constructR(a;, b;) and R(b;, ¢;) wherea,, b;, ¢; belong toA; and are the
unigue elements related to, respectively; andc by aS-path of lengthi — 1.



Let < be a linear ordering of elements|of’_, A; and suppose that and R are X
for <. By construction of relatiord, for eachi < m and allz;, y; in A;, their images
x;+1 andy;+1, by S, are such that :

T RY; = Tir1 < Yit+1- (1)

If not, suppose we have; < y; andz;+1 = y;+1 then, sinceS(z;,x;+1) and
S(yi, yi+1) holds but notS(z;, y;+1), relationS would not be _Xfor <. Similarly, for
x; = y; andx;p 1 < y;41 the same conclusion holds. It follows that preserves
the ordering ofA in its various copies (note however that this does not impbt t
elements of distinct copies always compare the saen¢hat A; < A;,1). Now, an
easy calculation shows that in each copyof A, since relationR is X for < then
a; < b; < ¢;0ore; < b; < a;. Hence, the betweenness property holdsifand the
successor function associated<mn A.

For the converse, suppose thatatisfies the betweenness property for some func-
tion f. Let < be the linear order that extends the succegsddow extend=< on all
copies ofA such that Equivalence 1 is preserved. Assume also that thiescare or-
dered in the following way A; < A2 < ... < A,. Inthat case, itis easily checked that
S is X for <. Also, since for all triples; = (a, b, ¢), it holds thatf(a) < f(b) < f(c)
or f(c) < f(b) < f(a), it also holds thatr; < b; < ¢; ore¢; < b; < a;. Hence, again
by easy calculationR is X. O

For the case of one binary reflexive relation, it has been sH@)vthat one can
check in polynomial time whethe® has an Xenumeration. Recently, Hell and Rafiey
(personal communication) proved that the problere XUMERATION(1) is in P.

3 Conjunctive queries over Xstructures

Queries.An n-ary query(Q over a structures = (D, R) is a mapping frons to 2°".
The set)(5) is also called thanswer sebverS. Conjunctive queries are defined in the
normal way [1]. In particular, an-ary conjunctive querypver.S is a query defined by
an existential first-order formula without negation nojjuti&tion, withn free variables
and using relations frorR as predicates. 8-ary conjunctive query is calledBoolean
conjunctive query. We recall that all the relations constdan this paper are binary.
We write varg@) for the variables occurring i), and vargee(Q) for then free ones.
We also writeR(x,y) € Q if R(x,y) appears ir). Throughout this paper, we assume
that formulas defining conjunctive queries are in prenexmaform. Thebodyof @ is
obtained fron) by removing its quantifiers. The size of a conjunctive qu@rgenoted
by |Q|, is the number of symbols of its first-order formula.

Pre-valuations and valuation§iven a conjunctive querg) over a structures' =
(D, R), we say tha® is apre-valuatiorfor Q if it is a total function® : vargQ) — 2P
assigning a nonempty set of elementsidbto each variable of). A pre-valuation®
is arc-consistenbn S iff for each binary predicat®(z, y) of @, for eachw € O(z),
R(v,w) is true for somev € O(y), and for eachw € O(y), R(v,w) is true for some
v e O(z).



A valuationd is a total functior¥ : var§ Q) — D assigning an element @? to each
variable ofQ. A valuation isconsistentf it satisfies the body of). Conjunctive queries
definen-ary queries in the following sens@{(S) is the set of tuple§(z1), . . ., 0(z,))
such tha¥ satisfies) and vargee(Q) = {1, ..., x,}. Theminimumvaluationd in ©
w.r.t. some total ordet on D is writtenmin. © and given byf(z) = min. O(z) for
all z € vargQ). Valuations are ordered according to the lexicographixegresion of
<. The following properties will be the basis of our enumematilgorithm.

Lemma 4 (Gottlob, Koch, Schulz [13]).Let S be a structure and) a conjunctive
query onS.

1. the unique subset-maximal arc-consistent pre-valuaif@) on.S can be computed
intimeO(|S]-|Q))-

2. if all the relations inS are Xw.r.t. the same ordeg, then for any arc-consistent
pre-valuation of@ on S, the corresponding minimum valuation is consistent.

This lemma provides a procedure to decide whethés) = 0 for everyn-ary
conjunctive queryy) over an XstructureS, in timeO(|S}|Q]). It suffices to compute the
subset-maximal arc-consistent pre-valuatibof Q on S, and check tha®(z) # 0 for
all z € varseee(Q@). Equivalently, wher) has no free variabla.é.n = 0), evaluating
@ on S can be done in tim&(|S|-|Q]).

In [13], a first evaluation algorithm is proposed ferary queriesQ(x1,...,2,)
over X structures. It consists in enumerating all tudles, . . . , u,,) € D", and for each
of them, check the satisfiability 6J(u1, . . ., u,,) where free variables are interpreted by
u1,. .., u, respectively. This algorithm outputs the answer§ain S in time O(|D|™-
|S]-1Q|). However the delay may b@(|D|"-|S|-Q)).

