
HAL Id: hal-00489572
https://hal.science/hal-00489572v2

Preprint submitted on 10 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constitutive law gap functionals to solve Cauchy
problem for a linear elliptic PDE: a review

Thouraya Baranger, Stéphane Andrieux

To cite this version:
Thouraya Baranger, Stéphane Andrieux. Constitutive law gap functionals to solve Cauchy problem
for a linear elliptic PDE: a review. 2010. �hal-00489572v2�

https://hal.science/hal-00489572v2
https://hal.archives-ouvertes.fr


Constitutive law gap funtionals to solve Cauhyproblem for a linear ellipti PDE: a reviewThouraya N. Baranger1and Stéphane Andrieux2

1 Universit de Lyon, CNRS, Universit Lyon 1, LaMCoS UMR5259, INSA-Lyon,F-69621, Villeurbanne, Frane.
2 LaMSID, UMR CNRS-EDF 2832, Clamart, Frane.Abstrat. This paper desribes a general method based on minimizing onstitutivelaw gap funtional in order to solve the Cauhy problem for a linear ellipti PDE.This funtional measures the gap between the solutions of two well-posed problems.Eah of these problems has one of the Cauhy data as known boundary ondition:Dirihlet or Neumann, and on the boundary where the data is laking, unknownRobin boundary onditions η + ατ and η + βτ are imposed, respetively. The data ηand τ have to be identi�ed and (α, β) are positives salars parameters ontrolling thefuntional behavior. This approah generalizes that presented in Andrieux et al [2℄and enompasses various methods proposed in the literature. Aording to the valuesof α and β when they tend toward 0 or ∞, there are two groups of methods: the�rst group inludes those whih depends on only one unknown data (η, τ or η + ατ).The seond group inludes those whih depend on two unknown data η and τ . Then,the equivalene between Euler-Lagrange onditions for the onstitutive law funtionalsand interfaial operators usually used in the Domain Deomposition �eld is shown.Using the Hadamard example we analyse analytially the behavior of these operatorsas funtions of the parameters (α, β). Then, the derivatives of the funtional are givenusing adjoint �elds whih are parametrized by the same parameters. Finally, numerialexamples are given to illustrate the behavior of these methods, whih are not funtionof the parameters (α, β) but also of the regularity of the Cauhy data and the overallgeometry of the domain.



Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review21. IntrodutionConsider a solid body Ω, given a �ux Φ and the orresponding temperature T on Γm,one wants to reover the orresponding �ux and temperature on the remaining part ofthe boundary Γu, where Γm and Γu onstitute a partition of the whole boundary ∂Ω.The problem is therefore set as follows:Find (ϕ, T ) on Γu suh that there exists a �eld u satisfying:




∇.k(x)∇u = 0 in Ω

k(x)∇u.n = Φ on Γm
u = T on Γm

(1)where the ondutivity �eld k(x) is real positive analyti in L∞(Ω). This problem isknown sine Hadamard [16℄ to be ill-posed in the sense that the dependene of u andonsequently of (ϕ, T ) on the data (Φ, T ) is known to be not ontinuous.We propose, in this paper, to identify the laking data (ϕ, T ) by minimizing aonstitutive law gap funtion whih generalizes the one introdued in [2℄. Then, Robin(or Fourier) boundary onditions are de�ned on the Γu part of the boundary. The aimis to study if better numerial behavior an be observed with speial values of the Robinparameters. We restrit ourselves here to ellipti operators although a similar approahan be applied to paraboli of hyperboli ones [1℄. Other ellipti operators desribingvarious physial phenomena has been addressed in [5, 6, 7, 13, 14, 17℄.This paper is organized as follows: In setion 2, after a bakground on the literaturedealing with Cauhy problem, two mixed well-posed problems are de�ned by splittingthe overspei�ed data on Γm and Robin boundary onditions are introdued on theboundary Γu. The latter are parametrized by two positive real onstants α and β.Then, the boundary ondition identi�ation problem is de�ned as an optimization onewith onstraints, where the objetive funtional is a onstitutive law gap funtion.This funtion quanti�es the energy gap between two �elds solution of the well-posedproblems de�ned above, whih onstitute the onstraints of the optimization problem.Hene, partiular ases are outlined when α and β tend toward limit values 0 and
∞. In setion 3, we present an equivalent formulation based on domain deompositionstrategy. Then, we show for all the ases outlined in setion 3, that the Euler-Lagrangeonditions for the onstitutive law funtionals and interfaial operators are equivalent.Hadamard example is presented in setion 4, in order to illustrate the behavior of theoperators introdued above as funtions of the Robin parameters α and β. In setion5, the evaluation of the derivatives of the onstitutive law gap is given by using adjointmethods. Numerial examples are presented in setion 6, to illustrate the behaviorof the methods when the geometry or/and the boundary data on Γm and Γu presentsingularities or disontinuities. Finally a onlusion is given.



Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review32. Boundary onditions identi�ationConsider the above Cauhy problem (1). Assuming that the data (Φ, T ) are ompatible,whih means that this pair is indeed the trae and normal trae of a unique harmonifuntion u, extending the data means �nding (ϕ, T ) suh as:





∇.k(x)∇u = 0 in Ω,

u = T, k(x)∇u.n = Φ on Γm,

u = T , k(x)∇u.n = ϕ on Γu

(2)The question now is how to reonstrut numerially the pair (ϕ, T ). In pratialproblems, data is not expeted to be ompatible, sine data errors an our from errorsin measurements. The ill-posedness in Hadamard's sense shows up - dramatially - whenone tries to approximate a given data (Φ, T ): it is possible to approah it as losely asdesired on Γm by traes of a single harmoni funtion, the "surprise" being a hetibehavior of this funtion on the remaining part of the boundary. This behavior an beunderstood by the fat that the ompatible data are dense in the spae of inompatibleones, whih makes hopeless the natural idea of least square �tting of the inompatibledata by the ompatible ones. Regularization proedures are therefore required to treatthe data ompletion problem [22, 12, 11℄. There are several approahes to regularizesuh ill-posedness. Some of them transform the ill-posed problem into a well-posed oneby adding a penalty term or by mollifying the data in order to avoid data osillations.Tikhonov like methods use the penalty approah. Another lass of rough but usuallye�ient regularizing tehniques try to solve the ill-posed problem iteratively and hoose asuitable stopping riteria, for instane L-urve based riteria. In the approah proposedhere, the introdution of two distint �elds, eah of them meeting only one of theover-spei�ed data, turns out to avoid the need of a regularization proedure for theresolution of the data ompletion problem, when the noise rate remains reasonable, see[5, 6, 7℄. Using separately the two boundary onditions on Γm has also been used inthe algorithm proposed by Kozlov et al [18℄ and analysed by Baumeister et al [8℄ in ageneral framework, where again no regularization proedure is ast into the resolutionmethod.We will restrit ourselves, throughout the paper for the setting to the ase wherethe boundary ∂Ω onsists of two losed manifolds of lass C2 suh that ∂Ω = Γm
⋃

Γu.The following results remain true for less smooth boundaries and when Γm, Γu haveontat points. However, for sake of simpliity, we have hosen the above framework.As already mentioned, the pairs of ompatible data are dense in the set of all possibledata pairs. For this known result we refer to Fursikov [15℄ and to a preeding paper [3℄,where the mentioned proofs are adapted to our settings.Lemma 2.1. (i) For a �xed T in H1/2(Γm), the set of data Φ for whih there existsa funtion u in H1(Ω), satisfying the Cauhy problem (1) is everywhere dense in
H−1/2(Γm).



Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review4(ii) For a �xed Φ in H−1/2(Γm), the set of data T for whih there exists a funtion uin H1(Ω), satisfying the Cauhy problem (1) is everywhere dense in H1/2(Γm).Observe that, when the omplete data are available on Γ, we have an overspei�edboundary value problem





∇.k(x)∇u = 0 in Ω,

u = T, k(x)∇u.n = Φ on Γm,

u = T , k(x)∇u.n = ϕ on Γu

(3)The approah followed here generalizes the one given in [3℄. It follows two steps: onsiderfor a given pair (η, τ) ∈ H− 1

2 (Γu)×H
1

2 (Γu) the following two families of mixed well posedproblems




∇.k(x)∇u1 = 0 in Ω

u1 = T on Γm
k(x)∇u1.n + αu1 = η + ατ on Γu

(4)




∇.k(x)∇u2 = 0 in Ω

k(x)∇u2.n = Φ on Γm
k(x)∇u2.n + βu2 = η + βτ on Γu

(5)We denote by α and β two non-negative real oe�ients. This ondition ensures thatproblems (3) and (4) are well-posed. Using a H1 semi-norm the onstitutive law gapfuntional is de�ned as a measure of the pseudo-energy gap between the two above �elds
u1 and u2 as follows:

Eαβ(η, τ) =
1

2

∫

Ω

k(x)(∇u1 −∇u2).(∇u1 −∇u2) (6)This funtional is positive and quadrati. Indeed, u1 and u2 are obviously equalwhen the pair (η, τ) on the boundary Γu meets the atual ompatible data pair
(ϕ, T ) ∈ H−1/2 ×H1/2 on the boundary Γu, then:

Eα,β(η, τ) = 0 = min
η,τ

Eαβ(η, τ)Thanks to the uniqueness of the Cauhy problem solution we an state that the dataompletion problem an be ahieved through the minimization one:
(ϕ, T ) = argmin

η,τ
Eαβ(η, τ) (7)Using Green theorem this funtional an be expressed as a boundary ontrol:

Eαβ(η, τ) =
1

2

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (8)
+

1

2

∫

Γu

k(x)(∇u1 −∇u2).n (u1 − u2)Note that the boundary onditions de�ned on Γu in the problems (4) and (5) degeneratewhen the oe�ients α and β are equal to partiulars values as shown on the table 1. So



Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review5we an de�ne two approahes di�ering by the number of unknown �eld on Γu. In the �rstapproah there is only one unknown boundary �eld, and, happens when α = β. Threedi�erent single �eld methods an be outlined: in the �rst one, when α = β = 0, theunknown boundary data is the Neumann boundary ondition η, in the seond approah,when α = β = ∞, the unknown data is the Dirihlet boundary ondition τ and in thelast one, when 0 < α = β < ∞, the unknown data is the Robin boundary ondition
υ = η + ατ . The seond approah is based on two unknown �elds (η, τ) and inludesthe other ases where α 6= β.Table 1. Boundary onditions on Γu as funtion of the parameters α and β

α = 0 α = ∞ 0 < α <∞

β = 0 ∇u1.n = η

∇u2.n = η

u1 = τ

∇u2.n = η

∇u1.n+αu1 = η+ατ

∇u2.n = η

β = ∞ ∇u1.n = η

u2 = τ

u1 = τ

u2 = τ

∇u1.n+αu1 = η+ατ

u2 = τ

0 < β <∞ ∇u1.n = η

∇u2.n+ βu2 = η + βτ

u1 = τ

∇u2.n+ βu2 = η + βτ

∇u1.n+αu1 = η+ατ

∇u2.n+ βu2 = η + βτif α = β then:
∇u1.n + αu1 = υ

∇u2.n + αu2 = υ2.1. A reviewThis general setting leads to an interesting interpretation for di�erent values of α and
β. In [3℄, we deal with the ase where α = 0 and β = +∞. This two �elds (i.e.
(η, τ) ∈ H−1/2(Γu)×H1/2(Γu)) approah has been numerially explored and turned outto be e�ient and robust. Other authors, [4, 9, 10℄ have explored mathematially andnumerially the ases with one single �eld when α = β = +∞ and its dual form when
α = β = 0. One may, however, wants to know whih approah is more e�ient. Notiethat when α = β = +∞, the �rst optimality ondition of our optimization proesslead to the variational form of the well-known Steklov-Poinar method borrowed to theDomain Deomposition �eld, see [19, 21℄. This fat has been already pointed out in[3, 9℄. Moreover, when α = β = 0 we �nd the so-alled dual Steklov-Poinar operatormethod. An other alternative form with single �eld formulation is the AlternatingDiretion Iterative method, whih onsists of solving two minimization problem whereeah problem depends on only one �eld, suh that:

ηk = argmin
η
Eαβ(η, τk−1)) (9)and

τk = argmin
τ
Eαβ(ηk, τ)) (10)



Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review6As it will be shown later, this last formulation turns out to be the KMF's (Kozlov,Maz'ya and Fomin) proess desribed in [3℄. Let us outline that, from the ontinuouspoint of view, all these methods are equivalent. In fat, they are all based on theintrodution of two �elds u1 and u2 dealing separately with the over-spei�ed data, andthe searh for missing data by equalizing the two �elds. At the disrete level, all theseproblems are of ourse ill-posed but some of them are expeted to be better onditionedthan others.2.2. Two �elds approahesTwo �elds approah an be set up if 0 ≤ α 6= β ≤ ∞ the onstitutive law gap funtionalan be expressed as follows.
Eαβ(η, τ) =

1

2

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (11)
+

1

2

∫

Γu

(α(τ − u1) − β(τ − u2)) (u1 − u2)with, u1 and u2 are the solution of (4) and (5). Let us observe that, for ompatible data,the following lemma is straightforward.Lemma 2.2. (Charaterization of the u1 and u2 �elds at the minimum)If (Φ, T ) is a ompatible pair, there exists a pair (ϕ, T ) solution of the Cauhyproblem suh that:
(ϕ, T ) = arg min

η,τ
Eαβ(η, τ) and Eαβ(ϕ, T ) = 0Hene, when the funtional reahes its minimum, the �elds u1 and u2 verify: ∇u1 = ∇u2in Ω, whih is equivalent to:

{
u1 = u2 +K on Γu
k(x)∇u1.n = k(x)∇u2.n on Γu

(12)Where K is a real onstant. From (12) and the boundary onditions de�ned in (4) and(5),we an dedue :
u = u1 = τ +

β

α− β
K (13)

∇u.n = η + α(τ − u) = η +
αβ

α− β
K (14)The general approah built with the energy and the Robin 's boundary onditionsan lead to many two �elds methods by setting extreme values for α and β. Thesemethods are outlined hereafter:(i) if α = 0 and β = ∞, the boundary onditions de�ned on Γu beomes Neumannboundary ondition in (4), whereas, it beomes a Dirihlet one in (5) and we have



Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review7two well-posed mixed problems. Then, we denote the funtional E0∞ by END whihredues to:
END(η, τ) =

