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ABSTRACT sis but the method could easily be extended to group analysis

ith th ition of l.
Spatial Independent Components Analysis (ICA) is increas\fvIt the addition of a group mode

ingly used in the context of functional Magnetic Resonance
Imaging (fMRI) to study cognition and brain pathologies.

Salient features present in some of the extracted Indemnd% A ised | . lqorithm. A hitd
Components (ICs) can be interpreted as brain networks, bu? IS an unsupervised learning aigorithim. AS such, 1t 0oes
ot provide a framework for statistical-significance tegti

the segmentation of the corresponding regions from ICs i ;
still ill-controlled. Here we propose a new ICA-based pro- ut can be used to analyze fMRI data without external corre-

cedure for extraction of sparse features from fMRI dataset&l'ates’ _SUCh as In resting state. W_e introduce a model of the
Specifically, we introduce a new thresholding procedurée tha'vIRI signal _based on the assumptlon.of Very sparse sources.
controls the deviation from isotropy in the ICA mixing model Generative model. In the obsgrvqtlons from the scanner
Unlike current heuristics, our procedure guarantees actexa YHZ the upderlylng BOLD dynamics is confognded by obser-
possibly conservative, level of specificity in feature dete vation noisef". As with most fMRI ICA analysis procedures,

tion. We evaluate the sensitivity and specificity of the meth we assume tha_t the signal of interest spans (_)nly a sub-space

on synthetic and fMRI data and show that it outperformsOf the observatlon space. C;omponeﬁ?@pz_annmg t.hls Sub-

state-of-the-art approaches. space can be estimated using probabilistic principal compo
nent analysis (PCA)[]2], which assumPEsto be Gaussian-

Index Terms— ICA, fMRI, ROC, sparse models. distributed, and lying in a subspace orthogonaCto

2. SIGNAL MODELING AND ESTIMATION

Y =WC+F, 1)
1. INTRODUCTION

whereY andF are (nime steps "tvoxels) Matrices, the rows of

In neuro-imaging, ICA is the most popular method to ex-which form pattern vectorsC is the (ncomponents voxels) Pat-
plore the spatial correlation structure of fMRI signalsn®0  tern matrix of the retained principal components ads the
extracted ICs match well-known brain networks I, 2] andmatrix of their loadings in the observed signal. In this pape
have been shown to correspond to units targeted by neurgre do not discuss estimation of the sub-space of interest, bu
degenerate diseas¢h [3]. These sources form spatial n@ps tfocus on recovering sparse brain-activity sources f@m
represent sparse networks of brain activity: only a smal pe  \We model the pattern€ as generated by a set of sources
centage of the voxels observed are active in a given networl | confounded by additive noide, and observed as a linear
Daubechiet al. [ have argued that this sparsity is key to mixture in the sub-space spanned®y
the success of ICA in the context of fMRI. When applied to
data generated from sparse sources, ICA amounts to sparse C=MB (2) B=A+E (3)
coding [$]. It has enjoyed more success in the neuro-imaging . .
community, probably because it groups together correlate%‘ is an orthogonal mixing matrix,A, B, and E are
features into components interpreted as brain networks. Cul7:componentsivoxels) Matrices. UnlikeF, E is in the same
rent state-of-the-art ICA models for fMRI (MELODICﬂ[Z]) sub-space as the brain sources. In addmon, we assume that
apply univariate mixture models to ICs to separate sigioahfr the true sources correqund to the marginalsthat are
noise and recover the sparse structure. sparse: most of theT coefficients Af, are zeros. A_s a result,

In this paper, we present a multivariate model of sparséhfa histogram Oai is strongly _sup_er—Gaussmn: it has heavy
brain activity and an associated procedure for recoveltieg t tails. If the ampll_tude of the r_10|$ is small compz_ired to the
sparse features with a statistical control of false detestin non-zero coefficients ok, B is also super-Gaussian and can

the presence of noise. We will focus on single-subject analy 1y corresponds to the data from the scanner after slice-tiiinitegpola-
tion and motion correction. In addition, when doing grouglgsis, a normal-
Funding from INRIA-INSERM collaboration. ization procedure is often applied, followed by Gaussiaatiapsmoothing.