In this section, we explain how to extend this algorithm iatbenumeration algo-
rithm without preprocessing, and a delay(rin - |S|-|Q|). The core idea is to consider
distinct domaind), ..., D,, for the free variableg, ..., z, of Q. This allows us to
update these domains, in order to avoid duplicate answer®ansure the enumeration
of all answers in lexicographical order w.kt.

In the sequel we will consider arc-consistent pre-valuetifor S restricted to do-
mains defined byD = (Dy,...,D,), with D; C D forall 1 < i < n. To define
this formally, we introduce fresh unary relation symbbls and consider the signature
o' =ocWD ... W /DI Consider the querg)’ = Q A 171(551) AN l’)vn(:cn) and
the o’-structureS’ that is similar toS, but extends it by interpreting; in the follow-

ing way: E—S = D;. Then we defingv,,(Q, S, D) as the unique subset-maximal
arc-consistent pre-valuation f@’ overS’, i.e. pvyn(Q, S, D) = Pl @', S’). The
computation opv,,.,(Q, S, D) can still be performed i®(|S|-|Q|). The nextlemma
ensures that the subset-maximal arc-consistent preti@iuen some domaind keeps
all the answers itD; x ... x D,. Letang}(D) = (D1 x ... x D,) N Q(S) be the set

of answers of) on S using only values compatible with.
Lemma 5. Let© = pvy(@, S, D). Then an§(D) = ang’(6(x1) x ... x O(xy)).

Proof. ASpVya( @, S, D) € D1 x...x Dy, we havens) (PVma( @, S, D)) € ang)(D).
Conversely, suppose that,, ..., 2,) € ang)(D) \ ang)(PVma(@, S, D)). Consider

8



(DY, ...,D) = pYna(@Q, S, D). Thenthe pre-valuatiotDY U{x1}, ..., D U{z,})
is arc-consistent, and bigger thaw,,,,(Q, S, D), which contradicts its maximality. O
We now present Algorithm 2, our enumeration algorithm. Tdgorithm outputs

all elements of)(.5) in lexicographical order w.r.& (the order of Xrelations) for the
chosen order on the free variablegpf

Algorithm 2 Enumeration algorithm for conjunctive queries ovestkuctures
procedure MAIN (@, S, <)
2: (D,R) « S; 7+ FIRST(D, Q)
while 7 # L do outputf); 7 < NEXT(7,D, Q)
4: function FIRST(D, Q)
O — P @, S, (D,...,D))
6: if ©#(0,...,0)then return min< © else return L

function NEXT((v1,...,vn), D, Q)
8: jen—1
repeat
10: O ¢ Pl @, S ({v1}s oo {vi}, Do Dy D))y G 1

until © # (@,...,0)orj <0
12:  if© #(0,...,0) then return min< © else return L

We first usepv,,,,,0n the whole domai for all free variables, and get a first answer
(v1,...,vy,) by taking the minimum valuation. Then we exclugefrom the domain of
z,, and all smaller elements, by runnipg, ,,on the domain§{v. }, ..., {v,1}, D7 ),
where D7 = {v € D | v > v}. If no answer is returned, we rym,,, on
({vi}, ..., {vn—2}, Dy _,,D), and so on. Proposition 3 shows that the solution re-
turned by the functionext is indeed the next answer @(.S) in lexicographical order.
This proves the correctness of Algorithm 2.

Proposition 3. For all tuples of element&), ..., v,,) € D™, the successor ¢, ..., v,,)
by <jez, if it exists, iSOI<n_in m<in PVima( @ S {1}, - -+, {vi}, DU>H1,D, ...,D)).
<j<n

Proof. Let sucg., denote the next solution in lexicographical order, thatoisay:
SUCGey (U1, - .., ¥y) = mine{(v],...,v),) € Q(S) | (v],...,v)) >tex (V1,...,0n)}
We have, forevery) < j < n,
minc ang{v},...,{v;}, Dim,D7 ...,D)

= minc angpvy,(Q, S, {v1},...,{v;}, ijﬂ ,D,...,D)))

= minc Pl @, S, ({v1}, ..., {v;}, Dy, D,..., D))
The first equality is by Lemma 5, and the second by Lemma 4., Thus
SUCGey (V1, - - -, Un) = Ming<jcn minc ang{vi}, ..., {v;}, D7, D,..., D)

= Ming<j<p Mile PV @, S, ({v1}, ..., {v5}, ijﬂ ,D,...,D))

The first equality is due to the lexicographical order, arelgbcond to the equalities
above. O

We callpy,,, at mostn times between two successive answeesAlgorithm 2 has
adelay in timeO(n-|S|-|Q]).



Theorem 1. Let S be an_Xstructure andy an n-ary conjunctive query oves. Then
Q(S) can be enumerated without preprocessing, and with a delay(in- |S|-|Q|)
between two successive answers.

4 Acyclic conjunctive queries over Xstructures

A conjunctive queny? is acyclicif it admits a join-tree [1], or equivalently (for binary
relations) if the following undirected gragi, is acyclic:Gg = (Vg, Eq) with Vg =
var§Q) and Ey, is the set of edges sfz,y} € Eq iff R(z,y) occurs in@ for some

R. In this section, we present an enumeration algorithm foIQ&®@ver X relations
(ACQs(X)). It works with a preprocessin@(|@Q|-|S|) and a delayD(|Q|-|D|), where

Q is the query and> the domain. Then we show that when paying a preprocessing in
time O(|D|?-|Q|), one can reduce the delay @(n-|D|), wheren is the arity of the
query. As the associated gra@ly of an ACQQ over a binary signature is nothing else
than a forest, we define a notion of tree-like queries intacWiC Qs over a structure

S can be naturally encoded (in linear-time), while presegwirproperties of relations.

