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Dual approach in non-linear fracture

mechanics

Claude Stolz

Abstract A dual approach in fracture mechanics

based on complementary energy is proposed. The anal-

ysis of the dissipation shows that the thermodynam-

ical force associated with the evolution of a crack is

an energy release rate, form of which depends on the

presence or not of mechanical discontinuities. This

energy release rate is given as a integral based on free

or complementary energy. The invariance of sintegrals

is analysed and the obtained results in elastoplasticity

are discussed. The energy release rate is determined

in terms of potential energy or complementary energy,

first in elasticity and secondly in elastoplasticity. Asso-

ciated to these definitions, the law of propagation of

the crack is chosen as a Griffith law and the propaga-

tion is governed by a normality rule. In this framework

we formulate the evolution problem concerning crack

propagation in an elastoplastic material. Variational

formulations are obtained in terms of rate of displace-

ment, of stresses and of crack length.
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1 Introduction

The study of crack propagation and stability of crack

is an old problem in fracture mechanics. In brittle frac-

ture, the Griffith’s criterion is assumed, the stability

analysis is classical and most investigations have been

concerned with bi-dimensional problems of a crack,

Its generalization to a system of linear cracks has been

discussed. The Griffith’s criterion has also an energetic

significance, it has has been shown that the quasistatic

propagation of planar cracks is a particular case of a

class of processes time independent in solid mechanics

like standard plasticity, damage and brittle fracture. The

common features in the modelling of these processes

is the applications of two fundamental concepts: the

notion of energy at a given state and the normality rule

expressed by Hill’s principle of maximum dissipation.

The purpose of the analysis is to study the evolution of a

system of linear cracks inside an elastoplastic material.

Many papers are concerned with the formulation

of the driving force associated to the propagation of

a crack in in elastic-plastic material and discussion of

J integrals (Nguyen and Stolz 1985; Simha et al. 2008;

Maugin 1994). The interpretation in terms of dissi-

pation is presneted and formulations of the evolution

problem of a set of cracks in an elastoplastic boby are

given in terms of variational inequalities.

Consider a body Ω with a straight crack. Around

the crack tip three domains determined by the distance

from the tip are distinguished. In the nearest zone I all

physical processes of rupture occur, that is the process
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zone. This zone is embedded in a second domain where

the mechanical fields are described by singular fields.

And finally far away from the tip the mechanical fields

become closer to the boundary conditions.

At macroscopic scale, the crack is represented by a

line along Ox . The normal is ey in the plane, and ez

is the normal to the plane. The crack length is l(t) and

a = l̇ is the crack speed.

If the singularities of mechanical fields govern the

crack propagation, it is not necessary to take into

account the rupture process. This is an approxima-

tion which leads to a global approach of rupture. This

description is powerfull and constitutes the key point

for describing classical fracture mechanics. In this case,

the singularities represent the loading applied on the

process zone.

In non linear mechanics, these notions must be revis-

ited. The dissipation can be represented by several man-

ner, depending on the local constitutive law and on the

mechanisms of rupture. The dissipation can be concen-

trated in one point due to singularities or along a surface

of discontinuities as in shock waves or formed inside

a volume. Any situation depends on the characteristics

of the material and on condition of propagation.

For example, the antiplane shear in stationay steady-

state motion u = w(x, y, t)ez = W (x − at, y) is gov-

erned by

(1 − M2)W ′′
,xx + W ′′

,yy = 0 (1)

where the Mach number M2 =
a2

ρµ
defines the nature

Fig. 1 Decomposition of Ω

in ΩΓ ∪ VΓ

Γ

VΓ

ΩΓ

O a

lagrangean description. Our description is based upon

the concept of singularity transport (Nguyen and Stolz

1985; Stolz and Pradeilles-Duval 1996; Stolz 2004).

Similar ideas are found in Gurtin and Podio-Guiugli

(1996).

The nature of the singularity is preserved for a frame

in motion with the crack tip.