be estimated fronC using ICA. We use FastICA, a proce-
dure that selects a basis of the signal sub-space maximizir
non-Gaussianity of the corresponding marginal distrinsi

(. i . ;

If the component®B are observed mixed, the observed a : b ki c
projectionsC; reflect mostly the isotropic noisE and not  Fig. 1. Scatter plot of samples projected in the subspace
the sources of interest that are sparse only in a particular spanned by the two first ICs identified. The density is rep-
basis. This is why the estimation of the mixing model (2)resented by a colormap ranging from black (low density) to
is important for fMRI data analysis, as the marginals on thevhite (high density). The threshold as set by the model with
estimated basis separatefrom the background noigB. p = 10~2 is represented as a light blue circl@) Simulated

Thresholding ICs to control for noise. We assume that data with 9 features total, witR generated from a Gaussian
the values of the non-zero voxels of sourgeare larger than  process withv = 0.15. (b) Same simulations with super-
the standard deviationof E. According to our model, select- Gaussian noise (kurtosis ¢f. (c) fMRI data.
ing voxels specific of the support & amounts to choosing a
thresholdr, to apply on the IC8. ICA estimates particular
directions of the feature space, thus a possible null hygsish amplitude of the noise with a parameter B = A + AE.

H, for ICA is that all directions are equivalent. As a result,We draw a random rotation matrdd to mix the patternd,
the null distribution for the marginald; is given by projec- and apply a Gaussian spatial smoothing of FWHM 2 pixels

tions on random directions of the feature space. to simulation the point spread function of the scanner. Due
r to the smoothing, the noise term is observed as a random
p(A; > 7o|Ho) = wf‘f“fﬁglpﬂw B| > 7.) (4)  Gaussian field with a reduced variance compared to thelinitia

random process. We skto control the variance of this field.

We can sample this distribution directly from the data. In  Inaddition, as itis likely that, in real fMRI settings, ndt a
additionw” B is a linear combination of the random variablesbackground noise can be described by Gaussian processes, we
B,. As the sub-space has been whitened by the PCA, they ajenerate synthetic data with non-Gaussian noise. Forithis,
have a variance of 1. For high dimensions, the central limitddition to the previous Gaussian random fidlg, we gen-
theorem thus states that the distribution.diB is Gaussian erate a super-Gaussian contributﬁﬁb by applying a non-

of variance 1. In this case, the p-value is given by the ire/ersjinear rescaling to a smoothed Gaussian random field. We use
of the cumulative distribution function of a Gaussian psxe the cubic non-linearity that generatgsikynoise with a long-

and the threshold can be set as with a normal null. tailed distribution. The additional noise term is thus spar

A representation of the signal in feature space is giverand not invariant by rotation of the feature space. We add
on Fig.[] for various distributions: synthetic data gereiat it to the signal of interest in the observation basis. We set
from the model exposed above (F[§j. 1), synthetic data withe contributions of both noise terms to control the varé&anc
additional super-Gaussian noise, (Fily. 1b), and fMRI datand kurtosis of the resulting random proce€s:= M A +
(Fig.[Ic). All share a central mode correspondindtm our X (cos § M Eq + sin 6 Eng). This structured noise term vio-
description, that can be approximated as a multivariatesGaulates the noise model of the ICA algorithm and poses thus a
sian process. In addition, for each mixing direction, atédd  challenge to the feature extraction by offsetting the estiom
voxels can be found when moving away from the center. of the mixing matrix, and thus the projection.

