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Abstract. This paper describes a general method based on minimizing constitutive
law gap functional in order to solve the Cauchy problem for a linear elliptic PDE.
This functional measures the gap between the solutions of two well-posed problems.
Each of these problems has one of the Cauchy data as known boundary condition:
Dirichlet or Neumann, and on the boundary where the data is lacking, unknown
Robin boundary conditions η + ατ and η + βτ are imposed, respectively. The data η

and τ have to be identi�ed and (α, β) are positives scalars parameters controlling the
functional behavior. This approach generalizes that presented in Andrieux et al [2]
and encompasses various methods proposed in the literature. According to the values
of α and β when they tend toward 0 or ∞, there are two groups of methods: the
�rst group includes those which depends on only one unknown data (η, τ or η + ατ).
The second group includes those which depend on two unknown data η and τ . Then,
the equivalence between Euler-Lagrange conditions for the constitutive law functionals
and interfacial operators usually used in the Domain Decomposition �eld is shown.
Using the Hadamard example we analyse analytically the behavior of these operators
as functions of the parameters (α, β). Then, the derivatives of the functional are given
using adjoint �elds which are parametrized by the same parameters. Finally, numerical
examples are given to illustrate the behavior of these methods, which are not function
of the parameters (α, β) but also of the regularity of the Cauchy data and the overall
geometry of the domain.
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1. Introduction

Consider a solid body Ω, given a �ux Φ and the corresponding temperature T on Γm,
one wants to recover the corresponding �ux and temperature on the remaining part of
the boundary Γu, where Γm and Γu constitute a partition of the whole boundary ∂Ω.
The problem is therefore set as follows:

Find (ϕ, T ) on Γu such that there exists a �eld u satisfying:



∇.k(x)∇u = 0 in Ω

k(x)∇u.n = Φ on Γm
u = T on Γm

(1)

where the conductivity �eld k(x) is real positive analytic in L∞(Ω). This problem is
known since Hadamard [16] to be ill-posed in the sense that the dependence of u and
consequently of (ϕ, T ) on the data (Φ, T ) is known to be not continuous.

We propose, in this paper, to identify the lacking data (ϕ, T ) by minimizing a
constitutive law gap function which generalizes the one introduced in [2]. Then, Robin
(or Fourier) boundary conditions are de�ned on the Γu part of the boundary. The aim
is to study if better numerical behavior can be observed with special values of the Robin
parameters. We restrict ourselves here to elliptic operators although a similar approach
can be applied to parabolic of hyperbolic ones [1]. Other elliptic operators describing
various physical phenomena has been addressed in [5, 6, 7, 13, 14, 17].

This paper is organized as follows: In section 2, after a background on the literature
dealing with Cauchy problem, two mixed well-posed problems are de�ned by splitting
the overspeci�ed data on Γm and Robin boundary conditions are introduced on the
boundary Γu. The latter are parametrized by two positive real constants α and β.
Then, the boundary condition identi�cation problem is de�ned as an optimization one
with constraints, where the objective functional is a constitutive law gap function.
This function quanti�es the energy gap between two �elds solution of the well-posed
problems de�ned above, which constitute the constraints of the optimization problem.
Hence, particular cases are outlined when α and β tend toward limit values 0 and
∞. In section 3, we present an equivalent formulation based on domain decomposition
strategy. Then, we show for all the cases outlined in section 3, that the Euler-Lagrange
conditions for the constitutive law functionals and interfacial operators are equivalent.
Hadamard example is presented in section 4, in order to illustrate the behavior of the
operators introduced above as functions of the Robin parameters α and β. In section
5, the evaluation of the derivatives of the constitutive law gap is given by using adjoint
methods. Numerical examples are presented in section 6, to illustrate the behavior
of the methods when the geometry or/and the boundary data on Γm and Γu present
singularities or discontinuities. Finally a conclusion is given.
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2. Boundary conditions identi�cation

Consider the above Cauchy problem (1). Assuming that the data (Φ, T ) are compatible,
which means that this pair is indeed the trace and normal trace of a unique harmonic
function u, extending the data means �nding (ϕ, T ) such as:




∇.k(x)∇u = 0 in Ω,

u = T, k(x)∇u.n = Φ on Γm,

u = T , k(x)∇u.n = ϕ on Γu

(2)

The question now is how to reconstruct numerically the pair (ϕ, T ). In practical
problems, data is not expected to be compatible, since data errors can occur from errors
in measurements. The ill-posedness in Hadamard's sense shows up - dramatically - when
one tries to approximate a given data (Φ, T ): it is possible to approach it as closely as
desired on Γm by traces of a single harmonic function, the "surprise" being a hectic
behavior of this function on the remaining part of the boundary. This behavior can be
understood by the fact that the compatible data are dense in the space of incompatible
ones, which makes hopeless the natural idea of least square �tting of the incompatible
data by the compatible ones. Regularization procedures are therefore required to treat
the data completion problem [22, 12, 11]. There are several approaches to regularize
such ill-posedness. Some of them transform the ill-posed problem into a well-posed one
by adding a penalty term or by mollifying the data in order to avoid data oscillations.
Tikhonov like methods use the penalty approach. Another class of rough but usually
e�cient regularizing techniques try to solve the ill-posed problem iteratively and choose a
suitable stopping criteria, for instance L-curve based criteria. In the approach proposed
here, the introduction of two distinct �elds, each of them meeting only one of the
over-speci�ed data, turns out to avoid the need of a regularization procedure for the
resolution of the data completion problem, when the noise rate remains reasonable, see
[5, 6, 7]. Using separately the two boundary conditions on Γm has also been used in
the algorithm proposed by Kozlov et al [18] and analysed by Baumeister et al [8] in a
general framework, where again no regularization procedure is cast into the resolution
method.

We will restrict ourselves, throughout the paper for the setting to the case where
the boundary ∂Ω consists of two closed manifolds of class C2 such that ∂Ω = Γm

⋃
Γu.

The following results remain true for less smooth boundaries and when Γm, Γu have
contact points. However, for sake of simplicity, we have chosen the above framework.
As already mentioned, the pairs of compatible data are dense in the set of all possible
data pairs. For this known result we refer to Fursikov [15] and to a preceding paper [3],
where the mentioned proofs are adapted to our settings.
Lemma 2.1. (i) For a �xed T in H1/2(Γm), the set of data Φ for which there exists

a function u in H1(Ω), satisfying the Cauchy problem (1) is everywhere dense in
H−1/2(Γm).
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(ii) For a �xed Φ in H−1/2(Γm), the set of data T for which there exists a function u

in H1(Ω), satisfying the Cauchy problem (1) is everywhere dense in H1/2(Γm).
Observe that, when the complete data are available on Γ, we have an overspeci�ed

boundary value problem



∇.k(x)∇u = 0 in Ω,

u = T, k(x)∇u.n = Φ on Γm,

u = T , k(x)∇u.n = ϕ on Γu

(3)

The approach followed here generalizes the one given in [3]. It follows two steps: consider
for a given pair (η, τ) ∈ H− 1

2 (Γu)×H 1
2 (Γu) the following two families of mixed well posed

problems 



∇.k(x)∇u1 = 0 in Ω

u1 = T on Γm
k(x)∇u1.n+ αu1 = η + ατ on Γu

(4)





∇.k(x)∇u2 = 0 in Ω

k(x)∇u2.n = Φ on Γm
k(x)∇u2.n+ βu2 = η + βτ on Γu

(5)