The crack singularity is surrounded by a curve Γ

delimiting a domain VΓ . This domain moves with the

position of the crack tip which is given by function

l(t) (Fig. 1). All mechanical quantities are expressed

in terms of the classical fixed coordinates outside VΓ

and in terms of moving coordinates inside VΓ .

x = X − l(t), y = Y. (2)

Any mechanical quantity F has a time-derivative given

by
◦

f , which represents the variation of f in the moving

frame:

F(X, Y, t)= f (x, y, t), ḟ =
∂ F

∂t
= − a

∂ f

∂ X
+

◦

f (3)

In order to separate the contribution of the crack tip

in the expression of dissipation, these definitions are

applied to average quantities on the whole domain:

F =

∫

Ω

fρ dΩ =

∫

ΩΓ

fρ dΩ +

∫

VΓ

fρ dΩ,

d

dt
F =

d

dt

⎛

⎜

⎝

∫

ΩΓ

fρ dΩ

⎞

⎟

⎠
+

∫

VΓ

◦

f ρ dΩ.

0 =
d

dt

⎛

⎜

⎝

∫

ΩΓ

fρ dΩ

⎞

⎟

⎠
−

∫

ΩΓ

ḟ ρ dΩ

+

∫

Γ

fρanx dS.

Let us introduce the notations: fx = f.ex ,∇x f =

∇ f.ex .

of this equation. For small M < 1 the equation is ellip-

tic, W is singular and the dissipation is concentrated at 
the crack tip. For large value of M (M > 1) the equa-

tion is hyperbolic, the gradient ∇W has jump and the 
dissipation is concentrated along moving surface.

In elastoplasticity, the local equations are also hyper-

bolic, the same can be realized for some classes of 
hyperelastic material (Knowles 1977).

2 Characterization of the propagation

The main difficulty of the problem of propagation is 
the dependence of Ω to the crack length and the pres-

ence of moving singularities or discontinuities due to 
the crack.

One possibility has been investigated in Destuyn-

der and Djaoua (1981) by introducing a geometrical
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Dissipation The dissipation of the whole system can

be rewritten as

Dm = Pe −
d

dt

∫

Ω

wρ dΩ ≥ 0, (4)

where the power of external forces Pe is given in term

of local stresses, taking into account the conservation

of the momentum:

Pe =

∫

∂Ω

n.σ.v dS. (5)

Using the divergence theorem, this quantity is decom-

posed in two terms:
∫

∂Ω

n.σ.v dS =

∫

ΩΓ

σ : ε(v) dΩ +

∫

Γ

n.σ.v dS. (6)

Using now the decomposition of the volume (Ω =

ΩΓ ∪ VΓ ) the dissipation is written

d

dt

∫

Ω

wρ dΩ =
d

dt

⎛

⎜

⎝

∫

ΩΓ

wρ dΩ

⎞

⎟

⎠
+

∫

VΓ

◦
wρ dΩ, (7)

and by application of the general relations, the dissipa-

tion is:
d

dt

∫

ΩΓ

wρ dΩ =

∫

ΩΓ

ẇρ dΩ −

∫

Γ

ρwnx dS a, (8)

∫

VΓ

◦
wρ dΩ =

∫

Γ

n.σ.
◦
u dS + o(R) (9)

We have taken account of the traction-free boundary

conditions σ.n = 0 along the crack lips. The quantity

o(R) is regular and tends to zero with the radius of the

volume VΓ .

The dissipation is rewritten finally as

Dm =

∫

ΩΓ

(σ : ε(v) − ρẇ) dΩ

+

∫

Γ

(n.σ.(v −
◦
u) + ρwn.ex a) dS + o(R) ≥ 0

(10)

The displacement u is continuous along the curve Γ .

The condition of compatibility implies Hadamard rela-

tions on the rates:

[u] = 0 ⇒ v =
◦
u − ∇x u a. (11)

Thus the dissipation is decomposed in two terms: a vol-

ume part due to irreversibility of the constitutive behav-

iour and a surface term associated with the propagation

of the crack:

Dm = lim
R→0

∫

ΩΓ

(σ : ε(v) − ρẇ) dΩ

+ lim
R→0

∫

Γ

(−n.σ.∇x u + ρwnx ) dS a ≥ 0.

