Global exact controllability in infinite time of
Schrodinger equation
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Abstract. In this paper, we study the problem of controllability of Schrédinger
equation. We prove that the system is exactly controllable in infinite time to any po-
sition. The proof is based on an inverse mapping theorem for multivalued functions.
We show also that the system is not exactly controllable in finite time in lower Sobolev
spaces.

Résumé. Dans cet article, nous étudions le probleme de contrélabilité pour
I’équation de Schrodinger. Nous montrons que le systéme est exactement controlable
en temps infini. La preuve est basée sur un théoreme d’inversion locale pour des mul-
tifonctions. Nous montrons aussi que le systeme n’est pas exactement contrdlable en
temps fini dans les espaces de Sobolev d’ordre inférieur.
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1 Introduction

The paper is devoted to the study of the following controlled Schrodinger equa-
tion

iz =—Az+V(x)z +u(t)Q(z)z, (1.1)
zlop =0, (1.2)
2(0,2) = zo(x). (1.3)

We assume that space variable x belongs to a rectangle D C R? V,Q €
Cc> (5, R) are given functions, w is the control, and z is the state. We prove
that the linearization of this system is exactly controllable in Sobolev spaces
in infinite time. Application of this result gives global exact controllability in
infinite time in H?3 for d = 1. We show also that the system is not exactly
controllable in finite time in lower Sobolev spaces.

Let us recall some previous results on the controllability problem of Schrodin-
ger equation. In [6], Beauchard proves an exact controllability result for the
system with d = 1,D = (—1,1) and Q(z) = z in H'-neighborhoods of the
eigenfunctions. Beauchard and Coron [8] established later a partial global exact
controllability result, showing that the system in question is also controlled
between neighborhoods of eigenfunctions. Recently, Beauchard and Laurent
[10] simplified the proof of [6] and generalized it to the case of the nonlinear
equation. The proofs of [6, 8, 10] work also for the neighborhoods of finite linear
combinations of eigenfunctions. In the case of infinite linear combinations, these
arguments do not work, since the linearized system does not verify the property
of spectral gap (even if the problem is 1-D), hence the Ingham inequality cannot
be applied.

Chambrion et al. [12], Privat, Sigalotti [26], and Mason, Sigalotti [19] prove
that (1.1), (1.2) is approximately controllable in L? generically with respect to
function @ and domain D. In [23, 22|, the first author of this paper proves
a stabilization result and a property of global approximate controllability to
eigenstates for Schrodinger equation. Combination of these results with the
local exact controllability property obtained by Beauchard [6] gives global exact
controllability in finite time for d = 1 in the spaces H37¢,& > 0. See also papers



[27, 30, 3, 2, 1, 9] for controllability of finite-dimensional systems and papers
[17, 18, 5, 31, 13, 20, 15] for controllability properties of various Schrodinger
systems.

In this article, we study the properties of control system on the time half-line
R, instead of a finite interval [0,T7], as in all above cited papers. We study the
mapping, which associates to initial condition zg and control u the w-limit set of
the corresponding trajectory. We consider this mapping as a multivalued func-
tion in the phase space. We show that this multivalued function is differentiable
with differential equal to the limit of the linearization of (1.1), (1.2), when time
t goes to infinity. Observing that the linearized system is controllable in infi-
nite time at almost any point, we conclude the controllability of the nonlinear
system (in the case d = 1), using an inverse mapping theorem for multivalued
functions [21] by Nachi and Penot. Thus (1.1), (1.2) is exactly controllable near
any point in the phase space, hence globally. The controllability of the linearized
system is proved for any d > 1, but this result is not directly applicable to the
study of the nonlinear system with d > 2. We have a loss of regularity: the
solution of the nonlinear problem exists for more regular controls than the ones
used to control the linear problem. The multidimensional case is treated in our
forthcoming paper.

To our knowledge, the inverse mapping theorem for multivalued functions
was never used before in the theory of control of PDEs. Our proof does not
rely on the particular asymptotics of the eigenvalues of Dirichlet Laplacian, so
it is likely to work in other settings. Considering the problem in infinite time
enables us to prove the controllability of the linearized system in the case of
any space dimension d > 1, even when the gap condition is not verified for the
eigenvalues (which is the case for d > 3).

