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Constitutive law gap fun
tionals to solve Cau
hyproblem for a linear ellipti
 PDE: a reviewThouraya N. Baranger1and Stéphane Andrieux2

1 Universit de Lyon, CNRS, Universit Lyon 1, LaMCoS UMR5259, INSA-Lyon,F-69621, Villeurbanne, Fran
e.
2 LaMSID, UMR CNRS-EDF 2832, Clamart, Fran
e.Abstra
t. This paper des
ribes a general method based on minimizing 
onstitutivelaw gap fun
tional in order to solve the Cau
hy problem for a linear ellipti
 PDE.This fun
tional measures the gap between the solutions of two well-posed problems.Ea
h of these problems has one of the Cau
hy data as known boundary 
ondition:Diri
hlet or Neumann, and on the boundary where the data is la
king, unknownRobin boundary 
onditions η + ατ and η + βτ are imposed, respe
tively. The data ηand τ have to be identi�ed and (α, β) are positives s
alars parameters 
ontrolling thefun
tional behavior. This approa
h generalizes that presented in Andrieux et al [2℄and en
ompasses various methods proposed in the literature. A

ording to the valuesof α and β when they tend toward 0 or ∞, there are two groups of methods: the�rst group in
ludes those whi
h depends on only one unknown data (η, τ or η + ατ).The se
ond group in
ludes those whi
h depend on two unknown data η and τ . Then,the equivalen
e between Euler-Lagrange 
onditions for the 
onstitutive law fun
tionalsand interfa
ial operators usually used in the Domain De
omposition �eld is shown.Using the Hadamard example we analyse analyti
ally the behavior of these operatorsas fun
tions of the parameters (α, β). Then, the derivatives of the fun
tional are givenusing adjoint �elds whi
h are parametrized by the same parameters. Finally, numeri
alexamples are given to illustrate the behavior of these methods, whi
h are not fun
tionof the parameters (α, β) but also of the regularity of the Cau
hy data and the overallgeometry of the domain.



Constitutive law gap fun
tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review21. Introdu
tionConsider a solid body Ω, given a �ux Φ and the 
orresponding temperature T on Γm,one wants to re
over the 
orresponding �ux and temperature on the remaining part ofthe boundary Γu, where Γm and Γu 
onstitute a partition of the whole boundary ∂Ω.The problem is therefore set as follows:Find (ϕ, T ) on Γu su
h that there exists a �eld u satisfying:




∇.k(x)∇u = 0 in Ω

k(x)∇u.n = Φ on Γm
u = T on Γm

(1)where the 
ondu
tivity �eld k(x) is real positive analyti
 in L∞(Ω). This problem isknown sin
e Hadamard [16℄ to be ill-posed in the sense that the dependen
e of u and
onsequently of (ϕ, T ) on the data (Φ, T ) is known to be not 
ontinuous.We propose, in this paper, to identify the la
king data (ϕ, T ) by minimizing a
onstitutive law gap fun
tion whi
h generalizes the one introdu
ed in [2℄. Then, Robin(or Fourier) boundary 
onditions are de�ned on the Γu part of the boundary. The aimis to study if better numeri
al behavior 
an be observed with spe
ial values of the Robinparameters. We restri
t ourselves here to ellipti
 operators although a similar approa
h
an be applied to paraboli
 of hyperboli
 ones [1℄. Other ellipti
 operators des
ribingvarious physi
al phenomena has been addressed in [5, 6, 7, 13, 14, 17℄.This paper is organized as follows: In se
tion 2, after a ba
kground on the literaturedealing with Cau
hy problem, two mixed well-posed problems are de�ned by splittingthe overspe
i�ed data on Γm and Robin boundary 
onditions are introdu
ed on theboundary Γu. The latter are parametrized by two positive real 
onstants α and β.Then, the boundary 
ondition identi�
ation problem is de�ned as an optimization onewith 
onstraints, where the obje
tive fun
tional is a 
onstitutive law gap fun
tion.This fun
tion quanti�es the energy gap between two �elds solution of the well-posedproblems de�ned above, whi
h 
onstitute the 
onstraints of the optimization problem.Hen
e, parti
ular 
ases are outlined when α and β tend toward limit values 0 and
∞. In se
tion 3, we present an equivalent formulation based on domain de
ompositionstrategy. Then, we show for all the 
ases outlined in se
tion 3, that the Euler-Lagrange
onditions for the 
onstitutive law fun
tionals and interfa
ial operators are equivalent.Hadamard example is presented in se
tion 4, in order to illustrate the behavior of theoperators introdu
ed above as fun
tions of the Robin parameters α and β. In se
tion5, the evaluation of the derivatives of the 
onstitutive law gap is given by using adjointmethods. Numeri
al examples are presented in se
tion 6, to illustrate the behaviorof the methods when the geometry or/and the boundary data on Γm and Γu presentsingularities or dis
ontinuities. Finally a 
on
lusion is given.



Constitutive law gap fun
tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review32. Boundary 
onditions identi�
ationConsider the above Cau
hy problem (1). Assuming that the data (Φ, T ) are 
ompatible,whi
h means that this pair is indeed the tra
e and normal tra
e of a unique harmoni
fun
tion u, extending the data means �nding (ϕ, T ) su
h as:





∇.k(x)∇u = 0 in Ω,

u = T, k(x)∇u.n = Φ on Γm,

u = T , k(x)∇u.n = ϕ on Γu

(2)The question now is how to re
onstru
t numeri
ally the pair (ϕ, T ). In pra
ti
alproblems, data is not expe
ted to be 
ompatible, sin
e data errors 
an o

ur from errorsin measurements. The ill-posedness in Hadamard's sense shows up - dramati
ally - whenone tries to approximate a given data (Φ, T ): it is possible to approa
h it as 
losely asdesired on Γm by tra
es of a single harmoni
 fun
tion, the "surprise" being a he
ti
behavior of this fun
tion on the remaining part of the boundary. This behavior 
an beunderstood by the fa
t that the 
ompatible data are dense in the spa
e of in
ompatibleones, whi
h makes hopeless the natural idea of least square �tting of the in
ompatibledata by the 
ompatible ones. Regularization pro
edures are therefore required to treatthe data 
ompletion problem [22, 12, 11℄. There are several approa
hes to regularizesu
h ill-posedness. Some of them transform the ill-posed problem into a well-posed oneby adding a penalty term or by mollifying the data in order to avoid data os
illations.Tikhonov like methods use the penalty approa
h. Another 
lass of rough but usuallye�
ient regularizing te
hniques try to solve the ill-posed problem iteratively and 
hoose asuitable stopping 
riteria, for instan
e L-
urve based 
riteria. In the approa
h proposedhere, the introdu
tion of two distin
t �elds, ea
h of them meeting only one of theover-spe
i�ed data, turns out to avoid the need of a regularization pro
edure for theresolution of the data 
ompletion problem, when the noise rate remains reasonable, see[5, 6, 7℄. Using separately the two boundary 
onditions on Γm has also been used inthe algorithm proposed by Kozlov et al [18℄ and analysed by Baumeister et al [8℄ in ageneral framework, where again no regularization pro
edure is 
ast into the resolutionmethod.We will restri
t ourselves, throughout the paper for the setting to the 
ase wherethe boundary ∂Ω 
onsists of two 
losed manifolds of 
lass C2 su
h that ∂Ω = Γm
⋃

Γu.The following results remain true for less smooth boundaries and when Γm, Γu have
onta
t points. However, for sake of simpli
ity, we have 
hosen the above framework.As already mentioned, the pairs of 
ompatible data are dense in the set of all possibledata pairs. For this known result we refer to Fursikov [15℄ and to a pre
eding paper [3℄,where the mentioned proofs are adapted to our settings.Lemma 2.1. (i) For a �xed T in H1/2(Γm), the set of data Φ for whi
h there existsa fun
tion u in H1(Ω), satisfying the Cau
hy problem (1) is everywhere dense in
H−1/2(Γm).