We denote by α and β two non-negative real coe�cients. This condition ensures that
problems (3) and (4) are well-posed. Using a H1 semi-norm the constitutive law gap
functional is de�ned as a measure of the pseudo-energy gap between the two above �elds
u1 and u2 as follows:

Eαβ(η, τ) =
1

2

∫

Ω

k(x)(∇u1 −∇u2).(∇u1 −∇u2) (6)

This functional is positive and quadratic. Indeed, u1 and u2 are obviously equal
when the pair (η, τ) on the boundary Γu meets the actual compatible data pair
(ϕ, T ) ∈ H−1/2 ×H1/2 on the boundary Γu, then:

Eα,β(η, τ) = 0 = min
η,τ

Eαβ(η, τ)

Thanks to the uniqueness of the Cauchy problem solution we can state that the data
completion problem can be achieved through the minimization one:

(ϕ, T ) = argmin
η,τ

Eαβ(η, τ) (7)

Using Green theorem this functional can be expressed as a boundary control:

Eαβ(η, τ) =
1

2

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (8)

+
1

2

∫

Γu

k(x)(∇u1 −∇u2).n (u1 − u2)

Note that the boundary conditions de�ned on Γu in the problems (4) and (5) degenerate
when the coe�cients α and β are equal to particulars values as shown on the table 1. So
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we can de�ne two approaches di�ering by the number of unknown �eld on Γu. In the �rst
approach there is only one unknown boundary �eld, and, happens when α = β. Three
di�erent single �eld methods can be outlined: in the �rst one, when α = β = 0, the
unknown boundary data is the Neumann boundary condition η, in the second approach,
when α = β = ∞, the unknown data is the Dirichlet boundary condition τ and in the
last one, when 0 < α = β < ∞, the unknown data is the Robin boundary condition
υ = η + ατ . The second approach is based on two unknown �elds (η, τ) and includes
the other cases where α 6= β.

Table 1. Boundary conditions on Γu as function of the parameters α and β

α = 0 α = ∞ 0 < α <∞
β = 0 ∇u1.n = η

∇u2.n = η

u1 = τ

∇u2.n = η

∇u1.n+αu1 = η+ατ

∇u2.n = η

β = ∞ ∇u1.n = η

u2 = τ

u1 = τ

u2 = τ

∇u1.n+αu1 = η+ατ

u2 = τ

0 < β <∞ ∇u1.n = η

∇u2.n+ βu2 = η + βτ

u1 = τ

∇u2.n+ βu2 = η + βτ

∇u1.n+αu1 = η+ατ

∇u2.n+ βu2 = η + βτ

if α = β then:
∇u1.n+ αu1 = υ

∇u2.n+ αu2 = υ

2.1. A review

This general setting leads to an interesting interpretation for di�erent values of α and
β. In [3], we deal with the case where α = 0 and β = +∞. This two �elds (i.e.
(η, τ) ∈ H−1/2(Γu)×H1/2(Γu)) approach has been numerically explored and turned out
to be e�cient and robust. Other authors, [4, 9, 10] have explored mathematically and
numerically the cases with one single �eld when α = β = +∞ and its dual form when
α = β = 0. One may, however, wants to know which approach is more e�cient. Notice
that when α = β = +∞, the �rst optimality condition of our optimization process
lead to the variational form of the well-known Steklov-Poincar method borrowed to the
Domain Decomposition �eld, see [19, 21]. This fact has been already pointed out in
[3, 9]. Moreover, when α = β = 0 we �nd the so-called dual Steklov-Poincar operator
method. An other alternative form with single �eld formulation is the Alternating
Direction Iterative method, which consists of solving two minimization problem where
each problem depends on only one �eld, such that:

ηk = argmin
η
Eαβ(η, τk−1)) (9)

and
τk = argmin

τ
Eαβ(ηk, τ)) (10)
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As it will be shown later, this last formulation turns out to be the KMF's (Kozlov,
Maz'ya and Fomin) process described in [3]. Let us outline that, from the continuous
point of view, all these methods are equivalent. In fact, they are all based on the
introduction of two �elds u1 and u2 dealing separately with the over-speci�ed data, and
the search for missing data by equalizing the two �elds. At the discrete level, all these
problems are of course ill-posed but some of them are expected to be better conditioned
than others.

2.2. Two �elds approaches

Two �elds approach can be set up if 0 ≤ α 6= β ≤ ∞ the constitutive law gap functional
can be expressed as follows.

Eαβ(η, τ) =
1

2

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (11)

+
1

2

∫

Γu

(α(τ − u1)− β(τ − u2)) (u1 − u2)

with, u1 and u2 are the solution of (4) and (5). Let us observe that, for compatible data,
the following lemma is straightforward.
Lemma 2.2. (Characterization of the u1 and u2 �elds at the minimum)

If (Φ, T ) is a compatible pair, there exists a pair (ϕ, T ) solution of the Cauchy
problem such that:

(ϕ, T ) = arg min
η,τ

Eαβ(η, τ) and Eαβ(ϕ, T ) = 0

Hence, when the functional reaches its minimum, the �elds u1 and u2 verify: ∇u1 = ∇u2

in Ω, which is equivalent to:{
u1 = u2 +K on Γu
k(x)∇u1.n = k(x)∇u2.n on Γu

(12)

Where K is a real constant. From (12) and the boundary conditions de�ned in (4) and
(5),we can deduce :

u = u1 = τ +
β

α− β
K (13)

∇u.n = η + α(τ − u) = η +
αβ

α− β
K (14)

The general approach built with the energy and the Robin 's boundary conditions
can lead to many two �elds methods by setting extreme values for α and β. These
methods are outlined hereafter:
(i) if α = 0 and β = ∞, the boundary conditions de�ned on Γu becomes Neumann

boundary condition in (4), whereas, it becomes a Dirichlet one in (5) and we have



Constitutive law gap functionals to solve Cauchy problem for a linear elliptic PDE: a review7

two well-posed mixed problems. Then, we denote the functional E0∞ by END which
reduces to:
END(η, τ) =

∫

Γu

(η − k(x)∇u2.n)(u1 − τ) +

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (15)

When END reaches its minimum we have u = u1 = τ −K and ∇u.n = η. This case
has been widely studied in [2].

(ii) if α = 0 and β is �nite and non zero, the boundary condition on Γu in (4) becomes
a Neumann one. Then we denote the functional E0β by ENβ which reduces to:

ENβ(η, τ) =

∫

Γu

β(u2 − τ)(u1 − u2) +

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (16)

When the functional ENβ reaches its minimum we have u = u1 = τ − K and
∇u.n = η.

(iii) if α = ∞ and β is �nite and non zero, the boundary condition on Γu in (4) becomes
a Dirichlet one. Then we denote the functional E∞β by EDβ which reduces to:

EDβ(η, τ) =

∫

Γu

1

β
(k(x)∇u2.n−η)k(x)∇(u1−u2).n+

∫

Γm

(k(x)∇u1.n−Φ)(T−u2)(17)

When the functional EDβ reaches its minimum we have u = u1 = τ and ∇u.n = η.
Similar results can be achieved by switching α and β in the above cases. The only
di�erence lies in the additional conditions required on u2 and the compatibility condition
on the �ux in the case where (4) is a Neumann problem. In conclusion, to avoid
supplementary constraints on the �elds u2, the cases where β = 0 should be avoided.