∫

Γu

(η − k(x)∇u2.n)(u1 − τ) +

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (15)When END reahes its minimum we have u = u1 = τ −K and ∇u.n = η. This asehas been widely studied in [2℄.(ii) if α = 0 and β is �nite and non zero, the boundary ondition on Γu in (4) beomesa Neumann one. Then we denote the funtional E0β by ENβ whih redues to:
ENβ(η, τ) =

∫

Γu

β(u2 − τ)(u1 − u2) +

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (16)When the funtional ENβ reahes its minimum we have u = u1 = τ − K and
∇u.n = η.(iii) if α = ∞ and β is �nite and non zero, the boundary ondition on Γu in (4) beomesa Dirihlet one. Then we denote the funtional E∞β by EDβ whih redues to:
EDβ(η, τ) =

∫

Γu

1

β
(k(x)∇u2.n−η)k(x)∇(u1−u2).n+

∫

Γm

(k(x)∇u1.n−Φ)(T−u2)(17)When the funtional EDβ reahes its minimum we have u = u1 = τ and ∇u.n = η.Similar results an be ahieved by swithing α and β in the above ases. The onlydi�erene lies in the additional onditions required on u2 and the ompatibility onditionon the �ux in the ase where (4) is a Neumann problem. In onlusion, to avoidsupplementary onstraints on the �elds u2, the ases where β = 0 should be avoided.2.3. Single �eld approahes: α = βThe single �eld approah an be set up when α = β. Three di�erent ases an bedistinguished:(i) The Neumann approah is obtained for α = β = 0. The unknown boundary datais the Neumann boundary ondition η. We denote the funtional E00 by EN whihan be expressed as boundary ontrol on Γm:
EN(η) =

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (18)(ii) The Dirihlet approah is obtained for α = β = ∞. The unknown boundary datais the Dirihlet boundary ondition τ . We denote the funtional E∞∞ by ED whihan be expressed as boundary ontrol on Γm:
ED(η) =

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (19)(iii) The Robin approah is obtained for 0 < α = β < ∞. The auxiliary unknownboundary data is the Robin boundary ondition υ = η + ατ . We denote thefuntional Eαα by Eα whih an be expressed as follows:
Eα(υ) =

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) −

∫

Γu

k(x)

α
(∇u1.n−∇u2.n)2 (20)



Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review8or equivalently:
Eα(υ) =

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) −

∫

Γu

α(u1 − u2)
2 (21)Here too, we observe that, for ompatible data, the following lemma isstraightforward.Lemma 2.3. (Charaterization of u1 and u2 �elds at the minimum)If (Φ, T ) is a ompatible pair, there exists a pair (ϕ, T ) solution of the Cauhyproblem suh that:

ϕ = arg min
η
EN (η) and EN(ϕ) = 0

T = arg min
τ
ED(τ) and ED(T ) = 0

(ϕ+ αT ) = arg min
υ
Eα(υ) and Eα(ϕ+ αT ) = 0Hene, when these funtionals reah their minimum, the �elds u1 and u2 verify:

∇u1 = ∇u2 in Ω, whih is equivalent to:
{
u1 = u2 +K on Γu
k(x)∇u1.n = k(x)∇u2.n on Γu

(22)Where K is a onstant. This onstant is undetermined for the �rst ase (i), beause theseond problem (5) is Neumann problem. For the seond and third ases K = 0.To highlight the properties of the di�erent parametrization of the onstitutive lawfuntionals, we will now derive the �rst optimality or Euler-Lagrange onditions as aninterfaial equation on the boundary Γu where the data is unknown.3. Euler-Lagrange onditions and interfaial operators.In the literature there are methods to equalize the two �elds u1 and u2 on Γu usingonstraints onditions known as interfae onditions. These methods are issued fromthe domain deomposition �eld, see Quarteroni et al [21℄. However, it should be notedthat, here there is only one domain and a boundary while in the domain deompositionmethods, the interfaes are loated between subdomains. Nevertheless, in our problem,
Γu plays the role of the interfae.We will prove hereafter that these pseudo interfae onditions are equivalent tothe �rst optimality ondition (12) of the minimization problem (6). First di�erentinterfae operators are de�ned on Γu, then for eah ase previously emphasized a proofis developed. To begin with, we onsider the following mixed boundary value problems:




∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n + αwo1 = υ on Γu

and 



∇.k(x)∇w∗
1 = 0 in Ω

w∗
1 = T on Γm

k(x)∇w∗
1.n+ αw∗

1 = 0 on Γu

(23)



Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review9





∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
k(x)∇wo2.n + βwo2 = υ on Γu

and 




∇.k(x)∇w∗
2 = 0 in Ω

k(x)∇w∗
2.n = Φ on Γm

k(x)∇w∗
2.n+ βw∗

2 = 0 on Γu

(24)Given υ, for eah i = 1, 2, woi will be denoted by Hi(υ). We denoted also R1(T )and R2(Φ) instead of w∗
1 and w∗

2. Thanks to the linearity of the problems we an statethat:
u1 = H1(υ) + R1(T ) and u2 = H2(υ) + R2(Φ)Now, for eah i = 1, 2 we de�ne the Robin to Neumann operators Si and the Robinto Dirihlet operators S̃i as follows:
Si : H−1/2(Γu) −→ H−1/2(Γu)

υ 7−→ k(x)∇(Hi(υ)).n
(25)

S̃i : H−1/2(Γu) −→ H1/2(Γu)

υ 7−→ Hi(υ)
(26)The operators (S1, S̃1) and (S2, S̃2) depend on the parameters α and β respetively. Inthe following these operators will be applied to υ �elds expressed as η + ατ or η + βτto deal with the problems (4) and (5) respetively, with (η, τ) ∈ H(Γu)

1/2 ×H(Γu)
−1/2.Remark now, that for α = 0 and β = 0, the Robin boundary onditions on Γu beomeNeumann ones. Then, the operators S1 and S2 are the identity operator I and theoperators S̃1 and S̃2 are the well-known Poinar-Steklov operators. However, for α = ∞and β = ∞ the Robin boundary onditions on Γu beomes Dirihlet ones. The operators

S1 and S2 are rede�ned as follows and are the lassial Steklov-Poinar operators:
S1 : H1/2(Γu) −→ H−1/2(Γu)

τ 7−→ k(x)∇(H1(τ)).n
(27)

S2 : H1/2(Γu) −→ H−1/2(Γu)

τ 7−→ k(x)∇(H2(τ)).n
(28)while the operators S̃1 and S̃2 are the identity operator I.Lemma 3.1. If 0 < α 6= β <∞, the interfae onditions on Γu are:

u1 = u2 +K (29)
k(x)∇u1.n = k(x)∇u2.n (30)Using the operators de�ned above, the interfae onditions an be expressed as follows:
[
S̃2 − S̃1 βS̃2 − αS̃1

S1 − S2 αS1 − βS2

]

︸ ︷︷ ︸
Sαβ

{
η

τ

}
=

{
X1

X2

} (31)where
X1 = R1(T ) −R2(Φ) −K (32)
X2 = − k(x)∇R1(T ).n+ k(x)∇R2(Φ).n (33)



Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review10The interfae onditions stated in the above Lemma beome for the di�erent asesoutlined in the table 1:(i) if α = 0 and β = ∞ then u = τ −K, ∇u.n = η and:
[
−S̃1 I

I −S2

]