Constitutive law gap fun
tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review4(ii) For a �xed Φ in H−1/2(Γm), the set of data T for whi
h there exists a fun
tion uin H1(Ω), satisfying the Cau
hy problem (1) is everywhere dense in H1/2(Γm).Observe that, when the 
omplete data are available on Γ, we have an overspe
i�edboundary value problem





∇.k(x)∇u = 0 in Ω,

u = T, k(x)∇u.n = Φ on Γm,

u = T , k(x)∇u.n = ϕ on Γu

(3)The approa
h followed here generalizes the one given in [3℄. It follows two steps: 
onsiderfor a given pair (η, τ) ∈ H− 1

2 (Γu)×H
1

2 (Γu) the following two families of mixed well posedproblems




∇.k(x)∇u1 = 0 in Ω

u1 = T on Γm
k(x)∇u1.n + αu1 = η + ατ on Γu

(4)




∇.k(x)∇u2 = 0 in Ω

k(x)∇u2.n = Φ on Γm
k(x)∇u2.n + βu2 = η + βτ on Γu

(5)We denote by α and β two non-negative real 
oe�
ients. This 
ondition ensures thatproblems (3) and (4) are well-posed. Using a H1 semi-norm the 
onstitutive law gapfun
tional is de�ned as a measure of the pseudo-energy gap between the two above �elds
u1 and u2 as follows:

Eαβ(η, τ) =
1

2

∫

Ω

k(x)(∇u1 −∇u2).(∇u1 −∇u2) (6)This fun
tional is positive and quadrati
. Indeed, u1 and u2 are obviously equalwhen the pair (η, τ) on the boundary Γu meets the a
tual 
ompatible data pair
(ϕ, T ) ∈ H−1/2 ×H1/2 on the boundary Γu, then:

Eα,β(η, τ) = 0 = min
η,τ

Eαβ(η, τ)Thanks to the uniqueness of the Cau
hy problem solution we 
an state that the data
ompletion problem 
an be a
hieved through the minimization one:
(ϕ, T ) = argmin

η,τ
Eαβ(η, τ) (7)Using Green theorem this fun
tional 
an be expressed as a boundary 
ontrol:

Eαβ(η, τ) =
1

2

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (8)
+

1

2

∫

Γu

k(x)(∇u1 −∇u2).n (u1 − u2)Note that the boundary 
onditions de�ned on Γu in the problems (4) and (5) degeneratewhen the 
oe�
ients α and β are equal to parti
ulars values as shown on the table 1. So



Constitutive law gap fun
tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review5we 
an de�ne two approa
hes di�ering by the number of unknown �eld on Γu. In the �rstapproa
h there is only one unknown boundary �eld, and, happens when α = β. Threedi�erent single �eld methods 
an be outlined: in the �rst one, when α = β = 0, theunknown boundary data is the Neumann boundary 
ondition η, in the se
ond approa
h,when α = β = ∞, the unknown data is the Diri
hlet boundary 
ondition τ and in thelast one, when 0 < α = β < ∞, the unknown data is the Robin boundary 
ondition
υ = η + ατ . The se
ond approa
h is based on two unknown �elds (η, τ) and in
ludesthe other 
ases where α 6= β.Table 1. Boundary 
onditions on Γu as fun
tion of the parameters α and β

α = 0 α = ∞ 0 < α <∞

β = 0 ∇u1.n = η

∇u2.n = η

u1 = τ

∇u2.n = η

∇u1.n+αu1 = η+ατ

∇u2.n = η

β = ∞ ∇u1.n = η

u2 = τ

u1 = τ

u2 = τ

∇u1.n+αu1 = η+ατ

u2 = τ

0 < β <∞ ∇u1.n = η

∇u2.n+ βu2 = η + βτ

u1 = τ

∇u2.n+ βu2 = η + βτ

∇u1.n+αu1 = η+ατ

∇u2.n+ βu2 = η + βτif α = β then:
∇u1.n + αu1 = υ

∇u2.n + αu2 = υ2.1. A reviewThis general setting leads to an interesting interpretation for di�erent values of α and
β. In [3℄, we deal with the 
ase where α = 0 and β = +∞. This two �elds (i.e.
(η, τ) ∈ H−1/2(Γu)×H1/2(Γu)) approa
h has been numeri
ally explored and turned outto be e�
ient and robust. Other authors, [4, 9, 10℄ have explored mathemati
ally andnumeri
ally the 
ases with one single �eld when α = β = +∞ and its dual form when
α = β = 0. One may, however, wants to know whi
h approa
h is more e�
ient. Noti
ethat when α = β = +∞, the �rst optimality 
ondition of our optimization pro
esslead to the variational form of the well-known Steklov-Poin
ar method borrowed to theDomain De
omposition �eld, see [19, 21℄. This fa
t has been already pointed out in[3, 9℄. Moreover, when α = β = 0 we �nd the so-
alled dual Steklov-Poin
ar operatormethod. An other alternative form with single �eld formulation is the AlternatingDire
tion Iterative method, whi
h 
onsists of solving two minimization problem whereea
h problem depends on only one �eld, su
h that:

ηk = argmin
η
Eαβ(η, τk−1)) (9)and

τk = argmin
τ
Eαβ(ηk, τ)) (10)



Constitutive law gap fun
tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review6As it will be shown later, this last formulation turns out to be the KMF's (Kozlov,Maz'ya and Fomin) pro
ess des
ribed in [3℄. Let us outline that, from the 
ontinuouspoint of view, all these methods are equivalent. In fa
t, they are all based on theintrodu
tion of two �elds u1 and u2 dealing separately with the over-spe
i�ed data, andthe sear
h for missing data by equalizing the two �elds. At the dis
rete level, all theseproblems are of 
ourse ill-posed but some of them are expe
ted to be better 
onditionedthan others.2.2. Two �elds approa
hesTwo �elds approa
h 
an be set up if 0 ≤ α 6= β ≤ ∞ the 
onstitutive law gap fun
tional
an be expressed as follows.
Eαβ(η, τ) =

1

2

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (11)
+

1

2

∫

Γu

(α(τ − u1) − β(τ − u2)) (u1 − u2)with, u1 and u2 are the solution of (4) and (5). Let us observe that, for 
ompatible data,the following lemma is straightforward.Lemma 2.2. (Chara
terization of the u1 and u2 �elds at the minimum)If (Φ, T ) is a 
ompatible pair, there exists a pair (ϕ, T ) solution of the Cau
hyproblem su
h that:
(ϕ, T ) = arg min

η,τ
Eαβ(η, τ) and Eαβ(ϕ, T ) = 0Hen
e, when the fun
tional rea
hes its minimum, the �elds u1 and u2 verify: ∇u1 = ∇u2in Ω, whi
h is equivalent to:

{
u1 = u2 +K on Γu
k(x)∇u1.n = k(x)∇u2.n on Γu

(12)Where K is a real 
onstant. From (12) and the boundary 
onditions de�ned in (4) and(5),we 
an dedu
e :
u = u1 = τ +

β

α− β
K (13)

∇u.n = η + α(τ − u) = η +
αβ

α− β
K (14)The general approa
h built with the energy and the Robin 's boundary 
onditions
an lead to many two �elds methods by setting extreme values for α and β. Thesemethods are outlined hereafter:(i) if α = 0 and β = ∞, the boundary 
onditions de�ned on Γu be
omes Neumannboundary 
ondition in (4), whereas, it be
omes a Diri
hlet one in (5) and we have



Constitutive law gap fun
tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review7two well-posed mixed problems. Then, we denote the fun
tional E0∞ by END whi
hredu
es to:
END(η, τ) =

∫

Γu

(η − k(x)∇u2.n)(u1 − τ) +

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (15)When END rea
hes its minimum we have u = u1 = τ −K and ∇u.n = η. This 
asehas been widely studied in [2℄.(ii) if α = 0 and β is �nite and non zero, the boundary 
ondition on Γu in (4) be
omesa Neumann one. Then we denote the fun
tional E0β by ENβ whi
h redu
es to:
ENβ(η, τ) =

∫

Γu

β(u2 − τ)(u1 − u2) +

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (16)When the fun
tional ENβ rea
hes its minimum we have u = u1 = τ − K and
∇u.n = η.(iii) if α = ∞ and β is �nite and non zero, the boundary 
ondition on Γu in (4) be
omesa Diri
hlet one. Then we denote the fun
tional E∞β by EDβ whi
h redu
es to:
EDβ(η, τ) =