2.3. Single �eld approaches: α = β

The single �eld approach can be set up when α = β. Three di�erent cases can be
distinguished:
(i) The Neumann approach is obtained for α = β = 0. The unknown boundary data

is the Neumann boundary condition η. We denote the functional E00 by EN which
can be expressed as boundary control on Γm:

EN(η) =

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (18)

(ii) The Dirichlet approach is obtained for α = β = ∞. The unknown boundary data
is the Dirichlet boundary condition τ . We denote the functional E∞∞ by ED which
can be expressed as boundary control on Γm:

ED(η) =

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (19)

(iii) The Robin approach is obtained for 0 < α = β < ∞. The auxiliary unknown
boundary data is the Robin boundary condition υ = η + ατ . We denote the
functional Eαα by Eα which can be expressed as follows:

Eα(υ) =

∫

Γm

(k(x)∇u1.n− Φ)(T − u2)−
∫

Γu

k(x)

α
(∇u1.n−∇u2.n)2 (20)
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or equivalently:

Eα(υ) =

∫

Γm

(k(x)∇u1.n− Φ)(T − u2)−
∫

Γu

α(u1 − u2)
2 (21)

Here too, we observe that, for compatible data, the following lemma is
straightforward.
Lemma 2.3. (Characterization of u1 and u2 �elds at the minimum)

If (Φ, T ) is a compatible pair, there exists a pair (ϕ, T ) solution of the Cauchy
problem such that:

ϕ = arg min
η
EN(η) and EN(ϕ) = 0

T = arg min
τ
ED(τ) and ED(T ) = 0

(ϕ+ αT ) = arg min
υ
Eα(υ) and Eα(ϕ+ αT ) = 0

Hence, when these functionals reach their minimum, the �elds u1 and u2 verify:
∇u1 = ∇u2 in Ω, which is equivalent to:{

u1 = u2 +K on Γu
k(x)∇u1.n = k(x)∇u2.n on Γu

(22)

Where K is a constant. This constant is undetermined for the �rst case (i), because the
second problem (5) is Neumann problem. For the second and third cases K = 0.

To highlight the properties of the di�erent parametrization of the constitutive law
functionals, we will now derive the �rst optimality or Euler-Lagrange conditions as an
interfacial equation on the boundary Γu where the data is unknown.

3. Euler-Lagrange conditions and interfacial operators.

In the literature there are methods to equalize the two �elds u1 and u2 on Γu using
constraints conditions known as interface conditions. These methods are issued from
the domain decomposition �eld, see Quarteroni et al [21]. However, it should be noted
that, here there is only one domain and a boundary while in the domain decomposition
methods, the interfaces are located between subdomains. Nevertheless, in our problem,
Γu plays the role of the interface.

We will prove hereafter that these pseudo interface conditions are equivalent to
the �rst optimality condition (12) of the minimization problem (6). First di�erent
interface operators are de�ned on Γu, then for each case previously emphasized a proof
is developed. To begin with, we consider the following mixed boundary value problems:




∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n+ αwo1 = υ on Γu

and





∇.k(x)∇w∗1 = 0 in Ω

w∗1 = T on Γm
k(x)∇w∗1.n+ αw∗1 = 0 on Γu

(23)
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



∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
k(x)∇wo2.n+ βwo2 = υ on Γu

and





∇.k(x)∇w∗2 = 0 in Ω

k(x)∇w∗2.n = Φ on Γm
k(x)∇w∗2.n+ βw∗2 = 0 on Γu

(24)

Given υ, for each i = 1, 2, woi will be denoted by Hi(υ). We denoted also R1(T )

and R2(Φ) instead of w∗1 and w∗2. Thanks to the linearity of the problems we can state
that:

u1 = H1(υ) +R1(T ) and u2 = H2(υ) +R2(Φ)

Now, for each i = 1, 2 we de�ne the Robin to Neumann operators Si and the Robin
to Dirichlet operators S̃i as follows:

Si : H−1/2(Γu) −→ H−1/2(Γu)

υ 7−→ k(x)∇(Hi(υ)).n
(25)

S̃i : H−1/2(Γu) −→ H1/2(Γu)

υ 7−→ Hi(υ)
(26)

The operators (S1, S̃1) and (S2, S̃2) depend on the parameters α and β respectively. In
the following these operators will be applied to υ �elds expressed as η + ατ or η + βτ

to deal with the problems (4) and (5) respectively, with (η, τ) ∈ H(Γu)
1/2 ×H(Γu)

−1/2.
Remark now, that for α = 0 and β = 0, the Robin boundary conditions on Γu become
Neumann ones. Then, the operators S1 and S2 are the identity operator I and the
operators S̃1 and S̃2 are the well-known Poincar-Steklov operators. However, for α = ∞
and β = ∞ the Robin boundary conditions on Γu becomes Dirichlet ones. The operators
S1 and S2 are rede�ned as follows and are the classical Steklov-Poincar operators:

S1 : H1/2(Γu) −→ H−1/2(Γu)

τ 7−→ k(x)∇(H1(τ)).n
(27)

S2 : H1/2(Γu) −→ H−1/2(Γu)

τ 7−→ k(x)∇(H2(τ)).n
(28)

while the operators S̃1 and S̃2 are the identity operator I.
Lemma 3.1. If 0 < α 6= β <∞, the interface conditions on Γu are:

u1 = u2 +K (29)
k(x)∇u1.n = k(x)∇u2.n (30)

Using the operators de�ned above, the interface conditions can be expressed as follows:[
S̃2 − S̃1 βS̃2 − αS̃1

S1 − S2 αS1 − βS2

]

︸ ︷︷ ︸
Sαβ

{
η

τ

}
=

{
X1

X2

}
(31)

where
X1 = R1(T )−R2(Φ)−K (32)
X2 = − k(x)∇R1(T ).n+ k(x)∇R2(Φ).n (33)
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The interface conditions stated in the above Lemma become for the di�erent cases
outlined in the table 1:
(i) if α = 0 and β = ∞ then u = τ −K, ∇u.n = η and:

[
−S̃1 I

I −S2

]

︸ ︷︷ ︸
SND

{
η

τ

}
=

{
X1

X2

}

(ii) if α = β = 0 then u = u1 = u2 +K, ∇u.n = η and:
SNη = (S̃2 − S̃1)η = X1

(iii) if α = β = ∞ then K = 0, u = u1 = u2 = τ , ∇u.n = ∇u1.n and:
SDτ = (S1 − S2)τ = X2

(iv) if 0 < α = β <∞ then υ = η + ατ , K = 0, u = u1 = u2 = τ , ∇u.n = η and:

Sαυ =
(
S̃2 − S̃1

)
υ = X1

(v) if α = 0 and 0 < β <∞ then k(x)∇u.n = η, u = u1 = τ −K and:
[
S̃2 − S̃1 βS̃2

I − S2 −βS2

]

︸ ︷︷ ︸
SNβ

{
η

τ

}
=

{
X1

X2

}

(vi) if α = ∞ and 0 < β <∞ then K = 0, k(x)∇u.n = η, u = u1 = u2 = τ and:
[
S̃2 − I βS̃2

S1 − S2 −βS2

]

︸ ︷︷ ︸
SDβ

{
η

τ

}
=

{
X1

X2

}

Remark. Notice that the operator Sαβ is symetric.