4.1 Tree patterns

Definition 1. A tree pattern over a binary signatuseand a countable set of variables
V is an ordered binary tree whose nodes are labeledio o U o x o. Itis inductively
defined by terms generated by the following grammar:

T = x| R(T) | (R,R)(Ty,Tz) wherez € V andR,R' € o
Moreover, the variables occurring at the leaves are all page distinct.

The semantics of tree patterns ovés given by means of ACQovero. Intuitively,
every inner-node corresponds to an existentially quadtifiiable, every leaf to a free
variable, and every branching to a conjunction. Thereforddfine the semantics in
terms of AC(¥, one needs to introduce a new bound variable for every innde. We
denote by varge(T") the variables occurring iff' (necessarily at the leaves). For any
variablez and fresh variableg, z, 2’ ¢ varsee(T), we denote by)r , the CQ:

T=y ifT =y
Qr. = { 32 R(z,2") A Qo if T =R(T")
Jy3z R(x,y) AR (2,2) NQry 4y AN Qmy . I T = (R, R)(T1,T3)

The ACQQr associated with a tree pattefhis defined byQr = Jz-Qr 5, for any
variabler ¢ varse(T") (the choice of the variable does not matter as equivalenpreis
served when choosing another variable). E.gTlet (Ry, R2)((Rs, Ra)(x1,22), x3).
ThenQr(x1,z2, x3) = JxIyRy(z,y) A R3(y, x1) A Ra(y, 22) A Ra(x, x3), for some
variablesr, y. Since the variables df are all distinct@Qr is acyclic. We extend the no-
tion of answer set to tree patterns naturally. For a strecsuovero, T'(S) = Qr(5).
The size of a tree pattern is its number of nodes.

We now show that for any tree pattéfhand any Xo-structureS with domainD,
T(S) can be enumerated with a preprocessittS|+ | D|-|T'|) and a delay) (| D|-|T)).
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Let x ¢ varsee(T), and consider the AC@)r , as defined before. For al €
D, we denote byQr , the ACQQr, where each occurrence ofis replaced byu.
We denote byI'(S, a) the answer sef)7 . (S). Clearly, T(S,a) C T(S). Informally,
T(S,a) is the set of tuples that can be obtained by mapping the rdbttofa.

We denote by Sull”) the set of subtrees (subterms)Bf The first step of the
algorithm is to compute a mappis@t : Sul(7) — 2P such that for alll” € Sul(T')
and for alla € D, a € sat (T") iff T'(S,a) # 0. Informally, sat (7”) is the set of
elements such that there exists a solutiofi’oihh .S that can be obtained when mapping
the root of7T” to a. This mapping can be computed efficiently:

Lemma 6. For every tree patterd’ overo and every Xo-structureS over a domain
D given in sorted representatiosat can be computed in tim@(|D|-|T|).

Proof. The mappingat can be computed inductively in a bottom-up manner, as

sat ((Ry, R2)(T1,T»)) = Ry '(sat (Th)) N R, *(sat (Ty))
sat (R(T1)) = Ry '(sat (Th))
sat (x) =D

The result follows by Lemma 3 and since intersection can ipepeged inO(|D]). O

Similar techniques have also been used to evaluate XPa#ryjuqueries [12].
Let T be a tree pattern over a binary signatureand letxzq,...,x, be the vari-
ables occurring at the leaves ©fin left-to-right order {.e. from the left-most leaf
to the right-most leaf). Given an X-structureS for some total ordek on the do-
main D, we define an algorithm that enumeraf€gS) in lexicographic order with
respect taxy,...,x, and <. We denote by, this order. For allA C D, we let
T(S,A) = Uuea T(S,a). LetT" € SulT) andu € T'(S). The tupleu defines the
setB(w,T’",S) ={a € D |u e T'(S,a)}. Informally, B(w, T", S) is the set of nodes
from which we can obtaim.

Lemma 7. If T = (Ry, R2)(T1,Tz), thenforallA C D:

T(S,A) = U {3 x Ta(S, Ra(Ry (B, Ty, 8)) N A))
ueTy(S,R1(A))