Our model is different from most noisy ICA models, as  gpatial maps generated by the simulations are presented
they assume that contribution of the noise to the signal sulyp, Fig.[p. The samples projected in feature space on the
space is small. They account for the noise in the ICA estimas first |Cs are presented on Fig. 1. We apply ICA estima-
tion by correcting the bias it introduces to the whitening an tjon and thresholding as described above. To quantify the
the measures of statistical independerfe [7]. In our modedpecificity and the sensitivity in feature detection, wetplo
noise accounts for a large fraction of the variance in the sigreceijver-operator characteristics on Hib. 4 for Gaussiah a
nal sub-space. super-Gaussian (kurtosis 4) noise. Increasing noise ampli-

tudeo degrades estimation performance, as the central mode

3. SIMULATION STUDY becomes indistinguishable from the outliers we are intetes

in. Performances are slightly degraded by the addition of
We generate synthetic sampla&s from our model with a the super-Gaussian noise. It induces errors in the choice of
known ground truth and noise model. We consider 9 featurethe projection basis, as can be seen on Eig. 1b: in the pro-
A, that is 2D maps (80, 80) pixel large and made of ongected space, sources are not completely unmixed. In addi-
or two rectangles of uniformly-active pixels on a null back-tion, on Tab.[}1, we compare false positive rates to the spec-
ground. We add random noid®generated by a multivariate ified p-value. We find that for Gaussian noise amplitudes up
normal distribution of isotropic variance 1. We control theto o = 0.20 or super-Gaussian noise amplitudesof= 0.15,
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Fig. 2. Simulated data, showing 5 samples out of 9, ibr False positive rate (1 - sensitivity)
generate_:d froma super-Gausslan process avith 0-15_a”d Fig. 4 ROC plot: sensitivity as a function of false posi-
a kurtosis of4. The threshold is set by the model with=" tjye rate for synthetic data using Gaussian and super-@auss

10=2. Top row: obgerved sample¥. Middle row: ICs_ (kurtosis = 4) noise of varying, as well as for fMRI data.
B. Bottom row: estimated sourced, the ground truth is

outlined in light yellow.
that confounds the signal of interest. Thresholded ICs esti

Specified p-value 510_: 1-0~10:j 5-0~10:j mated on the various resampled datasets for one subject are
Gaussiang = .15 4.0~10_2 7.1-10_2 4.0-10_3 matched with the corresponding pseudo ground truth. |]:ig. 3
super-Gaussiam; = .15 | 4.2-10 1.0-10 6.2-10 presents pseudo ground truth and downsampled data. On non-

Gaussiang = .20 | 4.9-.1072 9.4-107% 5.2.1073

super-Gaussiam — 20 | 52102  1310°2  7.9.10~° thresholded ICs, we can see that the level of backgrounénois

Gaussians — 30 | 6.0.10~2 13102 7.4.10-% is indeed higher i.n.ICs learned on downsampled data. V\/.e. run
super-Gaussiam; — .30 | 5.9-1072 1.5.10"% 1.0.1072 .the MELODIC mixing model on t_he ICsto compare sensitiv-
MRIdata | 36102 17102 13102 ity (false negatives) and specificity (false positives).
As seen on the ROC plot (Fiﬂ. 4), average performance on
RI data for the 12 subjects is on par with simulated data.
Good control of false positives can be achieved, but the true
positive rate remains limited. This can be explained by er-
orkors in our pseudo-ground truth. In addition, the false tpasi
| rate is controlled by the specified p-value onlylw2, al-
though to account for errors in the pseudo-ground truth, the
gbserved false positive rate should be corrected by a factor
0.5. With MELODIC'’s mixture model, we specify different
inter-class mixing probability ratios to vary specificitye do
not report on very large or very small ratios as they induce
4. FMRI STUDY non-monotonous thresholding and poor overall performance
Our multivariate thresholding proceeding can achieveebett
We apply our method to fMRI data for 12 subjects at restspecificity/sensitivity trade off MELODIC’s mixture model
from a previous study[[8]. 820 volumes were acquired with  ICs estimated on fMRI data most often display a few
a repetition time (TR) ofi..5s. We run the procedure (ICA salient features related to anatomical regions and may be
analysis and thresholding) for single-subject data on tise fi interpreted as brain networks. On such IC, both our thresh-
40 principal components. For fMRI data, the ground truth isolding procedure and MELODIC’s mixture model extract
not known, so we generate degraded datasets from the origiimilar regions, although our procedure yields fewer small
nal dataset, and consider the latter as a pseudo grounddruthclusters outside of the main segmented areas (seEl Fig.)3, top
guantify error rates. This procedure quantifies consistefic In contrast, some ICs, representative of non-cognitive pro
the estimator in the presence of noise. To generate degradeésses such as blood flow or movement, are very fragmented
datasets while retaining observations of the same braiv+act and diffuse with no region strongly standing out. On these
ity, we use one volume out of 3. The effective TR of the down-Cs, a mixture model fits the null distribution to the center
sampled datasets i55s. This sampling rate is enough to of the histogram, and thus selects large regions, wheraas ou
retain most of the hemodynamic response, convolved by thiaresholding procedure selects very few voxels, as it doés n
6-second-long response function. In addition, the 3 rigult consider the component by itself, but as part of the complete
interleaved time series sample different high-frequeraigen  multivariate signal (see Fi. 3, bottom).