3.1. Case 0 < α 6= β < +∞
In this section we show that the optimality conditions stated in the Lemma 2.2 are
equivalent to the interface conditions stated in the Lemma 3.1. We consider the
functional de�ned by (6) and the �elds H1 and H2 which are the solutions of the two
�rst well posed problems de�ned by (23) and (24). These �elds depend linearly on η

and τ .
Lemma 3.2. The �rst optimality condition of the functional Eαβ reads:

(
S̃2 − S̃1

)
η +

(
βS̃2 − αS̃1

)
τ = X1 (34)

(S1 − S2) η + (αS1 − βS2) τ = X2 (35)
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Proof. Let us recall that u1 and u2 depend linearly on the variable η and τ , and
υ = η + ατ for H1 and υ = η + βτ for H2, then:
∂Eαβ(η, τ)

∂η
.δη =

∫

Ω

k(x) (∇u1(η, τ)−∇u2(η, τ)) (∇H1(δη)−∇H2(δη))

∂Eαβ(η, τ)

∂τ
.δτ =

∫

Ω

k(x) (∇u1(η, τ)−∇u2(η, τ)) (α∇H1(δτ)− β∇H2(δτ))

Which can be written as follows:
∂Eαβ(η, τ)

∂η
.δη =

∫

∂Ω

k(x) (∇u1(η, τ)−∇u2(η, τ)) .nH1(δη)−∇H2(δη).n(u1(η, τ)− u2(η, τ))

∂Eαβ(η, τ)

∂τ
.δτ =

∫

∂Ω

αk(x) (∇u1(η, τ)−∇u2(η, τ)) .nH1(δτ)− β∇H2(δτ).n(u1(η, τ)− u2(η, τ))

using the properties of the �elds H1 and H2 we obtain:
∂Eαβ(η, τ)

∂η
.δη =

∫

Γu

k(x)∇ (u1(η, τ)− u2(η, τ)) .nH1(δη)−∇H2(δη).n(u1(η, τ)− u2(η, τ))

∂Eαβ(η, τ)

∂τ
.δτ =

∫

Γu

αk(x)∇ (u1(η, τ)− u2(η, τ)) .nH1(δτ)− β∇H2(δτ).n(u1(η, τ)− u2(η, τ))

The stationarity condition leads to:




∀ δη ∈ H−1/2

∫
Γu
k(x) (∇u1(η, τ)−∇u2(η, τ)) .nH1(δη) = 0∫

Γu
(u1(η, τ)− u2(η, τ))k(x)∇H2(δη).n = 0

∀ δτ ∈ H1/2

∫
Γu
αk(x) (∇u1(η, τ)−∇u2(η, τ)) .nH1(δτ) = 0∫

Γu
β(u1(η, τ)− u2(η, τ))k(x)∇H2(δτ).n = 0

(36)

Here we introduce the following Lemma:
Lemma 3.3. Consider two functions: (ψ, ξ) ∈ H1/2(Γu) × H−1/2(Γu) with

∫
Γu
ξ = 0,

there exists a pair ($ψ, $ξ) ∈ H−1/2(Γu)×H−1/2(Γu).



∇.k(x)∇w1 = 0 in Ω

w1 = 0 on Γm
k(x)∇w1.n+ αw1 = $ψ on Γu

and





∇.k(x)∇w2 = 0 in Ω

k(x)∇w2.n = 0 on Γm
k(x)∇w2.n+ βw2 = $ξ on Γu

(37)

With w1 = ψ and k(x)∇w2.n = ξ.
The proof of this Lemma is detailed in the annexe. Using the above Lemma, we

denote by ψ and ξ respectively H1(δη) and ∇H2(δτ).n, then we can state that:∫

Γu

k(x) (∇u1(η, τ)−∇u2(η, τ)) .nψ = 0 ∀ ψ ∈ H1/2(Γu) (38)
∫

Γu

(u1(η, τ)− u2(η, τ))ξ = 0 ∀ ξ ∈ H−1/2(Γu) (39)

This leads to:
u1(η, τ) = u2(η, τ) +K and ∇k(x)u1(η, τ).n = ∇k(x)u2(η, τ).n
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Then, using the operators de�ned above, we obtain:
(S̃2 − S̃1)η + (βS̃2 − αS̃1)τ = R1(T )−R2(Φ)−K

and
(S1 − S2)η + (αS1 − βS2)τ = −k(x)∇R1(T ).n+ k(x)∇R2(Φ).n

The �rst optimality conditions are exactly the interface condition stated in Lemma
3.1.

[
S̃2 − S̃1 βS̃2 − αS̃1

S1 − S2 αS1 − βS2

]{
η

τ

}
=

{
X1

X2

}
(40)

3.2. Case: α = 0 and β = +∞
In this case, η and τ denote the unknown values of k(x)∇u.n and the trace of u on Γu.
The mixed boundary value problems de�ned by (23) and (24) become:



∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n = η on Γu

and





∇.k(x)∇w∗1 = 0 in Ω

w∗1 = T on Γm
k(x)∇w∗1.n = 0 on Γu

(41)





∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
wo2 = τ on Γu

and





∇.k(x)∇w∗2 = 0 in Ω

k(x)∇w∗2.n = Φ on Γm
w∗2 = 0 on Γu

(42)

The Cauchy problem (1) is solved, if and only if u1 = u2 + K and ∇u1(η).n =

∇u2(τ).n on Γu which are the interface conditions de�ned in (12).
Lemma 3.4. The �rst optimality condition of the functional END reads:[

−S̃1 I

I −S2

]{
η

τ

}
=

{
X1

X2

}

Proof. The proof follows the same steps as that of Lemma 3.5 and 3.6. In this case the
function depends on the pair (η,τ):

END(η, τ) =
1

2

∫

Ω

k(x) (∇u1(η)−∇u2(τ)) (∇u1(η)−∇u2(τ))

Here, two optimality conditions have to be satis�ed:
∂END(η, τ)

∂η
.δη =

∫

Ω

k(x) (∇u1(η)−∇u2(τ))∇H1(δη)

=

∫

Γu

k(x) (∇u1(η)−∇u2(τ)) .n.H1(δη) becauseH1(δη) = 0 onΓm
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∂END(η, τ)

∂η
.δη = 0 ∀δη =⇒

∫

Γu

k(x) (∇u1(η)−∇u2(τ)) .n = 0

=⇒ ∇u1(η).n = ∇u2(τ).n

=⇒ Iη − S2τ = −k(x)∇R1(T ).n+ k(x)∇R2(Φ).n

∂END(η, τ)

∂τ
.δτ = −

∫

Ω

k(x) (∇u1(η)−∇u2(τ))∇H2(δτ)

= −
∫

Γu

(u1(η)− u2(τ)) .k(x)∇H2(δτ).n because∇H2(δτ).n = 0 onΓm

∂END(η, τ)

∂τ
.δτ = 0 ∀δτ =⇒ u1(η)− u2(τ) = K because

∫

Γu

k(x)∇H2(δτ).n = 0

=⇒ (S̃1η − Iτ) = −R1(T ) +R2(Φ) +K

Therefore the optimality condition is equivalent to the interfacial equation de�ned
in the case 1 of the Lemma 3.1:

[
−S̃1 I

I −S2

]{
η

τ

}
=

{
X1

X2

}

3.3. The case α = β = +∞
This case correspond to the so-called Cauchy-Poincar-Steklov method, see Quarteroni
et al [21] and Ben Belgacem et al [9]. The unknown boundary condition on Γu is the
Dirichlet one denoted by τ . The mixed boundary value problems de�ned by (23) and
(24) become:




∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
wo1 = τ on Γu

and





∇.k(x)∇w∗1 = 0 in Ω,

w∗1 = T on Γm,

w∗1 = 0 on Γu

(43)





∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
wo2 = τ on Γu

and





∇.k(x)∇w∗2 = 0 in Ω,

k(x)∇w∗2.n = Φ on Γm,

w∗2 = 0 on Γu

(44)

Then Hi for i = 1, 2 are function of τ only. The Cauchy problem (1) is solved, if and
only if ∇u1.n = ∇u2.n on Γu which is the second optimality condition de�ned in 2.2,
the �rst one is satis�ed by the de�nition of τ .
Lemma 3.5. The �rst optimality condition of the functional ED reads:

S(τ) = (S1 − S2)τ = X2 = −k(x)∇R1(T ).n+ k(x)∇R2(Φ).n
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Proof. Let us recall that ED depends only on the variable τ :

ED(τ) =
1

2

∫

Ω

k(x) (∇u1(τ)−∇u2(τ)) (∇u1(τ)−∇u2(τ))

∂ED(τ)

∂τ
.δτ =

∫

Ω

(∇u1(τ)−∇u2(τ)) (∇H1(δτ)−∇H2(δτ)) (45)

=

∫

Ω

(∇u1(τ)−∇u2(τ)) .∇H1(δτ)−
∫

Ω

(∇u1(λ)−∇u2(λ)) .∇H2(δτ)

=

∫

∂Ω

(∇u1(τ)−∇u2(τ)) .n.H1(δτ)−
∫

∂Ω

(u1(τ)− u2(τ)) .∇H2(δτ).n

one has: ∫

Γu

(u1(τ)− u2(τ)) .∇H2(δτ).n = 0 because u1 − u2 = 0

∫

Γm

(u1(τ)− u2(τ)) .∇H2(δτ).n = 0 because ∇H2(δτ).n = 0

∫

Γm

(∇u1(τ)−∇u2(τ)) .n.H1(δτ) = 0 because H1(δτ) = 0

Then:
∂ED(τ)

∂τ
.δτ =

∫

Γu

(∇u1(τ)−∇u2(τ)) .n.H1(δτ)

∂ED(τ)

∂τ
.δτ = 0 ∀δτ =⇒ (∇u1(τ)−∇u2(τ)) .n = 0

=⇒ ∇u1.n = ∇u2.n

=⇒ (S1 − S2)τ = X2 = −k(x)∇R1(T ).n+ k(x)∇R2(Φ).n

Therefore the optimality condition is equivalent to the interfacial equation de�ned
in the case 3 of the Lemma 3.1:

(S1 − S2)τ = X2.

3.4. The case α = β = 0

This case corresponds to the so-called Neumann to Neumann Steklov-Poincar method.
The unknown boundary condition on Γu is the Neumann one denoted by η. The mixed
boundary value problems de�ned by (23) and (24) become:



∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n = η̄ on Γu

and





∇.k(x)∇w∗1 = 0 in Ω

w∗1 = T on Γm
k(x)∇w∗1.n = − 1

|Γu|
∫
Γm

Φ on Γu

(46)
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



∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
k(x)∇wo2.n = η̄ on Γu

and





∇.k(x)∇w∗2 = 0 in Ω,

k(x)∇w∗2.n = Φ on Γm
k(x)∇w∗2.n = − 1

|Γu|
∫
Γm

Φ on Γu

(47)

with
η̄ = η − 1

| Γu |
∫

Γu

η

Here the �elds Hi for i = 1, 2 are function of η̄ only. The following supplementary
condition is necessary in this case:

∫

Γm

Φ +

∫

Γu

η = 0

The Cauchy problem (1) is solved, if and only if u1 = u2 + K on Γu which is the �rst
optimality condition de�ned in 2.2, the second one is satis�ed by the de�nition of η.
Lemma 3.6. The �rst optimality condition of the functional EN reads:

Sη = (S̃2 − S̃1)η = X1 = R1(T )−R2(Φ)−K

Proof. In this case the function depends only on the variable η

EN(η) =
1

2

∫

Ω

k(x) (∇u1(η)−∇u2(η)) (∇u1(η)−∇u2(η))

The optimality condition is then:
∂EN(η)

∂η
.δη =

∫

Ω

k(x) (∇u1(η)−∇u2(η)) (∇H1(δη)−∇H2(δη)) (48)

=

∫

Ω

k(x) (∇u1(η)−∇u2(η)) .∇H1(δη)−
∫

Ω

k(x) (∇u1(η)−∇u2(η)) .∇H2(δη)

=

∫

∂Ω

k(x) (∇u1(η)−∇u2(η)) .n.H1(δη)−
∫

∂Ω

(u1(η)− u2(η)) .k(x)∇H2(δη).n

Since H1(δη) = 0 on Γm, ∇u1(η).n = ∇u2(η).n on Γu and k(x)∇H2(δη).n = 0 on Γm:
∂EN(η)

∂η
.δη = −

∫

Γu

(u1(η)− u2(η)) k(x)∇H2(δη).n = −
∫

Γu

(u1(η)− u2(η)) .δη̄

∂EN(η)

∂η
.δη = 0 ∀ δη̄ =⇒

∫

Γu

(u1(η)− u2(η)) .δη̄ = 0 (49)

=⇒ u1(η)− u2(η) = K because

∫

Γu

δη̄ = 0

=⇒ (S̃2 − S̃1)η = X1 = R1(T )−R2(Φ)−K (50)

Therefore the optimality condition is equivalent to the interfacial equation de�ned
in the case 2 of the Lemma 3.1:

(S̃2 − S̃1)η = X1

Remark that the classical Neumann to Neumann preconditioner is recovered.
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3.5. The case: 0 < α = β <∞
This case correspond to the Dirichlet to Robin operator used in the domain
decomposition �eld. Let υ be the unknown data on Γu. The mixed boundary value
problems de�ned by (23) and (24) become:




∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n+ αwo1 = υ on Γu

and





∇.k(x)∇w∗1 = 0 in Ω

w∗1 = T on Γm
k(x)∇w∗1.n+ αw∗1 = 0 on Γu





∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
k(x)∇wo2.n+ αwo2 = υ on Γu

and





∇.k(x)∇w∗2 = 0 in Ω

k(x)∇w∗2.n = Φ on Γm
k(x)∇w∗2.n+ αw∗2 = 0 on Γu

The Cauchy problem (1) is solved, if and only if u1 = u2 + K on Γu which is the
�rst optimality condition de�ned in 2.2, the second one is satis�ed by the de�nition of
υ. Here K = 0.
Lemma 3.7. The �rst optimality condition of the functional Eα reads::(

S̃2 − S̃1

)
υ = X1

Proof. The proof follows the same steps as that of above Lemma. In this case the
function depends on υ = η + ατ :

Eα(υ) =
1

2

∫

Ω

k(x) (∇u1(υ)−∇u2(υ)) (∇u1(υ)−∇u2(υ))

∂Eα(υ)

∂υ
.δυ =

∫

Ω

k(x) (∇u1(υ)−∇u2(υ)) (∇H1(δυ)−∇H2(δυ))