∫

Γu

1

β
(k(x)∇u2.n−η)k(x)∇(u1−u2).n+

∫

Γm

(k(x)∇u1.n−Φ)(T−u2)(17)When the fun
tional EDβ rea
hes its minimum we have u = u1 = τ and ∇u.n = η.Similar results 
an be a
hieved by swit
hing α and β in the above 
ases. The onlydi�eren
e lies in the additional 
onditions required on u2 and the 
ompatibility 
onditionon the �ux in the 
ase where (4) is a Neumann problem. In 
on
lusion, to avoidsupplementary 
onstraints on the �elds u2, the 
ases where β = 0 should be avoided.2.3. Single �eld approa
hes: α = βThe single �eld approa
h 
an be set up when α = β. Three di�erent 
ases 
an bedistinguished:(i) The Neumann approa
h is obtained for α = β = 0. The unknown boundary datais the Neumann boundary 
ondition η. We denote the fun
tional E00 by EN whi
h
an be expressed as boundary 
ontrol on Γm:
EN(η) =

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (18)(ii) The Diri
hlet approa
h is obtained for α = β = ∞. The unknown boundary datais the Diri
hlet boundary 
ondition τ . We denote the fun
tional E∞∞ by ED whi
h
an be expressed as boundary 
ontrol on Γm:
ED(η) =

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) (19)(iii) The Robin approa
h is obtained for 0 < α = β < ∞. The auxiliary unknownboundary data is the Robin boundary 
ondition υ = η + ατ . We denote thefun
tional Eαα by Eα whi
h 
an be expressed as follows:
Eα(υ) =

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) −

∫

Γu

k(x)

α
(∇u1.n−∇u2.n)2 (20)
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tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review8or equivalently:
Eα(υ) =

∫

Γm

(k(x)∇u1.n− Φ)(T − u2) −

∫

Γu

α(u1 − u2)
2 (21)Here too, we observe that, for 
ompatible data, the following lemma isstraightforward.Lemma 2.3. (Chara
terization of u1 and u2 �elds at the minimum)If (Φ, T ) is a 
ompatible pair, there exists a pair (ϕ, T ) solution of the Cau
hyproblem su
h that:

ϕ = arg min
η
EN (η) and EN(ϕ) = 0

T = arg min
τ
ED(τ) and ED(T ) = 0

(ϕ+ αT ) = arg min
υ
Eα(υ) and Eα(ϕ+ αT ) = 0Hen
e, when these fun
tionals rea
h their minimum, the �elds u1 and u2 verify:

∇u1 = ∇u2 in Ω, whi
h is equivalent to:
{
u1 = u2 +K on Γu
k(x)∇u1.n = k(x)∇u2.n on Γu

(22)Where K is a 
onstant. This 
onstant is undetermined for the �rst 
ase (i), be
ause these
ond problem (5) is Neumann problem. For the se
ond and third 
ases K = 0.To highlight the properties of the di�erent parametrization of the 
onstitutive lawfun
tionals, we will now derive the �rst optimality or Euler-Lagrange 
onditions as aninterfa
ial equation on the boundary Γu where the data is unknown.3. Euler-Lagrange 
onditions and interfa
ial operators.In the literature there are methods to equalize the two �elds u1 and u2 on Γu using
onstraints 
onditions known as interfa
e 
onditions. These methods are issued fromthe domain de
omposition �eld, see Quarteroni et al [21℄. However, it should be notedthat, here there is only one domain and a boundary while in the domain de
ompositionmethods, the interfa
es are lo
ated between subdomains. Nevertheless, in our problem,
Γu plays the role of the interfa
e.We will prove hereafter that these pseudo interfa
e 
onditions are equivalent tothe �rst optimality 
ondition (12) of the minimization problem (6). First di�erentinterfa
e operators are de�ned on Γu, then for ea
h 
ase previously emphasized a proofis developed. To begin with, we 
onsider the following mixed boundary value problems:




∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n + αwo1 = υ on Γu

and 



∇.k(x)∇w∗
1 = 0 in Ω

w∗
1 = T on Γm

k(x)∇w∗
1.n+ αw∗

1 = 0 on Γu

(23)
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tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review9





∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
k(x)∇wo2.n + βwo2 = υ on Γu

and 




∇.k(x)∇w∗
2 = 0 in Ω

k(x)∇w∗
2.n = Φ on Γm

k(x)∇w∗
2.n+ βw∗

2 = 0 on Γu

(24)Given υ, for ea
h i = 1, 2, woi will be denoted by Hi(υ). We denoted also R1(T )and R2(Φ) instead of w∗
1 and w∗

2. Thanks to the linearity of the problems we 
an statethat:
u1 = H1(υ) + R1(T ) and u2 = H2(υ) + R2(Φ)Now, for ea
h i = 1, 2 we de�ne the Robin to Neumann operators Si and the Robinto Diri
hlet operators S̃i as follows:
Si : H−1/2(Γu) −→ H−1/2(Γu)

υ 7−→ k(x)∇(Hi(υ)).n
(25)

S̃i : H−1/2(Γu) −→ H1/2(Γu)

υ 7−→ Hi(υ)
(26)The operators (S1, S̃1) and (S2, S̃2) depend on the parameters α and β respe
tively. Inthe following these operators will be applied to υ �elds expressed as η + ατ or η + βτto deal with the problems (4) and (5) respe
tively, with (η, τ) ∈ H(Γu)

1/2 ×H(Γu)
−1/2.Remark now, that for α = 0 and β = 0, the Robin boundary 
onditions on Γu be
omeNeumann ones. Then, the operators S1 and S2 are the identity operator I and theoperators S̃1 and S̃2 are the well-known Poin
ar-Steklov operators. However, for α = ∞and β = ∞ the Robin boundary 
onditions on Γu be
omes Diri
hlet ones. The operators

S1 and S2 are rede�ned as follows and are the 
lassi
al Steklov-Poin
ar operators:
S1 : H1/2(Γu) −→ H−1/2(Γu)

τ 7−→ k(x)∇(H1(τ)).n
(27)

S2 : H1/2(Γu) −→ H−1/2(Γu)

τ 7−→ k(x)∇(H2(τ)).n
(28)while the operators S̃1 and S̃2 are the identity operator I.Lemma 3.1. If 0 < α 6= β <∞, the interfa
e 
onditions on Γu are:

u1 = u2 +K (29)
k(x)∇u1.n = k(x)∇u2.n (30)Using the operators de�ned above, the interfa
e 
onditions 
an be expressed as follows:
[
S̃2 − S̃1 βS̃2 − αS̃1

S1 − S2 αS1 − βS2

]

︸ ︷︷ ︸
Sαβ

{
η

τ

}
=

{
X1

X2

} (31)where
X1 = R1(T ) −R2(Φ) −K (32)
X2 = − k(x)∇R1(T ).n+ k(x)∇R2(Φ).n (33)
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tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review10The interfa
e 
onditions stated in the above Lemma be
ome for the di�erent 
asesoutlined in the table 1:(i) if α = 0 and β = ∞ then u = τ −K, ∇u.n = η and:
[
−S̃1 I

I −S2

]

︸ ︷︷ ︸
SND

{
η

τ

}
=

{
X1

X2

}

(ii) if α = β = 0 then u = u1 = u2 +K, ∇u.n = η and:
SNη = (S̃2 − S̃1)η = X1(iii) if α = β = ∞ then K = 0, u = u1 = u2 = τ , ∇u.n = ∇u1.n and:
SDτ = (S1 − S2)τ = X2(iv) if 0 < α = β <∞ then υ = η + ατ , K = 0, u = u1 = u2 = τ , ∇u.n = η and:
Sαυ =

(
S̃2 − S̃1

)
υ = X1(v) if α = 0 and 0 < β <∞ then k(x)∇u.n = η, u = u1 = τ −K and:

[
S̃2 − S̃1 βS̃2

I − S2 −βS2

]

︸ ︷︷ ︸
SNβ

{
η

τ

}
=

{
X1

X2

}

(vi) if α = ∞ and 0 < β <∞ then K = 0, k(x)∇u.n = η, u = u1 = u2 = τ and:
[
S̃2 − I βS̃2

S1 − S2 −βS2

]

︸ ︷︷ ︸
SDβ

{
η

τ

}
=

{
X1

X2

}

Remark. Noti
e that the operator Sαβ is symetri
.3.1. Case 0 < α 6= β < +∞In this se
tion we show that the optimality 
onditions stated in the Lemma 2.2 areequivalent to the interfa
e 
onditions stated in the Lemma 3.1. We 
onsider thefun
tional de�ned by (6) and the �elds H1 and H2 whi
h are the solutions of the two�rst well posed problems de�ned by (23) and (24). These �elds depend linearly on ηand τ .Lemma 3.2. The �rst optimality 
ondition of the fun
tional Eαβ reads:
(
S̃2 − S̃1