In the second part of the paper, we study the problem of non-controllability
for (1.1), (1.2) in finite time. We prove that the system is not exactly controllable
in finite time in the spaces H* with k € (0,d). Let us recall that previously
Ball, Marsden and Slemrod [4] and Turinici [29] have shown that the problem
is not controllable in the space H2. Our result is inspired by the paper [28]
of Shirikyan, where the non-controllability of 2D Euler equation is established.
More precisely, it is proved in [28] that, if the Euler system is controlled by finite
dimensional external force, then the set of all reachable points in a given time
T > 0 cannot cover a ball in the phase space. Later this result was generalized
by the second author of the present paper, in [24]: in the case of 3D Euler
equation it is proved that the union of all sets of reachable points at all times
T > 0 also does not cover a ball.

Using ideas of Shirikyan, we prove that the image by the resolving operator
of a ball in the space of controls has a Kolmogorov e-entropy strictly less than
that of a ball in the phase space H*. This implies the non-controllability.

Acknowledgments. The authors would like to thank Armen Shirikyan for
many fruitful conversations.



Notation

In this paper, we use the following notation. Let

+oo
2= {{a;} € C: [{a} 7 = D lagl* < +o0}

Jj=1

f% = {{aj} S 62 ray € R}

We denote by H® := H*(D) the Sobolev space of order s > 0. Consider the
Schrédinger operator —A + V., V € C*(D,R) with D(—A + V) := H} N H?.
Let {\; v} and {e; v} be the sets of eigenvalues and normalized eigenfunctions

of this operator. Let (-,-) and || - || be the scalar product and the norm in
the space L?. Define the space Hyy == D((-A + V)3) endowed with the
norm || - |lsv = [[(Ajv)2(,ejv)|lz. When D is the rectangle (0,1)% and

V(zy, ... zq) = Vi(zr) + ... + Va(zq), Vi € C*([0, 1], R), the eigenvalues and
eigenfunctions of —A + V on D are of the form

>‘j1 ----- ja,V — )‘j17V1 + ..+ Ajdvvd’ (1'4)
€irrdaV (@15 ma) = g vy (w1) s eg vy (Ta),  (T1,...,2a) € D, (1.5)

where {\; v, } and {e; v, } are the eigenvalues and eigenfunctions of operator
ff—; + Vi on (0,1). Define the space

+oo
Vi={ze L2l =)0 107 il egu )P < oo} (16)

Notice that, in the case d = 1, the space V coincides with H, (3V). The eigenvalues
and eigenfunctions of Dirichlet Laplacian on the interval (0,1) are Ao = k*r?
and ey o(r) = V2sin(krz), z € (0,1). It is well known that for any V €
L*([0,1],R)

1
Apy =k’ +/ V(z)dx + 7, (1.7)
0
C
lewy = erollz= < - (1.8)
der,y  degpo H
— <C 1.9
H dx de llpe = 77 (1.9)

where Y75 77 < 400 (e.g., see [25]). For a Banach space X, we shall denote
by Bx(a,r) the open ball of radius r > 0 centered at a € X. For a set A, we
write 24 for the set consisting of all subsets of A. We denote by C a constant
whose value may change from line to line.



2 Controllability of linearized system

2.1 Main result

In this section, we suppose that d = 1 and D = (0,1). For any Zz € H(g’v)7 let
U (Z,0) be the solution of (1.1)-(1.3) with zp = Z and u = 0. Clearly,

+oo
U(2,0) =) ez ejv)esv. (2.1)

j=1
Lemma 2.1. There is a sequence T,,— + oo such that for any z € H(BV) we
have Ur, (2,0)=2 in H},.
Proof. The proof uses the following well known result (e.g., see [16]).
Lemma 2.2. Foranye >0, N>1ando; €R, j=1,...,N, thereisk €N

such that
N
Z lefik 1| < e.
j=1

Applying this lemma, we see that for any ¢ > 0 and for sufficiently large
N > 1, we have

) 3
[24(2,0) = 23 v < Y le™vE —1PAZ (2 ey, v )
J<N

§ ~
+2 Z |)‘j2,V<Za€j17-~-,jd,V>|2 <
j>N

+

| ™

for an appropriate choice of k € N. This proves Lemma 2.1.