Proof. Letw € T(S, A). By definition of T'(S, A), there isa € A such thatw €
T(S,a). Therefore there exist$;,a2 € D such thatw can decomposed inte and
v, (a,al) € Ry, (a,ag) € Ro,u € Tl(S, al) andv € TQ(S, ag). Clearly,a1 S
Ri(A), anda, € B(w,T1,S). Thereforea € Ry '(B(u,Ti,S)) N A, anday €
Ro(R;Y(B(W, Ty, S)) N A). Thereforer € Ty(S, Ro(R; ' (B(W, Ty, S)) N A).
Conversely, let us take two tupl@sandv such thatu € T1(S, R1(A)) andv €
Ts(S, Ry(Ry Y (B(u, Ty, S))NA)). Therefore there exists, € Ry(R;* (B(@, T, S))N
A) such thar € Ty(S,as). Thereisa € AN Ry (B(T, Ty, S)) such that(a, as) €
Rs. There is alsay; € B(u,T1,S) such thata,a,) € Ry. Sincea; € B(u,T1,.5),
u € T1(S,a1). Moreover,a; € R;(A) since(a,a;) € Ry anda € A. Therefore we
have founds, a1, as such thaw € A, (a,a1) € Ry, (a,a2) € Re,u € T1(S,a1) and
7 € T2(S, az). In other wordsz.w € T'(S,a) C T(S, A). O
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AN sat(T)

Ry (A) Nsat(Ty)

£

Ay = B(w, Ty, S) Ra(RT (A1) N A)

Fig. 2. Branching management for tree patterns enumeration

Similar lemmas hold whef is a single variable node, or the rootBis branching-
free. In particular’(S, A) = A if T' is a variable. We now have the main ingredient of
arecursive enumeration algorithm that we illustrate fer¢asel’ = (Ry, Ry)(T1, Tz):
for each tuplez € T3 (S, R1(A)) enumerated recursively in lexicographic order, we
have to compute the set; = B(w, T, S), and then the sel, = Ro(R; ' (A1) N A).
Then we recursively enumerate the tuplesf 7>(S, A3) in lexicographic order. In-
stead of computing the selt; onceu has been computed,; can be computed recur-
sively when applying the enumeration algorithmBn This is becaus®& (w, T', S) =
Ry (B(W,Ty,S)) N Ry (B(v, Ty, S)), wherew = %.5. The enumeration algorithm
is therefore defined by a recursive procedure that outpetsdit tuplew of T'(S, A)
and outputs the seB(w, T, .S). However it might be the case that, is empty. In
this case, one has to enumerate the tuple%165, R,1(A)) until there is a tuplez
such thatRy(R; ' (B(@, Ty, S)) N A) # §. This can lead to an unbounded delay be-
tween two consecutive tuples. Therefore we add one moretredmtson the sets to
ensure the following invariant: at each recursive call & grocedure, we must have
A # (and A C sat (T). Hence we are sure that there is at least one tuple in
T(S,A). If A C sat (T), when we call the procedure @, instead of calling it on
Ty, S, R1(A), we call it onTy, S, R1(A) Nsat (T1). Sinced # AandA C sat (7)),
Ryi(A)Nsat (T1) # 0 and the invariant is satisfied. Similarly, for the right selet we
call the procedure offi;, S, A; Nsat (T»). This is depicted on Fig. 2.

If the root of T' is branching-free, the enumeration works similarly. Wiieris
reduced to a single node labeled by a variahlthe algorithm enumerates all elements
a of Aw.r.t. the ordex on D and for each element returngnd{a} (i.e. B(a, z, 9)).

The enumeration algorithm (Algorithm 3) is presented in thBg-like style, which
allows us to write it in a very concise and readable way. Irtipalar, we define an
enumeratoENUM(T, A) that enumerateB (.S, A). The instructioryield passes its ar-
gument to the parent enumerator call, which outputs thelgialues and freezes
the computation by storing the evaluation context. Theesfahen an instructiofor
(uw, B) € ENUM(T, A) is executed, it passes through the loop each ENEIM(T, A)
yields a new element. In other word&NUM(T', A) is evaluated in a by-need lazy fash-
ion. This comes without extra cost in time complexity.

Lemma 8 (Completeness and Soundnes$jiven a tree patterfi’ and an_Xstructure

S for some total ordek on its domainD and a subsetl C D, ENUM(T, A) enumer-
ates all elements df(S, A) in lexicographic order, and only those tuples. Moreover for
each enumerated tupig it yields the seB(u, T', 5).
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Algorithm 3 Enumeration algorithm for tree patterns ovesiuctures
function MAIN (T, S, <) © T:tree patternS:X structure for some ordet on its domainD
2: compute a sorted representation $or
compute the functiosat
4.  for (w,B) € ENUM(T,sat (T")) do
outputu
6: function ENUM(T, A)
if T = (R17 RQ)(Tl, Tg) then

8: for (@i, B1) € ENUM(T1, Ri(A)Nsat (T1)) do
for (T2, B2) € ENUM(T, Ro(R7(B1) N A) Nsat (T»)) do
10: yield @ @2, Ry (B1) N Ry '(Bs2))
ifT =Ry (Tl) then
12: for (@i, B1) € ENUM(T1, Ri(A) Nsat (T1)) do

yield @, Ry'(B1))
14: if T'= x then
for a € Aw.rt. < do
16: yield @, {a})

Lemma 9. Given a tree patterri’ and an_Xstructure S for some total order< on
its domainD and a setA C D such thatA # () and A C sat (T'), ENUM(T, A)
enumerate§’'(S, A) with preprocessing i@ (|S| + |D|-|T’|) and delay inO(|D|-|T).

Proof. The first two steps (lines 2 and 3) are obtained by Lemma 2 andna6. This
gives the preprocessing step.