)
η +

(
βS̃2 − αS̃1

)
τ = X1 (34)

(S1 − S2) η + (αS1 − βS2) τ = X2 (35)



Constitutive law gap fun
tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review11Proof. Let us re
all that u1 and u2 depend linearly on the variable η and τ , and
υ = η + ατ for H1 and υ = η + βτ for H2, then:
∂Eαβ(η, τ)

∂η
.δη =

∫

Ω

k(x) (∇u1(η, τ) −∇u2(η, τ)) (∇H1(δη) −∇H2(δη))

∂Eαβ(η, τ)

∂τ
.δτ =

∫

Ω

k(x) (∇u1(η, τ) −∇u2(η, τ)) (α∇H1(δτ) − β∇H2(δτ))Whi
h 
an be written as follows:
∂Eαβ(η, τ)

∂η
.δη =

∫

∂Ω

k(x) (∇u1(η, τ) −∇u2(η, τ)) .nH1(δη) −∇H2(δη).n(u1(η, τ) − u2(η, τ))

∂Eαβ(η, τ)

∂τ
.δτ =

∫

∂Ω

αk(x) (∇u1(η, τ) −∇u2(η, τ)) .nH1(δτ) − β∇H2(δτ).n(u1(η, τ) − u2(η, τ))using the properties of the �elds H1 and H2 we obtain:
∂Eαβ(η, τ)

∂η
.δη =

∫

Γu

k(x)∇ (u1(η, τ) − u2(η, τ)) .nH1(δη) −∇H2(δη).n(u1(η, τ) − u2(η, τ))

∂Eαβ(η, τ)

∂τ
.δτ =

∫

Γu

αk(x)∇ (u1(η, τ) − u2(η, τ)) .nH1(δτ) − β∇H2(δτ).n(u1(η, τ) − u2(η, τ))The stationarity 
ondition leads to:




∀ δη ∈ H−1/2

∫
Γu
k(x) (∇u1(η, τ) −∇u2(η, τ)) .nH1(δη) = 0∫

Γu
(u1(η, τ) − u2(η, τ))k(x)∇H2(δη).n = 0

∀ δτ ∈ H1/2

∫
Γu
αk(x) (∇u1(η, τ) −∇u2(η, τ)) .nH1(δτ) = 0∫

Γu
β(u1(η, τ) − u2(η, τ))k(x)∇H2(δτ).n = 0

(36)
Here we introdu
e the following Lemma:Lemma 3.3. Consider two fun
tions: (ψ, ξ) ∈ H1/2(Γu) × H−1/2(Γu) with ∫

Γu
ξ = 0,there exists a pair (̟ψ, ̟ξ) ∈ H−1/2(Γu) ×H−1/2(Γu).




∇.k(x)∇w1 = 0 in Ω

w1 = 0 on Γm
k(x)∇w1.n+ αw1 = ̟ψ on Γu

and 



∇.k(x)∇w2 = 0 in Ω

k(x)∇w2.n = 0 on Γm
k(x)∇w2.n+ βw2 = ̟ξ on Γu

(37)With w1 = ψ and k(x)∇w2.n = ξ.The proof of this Lemma is detailed in the annexe. Using the above Lemma, wedenote by ψ and ξ respe
tively H1(δη) and ∇H2(δτ).n, then we 
an state that:
∫

Γu

k(x) (∇u1(η, τ) −∇u2(η, τ)) .nψ = 0 ∀ ψ ∈ H1/2(Γu) (38)
∫

Γu

(u1(η, τ) − u2(η, τ))ξ = 0 ∀ ξ ∈ H−1/2(Γu) (39)This leads to:
u1(η, τ) = u2(η, τ) +K and ∇k(x)u1(η, τ).n = ∇k(x)u2(η, τ).n
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tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review12Then, using the operators de�ned above, we obtain:
(S̃2 − S̃1)η + (βS̃2 − αS̃1)τ = R1(T ) −R2(Φ) −Kand
(S1 − S2)η + (αS1 − βS2)τ = −k(x)∇R1(T ).n+ k(x)∇R2(Φ).nThe �rst optimality 
onditions are exa
tly the interfa
e 
ondition stated in Lemma3.1.
[
S̃2 − S̃1 βS̃2 − αS̃1

S1 − S2 αS1 − βS2

] {
η

τ

}
=

{
X1

X2

} (40)3.2. Case: α = 0 and β = +∞In this 
ase, η and τ denote the unknown values of k(x)∇u.n and the tra
e of u on Γu.The mixed boundary value problems de�ned by (23) and (24) be
ome:




∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n = η on Γu

and 



∇.k(x)∇w∗
1 = 0 in Ω

w∗
1 = T on Γm

k(x)∇w∗
1.n = 0 on Γu

(41)




∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
wo2 = τ on Γu

and 



∇.k(x)∇w∗
2 = 0 in Ω

k(x)∇w∗
2.n = Φ on Γm

w∗
2 = 0 on Γu

(42)The Cau
hy problem (1) is solved, if and only if u1 = u2 + K and ∇u1(η).n =

∇u2(τ).n on Γu whi
h are the interfa
e 
onditions de�ned in (12).Lemma 3.4. The �rst optimality 
ondition of the fun
tional END reads:
[
−S̃1 I

I −S2

]{
η

τ

}
=

{
X1

X2

}Proof. The proof follows the same steps as that of Lemma 3.5 and 3.6. In this 
ase thefun
tion depends on the pair (η,τ):
END(η, τ) =

1

2

∫

Ω

k(x) (∇u1(η) −∇u2(τ)) (∇u1(η) −∇u2(τ))Here, two optimality 
onditions have to be satis�ed:
∂END(η, τ)

∂η
.δη =

∫

Ω

k(x) (∇u1(η) −∇u2(τ))∇H1(δη)

=

∫

Γu

k(x) (∇u1(η) −∇u2(τ)) .n.H1(δη) becauseH1(δη) = 0 onΓm
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∂END(η, τ)

∂η
.δη = 0 ∀δη =⇒

∫

Γu

k(x) (∇u1(η) −∇u2(τ)) .n = 0

=⇒ ∇u1(η).n = ∇u2(τ).n

=⇒ Iη − S2τ = −k(x)∇R1(T ).n+ k(x)∇R2(Φ).n

∂END(η, τ)

∂τ
.δτ = −

∫

Ω

k(x) (∇u1(η) −∇u2(τ))∇H2(δτ)

= −

∫

Γu

(u1(η) − u2(τ)) .k(x)∇H2(δτ).n because∇H2(δτ).n = 0 onΓm

∂END(η, τ)

∂τ
.δτ = 0 ∀δτ =⇒ u1(η) − u2(τ) = K because

∫

Γu

k(x)∇H2(δτ).n = 0

=⇒ (S̃1η − Iτ) = −R1(T ) + R2(Φ) +KTherefore the optimality 
ondition is equivalent to the interfa
ial equation de�nedin the 
ase 1 of the Lemma 3.1:
[
−S̃1 I

I −S2

]{
η

τ

}
=

{
X1

X2

}

3.3. The 
ase α = β = +∞This 
ase 
orrespond to the so-
alled Cau
hy-Poin
ar-Steklov method, see Quarteroniet al [21℄ and Ben Belga
em et al [9℄. The unknown boundary 
ondition on Γu is theDiri
hlet one denoted by τ . The mixed boundary value problems de�ned by (23) and(24) be
ome:




∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
wo1 = τ on Γu

and





∇.k(x)∇w∗
1 = 0 in Ω,

w∗
1 = T on Γm,

w∗
1 = 0 on Γu

(43)




∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
wo2 = τ on Γu

and





∇.k(x)∇w∗
2 = 0 in Ω,

k(x)∇w∗
2.n = Φ on Γm,

w∗
2 = 0 on Γu

(44)Then Hi for i = 1, 2 are fun
tion of τ only. The Cau
hy problem (1) is solved, if andonly if ∇u1.n = ∇u2.n on Γu whi
h is the se
ond optimality 
ondition de�ned in 2.2,the �rst one is satis�ed by the de�nition of τ .Lemma 3.5. The �rst optimality 
ondition of the fun
tional ED reads:
S(τ) = (S1 − S2)τ = X2 = −k(x)∇R1(T ).n+ k(x)∇R2(Φ).n
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hy problem for a linear ellipti
 PDE: a review14Proof. Let us re
all that ED depends only on the variable τ :
ED(τ) =