=

∫

∂Ω

k(x) (∇u1(υ)−∇u2(υ)) .n.H1(δυ)− (u1(υ)− u2(υ))k(x)∇H2(δυ).n

Since H1(δυ) and ∇H2(δυ).n = 0 on Γm then:∫

Γm

k(x) (∇u1(υ)−∇u2(υ)) .n.H1(δυ)− (u1(υ)− u2(υ))∇H2(δυ).n = 0

Then:
∂Eα(υ)

∂υ
.δυ =

∫

Γu

k(x) (∇u1(υ)−∇u2(υ)) .n.H1(δυ)− (u1(υ)− u2(υ))k(x)∇H2(δυ).n

Using the Robin boundary condition:
k(x) (∇u1(υ)−∇u2(υ)) .n = −α(u1(υ)− u2(υ))

the above optimality condition becomes:
∂Eα(υ)

∂υ
.δυ = −

∫

Γu

(u1(υ)− u2(υ)) (αH1(δυ) +∇H2(δυ).n) ∀ δυ
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Using the Lemma 3.3 for α = β, we denote by ψ and ξ respectively H1(δυ) and
∇H2(δυ).n, then we can state that:
∂Eα(υ)

∂υ
.δυ = 0 ∀ δυ =⇒ u1(υ)− u2(υ) = 0 on Γu∀ (ψ, ξ) ∈ H−1/2(Γu)×H1/2(Γu)

=⇒
(
S̃2 − S̃1

)
υ = R1(T )−R2(Φ)

Therefore the optimality condition is equivalent to the interfacial equation de�ned
in the case 4 of the Lemma 3.1:(

S̃2 − S̃1

)
υ = X1

Remark that the case α = β = 0 is found by setting in the above optimality condition
α = 0.

3.6. Alternating Direction Iterative method

We consider the Alternating Direction Iterative (ADI) method, which generates two
sequences of traces υk1 and υk2 build with the traces of uk1|Γu

and uk2|Γu
respectively.

Consider an initial guess υ0
2; then, for k ≥ 0 we look for uk+1

1 and then uk+1
2 such

that: 



∇.k(x)∇uk+1
1 = 0 in Ω

uk+1
1 = T on Γm
k(x)∇uk+1

1 .n+ αuk+1
1 = υk+1

1 on Γu

(51)

with υk+1
1 = k(x)∇uk2.n+ αuk2.




∇.k(x)∇uk+1
2 = 0 in Ω

k(x)∇uk+1
2 .n = Φ on Γm

k(x)∇uk+1
2 .n+ βuk+1

2 = υk+1
2 on Γu

(52)

with υk+1
2 = k(x)∇uk+1

1 .n+ βuk+1
1 .

Using the operators S1, S̃1, S2 and S̃2 de�ned above, it is easy to show that it is
a �xed-point iteration: υk+1

2 = (S1 + βS̃1)υ
k+1
1 , then using the expression of υk+1

1 we
obtain υk+1

2 = (S1 + βS̃1)(S2 + αS̃2)υ
k
2 . Then:

υk+1
2 = Ŝαβυk2 , k ≥ 0

where the �xed point map is given as follows:
Ŝαβ : H1/2(Γu) −→ H1/2(Γu)

υk2 7−→ Ŝαβυk2 = υk+1
2

with: Ŝαβ = (S1 + βS̃1)(S2 +αS̃2). The KMF iterative method outlined above happens
when α = 0 and β = ∞ and then ŜND = S̃1S2. We can then conclude that the KMF
method can be interpreted as �xed point resolution of an interface problem υ = Ŝαβυ.

In this section, we showed that all the above methods are equivalent, from the
continuous point of view. However, we expect that their numerical behavior will be
di�erent, which will be addressed in the next sections.
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4. Hadamard example

As pointed out previously, at the discrete level the interfacial operators outlined in
section 3 are expected to be di�erently conditioned. The aim of this section is to give
an analytical taste to what goes on for the condition numbers.

Let us consider an annular domain with an outer rm = 1 and an inner ru ≡ r < 1

radii, k(x) = 1 and the polar coordinates system. The overspeci�ed data are available
on the external boundary Γm, whereas the lacking data are on the inner boundary Γu.
The analytical solution of the problems (4) and (5) take the general form of separate
variables functions:

H1(υ) =
∞∑
n=1

(rn − r−n)g1(nθ) and H2(υ) =
∞∑
n=1

(rn + r−n)g2(nθ)

respectively, which will be used to calculate the eigenvalues. The eigenvalues of Sn1 , Sn2 ,
S̃n1 and S̃n2 are then given by the following sequence:

λn1 =
n(r2n + 1)

n(r2n + 1)− αr(r2n − 1)
(53)

λn2 =
n(r2n − 1)

n(r2n − 1)− βr(r2n + 1)
(54)

λ̃n1 =
−r(r2n − 1)

n(r2n + 1)− αr(r2n − 1)
(55)

λ̃n2 =
−r(r2n + 1)

n(r2n − 1)− βr(r2n + 1)
(56)

corresponding to the eigenvectors gn1 = cos(nθ) and gn2 = sin(nθ), respectively. The
interfacial operator Snαβ de�ned in the Lemma 3.1 can be expressed as follows for the
n-rank:

Snαβ =

[
λ̃n2 − λ̃n1 βλ̃n2 − αλ̃n1
λn1 − λn2 αλn1 − βλn2

]
(57)

For the special values of parameters α and β the above operator becomes:

SnND =

[
r
n
( r

2n−1
r2 n+1

) 1

1 n
r
( r

2n−1
r2n+1

)

]
(58)

SnNβ =




r
n

4nr2n+βr4n+1−βr
(−nr4n+βr4n+1+2βr2n+1+n+βr)

β(r2n+1+r)
−r2nn+n+βr2n+1+βr

β(r2n+1+r)
−r2nn+n+βr2n+1+βr

βn(r2n−1)
−r2nn+n+βr2n+1+βr


 (59)

SnDβ =




r2n+1+r
−r2nn+n+βr2n+1+βr

n(r2n−1)
−r2nn+n+βr2 n+1+βr

n(r2n−1)
−r2nn+n+βr2n+1+βr

n
r

(−r4nn+4βr2n+1+n)
(r4nn−2 r2nn−r4n+1β+n+βr)


 (60)

SnD = −n
r

(
4r2n

r4n − 1

)
(61)
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SnN = − r
n

(
4r2n

r4n − 1

)
(62)

Snα = 4
r2n+1n

−n2r4n + 2r4n+1αn+ n2 + 2nαr − α2r4n+2 + α2r2
(63)

Consider the one �eld operators: SnN , SnD and Snα, their asymptotic development
when n −→ ∞ shows that SnN ≈ − 4

n
r2n+1 , SnD ≈ −4nr2n−1 and Snα ≈ 4

n
r2n+1. Then,

one can deduces that SnD and Snα, which have the same behavior, decrease faster than
SnD. The operators which depend on two unknown �elds, tend toward the following
expressions when n −→∞:

SnND ≈
[
− r
n

1

1 −n
r

]
; SnDβ ≈

[
r
n

−1

−1 n
r

]
; SnNβ ≈

[
r2

n2
r
n

r
n

−1

]
(64)

From these expressions one can deduces that the �rst eigenvalue of each operator
vanishes quickly. The second eigenvalues of SnND and SnDβ tend toward n

r
and −n

r
,

respectively. However, the second eigenvalues of SnNβ tend toward −β. the operators
SnND and SnDβ have the same behavior when n −→ ∞. Then the operator SnNβ has
the best behavior. The same results are obtained for the Hadamard example on the
square. The �gures 1 and 2 show the evolution of the condition number of the single
�eld operators and the two �elds operators, respectively. They show the same behavior
for high frequencies for all these methods. These analysis give an idea on the behavior
of each operator, but it is not su�cient to decide which method is better in an absolute
way. In fact, others parameters such geometric and Cauchy data singularities, or the
unknown data etc... control the behavior of each operator.