For the delay, the proof is very similar for the cases of twonsazutive tuples and
first tuple, we do it for two consecutive tuples only. It is @dvy induction orl". If T' is
a leaf labelede, then it is clear that all elements df can be enumerated with a delay
O(|D|). Since|T| = 1, we get the result. If" = (R1, R2)(T41,T%), by Lemma 8, we
know that exactly all tuples df’(S, A) are enumerated in lexicographic order. Let us
take two consecutive tuplés <., v such that,v € T'(S, A). Those two tuples can
be decomposed into = u;y.u; andv = v1.73 wherewuy is matched byi'y, uz by Ts, 77
by T andwz by 7. We consider two cases:

If w7 = o7 andwuz <., 7z, then letds = Ro(Ry*(B1) N A) Nsat (Ty) whereB;
is the set returned at line 8. We know by Lemma 8 tBat= B(u1, T}, .5). We prove
thatAs # () and A, C sat (73) (in order to apply the induction hypothesis). It is clear
thatA, C sat (7»). By Lemma 8y € T'(S, R1(A)), therefore there existsc A and
a1 € R1(A) such that(a,a1) € Ry anduy € T(S,a1). Moreovera, € B(uy,T1,.5).
SinceA C sat (T), there existsi; such that(a,as) € Re andas € sat (Tz). In
particular,a; € Ay and A, # 0. Moreover,A; C sat (Ty), thereforel (S, As) # 0.
Since by Lemma 8 the tuples are enumerated in lexicograptér,ahe tuples is the
successor ofi; in the setl» (S, A2). Therefore by induction hypothesis, is obtained
afteruz with a delayO(|D|-|Tx]). A fortiori, 7.72 = u7.73 is obtained with a delay
O(|D|[T2]) = O(|D|-|T).

Suppose thatiy <., 1. Itis clear thatR;(A) N sat (T1) # 0, sinceA # ()
and A C sat (7). ThereforeTi (S, R1(A)) # (. Since by Lemma 8 the tuples are
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enumerated in lexicographic order, is necessarily the successor ®@f in the set
Ty (S, R1(A)). By induction hypothesis, it is obtained after a de@y|D|- |T1]). We
let B; be the set returned at line 8 after has been computed. By Lemma 8, we
know thatB; = B(v1,T1,S). Similarly as the previous case, one can show that the
setd; = Ra(RyM(By) N A) Nnsat (Ty) is non-empty and satisfied, C sat (T3).
Thereforel» (S, Ay) # 0 andvs is necessarily the first element ©%(.S, A3). By hy-
pothesis, this first element can be obtained with a délgyD|-|T%]). In order to give
the overall delay to outpui;.v; afterwy.vy, one finally needs to give the time com-
plexity to compute the set,. Since we have first computed a sorted representation of
S, by Lemma 3 all operations can be done(i|D|). The overall delay is therefore
O(D||Ta| + |D|-|Ts| + |D]) = O(|DI|T)).

Finally, if the root of " is branching-free, the proof similar and easier than foabin
branching. a

Therefore one obtains the following theorem:

Theorem 2. For every tree patterl’ and every XstructureS for some total ordex
on its domainD, T'(S) can be enumerated with preprocessifgS| + |T'|-|D|) and
delay inO(|T|-|DJ).

As a matter of fact, the delay mentioned in the previous tmoran be reduced to
O(n-|D|), wheren is the number of free variables, with the cost of a preprangss
in O(|T|-|D|?). This is done by transforming the tree pattern in a full byntee:
the branching-free paths are replaced by a unique edge. diveesof this edge is
then labeled by a relational predicate interpreted by tmepmsition of all the relations
occurring along the path. Therefore one changes the pattetthe structure on which
its relational symbols are interpreted. As we have to perftrte composition of X
relations, the time complexity of this reduction(§|T’|-|D|?) (Prop. 1). The resulting
tree pattern is a binary tree of sigzén). Then we can apply Algorithm 3.

Theorem 3. For every tree patterfi” with n (free) variables and every-BtructureS,
T(S) can be enumerated with a preprocessing?'|-|D|?) and a delay inO(n-|D|).

Remark 1.Note that Algorithm 3 also works for any kind of structure ol@ary pred-
icates (if we remove the computation of a sorted represenai he complexity of the
preprocessing and delay depends on the following opemtimmputingR(A) and
R™1(A) for any relationk and subsei of the domain. In the general case of AEQ
over an arbitrary structure where the (binary) relatioresrapresented as pairs of ele-
ments,R(A) andR~1(A) can be computed i@ (|R| + |A|) = O(|S|). This results in
an enumeration algorithm with preprocessing and déléy|-|T'|).

4.2 From ACQsto tree patterns

Given an acyclic conjunctive query and an XstructureS, one first transform& and

S into a tree patterify and a structures’” with the same domain such thgft’| =
O(|Q]-1S]) andQ(S) = T (S’). Then we apply the enumeration algorithm for tree
patterns. The transformation works on the labeled (didg@eaphH, of () defined by
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Hq = (Vg, Eqg, A\) whereVg = vardQ), Eqg = {(z,y) | R(z,y) € Q for someR}
and for all(z,y) € Eq, A(z,y) = {R | R(z,y) € Q}. SinceQ is acyclic, this graph is
acyclic as well (acyclicity in this case being defined withcansidering the orientation
of edges). Therefore it is a forest, but it is not a tree patter one (or more) of the
following reasons(i) there might be several disconnected componéiisedges are
labeled by several relational symbo(sii) a vertex may have several incoming edges,
(iv) a free variable may not be a le&f,) the branching is arbitrary.