1

2

∫

Ω

k(x) (∇u1(τ) −∇u2(τ)) (∇u1(τ) −∇u2(τ))

∂ED(τ)

∂τ
.δτ =

∫

Ω

(∇u1(τ) −∇u2(τ)) (∇H1(δτ) −∇H2(δτ)) (45)
=

∫

Ω

(∇u1(τ) −∇u2(τ)) .∇H1(δτ) −

∫

Ω

(∇u1(λ) −∇u2(λ)) .∇H2(δτ)

=

∫

∂Ω

(∇u1(τ) −∇u2(τ)) .n.H1(δτ) −

∫

∂Ω

(u1(τ) − u2(τ)) .∇H2(δτ).none has: ∫

Γu

(u1(τ) − u2(τ)) .∇H2(δτ).n = 0 because u1 − u2 = 0

∫

Γm

(u1(τ) − u2(τ)) .∇H2(δτ).n = 0 because ∇H2(δτ).n = 0

∫

Γm

(∇u1(τ) −∇u2(τ)) .n.H1(δτ) = 0 because H1(δτ) = 0Then:
∂ED(τ)

∂τ
.δτ =

∫

Γu

(∇u1(τ) −∇u2(τ)) .n.H1(δτ)

∂ED(τ)

∂τ
.δτ = 0 ∀δτ =⇒ (∇u1(τ) −∇u2(τ)) .n = 0

=⇒ ∇u1.n = ∇u2.n

=⇒ (S1 − S2)τ = X2 = −k(x)∇R1(T ).n+ k(x)∇R2(Φ).nTherefore the optimality 
ondition is equivalent to the interfa
ial equation de�nedin the 
ase 3 of the Lemma 3.1:
(S1 − S2)τ = X2.3.4. The 
ase α = β = 0This 
ase 
orresponds to the so-
alled Neumann to Neumann Steklov-Poin
ar method.The unknown boundary 
ondition on Γu is the Neumann one denoted by η. The mixedboundary value problems de�ned by (23) and (24) be
ome:






∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n = η̄ on Γu

and






∇.k(x)∇w∗
1 = 0 in Ω

w∗
1 = T on Γm

k(x)∇w∗
1.n = − 1

|Γu|

∫
Γm

Φ on Γu

(46)
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




∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
k(x)∇wo2.n = η̄ on Γu

and






∇.k(x)∇w∗
2 = 0 in Ω,

k(x)∇w∗
2.n = Φ on Γm

k(x)∇w∗
2.n = − 1

|Γu|

∫
Γm

Φ on Γu

(47)with
η̄ = η −

1

| Γu |

∫

Γu

ηHere the �elds Hi for i = 1, 2 are fun
tion of η̄ only. The following supplementary
ondition is ne
essary in this 
ase:
∫

Γm

Φ +

∫

Γu

η = 0The Cau
hy problem (1) is solved, if and only if u1 = u2 + K on Γu whi
h is the �rstoptimality 
ondition de�ned in 2.2, the se
ond one is satis�ed by the de�nition of η.Lemma 3.6. The �rst optimality 
ondition of the fun
tional EN reads:
Sη = (S̃2 − S̃1)η = X1 = R1(T ) −R2(Φ) −KProof. In this 
ase the fun
tion depends only on the variable η
EN(η) =

1

2

∫

Ω

k(x) (∇u1(η) −∇u2(η)) (∇u1(η) −∇u2(η))The optimality 
ondition is then:
∂EN (η)

∂η
.δη =

∫

Ω

k(x) (∇u1(η) −∇u2(η)) (∇H1(δη) −∇H2(δη)) (48)
=

∫

Ω

k(x) (∇u1(η) −∇u2(η)) .∇H1(δη) −

∫

Ω

k(x) (∇u1(η) −∇u2(η)) .∇H2(δη)

=

∫

∂Ω

k(x) (∇u1(η) −∇u2(η)) .n.H1(δη) −

∫

∂Ω

(u1(η) − u2(η)) .k(x)∇H2(δη).nSin
e H1(δη) = 0 on Γm, ∇u1(η).n = ∇u2(η).n on Γu and k(x)∇H2(δη).n = 0 onΓm:
∂EN (η)

∂η
.δη = −

∫

Γu

(u1(η) − u2(η)) k(x)∇H2(δη).n = −

∫

Γu

(u1(η) − u2(η)) .δη̄

∂EN (η)

∂η
.δη = 0 ∀ δη̄ =⇒

∫

Γu

(u1(η) − u2(η)) .δη̄ = 0 (49)
=⇒ u1(η) − u2(η) = K because

∫

Γu

δη̄ = 0

=⇒ (S̃2 − S̃1)η = X1 = R1(T ) −R2(Φ) −K (50)Therefore the optimality 
ondition is equivalent to the interfa
ial equation de�nedin the 
ase 2 of the Lemma 3.1:
(S̃2 − S̃1)η = X1Remark that the 
lassi
al Neumann to Neumann pre
onditioner is re
overed.
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hy problem for a linear ellipti
 PDE: a review163.5. The 
ase: 0 < α = β <∞This 
ase 
orrespond to the Diri
hlet to Robin operator used in the domainde
omposition �eld. Let υ be the unknown data on Γu. The mixed boundary valueproblems de�ned by (23) and (24) be
ome:




∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n + αwo1 = υ on Γu

and 



∇.k(x)∇w∗
1 = 0 in Ω

w∗
1 = T on Γm

k(x)∇w∗
1.n+ αw∗

1 = 0 on Γu





∇.k(x)∇wo2 = 0 in Ω

k(x)∇wo2.n = 0 on Γm
k(x)∇wo2.n + αwo2 = υ on Γu

and 




∇.k(x)∇w∗
2 = 0 in Ω

k(x)∇w∗
2.n = Φ on Γm

k(x)∇w∗
2.n+ αw∗

2 = 0 on ΓuThe Cau
hy problem (1) is solved, if and only if u1 = u2 + K on Γu whi
h is the�rst optimality 
ondition de�ned in 2.2, the se
ond one is satis�ed by the de�nition of
υ. Here K = 0.Lemma 3.7. The �rst optimality 
ondition of the fun
tional Eα reads::

(
S̃2 − S̃1

)
υ = X1Proof. The proof follows the same steps as that of above Lemma. In this 
ase thefun
tion depends on υ = η + ατ :

Eα(υ) =
1

2

∫

Ω

k(x) (∇u1(υ) −∇u2(υ)) (∇u1(υ) −∇u2(υ))

∂Eα(υ)

∂υ
.δυ =

∫

Ω

k(x) (∇u1(υ) −∇u2(υ)) (∇H1(δυ) −∇H2(δυ))

=

∫

∂Ω

k(x) (∇u1(υ) −∇u2(υ)) .n.H1(δυ) − (u1(υ) − u2(υ))k(x)∇H2(δυ).nSin
e H1(δυ) and ∇H2(δυ).n = 0 on Γm then:
∫

Γm

k(x) (∇u1(υ) −∇u2(υ)) .n.H1(δυ) − (u1(υ) − u2(υ))∇H2(δυ).n = 0Then:
∂Eα(υ)

∂υ
.δυ =

∫

Γu

k(x) (∇u1(υ) −∇u2(υ)) .n.H1(δυ) − (u1(υ) − u2(υ))k(x)∇H2(δυ).nUsing the Robin boundary 
ondition:
k(x) (∇u1(υ) −∇u2(υ)) .n = −α(u1(υ) − u2(υ))the above optimality 
ondition be
omes:

∂Eα(υ)

∂υ
.δυ = −

∫

Γu

(u1(υ) − u2(υ)) (αH1(δυ) + ∇H2(δυ).n) ∀ δυ
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hy problem for a linear ellipti
 PDE: a review17Using the Lemma 3.3 for α = β, we denote by ψ and ξ respe
tively H1(δυ) and
∇H2(δυ).n, then we 
an state that:
∂Eα(υ)

∂υ
.δυ = 0 ∀ δυ =⇒ u1(υ) − u2(υ) = 0 on Γu∀ (ψ, ξ) ∈ H−1/2(Γu) ×H1/2(Γu)

=⇒
(
S̃2 − S̃1

)
υ = R1(T ) −R2(Φ)Therefore the optimality 
ondition is equivalent to the interfa
ial equation de�nedin the 
ase 4 of the Lemma 3.1:(

S̃2 − S̃1

)
υ = X1Remark that the 
ase α = β = 0 is found by setting in the above optimality 
ondition

α = 0.3.6. Alternating Dire
tion Iterative methodWe 
onsider the Alternating Dire
tion Iterative (ADI) method, whi
h generates twosequen
es of tra
es υk1 and υk2 build with the tra
es of uk1|Γu
and uk2|Γu

respe
tively.Consider an initial guess υ0
2; then, for k ≥ 0 we look for uk+1

1 and then uk+1
2 su
hthat: 




∇.k(x)∇uk+1
1 = 0 in Ω

uk+1
1 = T on Γm
k(x)∇uk+1

1 .n+ αuk+1
1 = υk+1

1 on Γu

(51)with υk+1
1 = k(x)∇uk2.n+ αuk2.