(12)

We note JΓ the curve integral

JΓ =

∫

Γ

(−n.σ.∇x u + ρwnx ) dS. (13)

Case of linear elasticity In this case the local behav-

iour is reversible and the stresses are σ = ρ
∂w

∂ε
, then

there is no dissipation in the volume:
∫

ΩΓ

(σ : ε(v) − ρẇ) dΩ = 0. (14)

When the curve Γ is reduced to the crack tip, the result

is conserved:

lim
R→0

∫

ΩΓ

(σ : ε(v) − ρẇ) dΩ = 0. (15)

Thus the global dissipation contains only the contribu-

tion of the crack:

Dm = lim
R→0

(−n.σ.∇x u + ρwnx ) dS a. (16)

The thermodynamical driving force associated with the

propagation is the free energy release rate G defined by:

G = lim
R→0

∫

Γ

(−n.σ.∇x u + ρwnx ) dS = lim
R→0

JΓ . (17)

Consider now a closed loop S inside a domain Ω , and

assume that the body forces are null. For an homoge-

neous linearly elastic material, the density ρ is uniform.

The stresses satisfy both the equations of state and the

conservation of the momentum:

σ = ρ
∂w

∂ε
, div σ = 0 over Ω. (18)

Consider the integral C

C =

∫

S

(ρw nk − σi j ui,kn j ) dS, (19)

then by divergence theorem the integral is equal to
∫

ΩS

∂(ρw)

∂xk

−
∂(σi j ui,k)

∂x j

dΩ

=

∫

ΩS

(σi jεi j,k − σi j ui, jk −
∂σi j

∂x j

ui,k) dΩ.
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Using now the conservation of momentum, we find that

the integral C is null. From this result, it follows that

the integral JΓ is independent of the choice of the loop

Γ , taking account of the free-traction conditions along

the lips of the crack.

Examples of non linear behaviour For some classes

of non linear material, the gradient of the displacement

presents discontinuities along a surface S. In this case,

the limit R → 0 must take these discontinuities into

account.

In perfect plasticity (Nguyen and Stolz 1985) the

release rate of energy appearing the dissipation is given

by

Js = lim
Γ →S

∫

Γ

(w(ε − εp)n1 − n.σ.u,1) ds (20)

where S is the surface along which the gradient of dis-

placement has discontinuities:

[ u̇ ]
S
+ a[ u,1 ]

S
= 0 (21)

S is a shock surface or a shock line. In the moving

frame, the derivative
◦
u is then continuous.

3 Energetical interpretation

We study the propagation of a straight crack in direction

e1 in a continuum Ω . On the boundary ∂ΩT, the stress

Td is imposed and on the complementary part ∂Ωu the

displacement is prescribed. The crack is stress free. For

non linear materials, the strain energy w depends on the

strain ε and on internal parameters α which describe

hardening behaviour. The potential energy for the sys-

tem is:

E(u, α, l, Td) =

∫

Ω

ρw(ε(u), α) dΩ

−

∫

∂ΩT

Td .u dS, (22)

and the dissipation is rewritten as

Dm = Pe −
d

dt

⎛

⎜

⎝
E +

∫

∂ΩT

Td .u dS

⎞

⎟

⎠
≥ 0. (23)

Taking account of the derivation of the potential energy

with respect to its arguments, we obtain:

d

dt
(E) =

∂E

∂u
.v +

∂E

∂α
.α̇ +

∂E

∂l
a +

∂E

∂Td
.Ṫ

d
. (24)

then

Dm = −
∂E

∂α
.α̇ −

∂E

∂l
a ≥ 0. (25)

For the whole system, the crack length is playing the

role of an internal parameter. The thermodynamical

force associated with the propagation a is the release

rate of energy G obtained by the global state equation :

G = −
∂E

∂l
. (26)

In dynamical evolution the potential energy of the

whole system must be replaced by the Hamiltonian

(Stolz and Pradeilles-Duval 1996).

4 Dual approach in linear elasticity

In classical brittle fracture, the constitutive behaviour

is linear elastic. The strain energy w(ε) is a quadratic

function of the strain ε(u) which is associated to the

displacement u:

w(ε) =
1

2
ε.C.ε, ε =

1

2
(grad u + gradt u). (27)

We denote by σ the value of the stress tensor associated

with the strain σ = C : ε.