This subsection is devoted to the study of the linearization of (1.1), (1.2)
around the trajectory Uy (Z,0):

0%z

iz = a2t V(z)z + u(t)Q(z)U(Z,0), (2.2)
zlop =0, (2.3)
z(0, ) = zo. (2.4)

Let S be the unit sphere in L2, For y € S, let T}, be the tangent space to S at
yes:

Ty, ={z € S:Re(z,y) =0}
Lemma 2.3. For any zg € Tz N H(QO) and u € L}, (R4, R), problem (2.2)-(2.4)
has a unique solution z € C(R+,H(20)). Furthermore, if Re(-,-) : Tz N H(QO) X
L([0,t],R) — H(QO), (z0,u) — 2(t) is the resolving operator of the problem, then



(i) Ri(z0,u) € Ty, (z,0) for anyt >0,
(i) The operator Ry is linear continuous from Tz N H(QO) x L1([0,t],R) to H(QO).

Proof. The proof of existence and (ii) is standard (e.g., see [11]). To prove (i),
notice that

d . .
- Re(Rt,Ut> = Re(Rt,L{t) + Re(Rt,Ut>

dt . .
= Re(i(@ — V)R — iu(t)Q(z) U, Uy) + Re(Ry, z(@ — V)Uy)
0? 0?
= Re(i(— — V) Re,Us) + Re(Ry,i( 5= — V)Us) = 0.
Since Re(Ry,Up) = Re(zp, 2) = 0, we get (i). O

As (2.2)-(2.4) is a linear control problem, the controllability of system with
zp = 0 is equivalent to that with any zp € T:. Henceforth, we take zg = 0 in
(2.4). Let us rewrite this problem in the Duhamel form

() = —i /0 S(t — 8)u(s)Q(2)Uy (, 0)ds, (2.5)

where S(t) = e"(5:2=V) is the free evolution. Using (2.1) and (2.5), we obtain

+oo t

(2(t), em,y) = =i »_ e " VHE ek v) Qi / emksy(s)ds, m > 1,  (2.6)
k=1 0

where wpr = A — Mg and Qi = (Qem v, exv). Let T,, — +oo be the

sequence in Lemma 2.1. Then e=»vTn — 1 as n — +o0o. Let us take t = T,
in (2.6) and pass to the limit as n — +oo. For any u € L'(R;,R) the right-
hand side has a limit. Equality (2.6) implies that the following limit exists in
the L2-weak sense

R (0,u) := lim z(T,)= lim Rr,(0,u). (2.7)

n—-+oo n—-+o0o
The choice of the sequence T;, implies that

—+oo

+oo
(Roo(0,u), €m,v) = iz<2,ek,v>ka/O e’k (s)ds. (2.8)

k=1
Moreover, Ro(0,u) € T;. Indeed, using (2.7) and the convergence Uy, (Z,0)—2

in H(?’V), we get

Re(R(0,u), 2) = lim Re(Rr, (0,u),Ur,(2,0)) =0,

n—roo

by property (i).



For any v € L'(Ry,R), denote by % the inverse Fourier transform of the
function obtained by extending w as zero to R* :

+oo
a(w) := /0 e“Su(s)ds. (2.9)

Define the following spaces

+oo
Ci=A{d={dm}: 1A% =du’+ D |dmkl® < +00,dmm = diy
m,k=1m#k
and dp = dg, for all m, k > 1},
+oo
B:={ue L, (Ry,R): [ull := ZP2||U||%2([p71,p]) < 400},
p=1

C:={ue L' (Ry,R): {a(wmr)} € £?}.
The set of admissible controls is the Banach space
©:=ueBnCNHRLR)

endowed with the norm ||ul|e := [Jul|s + [|ul| 2 + [[{@(wmr) }| 7 + ||u| s, where
s > 1 is any fixed constant. Clearly, the space © is nontrivial. The presence of
the space B in the definition of © is motivated by the application to the nonlinear
control system that we give in Section 3 (this guarantees that the trajectories
of the nonlinear system with controls from B are bounded in the phase space).
The space C in the definition of © ensures that the operator Ry (0, ) takes its
values in H (3‘/).