Table 1. False positive rates as a function of model—baseg,vI
p-value, for simulated and fMRI data.

the p-values give an exact control on type 1 errors. With m
noise, the tail of the central mode cannot account for adiefa
detections for small p-values. We stipulate that the aoialati
errors come from projection error due to incomplete sourc
unmixing by the ICA procedure.
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Fig. 3.

ICs estimated from fMRI data and thresholded using MELOBI@ixture model, and our multivariate thresholding

procedureTop rows: IC detecting the primary visual ared®ottom rows: IC representative of a vascular artifact.

5. CONCLUSION

This contribution presents a procedure for thresholding IC
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patterns of fMRI time series to recover sparse sources @sing

multivariate model of spatially-sparse brain activityttaes
not rely on correlating with external stimuli. From a praeti

(4]

point of view, the main improvement over existing ICA-based

methods for fMRI is that non-neuronal patterns are rejeated
they do not correspond to very salient features. We have v
idated on simulated data and resting-state fMRI data tleat t
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no. 26, pp. 10415-10422, 2009.

5] A.Hyvarinen, P. Hoyer, and E. Oja, “Sparse code shrink-

procedure can yield exact control of the false positivesate
for p > 102 and achieves better sensitivity/specificity trade-

offs than the current state-of-art fMRI ICA support-seieat
procedures. Control of false detections and consisteneg-of
timation on noisy data is important for clinical and medieal
search applications of resting-state fMRI. Our procedare c
be understood as outlier detection with projection puysst
proposed by Gnanadesikan and Kettenr[g [9], using ICA.

6. REFERENCES

[1] M.J. McKeown, S. Makeig, G.G. Brown, et al. , “Anal-

age forimage denoising,” iINeural Networks Conference
Proceedings1998, vol. 2, pp. 859-864.

[6] A. Hyvarinen and E. Oja, “Independent component anal-

ysis: algorithms and applicationgyeural Networksvol.
13, no. 4-5, pp. 411 — 430, 2000.

[7] A. Cichocki, S.C. Douglas, and S. Amari, “Robust tech-

niques for independent component analysis with noisy
data,” Neurocomputingvol. 22, pp. 113-130, 1998.

[8] S. Sadaghiani, G. Hesselmann, and A. Kleinschmidt,

ysis of fMRI data by blind separation into independent

spatial components,Hum. Brain Mapp. vol. 6, no. 3,
pp. 160-188, 1998.

9]

[2] C.F. BeckmannandS. M. Smith, “Probabilistic indepen-

dent component analysis for functional MRTfans Med
Im, vol. 23, pp. 137-152, 2004.

“Distributed and Antagonistic Contributions of Ongoing
Activity Fluctuations to Auditory Stimulus Detection].
Neurosci, vol. 29, no. 42, pp. 13410, 20089.

R. Gnanadesikan and J.R. Kettenring, “Robust estimates
residuals, and outlier detection with multiresponse Hata,
Biometrics vol. 28, no. 1, pp. 81-124, 1972.