The evolution law for the crack is basqed on the

energy release rate G and satisfies the normality rule

G − Gc ≤ 0 a ≥ 0, a(G − Gc) = 0; where Gc is a

characteristic of the material. The energy release rate

G is given in terms of potential energy E

E(u, l) =

∫

Ω(l)

w(ε) dΩ −

∫

∂ΩT

Td .u ds, (28)

G = −
∂E

∂l
=

∫

Γ

(w(ε)n1 − n.σ.u,1) ds = JΓ (29)

A state of equilibrium for a given crack length l is

defined by a displacement which minimizes E among

the set of displacements u such that u = ud along ∂Ωu.

The equilibrium solution is usol(l, ud , Td).

In the dual approach, the complementary energy is

defined in terms of stresses

E
∗(σ, l) = −

∫

Ω(l)

w∗(σ ) dΩ +

∫

∂Ωu

n.σ.ud ds. (30)

Then the release rate of energy is the Bui’s integral (Bui

1973):

IΓ = JΓ =

∫

Γ

(−w∗(σ )n1 + n.σ,1.u) ds. (31)
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The equality of the two integrals is due to the fact that

at a state of equilibrium for the same crack length and

the same boundary conditions, the potential energy and

the complementary energy are equals. This results is

obtained taking account of the classical relations

w∗(σ )+w(ε) = σ.ε,

∫

Vc

σ : ε(u) dΩ =

∫

C

n.σ.u ds.

(32)

Lemma For all stresses σ̃ which satisfy the equilib-

rium equation (div σ̃ = 0), and for all strains ε̂ such

that (2ε̂ = grad û + gradt û) and for all closed volume

with boundary C, we have:

∫

C

(σ̃ : ε̂ ni − n.σ̃,i .û − n.σ̃ .û,i ) ds = 0 (33)

The two integrals IΓ et JΓ are independent of the

closed curve Γ . This can be shown considering a close

curve C composed by two curves Γ1 and Γ2 surround-

ing the crack tip (VΓ1 ⊂ VΓ2 ) and by the crack lips.

We can introduce the local Eshelby tensors p and

p∗:

p = w I − σ.∇u, p∗ = −w∗
I + ∇σ.u (34)

They satisfy

0 =

∫

Vc

div p dΩ =

∫

C

n.p ds,

0 =

∫

Vc

div p∗ dΩ =

∫

C

n.p∗ ds

Some other dual conservation laws can be formed as

pointed out in Lubarda and Markenscoff (2007). For

the equilibrium solution w(ε) = w∗(σ ) = 1
2
σ : ε and

then we obtain

p − p∗ = σ : ε I − (σ.∇u + ∇σ.u),

p + p∗ = ∇σ.u − σ.∇u

On the crack lips, the contributions n.p.e1 and n.p∗.e1

vanish. This induces the invariance of integrals IΓ and

JΓ with respect to the choice of Γ , the constant values

of which are denoted by I and J respectively. Taking

the properties of p and p∗ and the lemma into account,

for an equilibrium solution we obtain:

I + J =

∫

Γ

(n.σ,1.u − n.σ.u,1) ds (35)

J − I =

∫

Γ

(

(w+w∗)n1−n.σ,1.u − n.σ.u,1

)

ds = 0

(36)

5 Dual approach in elastoplasticity

Case of perfect plasticity The local behaviour is given

by the free energy w(ε − εp) where εp is the plas-

tic strain, which evolution is governed by a normality

rule associated with a convex function f (σ ) ≤ 0 such

that

f (σ ) ≤ 0, λ > 0, ε̇p = λ
∂ f

∂σ
, λ f = 0. (37)

The complementary energy for perfect plasticity is:

w∗(σ ) = σ : (ε − ε p) − w(ε − ε p) (38)

The definitions of both energies E and E ∗ are conserved

with these local new densities. For a given field of inter-

nal parameter, the equilibrium solution minimizes the

potential or the complementary energy, then it is obvi-

ous that

Is = Js = −
∂E

∂l
= −

∂E ∗

∂l
, (39)

where the thermodynamical force Js is given by Eq. 20.