Suppose first that there is only one connected componenfirshstep is to choose
a particular vertex that will be the root of the tree pattérhen we have to adapt the
orientation of the edges so that the unique path from the tmahy vertex consists
of edges that have the same orientation. This is done bydakia inverse of some
relations (which remains Xthat are badly oriented. For instance, when changing the
orientation of an edgér, y) to (y, z), we change all its labelR € A(z,y) by a new
relation symbolR~! that will later be interpreted by the inverse Bf. The second
step is to replace multiple labels by a single relational lsghthat will denote the
intersection of relations. For instance,(if, y) is labeled by the following predicates
{Ri1,...,Rx} C o, we replace it by a new relational symb@®; N --- N Ry) that
will later be interpreted af), R?. Finally, free variables may not be necessarily at the
leaves. Letr such thatz is free but not a leaf. We replaaeby some new variable; in
the query and adéz; - I(z1,x) wherel is a new relational symbol interpreted by the
identity relational (which is Xor any order). In the graph, it amounts to create a new
vertex, to rename the vertaxby z; and to conneci; to = by an edge labeled. By
this transformation, all the free variables are at the legbat there are still leaves that
are not free variables. We apply the following transformigxhaustively: if z, y) is
an edge labele® € o and every variable reachable frgms bound, then we remove
the subtree rooted aty and replaceR by a new relational symbdlR N ¢). It will be
interpreted by{ (u,v) € RS | v € Q:(S)}, whereQ; is the unary query represented
by t, wherey is considered as free (it can be evaluated in t@{&D|- |Q|) by using
the same algorithm as in Lemma 6 and it is easy to see thatsh#ing relation is still
X). Applying this transformation exhaustively results ireetwhose leaves are all free
variables. The resulting graph is almost a tree patternitdiranching may be more
than binary. Again we can duplicate some of its vertices t&angbinary, by using the
identity relational symbol. The last step to get a tree pattern is to put the labels of the
edges into their source node.

If there are several disconnected components, one firsgftnans each of them into
a tree pattern, and create a new element connected to tleafoedch tree pattern by
a relationC interpreted for some € D asC® = {(r,d) | d € D} (itis X). The
branching is not binary but we can apply the same technigbefase to get a binary
tree.

The syntactical construction of the tree pattern can be doriene O(|Q|). We
have to compute a new structu$éin which every new introduced relational symbols
is interpreted. This structure has the same domaii. &8 assume thef is in sorted
representation (done via a processingl}S|)). As shown by the construction, the
interpretation of the new relation symbols is the resuliaiing intersection or inverse
of X relations, as well as evaluating a unary acyclic conjuedjwery over Xelations,
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RiNR;!

R37 Rﬁl

¢ = dz1Jz23z3. R (1’17 $2) AN RQ(l’Q, l’l) AN R3($2, x) A R4(l’27 y) A\ R5(y,x3)
R} is interpreted a$(u, v) | Ra(u,v) A Jw. Rs(v,w)}.

Fig. 3. Tree pattern resulting from the translation of the A@Q

which can again be done i9(|D|-|Q|). The new relational symbols are interpreted
by relations of sizeD(|S|) at most. Moreover, we have introduced at mostQ)|)
new relational symbols. Therefot8’| = O(]S|-|Q|). Finally, S’ can be computed
in time O(|Q|-|S]), as taking the intersection of two relatioRs, R, can be done in
O(|R1| + |Rz|), taking the inverse is done in constant time (for sortedesgmtation),
and evaluating a unary query ougiis in O(|D|-|Q)).

We provide an example in Fig. 3.

The complexity of this transformation depends on the coriplef intersection
and inverse of relations, as well as evaluation of unaryigeer

Lemma 10. For every acyclic conjunctive query over an_Xo-structureS, one can
constructin time)(]S||Q|) a tree patterri, over a signaturer’ and an Xo'-structure
S’ with same domain such thifig| = O(|Q|), |S'| = O(]S1Q]) andTg(S) = Q(57).

As a corollary of Theorem 2, Theorem 3 and Lemma 10, we obtain

Theorem 4. For everyn-ary acyclic conjunctive querg over an_Xo-structure S,
Q(S) can be enumerated with a preprocessiigS|-|Q|) and a delayO(|Q|-|D]).
This delay reduces t@(n-| D|) with a preprocessing i® (| D|?-|Q)).