︸ ︷︷ ︸
SND

{
η

τ

}
=

{
X1

X2

}

(ii) if α = β = 0 then u = u1 = u2 +K, ∇u.n = η and:
SNη = (S̃2 − S̃1)η = X1(iii) if α = β = ∞ then K = 0, u = u1 = u2 = τ , ∇u.n = ∇u1.n and:
SDτ = (S1 − S2)τ = X2(iv) if 0 < α = β <∞ then υ = η + ατ , K = 0, u = u1 = u2 = τ , ∇u.n = η and:
Sαυ =

(
S̃2 − S̃1

)
υ = X1(v) if α = 0 and 0 < β <∞ then k(x)∇u.n = η, u = u1 = τ −K and:

[
S̃2 − S̃1 βS̃2

I − S2 −βS2

]

︸ ︷︷ ︸
SNβ

{
η

τ

}
=

{
X1

X2

}

(vi) if α = ∞ and 0 < β <∞ then K = 0, k(x)∇u.n = η, u = u1 = u2 = τ and:
[
S̃2 − I βS̃2

S1 − S2 −βS2

]

︸ ︷︷ ︸
SDβ

{
η

τ

}
=

{
X1

X2

}

Remark. Notie that the operator Sαβ is symetri.3.1. Case 0 < α 6= β < +∞In this setion we show that the optimality onditions stated in the Lemma 2.2 areequivalent to the interfae onditions stated in the Lemma 3.1. We onsider thefuntional de�ned by (6) and the �elds H1 and H2 whih are the solutions of the two�rst well posed problems de�ned by (23) and (24). These �elds depend linearly on ηand τ .Lemma 3.2. The �rst optimality ondition of the funtional Eαβ reads:
(
S̃2 − S̃1

)
η +

(
βS̃2 − αS̃1

)
τ = X1 (34)

(S1 − S2) η + (αS1 − βS2) τ = X2 (35)
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υ = η + ατ for H1 and υ = η + βτ for H2, then:
∂Eαβ(η, τ)

∂η
.δη =

∫

Ω

k(x) (∇u1(η, τ) −∇u2(η, τ)) (∇H1(δη) −∇H2(δη))

∂Eαβ(η, τ)

∂τ
.δτ =

∫

Ω

k(x) (∇u1(η, τ) −∇u2(η, τ)) (α∇H1(δτ) − β∇H2(δτ))Whih an be written as follows:
∂Eαβ(η, τ)

∂η
.δη =

∫

∂Ω

k(x) (∇u1(η, τ) −∇u2(η, τ)) .nH1(δη) −∇H2(δη).n(u1(η, τ) − u2(η, τ))

∂Eαβ(η, τ)

∂τ
.δτ =

∫

∂Ω

αk(x) (∇u1(η, τ) −∇u2(η, τ)) .nH1(δτ) − β∇H2(δτ).n(u1(η, τ) − u2(η, τ))using the properties of the �elds H1 and H2 we obtain:
∂Eαβ(η, τ)

∂η
.δη =

∫

Γu

k(x)∇ (u1(η, τ) − u2(η, τ)) .nH1(δη) −∇H2(δη).n(u1(η, τ) − u2(η, τ))

∂Eαβ(η, τ)

∂τ
.δτ =

∫

Γu

αk(x)∇ (u1(η, τ) − u2(η, τ)) .nH1(δτ) − β∇H2(δτ).n(u1(η, τ) − u2(η, τ))The stationarity ondition leads to:




∀ δη ∈ H−1/2

∫
Γu
k(x) (∇u1(η, τ) −∇u2(η, τ)) .nH1(δη) = 0∫

Γu
(u1(η, τ) − u2(η, τ))k(x)∇H2(δη).n = 0

∀ δτ ∈ H1/2

∫
Γu
αk(x) (∇u1(η, τ) −∇u2(η, τ)) .nH1(δτ) = 0∫

Γu
β(u1(η, τ) − u2(η, τ))k(x)∇H2(δτ).n = 0

(36)
Here we introdue the following Lemma:Lemma 3.3. Consider two funtions: (ψ, ξ) ∈ H1/2(Γu) × H−1/2(Γu) with ∫

Γu
ξ = 0,there exists a pair (̟ψ, ̟ξ) ∈ H−1/2(Γu) ×H−1/2(Γu).




∇.k(x)∇w1 = 0 in Ω

w1 = 0 on Γm
k(x)∇w1.n+ αw1 = ̟ψ on Γu

and 



∇.k(x)∇w2 = 0 in Ω

k(x)∇w2.n = 0 on Γm
k(x)∇w2.n+ βw2 = ̟ξ on Γu

(37)With w1 = ψ and k(x)∇w2.n = ξ.The proof of this Lemma is detailed in the annexe. Using the above Lemma, wedenote by ψ and ξ respetively H1(δη) and ∇H2(δτ).n, then we an state that:
∫

Γu

k(x) (∇u1(η, τ) −∇u2(η, τ)) .nψ = 0 ∀ ψ ∈ H1/2(Γu) (38)
∫

Γu

(u1(η, τ) − u2(η, τ))ξ = 0 ∀ ξ ∈ H−1/2(Γu) (39)This leads to:
u1(η, τ) = u2(η, τ) +K and ∇k(x)u1(η, τ).n = ∇k(x)u2(η, τ).n
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(S̃2 − S̃1)η + (βS̃2 − αS̃1)τ = R1(T ) −R2(Φ) −Kand
(S1 − S2)η + (αS1 − βS2)τ = −k(x)∇R1(T ).n+ k(x)∇R2(Φ).nThe �rst optimality onditions are exatly the interfae ondition stated in Lemma3.1.
[
S̃2 − S̃1 βS̃2 − αS̃1

S1 − S2 αS1 − βS2

] {
η

τ

}
=

{
X1

X2

} (40)3.2. Case: α = 0 and β = +∞In this ase, η and τ denote the unknown values of k(x)∇u.n and the trae of u on Γu.The mixed boundary value problems de�ned by (23) and (24) beome:




∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n = η on Γu

and 



∇.k(x)∇w∗
1 = 0 in Ω

w∗
1 = T on Γm

k(x)∇w∗
1.n = 0 on Γu

(41)




∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
wo2 = τ on Γu

and 



∇.k(x)∇w∗
2 = 0 in Ω

k(x)∇w∗
2.n = Φ on Γm

w∗
2 = 0 on Γu

(42)The Cauhy problem (1) is solved, if and only if u1 = u2 + K and ∇u1(η).n =

∇u2(τ).n on Γu whih are the interfae onditions de�ned in (12).Lemma 3.4. The �rst optimality ondition of the funtional END reads:
[
−S̃1 I

I −S2

]{
η

τ

}
=

{
X1

X2

}Proof. The proof follows the same steps as that of Lemma 3.5 and 3.6. In this ase thefuntion depends on the pair (η,τ):
END(η, τ) =

1

2

∫

Ω

k(x) (∇u1(η) −∇u2(τ)) (∇u1(η) −∇u2(τ))Here, two optimality onditions have to be satis�ed:
∂END(η, τ)

∂η
.δη =

∫

Ω

k(x) (∇u1(η) −∇u2(τ))∇H1(δη)

=

∫

Γu

k(x) (∇u1(η) −∇u2(τ)) .n.H1(δη) becauseH1(δη) = 0 onΓm
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∂END(η, τ)