∇.k(x)∇uk+1
2 = 0 in Ω

k(x)∇uk+1
2 .n = Φ on Γm

k(x)∇uk+1
2 .n+ βuk+1

2 = υk+1
2 on Γu

(52)with υk+1
2 = k(x)∇uk+1

1 .n + βuk+1
1 .Using the operators S1, S̃1, S2 and S̃2 de�ned above, it is easy to show that it isa �xed-point iteration: υk+1

2 = (S1 + βS̃1)υ
k+1
1 , then using the expression of υk+1

1 weobtain υk+1
2 = (S1 + βS̃1)(S2 + αS̃2)υ

k
2 . Then:

υk+1
2 = Ŝαβυ

k
2 , k ≥ 0where the �xed point map is given as follows:

Ŝαβ : H1/2(Γu) −→ H1/2(Γu)

υk2 7−→ Ŝαβυ
k
2 = υk+1

2with: Ŝαβ = (S1 + βS̃1)(S2 +αS̃2). The KMF iterative method outlined above happenswhen α = 0 and β = ∞ and then ŜND = S̃1S2. We 
an then 
on
lude that the KMFmethod 
an be interpreted as �xed point resolution of an interfa
e problem υ = Ŝαβυ.In this se
tion, we showed that all the above methods are equivalent, from the
ontinuous point of view. However, we expe
t that their numeri
al behavior will bedi�erent, whi
h will be addressed in the next se
tions.
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hy problem for a linear ellipti
 PDE: a review184. Hadamard exampleAs pointed out previously, at the dis
rete level the interfa
ial operators outlined inse
tion 3 are expe
ted to be di�erently 
onditioned. The aim of this se
tion is to givean analyti
al taste to what goes on for the 
ondition numbers.Let us 
onsider an annular domain with an outer rm = 1 and an inner ru ≡ r < 1radii, k(x) = 1 and the polar 
oordinates system. The overspe
i�ed data are availableon the external boundary Γm, whereas the la
king data are on the inner boundary Γu.The analyti
al solution of the problems (4) and (5) take the general form of separatevariables fun
tions:
H1(υ) =

∞∑

n=1

(rn − r−n)g1(nθ) and H2(υ) =

∞∑

n=1

(rn + r−n)g2(nθ)respe
tively, whi
h will be used to 
al
ulate the eigenvalues. The eigenvalues of Sn1 , Sn2 ,
S̃n1 and S̃n2 are then given by the following sequen
e:

λn1 =
n(r2n + 1)

n(r2n + 1) − αr(r2n − 1)
(53)

λn2 =
n(r2n − 1)

n(r2n − 1) − βr(r2n + 1)
(54)

λ̃n1 =
−r(r2n − 1)

n(r2n + 1) − αr(r2n − 1)
(55)

λ̃n2 =
−r(r2n + 1)

n(r2n − 1) − βr(r2n + 1)
(56)
orresponding to the eigenve
tors gn1 = cos(nθ) and gn2 = sin(nθ), respe
tively. Theinterfa
ial operator Snαβ de�ned in the Lemma 3.1 
an be expressed as follows for the

n-rank:
Snαβ =

[
λ̃n2 − λ̃n1 βλ̃n2 − αλ̃n1
λn1 − λn2 αλn1 − βλn2

] (57)For the spe
ial values of parameters α and β the above operator be
omes:
SnND =

[
r
n
( r

2n−1
r2 n+1

) 1

1 n
r
( r

2n−1
r2n+1

)

] (58)
SnNβ =




r
n

4nr2n+βr4n+1−βr
(−nr4n+βr4n+1+2βr2n+1+n+βr)

β(r2n+1+r)
−r2nn+n+βr2n+1+βr

β(r2n+1+r)
−r2nn+n+βr2n+1+βr

βn(r2n−1)
−r2nn+n+βr2n+1+βr


 (59)

SnDβ =




r2n+1+r
−r2nn+n+βr2n+1+βr

n(r2n−1)
−r2nn+n+βr2 n+1+βr

n(r2n−1)
−r2nn+n+βr2n+1+βr

n
r

(−r4nn+4βr2n+1+n)
(r4nn−2 r2nn−r4n+1β+n+βr)


 (60)

SnD = −
n

r

(
4r2n

r4n − 1

) (61)
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SnN = −

r

n

(
4r2n

r4n − 1

) (62)
Snα = 4

r2n+1n

−n2r4n + 2r4n+1αn+ n2 + 2nαr − α2r4n+2 + α2r2
(63)Consider the one �eld operators: SnN , SnD and Snα, their asymptoti
 developmentwhen n −→ ∞ shows that SnN ≈ − 4

n
r2n+1 , SnD ≈ −4nr2n−1 and Snα ≈ 4

n
r2n+1. Then,one 
an dedu
es that SnD and Snα, whi
h have the same behavior, de
rease faster than

SnD. The operators whi
h depend on two unknown �elds, tend toward the followingexpressions when n −→ ∞:
SnND ≈

[
− r
n

1

1 −n
r

]
; SnDβ ≈

[
r
n

−1

−1 n
r

]
; SnNβ ≈

[
r2

n2

r
n

r
n

−1

] (64)From these expressions one 
an dedu
es that the �rst eigenvalue of ea
h operatorvanishes qui
kly. The se
ond eigenvalues of SnND and SnDβ tend toward n
r
and −n

r
,respe
tively. However, the se
ond eigenvalues of SnNβ tend toward −β. the operators

SnND and SnDβ have the same behavior when n −→ ∞. Then the operator SnNβ hasthe best behavior. The same results are obtained for the Hadamard example on thesquare. The �gures 1 and 2 show the evolution of the 
ondition number of the single�eld operators and the two �elds operators, respe
tively. They show the same behaviorfor high frequen
ies for all these methods. These analysis give an idea on the behaviorof ea
h operator, but it is not su�
ient to de
ide whi
h method is better in an absoluteway. In fa
t, others parameters su
h geometri
 and Cau
hy data singularities, or theunknown data et
... 
ontrol the behavior of ea
h operator.5. The 
onstitutive law gap fun
tionals: adjoint �elds and derivativesevaluationThe aim of this se
tion is the evaluation of the derivatives of the fun
tional with respe
tto (η, τ). Let us 
onsider u1 and u2 as de�ned in the subse
tion 3.3. Without forgettingtheir dependen
e on the �elds (η, τ) ∈ H−1/2(Γu) × H1/2(Γu), the energy error 
an besimply expressed as follows:
Eα,β(η, τ) =

1

2

∫

Ω

k(x) (∇u1 −∇u2) . (∇u1 −∇u2) (65)We 
onsider the following spa
es and �elds:
V1 = {v ∈ H1(Ω)/v|Γm

= T}

V 0
1 = {v ∈ H1(Ω)/v|Γm

= 0}with (u1, u2, v1, v2) ∈ V1 ×H1(Ω)×V 0
1 (Ω)×H1(Ω)). Then, we denote by J1 and J2 theweak formulations of the problems de�ned by (4) and (5).