Remark 2.The translation of AC@to tree patterns also works for the general case of
ACQsover an arbitrary structure of binary relations. Its comftiedepends on the time
needed to compute intersection and inverse of relationsedsas the time to evaluate
unary queries. The latter is known to be|S|-|@|) [18], the former remains the same
as the case of XTherefore by Remark 1, we get an enumeration algorithméoegal
ACQs over a binary structure with a preprocessingS|-|Q|) and a delay)(|S|-1Q|)
(similar to that of [4]). Considering Xelations, this delay reduces@(|D|-|Q)]).
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child =fcong parent = child™*

descendant = child* ancestor = descendant*
descendant-or-self descendant) I; ancestor-or-self = descendant-or-seif
following-sibling = ns* preceding-sibling= following-sibling~*
following = ancestor-or-self ns"o  preceding = following™*

descendant-or-self
Fig. 4. XPath axes

4.3 Enumeration of acyclic conjunctive XPathn-ary queries

In this section, we show that the ideas developed in the eratioe algorithm of ACQ
(X) can be adapted to an enumeration algorithm for A®Qer XPath axes interpreted
on unranked trees. The case of XPath axes however diffetsaintite relations are
not explicitly representedJnranked treess the widely accepted model of XML doc-
uments. In such trees, the nodes are labeled by elementsnitieaafiphabet’, sibling
nodes are ordered, and a node may have an arbitrary numbleitdvea. We view un-
ranked trees as a structure over the signatuyrg = {(lab,).cx,fc, ns} where for
all a € X, lab, is a unary predicate that denotes the nodes labelédis a binary
predicate that relates a node andfitst-child, andnsis a binary predicate that relates
a node and itmext-sibling For any unranked treg we let Don{t) be its set of nodes
and|¢| = [Dom(t)| its number of nodes.

XPath axegre listed in Fig. 4 together with their semantics by mearexpfessions
over inverse, union, composition and iteratibrand. ™ of the relationdc, nsand/; the
identity relation on Dorf¥). XPath axes are not,Xand only some subsets of them are
X, as shown in [13]. However as we will show, AGQver XPath axes still enjoy good
enumeration properties, mainly because of the followirg; fa

Lemma 11 (Gottlob, Koch, Pichler [12]).For all unranked treeg, all XPath axesy,
and all setsd C Dom(t), x(A) can be computed in tim@(|¢|).

In the context of XPath queries, it is important to consider unary predicates
lab, that test the labels of the nodes. We can slightly extend réne patterns with
optional unary predicatdab, attached to the nodes of the tree pattern. They just restrict
the domain of the variables (bound and free) of the assatia@Q. As the unary
predicates can be integrated into the binary relationsptlgm 3 can also be used for
tree patterns with both unary and binary predicates.

Consider now a tree pattefii over the XPath axes and the unary predicédbs,

a € X, and an unranked tree(represented by a,,,--structure). We can choose an
arbitrary total order on the nodes and apply Algorithm 3 aiseon ¢ (without con-
sidering line 2). In contrast to ACQ_(however, the predicates that appeaf/irare
not explicitly represented in the,,..-structuret (otherwise its size would b&(|¢|?).
Thanks to Lemma 11 and the fact that XPath axes are closed umdese, tree patterns
over XPath axes can be enumerated with a preprocessing EyddeT |- |¢|).

When going from ACG@ to tree patterns over XPath axes, we apply the same con-
struction as for ACQ_(X As XPath axes are closed under intersection and invérse, t
resulting tree pattern is a tree pattern over XPath axesiefdre we do not need to
precompute the interpretation of the axes and we can applgrihmeration algorithm
as done for tree patterns over XPath axes. We obtain thenvfiolipcomplexity:
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Theorem 5. For everyACQ () over the XPath axes and the unary predicdteb, ) ,c
and all unranked tree represented as a structure over ns and@¢t) can be enumer-
ated with a preprocessing and delayGi|Q)|-|t]).

5 Conjunctive queries with inequalities

In this section, one considers conjunctive queries ovetrXctures where in addition
= is allowed in the signature. Note that a conjunctive quemh\giich inequalities is
acyclic if the query obtained by ignoring inequalities igee. In other words, inequal-
ities play no role in defining acyclicity. We first show thakeevin the case of acyclic
conjunctive queries, such queries are hard to evaluatedimbmed complexity. The
proof is by reduction from 8sITIVE 1-3 SaT [11].

Proposition 4. The problem of checking whether a Boolean conjunctive quétty
inequalities is true on an Xtructure iSNP-complete for combined complexity. The
result remains true even if the query restricted to therédicates is acyclic.

Proof. Let us consider the following well-knowNP-complete problem [11].

POSITIVE 1-3 SAT
Input: a positive3-CNF formulay
Questionis there a model ap such that each clause is satisfied by exactly one variable?

Membership toNP is straightforward. We prove hardness by reduction from the
problem PSITIVE 1-3 SAT. Lety be a positivd-CNF formula over variables , ..., z,,.
Letcy, ..., ¢, be an enumeration of its clauses. Fat n, leto(i) be the number of oc-
currences of; in .