∂η
.δη = 0 ∀δη =⇒

∫

Γu

k(x) (∇u1(η) −∇u2(τ)) .n = 0

=⇒ ∇u1(η).n = ∇u2(τ).n

=⇒ Iη − S2τ = −k(x)∇R1(T ).n+ k(x)∇R2(Φ).n

∂END(η, τ)

∂τ
.δτ = −

∫

Ω

k(x) (∇u1(η) −∇u2(τ))∇H2(δτ)

= −

∫

Γu

(u1(η) − u2(τ)) .k(x)∇H2(δτ).n because∇H2(δτ).n = 0 onΓm

∂END(η, τ)

∂τ
.δτ = 0 ∀δτ =⇒ u1(η) − u2(τ) = K because

∫

Γu

k(x)∇H2(δτ).n = 0

=⇒ (S̃1η − Iτ) = −R1(T ) + R2(Φ) +KTherefore the optimality ondition is equivalent to the interfaial equation de�nedin the ase 1 of the Lemma 3.1:
[
−S̃1 I

I −S2

]{
η

τ

}
=

{
X1

X2

}

3.3. The ase α = β = +∞This ase orrespond to the so-alled Cauhy-Poinar-Steklov method, see Quarteroniet al [21℄ and Ben Belgaem et al [9℄. The unknown boundary ondition on Γu is theDirihlet one denoted by τ . The mixed boundary value problems de�ned by (23) and(24) beome:




∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
wo1 = τ on Γu

and





∇.k(x)∇w∗
1 = 0 in Ω,

w∗
1 = T on Γm,

w∗
1 = 0 on Γu

(43)




∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
wo2 = τ on Γu

and





∇.k(x)∇w∗
2 = 0 in Ω,

k(x)∇w∗
2.n = Φ on Γm,

w∗
2 = 0 on Γu

(44)Then Hi for i = 1, 2 are funtion of τ only. The Cauhy problem (1) is solved, if andonly if ∇u1.n = ∇u2.n on Γu whih is the seond optimality ondition de�ned in 2.2,the �rst one is satis�ed by the de�nition of τ .Lemma 3.5. The �rst optimality ondition of the funtional ED reads:
S(τ) = (S1 − S2)τ = X2 = −k(x)∇R1(T ).n+ k(x)∇R2(Φ).n
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ED(τ) =

1

2

∫

Ω

k(x) (∇u1(τ) −∇u2(τ)) (∇u1(τ) −∇u2(τ))

∂ED(τ)

∂τ
.δτ =

∫

Ω

(∇u1(τ) −∇u2(τ)) (∇H1(δτ) −∇H2(δτ)) (45)
=

∫

Ω

(∇u1(τ) −∇u2(τ)) .∇H1(δτ) −

∫

Ω

(∇u1(λ) −∇u2(λ)) .∇H2(δτ)

=

∫

∂Ω

(∇u1(τ) −∇u2(τ)) .n.H1(δτ) −

∫

∂Ω

(u1(τ) − u2(τ)) .∇H2(δτ).none has: ∫

Γu

(u1(τ) − u2(τ)) .∇H2(δτ).n = 0 because u1 − u2 = 0

∫

Γm

(u1(τ) − u2(τ)) .∇H2(δτ).n = 0 because ∇H2(δτ).n = 0

∫

Γm

(∇u1(τ) −∇u2(τ)) .n.H1(δτ) = 0 because H1(δτ) = 0Then:
∂ED(τ)

∂τ
.δτ =

∫

Γu

(∇u1(τ) −∇u2(τ)) .n.H1(δτ)

∂ED(τ)

∂τ
.δτ = 0 ∀δτ =⇒ (∇u1(τ) −∇u2(τ)) .n = 0

=⇒ ∇u1.n = ∇u2.n

=⇒ (S1 − S2)τ = X2 = −k(x)∇R1(T ).n+ k(x)∇R2(Φ).nTherefore the optimality ondition is equivalent to the interfaial equation de�nedin the ase 3 of the Lemma 3.1:
(S1 − S2)τ = X2.3.4. The ase α = β = 0This ase orresponds to the so-alled Neumann to Neumann Steklov-Poinar method.The unknown boundary ondition on Γu is the Neumann one denoted by η. The mixedboundary value problems de�ned by (23) and (24) beome:






∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n = η̄ on Γu

and






∇.k(x)∇w∗
1 = 0 in Ω

w∗
1 = T on Γm

k(x)∇w∗
1.n = − 1

|Γu|

∫
Γm

Φ on Γu

(46)
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∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
k(x)∇wo2.n = η̄ on Γu

and






∇.k(x)∇w∗
2 = 0 in Ω,

k(x)∇w∗
2.n = Φ on Γm

k(x)∇w∗
2.n = − 1

|Γu|

∫
Γm

Φ on Γu

(47)with
η̄ = η −

1

| Γu |

∫

Γu

ηHere the �elds Hi for i = 1, 2 are funtion of η̄ only. The following supplementaryondition is neessary in this ase:
∫

Γm

Φ +

∫

Γu

η = 0The Cauhy problem (1) is solved, if and only if u1 = u2 + K on Γu whih is the �rstoptimality ondition de�ned in 2.2, the seond one is satis�ed by the de�nition of η.Lemma 3.6. The �rst optimality ondition of the funtional EN reads:
Sη = (S̃2 − S̃1)η = X1 = R1(T ) −R2(Φ) −KProof. In this ase the funtion depends only on the variable η
EN(η) =

1

2

∫

Ω

k(x) (∇u1(η) −∇u2(η)) (∇u1(η) −∇u2(η))The optimality ondition is then:
∂EN (η)

∂η
.δη =

∫

Ω

k(x) (∇u1(η) −∇u2(η)) (∇H1(δη) −∇H2(δη)) (48)
=

∫

Ω

k(x) (∇u1(η) −∇u2(η)) .∇H1(δη) −

∫

Ω

k(x) (∇u1(η) −∇u2(η)) .∇H2(δη)

=

∫

∂Ω

k(x) (∇u1(η) −∇u2(η)) .n.H1(δη) −

∫

∂Ω

(u1(η) − u2(η)) .k(x)∇H2(δη).nSine H1(δη) = 0 on Γm, ∇u1(η).n = ∇u2(η).n on Γu and k(x)∇H2(δη).n = 0 onΓm:
∂EN (η)

∂η
.δη = −

∫

Γu

(u1(η) − u2(η)) k(x)∇H2(δη).n = −

∫

Γu

(u1(η) − u2(η)) .δη̄

∂EN (η)

∂η
.δη = 0 ∀ δη̄ =⇒

∫

Γu

(u1(η) − u2(η)) .δη̄ = 0 (49)
=⇒ u1(η) − u2(η) = K because

∫

Γu

δη̄ = 0

=⇒ (S̃2 − S̃1)η = X1 = R1(T ) −R2(Φ) −K (50)Therefore the optimality ondition is equivalent to the interfaial equation de�nedin the ase 2 of the Lemma 3.1:
(S̃2 − S̃1)η = X1Remark that the lassial Neumann to Neumann preonditioner is reovered.



Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review163.5. The ase: 0 < α = β <∞This ase orrespond to the Dirihlet to Robin operator used in the domaindeomposition �eld. Let υ be the unknown data on Γu. The mixed boundary valueproblems de�ned by (23) and (24) beome:




∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n + αwo1 = υ on Γu

and 



∇.k(x)∇w∗
1 = 0 in Ω

w∗
1 = T on Γm

k(x)∇w∗
1.n+ αw∗

1 = 0 on Γu





∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
k(x)∇wo2.n + αwo2 = υ on Γu

and 




∇.k(x)∇w∗
2 = 0 in Ω

k(x)∇w∗
2.n = Φ on Γm

k(x)∇w∗
2.n+ αw∗

2 = 0 on ΓuThe Cauhy problem (1) is solved, if and only if u1 = u2 + K on Γu whih is the�rst optimality ondition de�ned in 2.2, the seond one is satis�ed by the de�nition of
υ. Here K = 0.Lemma 3.7. The �rst optimality ondition of the funtional Eα reads::

(
S̃2 − S̃1

)
υ = X1Proof. The proof follows the same steps as that of above Lemma. In this ase thefuntion depends on υ = η + ατ :

Eα(υ) =
1

2

∫

Ω

k(x) (∇u1(υ) −∇u2(υ)) (∇u1(υ) −∇u2(υ))

∂Eα(υ)

∂υ
.δυ =

∫

Ω

k(x) (∇u1(υ) −∇u2(υ)) (∇H1(δυ) −∇H2(δυ))

=

∫

∂Ω

k(x) (∇u1(υ) −∇u2(υ)) .n.H1(δυ) − (u1(υ) − u2(υ))k(x)∇H2(δυ).nSine H1(δυ) and ∇H2(δυ).n = 0 on Γm then:
∫

Γm

k(x) (∇u1(υ) −∇u2(υ)) .n.H1(δυ) − (u1(υ) − u2(υ))∇H2(δυ).n = 0Then:
∂Eα(υ)

∂υ
.δυ =

∫

Γu

k(x) (∇u1(υ) −∇u2(υ)) .n.H1(δυ) − (u1(υ) − u2(υ))k(x)∇H2(δυ).nUsing the Robin boundary ondition:
k(x) (∇u1(υ) −∇u2(υ)) .n = −α(u1(υ) − u2(υ))the above optimality ondition beomes:

∂Eα(υ)

∂υ
.δυ = −

∫

Γu

(u1(υ) − u2(υ)) (αH1(δυ) + ∇H2(δυ).n) ∀ δυ
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∇H2(δυ).n, then we an state that:
∂Eα(υ)

∂υ
.δυ = 0 ∀ δυ =⇒ u1(υ) − u2(υ) = 0 on Γu∀ (ψ, ξ) ∈ H−1/2(Γu) ×H1/2(Γu)

=⇒
(
S̃2 − S̃1

)
υ = R1(T ) −R2(Φ)Therefore the optimality ondition is equivalent to the interfaial equation de�nedin the ase 4 of the Lemma 3.1:(

S̃2 − S̃1

)
υ = X1Remark that the ase α = β = 0 is found by setting in the above optimality ondition

α = 0.3.6. Alternating Diretion Iterative methodWe onsider the Alternating Diretion Iterative (ADI) method, whih generates twosequenes of traes υk1 and υk2 build with the traes of uk1|Γu
and uk2|Γu

respetively.Consider an initial guess υ0
2; then, for k ≥ 0 we look for uk+1

1 and then uk+1
2 suhthat: 




∇.k(x)∇uk+1
1 = 0 in Ω

uk+1
1 = T on Γm
k(x)∇uk+1

1 .n+ αuk+1
1 = υk+1

1 on Γu

(51)with υk+1
1 = k(x)∇uk2.n+ αuk2.





∇.k(x)∇uk+1
2 = 0 in Ω

k(x)∇uk+1
2 .n = Φ on Γm

k(x)∇uk+1
2 .n+ βuk+1

2 = υk+1
2 on Γu

(52)with υk+1
2 = k(x)∇uk+1

1 .n + βuk+1
1 .Using the operators S1, S̃1, S2 and S̃2 de�ned above, it is easy to show that it isa �xed-point iteration: υk+1

2 = (S1 + βS̃1)υ
k+1
1 , then using the expression of υk+1

1 weobtain υk+1
2 = (S1 + βS̃1)(S2 + αS̃2)υ

k
2 . Then:

υk+1
2 = Ŝαβυ

k
2 , k ≥ 0where the �xed point map is given as follows:

Ŝαβ : H1/2(Γu) −→ H1/2(Γu)

υk2 7−→ Ŝαβυ
k
2 = υk+1

2with: Ŝαβ = (S1 + βS̃1)(S2 +αS̃2). The KMF iterative method outlined above happenswhen α = 0 and β = ∞ and then ŜND = S̃1S2. We an then onlude that the KMFmethod an be interpreted as �xed point resolution of an interfae problem υ = Ŝαβυ.In this setion, we showed that all the above methods are equivalent, from theontinuous point of view. However, we expet that their numerial behavior will bedi�erent, whih will be addressed in the next setions.



Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review184. Hadamard exampleAs pointed out previously, at the disrete level the interfaial operators outlined insetion 3 are expeted to be di�erently onditioned. The aim of this setion is to givean analytial taste to what goes on for the ondition numbers.Let us onsider an annular domain with an outer rm = 1 and an inner ru ≡ r < 1radii, k(x) = 1 and the polar oordinates system. The overspei�ed data are availableon the external boundary Γm, whereas the laking data are on the inner boundary Γu.The analytial solution of the problems (4) and (5) take the general form of separatevariables funtions:
H1(υ) =

∞∑

n=1

(rn − r−n)g1(nθ) and H2(υ) =

∞∑

n=1

(rn + r−n)g2(nθ)respetively, whih will be used to alulate the eigenvalues. The eigenvalues of Sn1 , Sn2 ,
S̃n1 and S̃n2 are then given by the following sequene:

λn1 =
n(r2n + 1)

n(r2n + 1) − αr(r2n − 1)
(53)

λn2 =
n(r2n − 1)

n(r2n − 1) − βr(r2n + 1)
(54)

λ̃n1 =
−r(r2n − 1)

n(r2n + 1) − αr(r2n − 1)
(55)

λ̃n2 =
−r(r2n + 1)

n(r2n − 1) − βr(r2n + 1)
(56)orresponding to the eigenvetors gn1 = cos(nθ) and gn2 = sin(nθ), respetively. Theinterfaial operator Snαβ de�ned in the Lemma 3.1 an be expressed as follows for the

n-rank:
Snαβ =

[
λ̃n2 − λ̃n1 βλ̃n2 − αλ̃n1
λn1 − λn2 αλn1 − βλn2

] (57)For the speial values of parameters α and β the above operator beomes:
SnND =

[
r
n
( r

2n−1
r2 n+1

) 1

1 n
r
( r

2n−1
r2n+1

)

] (58)
SnNβ =




r
n

4nr2n+βr4n+1−βr
(−nr4n+βr4n+1+2βr2n+1+n+βr)

β(r2n+1+r)
−r2nn+n+βr2n+1+βr

β(r2n+1+r)
−r2nn+n+βr2n+1+βr

βn(r2n−1)
−r2nn+n+βr2n+1+βr


 (59)

SnDβ =




r2n+1+r
−r2nn+n+βr2n+1+βr

n(r2n−1)
−r2nn+n+βr2 n+1+βr

n(r2n−1)
−r2nn+n+βr2n+1+βr

n
r

(−r4nn+4βr2n+1+n)
(r4nn−2 r2nn−r4n+1β+n+βr)