5. The constitutive law gap functionals: adjoint �elds and derivatives
evaluation

The aim of this section is the evaluation of the derivatives of the functional with respect
to (η, τ). Let us consider u1 and u2 as de�ned in the subsection 3.3. Without forgetting
their dependence on the �elds (η, τ) ∈ H−1/2(Γu) × H1/2(Γu), the energy error can be
simply expressed as follows:

Eα,β(η, τ) =
1

2

∫

Ω

k(x) (∇u1 −∇u2) . (∇u1 −∇u2) (65)

We consider the following spaces and �elds:
V1 = {v ∈ H1(Ω)/v|Γm = T}
V 0

1 = {v ∈ H1(Ω)/v|Γm = 0}
with (u1, u2, v1, v2) ∈ V1×H1(Ω)×V 0

1 (Ω)×H1(Ω)). Then, we denote by J1 and J2 the
weak formulations of the problems de�ned by (4) and (5).

J1(η, τ) =

∫

Ω

k(x)∇u1∇v1 −
∫

Γu

v1k(x)∇u1.n (66)
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Figure 1. Condition number of single �eld methods

Figure 2. Condition number of two �eld methods

J2(η, τ) =

∫

Ω

k(x)∇u2∇v2 −
∫

Γm

Φv2 −
∫

Γu

v2k(x)∇u2.n (67)

To evaluate the derivative we consider the following Lagrangian:
Lα,β(u1, u2, v1, v2; η, τ) = Eα,β(η, τ)− J1(η, τ)− J2(η, τ) (68)
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For any (η, τ) ∈ H−1/2(Γu ×H1/2(Γu) and the above de�ned �eld v1 and v2 it follows:
Eα,β(η, τ) = Lα,β(u1, u2, v1, v2; η, τ) (69)

The gradient of Eα,β can be obtained from the partial derivative of Lα,β with respect to
η and τ .

∂Eα,β(η, τ)

∂η
.δη = −

∫

Γu

(v1 + v2) .δη (70)

∂Eα,β(η, τ)

∂τ
.δτ = −

∫

Γu

(αv1 + βv2) .δτ (71)

where v1 and v2 are solution of :



∇k(x)∇v1 = 0 in Ω

v1 = 0 on Γm
k(x)∇v1.n+ αv1 = −k(x)(∇u1 −∇u2).n on Γu

(72)





∇k(x)∇v2 = 0 in Ω

k(x)∇v2.n = k(x)∇u1.n− Φ on Γm
k(x)∇v2.n+ βv2 = k(x)(∇u1 −∇u2).n on Γu

(73)

Remark that, as shown for the direct problem (4) and (5), the boundary conditions
de�ned on Γu of the adjoint problems degenerate when the parameters α and β tend
toward to 0 and ∞ as shown in the following table:



Constitutive law gap functionals to solve Cauchy problem for a linear elliptic PDE: a review22
Ta

bl
e
2.

Ad
jo
in
t�

eld
bo

un
da

ry
co
nd

iti
on

so
n

Γ
u
as

fu
nc

tio
n
of

th
e
pa

ra
m
et
er
sα

an
d

β

α
an

d
β

Va
ria

bl
es

BC
on

Γ
u

D
er
iva

tiv
es

Si
ng

le
�e

ld
ap

pr
oa

ch
es

α
=

0
η

k
(x

)∇
v 1
.n

=
0

∇ η
E
α
,β
.δ
η

=
−

∫ Γ
u
v 2
δη

β
=

0
k
(x

)∇
v 2
.n

=
0

α
=
∞

τ
v 1

=
0

∇ τ
E
α
,β
.δ
τ

=
∫ Γ

u
k
(x

)∇
v 2
.n
δτ

β
=
∞

v 2
=

0

0
<
α

=
β
<
∞

υ
=
η

+
α
τ

k
(x

)∇
v 1
.n

+
α
v 1

=
−k

(x
)∇

(u
1
−
u

2
).
n

∇ υ
E
α
,β
.δ
υ

=
−

∫ Γ
u
(v

1
+
v 2

)δ
υ

k
(x

)∇
v 2
.n

+
α
v 2

=
k
(x

)∇
(u

1
−
u

2
).
n

Tw
o
�e

ld
sa

pp
ro
ac
he

s
α

=
0

η
k
(x

)∇
v 1
.n

=
−k

(x
)∇

(u
1
−
u

2
).
n

∇ η
E
α
,β
.δ
η

=
−

∫ Γ
u
v 1
δη

β
=
∞

τ
v 2

=
0

∇ τ
E
α
,β
.δ
τ

=
∫ Γ

u
k
(x

)∇
(v

1
+
v 2

).
n
δτ

α
=

0
η

k
(x

)∇
v 1
.n

=
−k

(x
)∇

(u
1
−
u

2
).
n

∇ η
E
α
,β
.δ
η

=
−

∫ Γ
u
(v

1
+
v 2

)δ
η

0
<
β
<
∞

τ
k
(x

)∇
v 2
.n

+
β
v 2

=
k
(x

)∇
(u

1
−
u

2
).
n

∇ τ
E
α
,β
.δ
τ

=
∫ Γ

u
k
(x

)∇
(v

1
+
v 2

).
n
δτ

α
=
∞

η
v 1

=
0

∇ η
E
α
,β
.δ
η

=
−

∫ Γ
u
v 2
δη

0
<
β
<
∞

τ
k
(x

)∇
v 2
.n

+
β
v 2

=
k
(x

)∇
(u

1
−
u

2
).
n

∇ τ
E
α
,β
.δ
τ

=
∫ Γ

u
k
(x

)∇
(v

2
−
u

1
+
u

2
).
n
δτ

0
<
α
6=
β
<
∞

η
k
(x

)∇
v 1
.n

+
α
v 1

=
−k

(x
)∇

(u
1
−
u

2
).
n

∇ η
E
α
,β
.δ
η

=
−

∫ Γ
u
(v

1
+
v 2

)δ
η

τ
k
(x

)∇
v 2
.n

+
β
v 2

=
k
(x

)∇
(u

1
−
u

2
).
n

∇ τ
E
α
,β
.δ
τ

=
∫ Γ

u
k
(x

)(
∇v

1
+
∇v

2
).
n
δτ



Constitutive law gap functionals to solve Cauchy problem for a linear elliptic PDE: a review23

6. Numerical examples

The implementation of the above methods was carried out using the �nite element
method (FEM). Hence, the derivation of the adjoint state is preferably established on
the basis of the FEM-discretized problem. The advantage of this fully discrete approach
is that the exact gradient of the discrete objective function is obtained; moreover, it is
easily implemented in existing FEM-softwares. In references [6] and [7], the FEM-
discretized formulation is detailed for the case where α = 0 and β = ∞.