Lemma 2.4. For any z € SﬁH(g’V), R (0, ) is linear continuous mapping from

3 3
O to TZﬂH(V).

Proof. Step 1. Let us admit that for any m,k > 1 we have

m3

=
Then (1.7), (2.8), (2.10) and the Schwarz inequality imply that

(Qex,v,emv)| < C. (2.10)

+oo
IRo (0, )l < C Y [m*(Roo (0, 1), em,v)|?
m=1

—+o0

“+oo
C 3 ~; m m,V,ytm d
< mz_:jm (Z,em,v)(Qem,v,e ,V>/O u(s)ds

2

2 X md too 2
+ dzl5v Z ‘F@@k,v, €m,v)/ ew’""‘su(s)ds‘
m,k=1,m#k 0

< ClZI5 v llullé < +oo.



Step 2. Let us prove (2.10). Integration by parts gives

1 0?2 0?

(Qer,v,em,v) :m«*@ + V)(Qexr,v), (*@
1 6@ aeky Gem,v z=1
AEW(* dx dxr  dr l=o

o, 8 9em
<£(_@ + V) (Qer,v), eax,v>
2
L V)Qery). Ven))

In view of (1.4)-(1.9), this implies (2.10).

+V)(em,v))

+

o
We prove the controllability of (2.2), (2.3) under below condition with d = 1.

Condition 2.5. Suppose that D is the rectangle (0,1)%, d > 1 and the functions
V,Q € C>*(D,R) are such that

(i) infp, g, pagaz1 [(P1I1 - - - Paja)® Qpi| > 0,Qp5 = (Qep, .. pu Vs v, juV )

(1) Nijv — Ajv # Ap,v — A,y for alli,j,p,q > 1 such that {1, j} # {p,q} and
i 7.
See Appendix for the proof of genericity of this condition. Let us introduce
the set

E:={z€8:3p,q>1,p#qz=cpepv + cqeq v,
|Cp|2<er7V7 €p,v)— |Cq|2<Qeq7V7 eqv) =0}
The following result is proved in next subsection.

Theorem 2.6. Under Condition 2.5 with d =1, for any Z € SN H(Bv) \ &, the
mapping Roo(0,:) : © — T; ﬂH(BV) admits a continuous right inverse, where the
space Tz N H(?’V) 1s endowed with the norm of H(?’V). IfzeSn H(3v) NE, then

R (0,-) is not invertible.

Remark 2.7. The invertibility of the mapping Rr(0,-) with finite T > 0 and
Z = e is studied by Beauchard et al. [7]. They prove that for space dimension
d > 3 the mapping is not invertible. By Beauchard [6], Ry is invertible in the
case d =1 and Z = e;. The case d = 2 is open to our knowledge.

Remark 2.8. Let us emphasize that the set {wpmix} does not verify the gap
condition (even in the case d = 1)

inf |wWimk — Wik | > 0.
(m,k)#(m’ k")

Thus one cannot prove exact controllability in finite time near points, which are
not eigenfunctions, using arguments based on the Ingham inequality.



2.2 Proof of Theorem 2.6

The proof of the theorem is based on the following proposition, which is proved
in next subsection.