Theses Eshelby’s tensors p and p∗ satisfy now

0 =

∫

Vc

div p dω +

∫

Vc

σ : ∇ε p dω

0 =

∫

Vc

div p∗ dω −

∫

Vc

∇σ : ε p dω

whatever the closed volume which does not contain

discontinuities. Using the properties of p and p∗ the

two integrals

G = JΓ +

∫

VΓ

σ : ε
p
,1 dΩ, G

∗=IΓ −

∫

VΓ

σ,1 : ε p dΩ

(40)

are independ of Γ , and we find:
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G + G
∗ = 2Js =

∫

Γ

(n.σ,1.u − n.σ.u,1) dS

+

∫

VΓ

(σ : ε
p
,1 − σ,1 : ε p) dΩ,

G−G
∗ = 0=

∫

Γ

((w+w∗)n1−n.σ,1.u − n.σ.u,1) dS

+

∫

VΓ

(σ : ε p),1 dΩ.

Adding these equations, take the limit Γ → S to obtain

G + G
∗=Is + Js=

∫

S

(n.[ σ,1 ]
S
.u−n.σ.[ u,1 ]

S
) ds,

(41)

therefore we have

Is = lim
Γ →S

∫

Γ

(−w∗(σ )n1 + n.σ,1.u) ds. (42)

This generalizes the integral of Bui to perfect plasticity.

Elastoplasticity with hardening The local behaviour

is defined by the local free energy w(ε, α) where α is

a set of internal parameters, and w is assumed to be

convex of it’s argument. The thermodynamical forces

associated with these state variables are the stresses σ

and the internal forces A

σ =
∂w

∂ε
, A = −

∂w

∂α
. (43)

The complementary energy is defined as previously by

w∗(σ, A) = σ : ε − A.α − w(ε, α). (44)

For the equilibrium solution the stress σ satisfy the

equilibrium div σ = 0 and the boundary conditions

n.σ = Td . The internal forces A are inside the domain

of reversibility.

The Eshelby’s tensors p and p∗ satisfy the properties

0 =

∫

Vc

div p dΩ +

∫

Vc

A.∇α dΩ,

0 =

∫

Vc

div p∗ dΩ −

∫

Vc

∇ A.α dΩ

and by a reasoning analogous to those of perfect plas-

ticity

G = JΓ +

∫

VΓ

A.α,1 dΩ , G
∗=IΓ −

∫

VΓ

A,1 : α dΩ.

(45)

The property G = Js is conserved.

When the energy w is a quadratic function, at the

equilibrium solution we have (w = w∗ = 1
2
σ : ε −

1
2

A : α) and we obtain the peculiar form:

G =
1

2

∫

Γ

(n.σ,1.u − n.σ.u,1) dS

+
1

2

∫

VΓ

(A : α,1 − A,1 : α) dΩ.

6 Application to the evolution of cracks

For describing the evolution of cracks it is necessary

to have an evolution law. The evolution of a crack is

governed by a generalized Griffith’s law

Js ≤ Gc, a = 0, Js = Gc, a ≥ 0. (46)

The evolution is governed by the normality rule: when

Js = Gc thus

J̇s(a − µ) ≥ 0,∀µ ≥ 0, (47)

The rate J̇s must be characterized.

The volume VΓ moves with the velocity a . The rate
◦

f is the rate of f in the moving frame VΓ . The surface

S has the same velocity, then it’s normal velocity is

a e1.n. In the moving frame the variation of Js is well

defined:

Ġ =

∫

S

[ σ ]
S

: ∇
◦
u −

◦
σ : [ ∇u ]

S
− [ A

◦
α ]

S
ds, (48)

which can be rewritten as

Ġ =

∫

Γ

(n.σ,1.
◦
u − n.

◦
σ .u,1) ds

+

∫

VΓ

(
◦

A : α,1 − A,1 :
◦
α) dΩ.

The last term contains only coupling terms between

strain and hardening, as we can shown

−
◦

A : α,1 + A,1 :
◦
α

=
∂2w

∂α∂ε
•(

◦
ε⊗α,1−

◦
α ⊗ ε,1)=

◦
σ : ε,1−σ,1 :

◦
ε, (49)

then the rate is given by

Ġ =

∫

Γ

(n.σ,1.
◦
u−n.