J1(η, τ) =

∫

Ω

k(x)∇u1∇v1 −

∫

Γu

v1k(x)∇u1.n (66)
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Figure 2. Condition number of two �eld methods
J2(η, τ) =

∫

Ω

k(x)∇u2∇v2 −

∫

Γm

Φv2 −

∫

Γu

v2k(x)∇u2.n (67)To evaluate the derivative we 
onsider the following Lagrangian:
Lα,β(u1, u2, v1, v2; η, τ) = Eα,β(η, τ) − J1(η, τ) −J2(η, τ) (68)
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 PDE: a review21For any (η, τ) ∈ H−1/2(Γu ×H1/2(Γu) and the above de�ned �eld v1 and v2 it follows:
Eα,β(η, τ) = Lα,β(u1, u2, v1, v2; η, τ) (69)The gradient of Eα,β 
an be obtained from the partial derivative of Lα,β with respe
t to

η and τ .
∂Eα,β(η, τ)

∂η
.δη = −

∫

Γu

(v1 + v2) .δη (70)
∂Eα,β(η, τ)

∂τ
.δτ = −

∫

Γu

(αv1 + βv2) .δτ (71)where v1 and v2 are solution of :





∇k(x)∇v1 = 0 in Ω

v1 = 0 on Γm
k(x)∇v1.n+ αv1 = −k(x)(∇u1 −∇u2).n on Γu

(72)




∇k(x)∇v2 = 0 in Ω

k(x)∇v2.n = k(x)∇u1.n− Φ on Γm
k(x)∇v2.n+ βv2 = k(x)(∇u1 −∇u2).n on Γu

(73)Remark that, as shown for the dire
t problem (4) and (5), the boundary 
onditionsde�ned on Γu of the adjoint problems degenerate when the parameters α and β tendtoward to 0 and ∞ as shown in the following table:
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Table 2. Adjoint �eld boundary 
onditions on Γu as fun
tion of the parameters α and β

α and β Variables BC on Γu DerivativesSingle �eld approa
hes

α = 0 η k(x)∇v1.n = 0 ∇ηEα,β.δη = −
∫

Γu
v2δη

β = 0 k(x)∇v2.n = 0

α = ∞ τ v1 = 0 ∇τEα,β .δτ =
∫
Γu
k(x)∇v2.nδτ

β = ∞ v2 = 0

0 < α = β <∞ υ = η + ατ k(x)∇v1.n+ αv1 = −k(x)∇(u1 − u2).n ∇υEα,β.δυ = −
∫
Γu

(v1 + v2)δυ

k(x)∇v2.n+ αv2 = k(x)∇(u1 − u2).nTwo �elds approa
hes

α = 0 η k(x)∇v1.n = −k(x)∇(u1 − u2).n ∇ηEα,β.δη = −
∫

Γu
v1δη

β = ∞ τ v2 = 0 ∇τEα,β .δτ =
∫
Γu
k(x)∇(v1 + v2).nδτ

α = 0 η k(x)∇v1.n = −k(x)∇(u1 − u2).n ∇ηEα,β.δη = −
∫

Γu
(v1 + v2)δη

0 < β <∞ τ k(x)∇v2.n+ βv2 = k(x)∇(u1 − u2).n ∇τEα,β .δτ =
∫
Γu
k(x)∇(v1 + v2).nδτ

α = ∞ η v1 = 0 ∇ηEα,β.δη = −
∫

Γu
v2δη

0 < β <∞ τ k(x)∇v2.n+ βv2 = k(x)∇(u1 − u2).n ∇τEα,β .δτ =
∫
Γu
k(x)∇(v2 − u1 + u2).nδτ

0 < α 6= β <∞ η k(x)∇v1.n+ αv1 = −k(x)∇(u1 − u2).n ∇ηEα,β.δη = −
∫

Γu
(v1 + v2)δη

τ k(x)∇v2.n+ βv2 = k(x)∇(u1 − u2).n ∇τEα,β .δτ =
∫
Γu
k(x)(∇v1 + ∇v2).nδτ
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hy problem for a linear ellipti
 PDE: a review236. Numeri
al examplesThe implementation of the above methods was 
arried out using the �nite elementmethod (FEM). Hen
e, the derivation of the adjoint state is preferably established onthe basis of the FEM-dis
retized problem. The advantage of this fully dis
rete approa
his that the exa
t gradient of the dis
rete obje
tive fun
tion is obtained; moreover, it iseasily implemented in existing FEM-softwares. In referen
es [6℄ and [7℄, the FEM-dis
retized formulation is detailed for the 
ase where α = 0 and β = ∞.In order to show the performan
e of the aforementioned methods, we 
hoose twoexamples for whi
h the methods behave di�erently.6.1. First example.
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Figure 3. Geometry and boundaries of the studied domainWe 
onsider a two-dimensional domain Ω and assume that the boundary Γ of thisdomain is divided into two 
omplementary parts Γm and Γu as shown on the �gure 3.Note that be
ause of the 
orner in the Γu part of the boundary, the problem addressedhere is quite sti� as singularities appear near the point A. Furthermore at this point,there is a jump of the outer normal to the domain and then a jump of the normalderivatives of the solution �elds.Figures 4 and 5 show the identi�ed Diri
hlet and Neumann data. They are
ompared with the exa
t data. These results are obtained by using the same stopping
riteria for the energy-like fun
tional. All the methods 
onverge with approximately
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Figure 4. Exa
t and identi�ed Diri
hlet boundary 
ondition on Γu
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Figure 5. Exa
t and identi�ed Neumann boundary 
ondition on Γuthe same number of iterations during the minimization pro
ess. Unlike the example ofHadamard, we observe here that the single �eld method with α = β = ∞ gives theworst result, whereas other methods give approximately the same (satisfa
tory) result.
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tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review256.2. Se
ond example.This example has been already addressed in [2℄, it deals with a pra
ti
al 
ase
orresponding to strati�ed inner �uid. We 
onsider therefore the re
onstru
tion oftemperature and �ux in a pipeline of in�nite length. We assume that the temperaturedoes not depend on the longitudinal 
oordinate. We deal, therefore with a twodimensional problem as shown on �gure 6. The overspe
i�ed boundary 
onditions used
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Figure 6. Geometri
 data of the strati�ed inner �uid problemin this example are generated by the �nite element 
omputation of a Robin problemwith the following data:
• a 
onstant thermal 
ondu
tivity k = 17W/m/◦C,
• on Γm, Text = 20 ◦C with the Robin's 
oe�
ient αc = 12W/m2/◦C,
• on Γu, Tint = 50 ◦C on the lower half 
ir
le of Γu and Tint = 250 ◦C on the upperhalf one with the Robin's 
oe�
ient αu = 1000W/m2/◦C.The 
ross se
tion Ω is an annular thi
k domain with radii r1 = 1 and r2 = 0.5. Tore
over the temperature and the �ux with a

ura
y, a mesh with 64 nodes on Γuis used. Trust Region Method of Matlab Optimization Toolbox [20℄ is used here tosolve the optimization problem asso
iated to ea
h method. The same stopping 
riteria,termination toleran
e on the fun
tion value set to 10−6W ◦C/m is imposed for allmethods. Ea
h one 
onverges when the fun
tion value variation is less than the stopping
riteria. Figures 7 and 8 show the re
onstru
ted temperature and �ux, and even in this
ase where the data is singular (dis
ontinuity), they are in agreement with the a
tualones, whatever the method. However, there are di�eren
es in the 
onvergen
e pro
essof these methods, the number of iterations needed to rea
h the stopping 
riteria is very
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Figure 7. Exa
t and identi�ed Neumann boundary 
ondition on Γu
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 PDE: a review27Table 3. Number of iterations of the optimization pro
ess for ea
h methodFun
tional ENN Eα END EDD EαβFun
tional value 18.24 10−3 5.62 10−3 8.81 10−3 5.20 10−3 5.76 10−3Number of Iterations 233 215 375 1214 1460Number of solved BVP 699 860 1500 3642 5840di�erent from one method to another, see table 3. Hen
e, 
omputational 
ost, whi
hdepends on the number of BVP to solve, may also be a 
riterion for 
hoosing a method7. Con
lusionIn this paper we proposed a general method based on minimizing 
onstitutive lawgap fun
tional in order to solve the Cau
hy problem for a linear ellipti
 PDE. Thisfun
tional measures the gap between the solutions of two well-posed problems. Ea
h ofthese problems has one of the Cau
hy data as known boundary 
ondition: Diri
hlet orNeumann, and on the boundary where the data are la
king, an unknown Robin boundary
onditions η + ατ and η + βτ are imposed, respe
tively. The data η and τ have to beidenti�ed and (α, β) are positives s
alars parameters 
ontrolling the fun
tional behavior.This approa
h generalizes that presented in Andrieux et al [2℄ and en
ompassesvarious methods proposed in the literature. A