Proposition 2.9. If the sequence w,, € Rom > 1 is such that wy = 0 and
S < 400 for somep > 1 and w; # wj for i # j, then there is a linear

m2‘w |p

continuous operator A from €3 to © such that {A(d)(wm)} = d for any d € (2.
The idea of the proof of Theorem 2.6 is to rewrite (2.8) in the form d,,, =

W(wmk) with d = {dmir} € ¢? and to apply the proposition. Notice that
ka lm#kw < +oo and w;j # wpq for all ¢,7,p,¢ > 1 such that {i,j} #

{p,q} and i # _j Let us take any y € Tz N H( v)- Define

i<y’ em><ek’ 2) - i<€ka y) <2a em>
ka

where C),;, € C and e, = e,y. The fact that Z € S implies

dmk = + kaa

+oo +oo +o0
—1 Z<25 ek)kadmk = Z(ya €m>|<2, €k>|2 - Z(eka y><2a em) <2a ek>
k=1 k=1 k=1
“+oo
k=1
“+o0
= (Y em) = (Zem)(Z,y) =i > (% €x) QuukConi
k=1

By (2.8), we have y = Roo(0,u), when

+oo

0> (2, e)QumrConi = — (%, €m)(Z,1) (2.11)

k=1

for all m > 1. Thus if we show that there are C,,; € C such that (2.11) is
verified and d = {d,,x} € 2, then the proof of the theorem will be completed,
in view of Proposition 2.9. Notice that, under Condition 2.5, we have

= <ya€m> <eka2> 2 2 z112
E ’T < Cllyllz v 25,y < +oc.
m,k=1m#k mk

Thus {d,i} € £2, if Cp € C are such that

_ i<y’ €m> <€m, 2> — i<ema y><23 em)

yyrm = 0 + Chom = do, (2.12)
Coie = Chom, (2.13)
—+oo
> [Cmkl? < Foo, (2.14)
m,k=1m#k



where dy € R. Let us show that, for an appropriate choice of dy, there are
Chni satisfying (2.11)-(2.14). Since y € T3, we have (Z,y) = i Im(Z,y). We can
rewrite (2.11) and (2.12) in the following form

+oo
Z(%,ek)kaka =—(Z,em) Im(Z,y), (2.15)
k=1
Gy = 200G Cndlom 2D o g, (2.16)

Qmm

Case 1. Let as suppose that Z = ce,, where ¢ € C,|c¢| =1 and p > 1. Then
(2.13)-(2.16) is verified for Cp,, = 0, if m # k and Cy,,, defined by (2.16) with
do = Im(Z,y)

Case 2. Suppose Z = cpep, + c4eq, Where cp,cq € C,ep)? +|cy? = 1 and
p # q. For any m > 1, define Ci,,,, by (2.16). If m # p, we set

CpQmyp

Crp = (2.17)

)

where ¢,, = 0 for m # ¢, and Cy,x; = 0 for any k£ > 1 such that & # m,p.
Then all the equations in (2.15) are verified, excepted the case m = p. Let us
show that, for an appropriate choice of dy € R, this equation is also satisfied.
Equation (2.15) for m = p is

cpQppCpp + ¢qQpqCpq = —cp Im(Z, 7).

Using (2.17) for m = q (taking Cp, = C\,) and (2.16) for m = p, we get

—cp Im(Z, y) =cpQpp (do + 2Im((y, ep)(ep, 5>>)

Qpp
W LI X )
(- L) 2
+¢qQpq (7622:; y>)
(e

Now using (2.16) for m = ¢, we rewrite this equality in an equivalent form
(|Cp|2Qpp - |Cq|2Qqq)d0 =A

for some constant A € R. Thus if Z is such that |c,[?Qpp — |¢q|?Qqq # 0, then
we are able to find G, satisfying (2.13)-(2.16). If || Qpp — |¢q|?Qqq = 0, then

10



linear system (2.2), (2.3) is not controllable, since for any v € © and ¢ > 0 we
have

d . .
T Im(R; (0, u), cpe”rte, — cie™Pate,)
92 . . . .
= Im(i(@ — V)R (0,u) — iuQ(cpe”vle, + cie™le,), cpe M rle, — cpeTPate,)
0? - -
+ Im(R: (0, u), z(@ — V) (cpe™Prle, — ciemPale,))

= Im(—iuQ(cpe~Prte, + cue~Ptey), cpe~Prte, — ciemPate,)
2 2
= —u(|ep|"Qpp — leq|"Qqq) = 0.
This non-controllability property is a remark of Beauchard and Coron [8].