◦
σ .u,1) ds

+

∫

VΓ

(
◦
σ : ε,1−σ,1 :

◦
ε) dΩ. (50)

This generalizes the previous case obtained in Nguyen

and Stolz (1985) for perfect plasticity.
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7 On the rate boundary value problem

We introduce the rate f̂ such that

f̂ = ḟ , over Ω/VΓ , f̂ =
◦

f , over VΓ (51)

The rate f̂ is discontinuous on Γ and satisfies the

Hadamard condition

ḟ =
◦

f − l̇ f,1; [ f̂ ] + l̇ f,1 = 0. (52)

A solution of the evolution problem satisfies the set of

local equations

Kinematics: The strain rate is associated with the rate of

displacement ε̂ = 1
2
(∇û+∇û)T over Ω , the boundary

conditions û = u̇d over ∂Ωu, and the discontinuities

[û] + l̇u,1 = 0 along Γ are satisfied.

Conservation of momentum: The stresses satisfy

div σ̂ = 0 over Ω , the boundary conditions σ̂ .n = Ṫ
d
,

and the jump condition n.[σ̂ ] + l̇σ,1.n = 0 along Γ .

The last equation preserves the continuity of the stress

vector during the motion of the interface Γ . The con-

stitutive law
[

σ̇

dot A

]

=

[

w′′
εε w′′

εα

w′′
αε w′′

αα

] [

ε̇

α̇

]

(53)

The internal parameters satisfy the normality rule asso-

ciated with the domain of reversibility defined by the

convex function f :

f (A) ≤ 0, α̇ = λN , N =
∂ f

∂ A
, λ ≥ 0, λ f (A)= 0

(54)

The propagation law.

l̇(G − Gc) = 0, l̇ ≥ 0, J̇s = İs = 0. (55)

The second derivative of the local energy is noted by

C = W ′′
εε, L = W ′′

εα, Z = W ′′
αα . The local behaviour

is hypoelastic: the potential U (ε̇) is defined

σ̇ =
∂U

∂ε̇
, U (ε̇) =

1

2
ε̇ : C : ε̇ −

1

2

< N T .LT .ε̇>2

N T .Z .N
(56)

or the complementary potential is U∗(σ̇ ):

ε̇ =
∂U∗

∂σ̇
, (57)

U∗(σ̇ ) =
1

2
σ̇ .C−1:σ̇−

1

2

< N T .LT .C−1.σ̇ >2

N T .LT .C−1.L .N−N T .Z .N

Remark We take the derivatives f̂ as variables. This

field presents jumps along Γ

[ε̂] + a [u,1] = 0, [σ̂ ].n + a n.[σ,1] = 0. (58)

In VΓ , the local behaviour is given by

ε̂ − a ε,1 =
∂U∗

∂σ̇
(σ̂ − a σ,1), (59)

σ̂ − a σ,1 =
∂U

∂ε̇
(ε̂ − a ε,1) (60)

We introduce now the overall functional F associ-

ated to the Hill’s potential U

F =

∫

Ω/VΓ

U (ε̂) dΩ +

∫

VΓ

U (ε̂ − a ε,1) dΩ

+

∫

VΓ

(a σ,1 : ε̂ −
1

2
a 2σ,1 : ε,1) dΩ

+

∫

Γ

(−a n.σ,1.û
− +

1

2
a 2n.σ,1.u,1) dS

−

∫

∂ΩT

Ṫ
d
.û dS

Property of the solution The solution of the evolution

problem (û, a ) satisfies the variational inequalities

∂F

∂ û
(û − ũ) +

∂F

∂a
(a − l̃) ≤ 0 (61)

among the set of admissible fields

K = {(ũ, l̃)/[ũ] + l̃.u,1 = 0, along Γ,

l̃ ≥ 0, ũ = u̇d , over ∂Ωu} (62)

Elements of proof: The variations of F are given by:

δF =

∫

Ω/VΓ

σ̂ : δε̂ dΩ+

∫

VΓ

(σ̂ − a σ,1) : (δε̂ − δlε,1) dΩ

+

∫

VΓ

(δlσ,1 : ε̂ + a σ,1δε̂ − a δlσ,1 : ε,1 dΩ

+

∫

Γ

(−δln.σ,1.û− − a n.σ,1.δû
−

+ a δln.σ,1.u,1 dS −

∫

∂ΩT

Ṫ .δû dS

After integration by part, we obtain

δF =

∫

Ω

− div σ̂ .δû dΩ +

∫

Γ

n.[σ̂ .δû] dS

+

∫

VΓ

δl(σ,1ε̂ − σ̂ : ε,1) dΩ +

∫

Γ

(−δln.σ,1.û
−

−a n.σ,1.δû
− + a δln.σ,1.u,1 dS

7



The conservation of momentum is recovered div σ̂ = 0

over Ω . Using the jump conditions [δu] + δl u,1 = 0,

finally the variations are reduced to

δF =

∫

Γ

n.([σ̂ ] + a σ,1).δû
−

dS

+δl

⎡

⎢

⎣

∫

VΓ

σ,1 : ε̂ − σ̂ : ε,1 dΩ

+

∫

Γ

n.σ̂−.u,1 − n.σ,1.û
−

dS

⎤

⎦

thus, the jump conditions for the stresses and the law of

propagation by application of the inequality are recov-

ered.

Dual formulation We introduce the functional F
∗

associated with the potential U∗:

F
∗ =

∫

Ω/VΓ

−U∗(σ̂ ) dΩ −

∫

VΓ

U∗(σ̂ − a σ,1) dΩ

+

∫

VΓ

(−a σ̂ : ε,1 +
l̇2

2
σ,1 : ε,1) dΩ

+

∫

Γ

(a n.σ̂−.u,1 −
l̇2

2
n.σ,1.u,1) ds

+

∫

∂Ωu

n.σ̂ .u̇d ds

F
∗ is defined among the set of admissible fields K

∗:

K
∗ = {(σ̃ , l̃)/ div σ̃ = 0, over Ω,

σ̃ .n = Ṫ dalong ∂ΩT,

n.[σ̃ ] + l̃n.σ,1 = 0, along Γ l̃ ≥ 0} (63)

Property A solution of the evolution problem satisfies

the variational inequalities

∂F
∗

∂σ̂
.(σ̂ − σ̃ ) +

∂F
∗

∂ l̇
(a − l̃) ≤ 0 (64)

among the set K
∗ of admissibles fields (σ̃ , l̃).

Elements of proof The variations of F
∗ satisfy:

δF ∗ = −

∫

Ω/VΓ

δσ : ε̂ dΩ

−

∫

VΓ

(δσ−δl σ,1) : (ε̂−a ε,1) dΩ

−

∫

VΓ

(δl ε,1 : σ̂+a ε,1 : δσ−a δl σ,1 : ε,1) dΩ

+

∫

Γ

(δl n.σ̂−.u,1+a n.δσ−.u,1−a δl n.σ,1.u,1) dS

After integration by part and reduction, as δσ satisfies

the conservation of momentum the strain rate ε̂ derives

from a displacement û and

2ε̂ = grad û
t + grad û. (65)

Using this property, the variations of F
∗ are now

δF ∗ =

∫

Γ

n.[δσ.û] dS −

∫

VΓ

δl (σ,1 : ε̂ − σ̂ : ε,1) dΩ

+

∫

Γ

δl (n.σ̂−.u,1 − a n.σ,1.u,1)

+a n.δσ−.u,1 dS

Considering the jump condition

n.δσ+ − n.δσ− + δl n.σ,1 = 0

we obtain:

δF ∗ =

∫

Γ

n.δσ−.([û] + a u,1) dS

= δl

⎛

⎝

∫

Γ

n.σ̂−.u,1 − σ,1 : û
−

dS

+

∫

VΓ

σ̂ : ε,1 − σ,1 : ε̂ dΩ

⎞

⎟

⎠

Thus the jump conditions for the rate of the displace-

ment and the law of propagation for the crack, using of

the variational inequality are recovered.

8 Conclusion

We have generalized the integral of Bui to elastoplas-

tic materials. We have connected this integral to the

8



release rate of potential and complementary energy in

case of elastoplastic behaviour with hardening.

With these definitions, the formulations of the evolu-

tion of cracks are determined by variational inequalities

as shown in Stolz (2008a,b). The methods are identical

as proposed in (Nguyen and Stolz 1985; Nguyen et al.

1990) and allows stability and bifurcation analysis of a

system of cracks.
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