 (60)

SnD = −
n

r

(
4r2n

r4n − 1

) (61)
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SnN = −

r

n

(
4r2n

r4n − 1

) (62)
Snα = 4

r2n+1n

−n2r4n + 2r4n+1αn+ n2 + 2nαr − α2r4n+2 + α2r2
(63)Consider the one �eld operators: SnN , SnD and Snα, their asymptoti developmentwhen n −→ ∞ shows that SnN ≈ − 4

n
r2n+1 , SnD ≈ −4nr2n−1 and Snα ≈ 4

n
r2n+1. Then,one an dedues that SnD and Snα, whih have the same behavior, derease faster than

SnD. The operators whih depend on two unknown �elds, tend toward the followingexpressions when n −→ ∞:
SnND ≈

[
− r
n

1

1 −n
r

]
; SnDβ ≈

[
r
n

−1

−1 n
r

]
; SnNβ ≈

[
r2

n2

r
n

r
n

−1

] (64)From these expressions one an dedues that the �rst eigenvalue of eah operatorvanishes quikly. The seond eigenvalues of SnND and SnDβ tend toward n
r
and −n

r
,respetively. However, the seond eigenvalues of SnNβ tend toward −β. the operators

SnND and SnDβ have the same behavior when n −→ ∞. Then the operator SnNβ hasthe best behavior. The same results are obtained for the Hadamard example on thesquare. The �gures 1 and 2 show the evolution of the ondition number of the single�eld operators and the two �elds operators, respetively. They show the same behaviorfor high frequenies for all these methods. These analysis give an idea on the behaviorof eah operator, but it is not su�ient to deide whih method is better in an absoluteway. In fat, others parameters suh geometri and Cauhy data singularities, or theunknown data et... ontrol the behavior of eah operator.5. The onstitutive law gap funtionals: adjoint �elds and derivativesevaluationThe aim of this setion is the evaluation of the derivatives of the funtional with respetto (η, τ). Let us onsider u1 and u2 as de�ned in the subsetion 3.3. Without forgettingtheir dependene on the �elds (η, τ) ∈ H−1/2(Γu) × H1/2(Γu), the energy error an besimply expressed as follows:
Eα,β(η, τ) =

1

2

∫

Ω

k(x) (∇u1 −∇u2) . (∇u1 −∇u2) (65)We onsider the following spaes and �elds:
V1 = {v ∈ H1(Ω)/v|Γm

= T}

V 0
1 = {v ∈ H1(Ω)/v|Γm

= 0}with (u1, u2, v1, v2) ∈ V1 ×H1(Ω)×V 0
1 (Ω)×H1(Ω)). Then, we denote by J1 and J2 theweak formulations of the problems de�ned by (4) and (5).

J1(η, τ) =

∫

Ω

k(x)∇u1∇v1 −

∫

Γu

v1k(x)∇u1.n (66)
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Figure 1. Condition number of single �eld methods
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Figure 2. Condition number of two �eld methods
J2(η, τ) =

∫

Ω

k(x)∇u2∇v2 −

∫

Γm

Φv2 −

∫

Γu

v2k(x)∇u2.n (67)To evaluate the derivative we onsider the following Lagrangian:
Lα,β(u1, u2, v1, v2; η, τ) = Eα,β(η, τ) − J1(η, τ) −J2(η, τ) (68)
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Eα,β(η, τ) = Lα,β(u1, u2, v1, v2; η, τ) (69)The gradient of Eα,β an be obtained from the partial derivative of Lα,β with respet to

η and τ .
∂Eα,β(η, τ)

∂η
.δη = −

∫

Γu

(v1 + v2) .δη (70)
∂Eα,β(η, τ)

∂τ
.δτ = −

∫

Γu

(αv1 + βv2) .δτ (71)where v1 and v2 are solution of :





∇k(x)∇v1 = 0 in Ω

v1 = 0 on Γm
k(x)∇v1.n+ αv1 = −k(x)(∇u1 −∇u2).n on Γu

(72)




∇k(x)∇v2 = 0 in Ω

k(x)∇v2.n = k(x)∇u1.n− Φ on Γm
k(x)∇v2.n+ βv2 = k(x)(∇u1 −∇u2).n on Γu

(73)Remark that, as shown for the diret problem (4) and (5), the boundary onditionsde�ned on Γu of the adjoint problems degenerate when the parameters α and β tendtoward to 0 and ∞ as shown in the following table:
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Table 2. Adjoint �eld boundary onditions on Γu as funtion of the parameters α and β

α and β Variables BC on Γu DerivativesSingle �eld approahes

α = 0 η k(x)∇v1.n = 0 ∇ηEα,β.δη = −
∫

Γu
v2δη

β = 0 k(x)∇v2.n = 0

α = ∞ τ v1 = 0 ∇τEα,β .δτ =
∫
Γu
k(x)∇v2.nδτ

β = ∞ v2 = 0

0 < α = β <∞ υ = η + ατ k(x)∇v1.n+ αv1 = −k(x)∇(u1 − u2).n ∇υEα,β.δυ = −
∫
Γu

(v1 + v2)δυ

k(x)∇v2.n+ αv2 = k(x)∇(u1 − u2).nTwo �elds approahes

α = 0 η k(x)∇v1.n = −k(x)∇(u1 − u2).n ∇ηEα,β.δη = −
∫

Γu
v1δη

β = ∞ τ v2 = 0 ∇τEα,β .δτ =
∫
Γu
k(x)∇(v1 + v2).nδτ

α = 0 η k(x)∇v1.n = −k(x)∇(u1 − u2).n ∇ηEα,β.δη = −
∫

Γu
(v1 + v2)δη

0 < β <∞ τ k(x)∇v2.n+ βv2 = k(x)∇(u1 − u2).n ∇τEα,β .δτ =
∫
Γu
k(x)∇(v1 + v2).nδτ

α = ∞ η v1 = 0 ∇ηEα,β.δη = −
∫

Γu
v2δη

0 < β <∞ τ k(x)∇v2.n+ βv2 = k(x)∇(u1 − u2).n ∇τEα,β .δτ =
∫
Γu
k(x)∇(v2 − u1 + u2).nδτ

0 < α 6= β <∞ η k(x)∇v1.n+ αv1 = −k(x)∇(u1 − u2).n ∇ηEα,β.δη = −
∫

Γu
(v1 + v2)δη

τ k(x)∇v2.n+ βv2 = k(x)∇(u1 − u2).n ∇τEα,β .δτ =
∫
Γu
k(x)(∇v1 + ∇v2).nδτ



Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review236. Numerial examplesThe implementation of the above methods was arried out using the �nite elementmethod (FEM). Hene, the derivation of the adjoint state is preferably established onthe basis of the FEM-disretized problem. The advantage of this fully disrete approahis that the exat gradient of the disrete objetive funtion is obtained; moreover, it iseasily implemented in existing FEM-softwares. In referenes [6℄ and [7℄, the FEM-disretized formulation is detailed for the ase where α = 0 and β = ∞.In order to show the performane of the aforementioned methods, we hoose twoexamples for whih the methods behave di�erently.6.1. First example.
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Figure 3. Geometry and boundaries of the studied domainWe onsider a two-dimensional domain Ω and assume that the boundary Γ of thisdomain is divided into two omplementary parts Γm and Γu as shown on the �gure 3.Note that beause of the orner in the Γu part of the boundary, the problem addressedhere is quite sti� as singularities appear near the point A. Furthermore at this point,there is a jump of the outer normal to the domain and then a jump of the normalderivatives of the solution �elds.Figures 4 and 5 show the identi�ed Dirihlet and Neumann data. They areompared with the exat data. These results are obtained by using the same stoppingriteria for the energy-like funtional. All the methods onverge with approximately
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Figure 4. Exat and identi�ed Dirihlet boundary ondition on Γu
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Figure 5. Exat and identi�ed Neumann boundary ondition on Γuthe same number of iterations during the minimization proess. Unlike the example ofHadamard, we observe here that the single �eld method with α = β = ∞ gives theworst result, whereas other methods give approximately the same (satisfatory) result.



Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review256.2. Seond example.This example has been already addressed in [2℄, it deals with a pratial aseorresponding to strati�ed inner �uid. We onsider therefore the reonstrution oftemperature and �ux in a pipeline of in�nite length. We assume that the temperaturedoes not depend on the longitudinal oordinate. We deal, therefore with a twodimensional problem as shown on �gure 6. The overspei�ed boundary onditions used
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Figure 6. Geometri data of the strati�ed inner �uid problemin this example are generated by the �nite element omputation of a Robin problemwith the following data:
• a onstant thermal ondutivity k = 17W/m/◦C,
• on Γm, Text = 20 ◦C with the Robin's oe�ient αc = 12W/m2/◦C,
• on Γu, Tint = 50 ◦C on the lower half irle of Γu and Tint = 250 ◦C on the upperhalf one with the Robin's oe�ient αu = 1000W/m2/◦C.The ross setion Ω is an annular thik domain with radii r1 = 1 and r2 = 0.5. Toreover the temperature and the �ux with auray, a mesh with 64 nodes on Γuis used. Trust Region Method of Matlab Optimization Toolbox [20℄ is used here tosolve the optimization problem assoiated to eah method. The same stopping riteria,termination tolerane on the funtion value set to 10−6W ◦C/m is imposed for allmethods. Eah one onverges when the funtion value variation is less than the stoppingriteria. Figures 7 and 8 show the reonstruted temperature and �ux, and even in thisase where the data is singular (disontinuity), they are in agreement with the atualones, whatever the method. However, there are di�erenes in the onvergene proessof these methods, the number of iterations needed to reah the stopping riteria is very
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Figure 7. Exat and identi�ed Neumann boundary ondition on Γu
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Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review27Table 3. Number of iterations of the optimization proess for eah methodFuntional ENN Eα END EDD EαβFuntional value 18.24 10−3 5.62 10−3 8.81 10−3 5.20 10−3 5.76 10−3Number of Iterations 233 215 375 1214 1460Number of solved BVP 699 860 1500 3642 5840di�erent from one method to another, see table 3. Hene, omputational ost, whihdepends on the number of BVP to solve, may also be a riterion for hoosing a method7. ConlusionIn this paper we proposed a general method based on minimizing onstitutive lawgap funtional in order to solve the Cauhy problem for a linear ellipti PDE. Thisfuntional measures the gap between the solutions of two well-posed problems. Eah ofthese problems has one of the Cauhy data as known boundary ondition: Dirihlet orNeumann, and on the boundary where the data are laking, an unknown Robin boundaryonditions η + ατ and η + βτ are imposed, respetively. The data η and τ have to beidenti�ed and (α, β) are positives salars parameters ontrolling the funtional behavior.This approah generalizes that presented in Andrieux et al [2℄ and enompassesvarious methods proposed in the literature. Aording to the values of α and β whenthey tend toward 0 or ∞, there are two groups of methods: the �rst group gathers thosewhih depends on only one unknown data (η, τ or η + ατ). The seond group gathersthose whih depend on two unknown data η and τ . Then, the equivalene betweenEuler-Lagrange onditions for the onstitutive law funtionals and interfaial operatorsusually used in the Domain Deomposition �eld is shown. Using the Hadamard examplewe analyze analytially the behavior of these operators as funtions of the parameters(α, β). Then, the derivatives of the funtional are given using adjoint �elds whih areparametrized by the same parameters.Finally, numerial examples are given to illustrate the behavior of these methodswhih are not the only funtion of the parameters (α, β) but also of the regularity of theCauhy data and the overall geometry of the domain. Although, they are all equivalentfrom ontinuous point of view, we an not onlude de�nitely that one method, whihorresponds on a hoie of the parameters pair (α, β), is numerially more e�ient thananother. The hoie between them depends mainly on the omplexity of the problemfrom a geometrial point of view and singularity data. The amount of data to identifyin omparison to that known, the number of variables in the minimization problem, arealso important riteria for seleting the method.
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Constitutive law gap funtionals to solve Cauhy problem for a linear ellipti PDE: a review299. AnnexeLemma 9.1. Consider (ψ, ξ) ∈ H1/2(Γu) × H−1/2(Γu), then there exists a pair
(̟φ, ̟ξ) ∈ H−1/2(Γu)

2 suh that:





∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n + αwo1 = ̟ψ on Γu

and 




∇.k(x)∇w0
2 = 0 in Ω

k(x)∇w0
2 = 0 on Γm

k(x)∇w∗
2.n + βw0

2 = ̟ξ on Γuwith w0
1 = ψ and k(x)∇w0

2.n = ξ on Γu.Proof. The �elds w0
i for i = 1, 2 are haraterized by the following variational properties:

∫

Ω

k(x)∇w0
1.∇w +

∫

Γu

αw0
1w =

∫

Γu

̟ψw, ∀w ∈ H1(Ω), w = 0 on Γm

∫

Ω

k(x)∇w0
2.∇w +

∫

Γu

βw0
2w =

∫

Γu

̟ξw, ∀w ∈ H1(Ω)We onsider the �elds W 0
1 and W 0

2 , whih are solution of the following well-posedproblems:
∫

Ω

k(x)∇W 0
1 .∇w =

∫

Γu

k(x)∇W 0
1 .nw, ∀w ∈ H1(Ω) and w = 0 on Γmwith W 0

1 = ψ on Γu and W 0
1 = 0 on Γm.∫

Ω

k(x)∇W 0
2 .∇w =

∫

Γu

ξw, ∀w ∈ H1(Ω)with k(x)∇W 0
2 .n = ξ on Γu, k(x)∇W 0

2 .n = 0 on Γm and ∫
Γu
ξ = 0. Assume that

̟ψ = (k(x)∇W 0
1 .n+ αW 0

1 and ̟ξ) = k(x)∇W 0
2 .n + βW 0

2 , we obtain:
∫

Ω

k(x)∇W 0
1 .∇w = −

∫

Γu

αW 0
1w +

∫

Γu

̟ψw, ∀w ∈ H1(Ω), w = 0 on Γu.

∫

Ω

k(x)∇W 0
2 .∇w = −

∫

Γu

βW 0
2w +

∫

Γu

̟ξw, ∀w ∈ H1(Ω).This shows that the �elds W 0
i and w0

i for i = 1, 2 are equal. Then, we havedetermined the values of the pair (̟φ, ̟ξ), whih ensure that solutions to Robinproblems take the �xed values ψ and ξ of the �eld and the �ux respetively on theboundary Γu.