In order to show the performance of the aforementioned methods, we choose two
examples for which the methods behave di�erently.

6.1. First example.
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Figure 3. Geometry and boundaries of the studied domain

We consider a two-dimensional domain Ω and assume that the boundary Γ of this
domain is divided into two complementary parts Γm and Γu as shown on the �gure 3.
Note that because of the corner in the Γu part of the boundary, the problem addressed
here is quite sti� as singularities appear near the point A. Furthermore at this point,
there is a jump of the outer normal to the domain and then a jump of the normal
derivatives of the solution �elds.

Figures 4 and 5 show the identi�ed Dirichlet and Neumann data. They are
compared with the exact data. These results are obtained by using the same stopping
criteria for the energy-like functional. All the methods converge with approximately
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Figure 4. Exact and identi�ed Dirichlet boundary condition on Γu
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Figure 5. Exact and identi�ed Neumann boundary condition on Γu

the same number of iterations during the minimization process. Unlike the example of
Hadamard, we observe here that the single �eld method with α = β = ∞ gives the
worst result, whereas other methods give approximately the same (satisfactory) result.
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6.2. Second example.

This example has been already addressed in [2], it deals with a practical case
corresponding to strati�ed inner �uid. We consider therefore the reconstruction of
temperature and �ux in a pipeline of in�nite length. We assume that the temperature
does not depend on the longitudinal coordinate. We deal, therefore with a two
dimensional problem as shown on �gure 6. The overspeci�ed boundary conditions used
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Figure 6. Geometric data of the strati�ed inner �uid problem

in this example are generated by the �nite element computation of a Robin problem
with the following data:
• a constant thermal conductivity k = 17W/m/◦C,
• on Γm, Text = 20 ◦C with the Robin's coe�cient αc = 12W/m2/◦C,
• on Γu, Tint = 50 ◦C on the lower half circle of Γu and Tint = 250 ◦C on the upper

half one with the Robin's coe�cient αu = 1000W/m2/◦C.
The cross section Ω is an annular thick domain with radii r1 = 1 and r2 = 0.5. To
recover the temperature and the �ux with accuracy, a mesh with 64 nodes on Γu
is used. Trust Region Method of Matlab Optimization Toolbox [20] is used here to
solve the optimization problem associated to each method. The same stopping criteria,
termination tolerance on the function value set to 10−6W ◦C/m is imposed for all
methods. Each one converges when the function value variation is less than the stopping
criteria. Figures 7 and 8 show the reconstructed temperature and �ux, and even in this
case where the data is singular (discontinuity), they are in agreement with the actual
ones, whatever the method. However, there are di�erences in the convergence process
of these methods, the number of iterations needed to reach the stopping criteria is very
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Figure 7. Exact and identi�ed Neumann boundary condition on Γu
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Table 3. Number of iterations of the optimization process for each method

Functional ENN Eα END EDD Eαβ
Functional value 18.24 10−3 5.62 10−3 8.81 10−3 5.20 10−3 5.76 10−3

Number of Iterations 233 215 375 1214 1460
Number of solved BVP 699 860 1500 3642 5840

di�erent from one method to another, see table 3. Hence, computational cost, which
depends on the number of BVP to solve, may also be a criterion for choosing a method

7. Conclusion

In this paper we proposed a general method based on minimizing constitutive law
gap functional in order to solve the Cauchy problem for a linear elliptic PDE. This
functional measures the gap between the solutions of two well-posed problems. Each of
these problems has one of the Cauchy data as known boundary condition: Dirichlet or
Neumann, and on the boundary where the data are lacking, an unknown Robin boundary
conditions η + ατ and η + βτ are imposed, respectively. The data η and τ have to be
identi�ed and (α, β) are positives scalars parameters controlling the functional behavior.

This approach generalizes that presented in Andrieux et al [2] and encompasses
various methods proposed in the literature. According to the values of α and β when
they tend toward 0 or∞, there are two groups of methods: the �rst group gathers those
which depends on only one unknown data (η, τ or η + ατ). The second group gathers
those which depend on two unknown data η and τ . Then, the equivalence between
Euler-Lagrange conditions for the constitutive law functionals and interfacial operators
usually used in the Domain Decomposition �eld is shown. Using the Hadamard example
we analyze analytically the behavior of these operators as functions of the parameters
(α, β). Then, the derivatives of the functional are given using adjoint �elds which are
parametrized by the same parameters.

Finally, numerical examples are given to illustrate the behavior of these methods
which are not the only function of the parameters (α, β) but also of the regularity of the
Cauchy data and the overall geometry of the domain. Although, they are all equivalent
from continuous point of view, we can not conclude de�nitely that one method, which
corresponds on a choice of the parameters pair (α, β), is numerically more e�cient than
another. The choice between them depends mainly on the complexity of the problem
from a geometrical point of view and singularity data. The amount of data to identify
in comparison to that known, the number of variables in the minimization problem, are
also important criteria for selecting the method.
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9. Annexe

Lemma 9.1. Consider (ψ, ξ) ∈ H1/2(Γu) × H−1/2(Γu), then there exists a pair
($φ, $ξ) ∈ H−1/2(Γu)

2 such that:




∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n+ αwo1 = $ψ on Γu

and





∇.k(x)∇w0
2 = 0 in Ω

k(x)∇w0
2 = 0 on Γm

k(x)∇w∗2.n+ βw0
2 = $ξ on Γu

with w0
1 = ψ and k(x)∇w0

2.n = ξ on Γu.

Proof. The �elds w0
i for i = 1, 2 are characterized by the following variational properties:∫

Ω

k(x)∇w0
1.∇w +

∫

Γu

αw0
1w =

∫

Γu

$ψw, ∀w ∈ H1(Ω), w = 0 on Γm

∫

Ω

k(x)∇w0
2.∇w +

∫

Γu

βw0
2w =

∫

Γu

$ξw, ∀w ∈ H1(Ω)

We consider the �elds W 0
1 and W 0

2 , which are solution of the following well-posed
problems: ∫

Ω

k(x)∇W 0
1 .∇w =

∫

Γu

k(x)∇W 0
1 .nw, ∀w ∈ H1(Ω) and w = 0 on Γm

with W 0
1 = ψ on Γu and W 0

1 = 0 on Γm.∫

Ω

k(x)∇W 0
2 .∇w =

∫

Γu

ξw, ∀w ∈ H1(Ω)

with k(x)∇W 0
2 .n = ξ on Γu, k(x)∇W 0

2 .n = 0 on Γm and
∫
Γu
ξ = 0. Assume that

$ψ = (k(x)∇W 0
1 .n+ αW 0

1 and $ξ) = k(x)∇W 0
2 .n+ βW 0

2 , we obtain:
∫

Ω

k(x)∇W 0
1 .∇w = −

∫

Γu

αW 0
1w +

∫

Γu

$ψw, ∀w ∈ H1(Ω), w = 0 on Γu.

∫

Ω

k(x)∇W 0
2 .∇w = −

∫

Γu

βW 0
2w +

∫

Γu

$ξw, ∀w ∈ H1(Ω).

This shows that the �elds W 0
i and w0

i for i = 1, 2 are equal. Then, we have
determined the values of the pair ($φ, $ξ), which ensure that solutions to Robin
problems take the �xed values ψ and ξ of the �eld and the �ux respectively on the
boundary Γu.