ording to the values of α and β whenthey tend toward 0 or ∞, there are two groups of methods: the �rst group gathers thosewhi
h depends on only one unknown data (η, τ or η + ατ). The se
ond group gathersthose whi
h depend on two unknown data η and τ . Then, the equivalen
e betweenEuler-Lagrange 
onditions for the 
onstitutive law fun
tionals and interfa
ial operatorsusually used in the Domain De
omposition �eld is shown. Using the Hadamard examplewe analyze analyti
ally the behavior of these operators as fun
tions of the parameters(α, β). Then, the derivatives of the fun
tional are given using adjoint �elds whi
h areparametrized by the same parameters.Finally, numeri
al examples are given to illustrate the behavior of these methodswhi
h are not the only fun
tion of the parameters (α, β) but also of the regularity of theCau
hy data and the overall geometry of the domain. Although, they are all equivalentfrom 
ontinuous point of view, we 
an not 
on
lude de�nitely that one method, whi
h
orresponds on a 
hoi
e of the parameters pair (α, β), is numeri
ally more e�
ient thananother. The 
hoi
e between them depends mainly on the 
omplexity of the problemfrom a geometri
al point of view and singularity data. The amount of data to identifyin 
omparison to that known, the number of variables in the minimization problem, arealso important 
riteria for sele
ting the method.



Constitutive law gap fun
tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review288. Referen
e[1℄ Andrieux S. and Baranger T. N., Energy methods for Cau
hy problems for evolution equations,6th International Conferen
e on Inverse Problems in Engineering: Theory and Pra
ti
e, Journalof Physi
s: Conferen
e Series 135 (2008) 012007, doi:10.1088/1742-6596/135/1/012007.[2℄ Andrieux S., Baranger T. N. and Ben Abda A. 2006, Solving Cau
hy problems by minimizing anenergy-like fun
tional Inverse Problems 22 115-133.[3℄ Andrieux S., Ben Abda A. and Baranger T. N. 2005, Data 
ompletion via an energy error fun
tionalC.R. Me
anique 333 171-177.[4℄ Azaiez M., Ben Belga
em F., El Fekih H., (2006), On Cau
hy�s Problem. II. Completion,Regularization and Approximation, Inverse Problems, 22, 1307-1336.[5℄ Baranger T.N. and Andrieux S., (2009), Data 
ompletion for linear symmetri
 operators as aCau
hy problem: an e�
ient method via energy like error minimization, Vietnam Journal ofMe
hani
s, VAST, 31, pp 247-261.[6℄ Baranger T. N. and Andrieux S., 2008, An Optimization Approa
h to solve Cau
hy Problem inlinear elasti
ity, Journal of Stru
tural and Multidis
iplinary Optimization, 35 141-152.[7℄ Baranger T. N. and Andrieux S., 2008, An energy error-based method for the resolution ofthe Cau
hy problem in 3D linear elasti
ity , Computer Methods in Applied Me
hani
s andEngineering 197 (9-12), 902-920.[8℄ Baumeister J. and Leitao A. 2002, On iterative methods for solving ill-posed problems modeledby partial di�erential equation J. of Inverse and Ill-posed Problems, 9 13-30.[9℄ Ben Belga
em F., El Fekih H., 2006, On Cau
hy�s Problem. I. A Variational Steklov-Poin
are,Theory, Inverse problems, 21, 1915-1936.[10℄ Ben Belga
em, F., 2008,Why is the Cau
hy�s Problem Severely Ill-posed? Inverse Problems, 23,823-836.[11℄ Chakib, A. and Na
haoui, A. ,2006, Convergen
e analysis for �nite element approximation to aninverse Cau
hy problem, Inverse Problems 22 1191-1206.[12℄ Cimeti�²re A., Delvare F., Jaoua M. and Pons F. 2001, Solution of the Cau
hy problem usingiterated Tikhonov regularization Inverse Problems 17 553-570.[13℄ Es
riva X., Baranger T. N. and Hariga-Tlatli N., 2007, Leaks identi�
ation in porous media bysolving Cau
hy problem, CRAS M
anique, 335 (7), 401-406.[14℄ Es
riva X. and Baranger T. N., 2008, Leaks identi�
ation on a Dar
y model by solving Cau
hyproblem, 6th International Conferen
e on Inverse Problems in Engineering: Theory and Pra
ti
e,Dourdan (Paris), Fran
e - June 15-19, 2008.[15℄ Fursikov A. V. 2000 Optimal 
ontrol of distributer systems: Theory and appli
ations Translationsof mathemati
al Monograph 187.[16℄ Hadamard J. 1953 Le
tures on Cau
hy's Problem in Linear Partial Di�erential Equation DoverNew York USA.[17℄ Hariga-Tlatli N., Baranger T., Erhel J., 2010, Mis�t fun
tional for re
overing data in 2DEle
troCardioGraphy problems, Engineering Analysis with Boundary Elements 34 492-500.[18℄ Kozlov V. A. , Maz'ya V. G. and Fomin A.V. 1991 An iterative method for solving the Cau
hyproblem for ellipti
 equations Comput. Meth. Math. Phys., Vol. 31, N1, 45-52.[19℄ P.L. Lions, 1990, On the Swartz alternating method III: a variant for non-overlapping subdomains;Third International Symposium on Domain De
omposition Methods for Partial Di�erentialEquations, Pages 202-231. SIAM, Philadelphia.[20℄ Matlab Software Copyright 1984-2000 The MathWorks, In
.[21℄ Quarteroni A. and Valli A. 1999,Domain De
omposition Methods for Partial Di�erentiel Equations,Oxford University Press.[22℄ Tikhonov A. N. and Arsenin V. Y. 1977 Solution to Ill-posed Problems Winston-Wiley, New-York.



Constitutive law gap fun
tionals to solve Cau
hy problem for a linear ellipti
 PDE: a review299. AnnexeLemma 9.1. Consider (ψ, ξ) ∈ H1/2(Γu) × H−1/2(Γu), then there exists a pair
(̟φ, ̟ξ) ∈ H−1/2(Γu)

2 su
h that:





∇.k(x)∇wo1 = 0 in Ω

wo1 = 0 on Γm
k(x)∇wo1.n + αwo1 = ̟ψ on Γu

and 




∇.k(x)∇w0
2 = 0 in Ω

k(x)∇w0
2 = 0 on Γm

k(x)∇w∗
2.n + βw0

2 = ̟ξ on Γuwith w0
1 = ψ and k(x)∇w0

2.n = ξ on Γu.Proof. The �elds w0
i for i = 1, 2 are 
hara
terized by the following variational properties:

∫

Ω

k(x)∇w0
1.∇w +

∫

Γu

αw0
1w =

∫

Γu

̟ψw, ∀w ∈ H1(Ω), w = 0 on Γm

∫

Ω

k(x)∇w0
2.∇w +

∫

Γu

βw0
2w =

∫

Γu

̟ξw, ∀w ∈ H1(Ω)We 
onsider the �elds W 0
1 and W 0

2 , whi
h are solution of the following well-posedproblems:
∫

Ω

k(x)∇W 0
1 .∇w =

∫

Γu

k(x)∇W 0
1 .nw, ∀w ∈ H1(Ω) and w = 0 on Γmwith W 0

1 = ψ on Γu and W 0
1 = 0 on Γm.∫

Ω

k(x)∇W 0
2 .∇w =

∫

Γu

ξw, ∀w ∈ H1(Ω)with k(x)∇W 0
2 .n = ξ on Γu, k(x)∇W 0

2 .n = 0 on Γm and ∫
Γu
ξ = 0. Assume that

̟ψ = (k(x)∇W 0
1 .n+ αW 0

1 and ̟ξ) = k(x)∇W 0
2 .n + βW 0

2 , we obtain:
∫

Ω

k(x)∇W 0
1 .∇w = −

∫

Γu

αW 0
1w +

∫

Γu

̟ψw, ∀w ∈ H1(Ω), w = 0 on Γu.

∫

Ω

k(x)∇W 0
2 .∇w = −

∫

Γu

βW 0
2w +

∫

Γu

̟ξw, ∀w ∈ H1(Ω).This shows that the �elds W 0
i and w0

i for i = 1, 2 are equal. Then, we havedetermined the values of the pair (̟φ, ̟ξ), whi
h ensure that solutions to Robinproblems take the �xed values ψ and ξ of the �eld and the �ux respe
tively on theboundary Γu.