Case 3. Here we suppose that z = Zj:of cje; with cpeqer # 0, and p, g, 7
are not equal to each other. If we define again C,,, m # p by (2.17) and
Cmi = 0 for any k > 1 such that k # m, p, then the arguments of case 2 give
the following equation for dy

(|Cp|2Qpp - Z |Cm|2Qmm)dO =A

m#p

for some constant A € R. This implies that for any Z such that |c,2Q,, —
> metp lem |?Qmm # 0, we can find C,, satisfying (2.13)-(2.16). Let us suppose
that
|C:D|2QPP - Z |C’m|2Qmm = 0. (218)
mZ#p

In this case, we define Cy,, by (2.17) only for integers m > 1 such that m # p,q,r
and Cp,x = 0 for any k£ > 1 such that k& £ m,p,q,r. Then all the equations in
(2.15) are verified, except for m = p, ¢, 7. We take any C,, € C and choose Cl,
and C, such that

CpQ’rpC’rp + CquqCTq + CpQTTCTT = —Cp Im<2; y>7 (219)
pQapCap + ¢qQqqCaq + ¢rQqrCqr = —cq Im(Z, y). (2.20)
Replacing the value of Cy, from (2.20) into (2.19), then the value of Cp, from

(2.19) into (2.15) with m = p, and using (2.13), we get the following equation
for do

(|Cp|2Qpp =+ |Cq|2Qqq - Z |Cm|2Qmm)dO =A

m#p,q
for some constant A € R. Equality (2.18) implies that
e *Qup + leq|* Qqq — Z |em|*Qumm = 0
m#p,q

if and only if |c;|2Qqq = 0, which is not the case: ¢, # 0,Qqq # 0. Thus solution
dp € R exists, and the sequence C,,; is constructed for any z ¢ £.

11



2.3 Multidimensional case

In this section, we suppose that D is the rectangle (0, )%, d>1and V(z,...,xq)
=Vi(z1) + ...+ Va(zq), Vi € C°°(]0,1],R). This subsection is devoted to the
study of the linearization of (1.1), (1.2) around the trajectory U(Z,0):

iz =—-Az+V(z)z +ult)Q(x)U(Z,0), (2.21)
zlop =0, (2.22)
2(0,z) = 2. (2.23)

The proof of Theorem 2.6 does not work in the multidimensional case for a gen-
eral z. Indeed, the well-known asymptotic formula for eigenvalues A\g v ~ Cuki
implies that the frequencies wy, are dense in R for space dimension d > 3. Thus
the moment problem (wy,k) = dy cannot be solved in the space L'(R,,R)
for a general d,,, € /2. The asymptotic formula for eigenvalues implies that
the moment problem cannot be solved also in this case d = 2. Clearly, this
does not imply the non-controllability of linearized system. Let us prove the
controllability of (2.21), (2.22) for Z = ey, . See our forthcoming publication for
the case of a general Z and for an application to the nonlinear control problem.
For Z = e,y the mapping R, (0, u) is given by

<Roo (0; u)a em,V) = _ikaa(wmk)
(cf. 2.8).

Lemma 2.10. The mapping R (0, -) is linear continuous from © to Tc, ., NV,
where V is defined by (1.6).

Proof. Step 1. Let us admit that for any mj,k; > 1, j =1,...,d we have

’(ml-...-md)3

m<@€kl ,,,,, ka, Vs €mi,ma, vy | < C. (2.24)

Then (2.8), (2.24) and the Schwarz inequality imply that

+oo
1RO b= 3 b (R0, 0) e )P
M1yenny md:1

00 “+o0 2
<Ot ) Qv [ uls)ds

m=1 0

+oo 3 +oo 2
- my-...-My ; .
PO S [ Qe v i sl
mok=1,mzk oL 0

< ClEI ulé < +oo.

Step 2. Let us prove (2.24). To simplify notation, let us suppose that
d = 2; the proof of the general case is similar. Let V (21, z2) = Vi(21) + Va(z2).