First, one builds an ordering and an XstructureS for < as follows. Structure&s
has for domairD the disjoint union of set® ,....D,,, C1,...,C,,, that we now construct.
For each variable;, subdomairD; contains two elements andz? with 2? < z¥. Let
us consider an enumeration of clauses@ind letc; = =, V zj, V z;,, j < m, be the
jth clause. Suppose, that thth, sth andt¢th occurrences of respectively, , «;, and
x, appears ir;. One will denote the clause ey = =7 Vv 25, v z!_. One constructs a
subdomairC; containing the following elements in that order:

T s t J =T =5 =t J J
i <, <xp, <ol T T <7 < B <y
The ordering between sets is depicted by:

Di<...<D,<Cy=<...Cp

It remains to describe relations @h For each variable;, one introduces a relation
next; which is made of two paths starting respectively frofrand:;° and joining the
different occurrences aof; andz,. More precisely :

— for all 0<k<o(i), next;(x¥, 1) andnext;(zF, 5 1)
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It is easy to check that the relationgzt; are X for <. Finally, a relationC is
introduce_d thqt maps forlajl <m,xf, x5, 2} too’ andz] , 75, 7%, to 47 andy.
Here again, this relation is ¥r <.

We now construct the following query:

(321200 (Fadbi el it
BRES!
Nizy Di(xd) A Nizy No<j<o(iy nexti(@], x ™ )A
M o R
Nej=o v, vat, C(a5,,07) A O(a5,, ) A Olagy, )N
@l FW NG EINY £

The formula states that there exists an assignment of Vasigthose chosen ag
are set to true, the variablg$ are set to false) such that, for eagHiollowing the path
to each clause ends in three distinct elemet$’ andc’ whose only interpretation
can bea’, 37 and+’. This means that only one over the three paths corresporals to
positive variable. Note that the structure and the formaleehcomparable sizes. Note
also, that once restricted top¢edicates, the constructed formula is acyclic. O

In contrast with the preceding result, we show that the hesdonly relies roughly
on the number of variables involved in at least one inequalit

Theorem 6. Let.S be an_Xstructure for some ordet;, let Q be ann-ary conjunctive
(resp. acyclic conjunctive) query with inequalities withnaost¢ variables involved in
at least one inequality. The®)(S) can be enumerated with a deléy(¢°“).|Q|-n-|S|-
log |D|) (resp. a delay) (¢°9).|Q|-| D|-log | D|) and preprocessing cost (|Q|-|S))).

Proof. The bound is obtained by partial application of techniquetated to the color
coding method of [2]. We will construét = O(¢*-log | D|) conjunctive (resp. acyclic
conjunctive) querie§);, i = 1,...,h, on some XstructuresS; for order< such that
Q(S) = U<, Qi(Si). Is it known (see for example [4]) that if each predicate of a
union of sizeh can be enumerated by a bounded delay algorithm for some delag
w.r.t. the same order, hekg.,., then the union can be enumerated by a bounded delay
algorithm with delayO(h-k) for this same order. Hence the result will follow.

More precisely, the body af) can be written ag)® A /\(i,j)el x; # x; for some
set of pairsl, whereQ? is acyclic (if Q is acyclic) and free of inequalities. We write
{x1,..., 2} for the variables appearing in inequalities (some of thery befree in
Q), and[{] for {1,...,¢}.

Let\: D — [¢], be a propef coloring of D. Let (S, \) be the extension o§ by
the coloring\ with each coloti encoded by a new monadic predicate Obviously, if
two elements have two different colors in a proper colorimgntthey are distinct. Let
us consider quer§)’ whose body isQ° A Najer /\i:1 “(Ug(z:) A Uk(xj))

Claim. One can enumerate the element§AfS, \) with delayO (¢4 Q[{S|). Moreover,
if @ is acyclic then the delay can be improved¢/‘-|Q|-|D|).

Proof (of the claim).Since the interpretation is taken on a structure where the co
oring is proper, then the number of possible coloringsafor..., z, compatible with
Nijer /\iz1 (Ui (xi) A Ug(z;)) is bounded by*. The queryQ’ is equivalent to a
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disjunction of conjunctive querie@y of bodyQ® A Uyq)(21) A -+ - AUy () for all
functionsf : [¢] — [¢] such thatf (i) # f(j) forall (i, j) € I. EachQ; is acyclic if Q°
is acyclic. The result follows from Theorem 1 and 4. a

It is known (see [2] and also [10]) that there exists/gperfect family A of size
20 .10g |D| of hash functions fromD to [¢], i.e. A is such that for every’ C D
with |C| = ¢, there exists\ € A such that\(c) # A(¢) for all distincte, ¢ € C (i.e.
the restriction of\ to C' is one-to-one). The following hold§)(S) = U, 4 Q@'(S, ).
Clearly, if a tuplea = (a1,...,a,) € Q'(S,\) for someX € A thena € Q(S).
Conversely, leti € Q(S) and A be a satisfying assignment of variablegpBuch that
the free variables af are assigned t@. Letb; be the assignmentaf,i =1, ..., /in A.
Then, it holds thal\(i’j)el b; # b;. As X is an/-perfect family, there exists € A such
that all distinct elements amorbg, ..., b, have distinct images.€. colors) byA. Then
@ € Q(S, ). Then, the theorem follows by enumerating the urtipy). , Q'(S,A). O

Conclusion. As a conclusion, we would like to address some further qoestiFirst,
we would like to characterise the complexity of the enunienaalgorithms in terms
of amortized delay, which we conjecture is smaller than tbestvcase delay. Another
guestion is to see whether the delays are tight. Finally, Wiérwestigate the general-
ization to relations of arbitrary arity, as thenétion can be extended teary relations.
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