12



Integration by parts gives

1 0? 0?

mi,msa =32 733 Vi 1,k2 y\T 9 92 Vi mi,ma
(Qek ko Vs €my ma,v) e (( a2t 1)(Qek; ka,v ) ( a7t 1)(€mi,ma,v))
1 L aQ o 0y my. v |P171
:—2 (/ _2_Q ek11k27v € 1,m2,V L dZCQ
/\ml,Vl 0 8951 (9:61 8961 x1=0
0 0? Oe 1%
Y ST 7 Gemy ma, v
+ <81'1( ax% + 1)(Qek17k2,v)’ 8501 >
82
+ <(_F + %)(Qeklakmv)’ m6m1,m2,v>)
7
=0 + I, + Is.
Again integrating by parts, we get
—2 L2 0Q Oeky kv, 02 de v |ma=t
i =— = | (== I il S IR Y G /4 S AL KL TR d
! )\fnhvl/\fnzﬁvz/o( ox3 * 2)(8501 oxq ) ox3 1) Bx1  lm=0" 2
_ —2 L, PQ ek, kv ey mo,v [F1=1F2=
7)\727“7‘/1)\%121‘,2 02102 O0x10x9  O0x10x9 lz1=0lzs=0
1 2 2 x1=1
+/ A A A
o Oza” Ox3 ox1  Oxq 0x10x2 lz1=0
1 2 _
9 0Q ek, ky v\, 0€my my v 171
—— + W) (m——2) Vs L2 dxs).
+/0 ( 03 * 2)(6901 0x, V2 0x, £1=0 z2)
In view of (1.4)-(1.9), this implies that
(my-...-mg)3 ‘
——L| <C.
(k... kg 1~
The terms I3, I3 are treated in the same way. We omit the details.
O
We rewrite (2.8) in the form
ﬁ(wmk) = dma (225)

(Roo (0,u),em,v) 1
et We have 3000y o < oo for fixed k > 1.

Under Condition 2.5, (i), d,, € ¢3. Applying Proposition 2.9, we obtain the
following theorem.

where d,,, =

Theorem 2.11. Under Condition 2.5, the mapping Rw(0,-) : © — T¢, , NV
admits a continuous right inverse, where the space Te, ,, NV is endowed with
the norm of V.

13



2.4 Proof of Proposition 2.9

The construction of the operator A is based on the following lemma.

Lemma 2.12. Under the conditions of Proposition 2.9, for any d € (3 and
e >0, there is u € Bg(0,¢) such that {t(wm)} = d.

Proof of Proposition 2.9. Let d" be any orthonormal basis in ¢3. Applying
Lemma 2.12, we find a sequence u, € Be(0, L) such that {t,(wn)} = d".

For any d € 2, there is ¢ € £2 such that d = 3.7 ¢,,d". Let us define A in the
following way

+oo
A(d) = Z Cr -
n=1

As u, € Bg(0,1), this sum converges in ©:

+oo +oo 1 +too 1
lA@le < Y- lealllunllo < (Y leal?)” (D lunlld)” < Clidlsz-
n=1 n=1 n=1

Thus A : £2—0 is linear continuous and {A(d)(wy,)} = d, by construction. O

Proof of Lemma 2.12. Let us take any d € ¢3 and ¢ > 0 and introduce the
functional

+oo
H(w) = [{i(wm)} —dlf = D la(wm) — dnl?
m=1
defined on the space ©.
Step 1. First, let us show that there is ug € Bg(0,¢) such that

H(ug) = inf  H(u). (2.26)

u€Beg (O,E)

To this end, let u, € Bg(0,¢) be an arbitrary minimizing sequence. Since
BN H?*(Ry,R) is reflexive, without loss of generality, we can assume that there
is uo € Bpnms(r, r)(0,¢) such that u, — wuo in BN H*(R;,R). Using the
compactness of the injection H*([0, N])—=C(]0, N]) for any N > 0 and a diagonal
extraction, we can assume that ., (t)—ug(t) uniformly for ¢ € [0, N]. The Fatou
lemma implies that

—+oo —+oo
/ lug(s)|ds < hrninf/ |un(s)|ds < e.
0 n—oo 0

Again extracting a subsequence, if it is necessary, one gets {iy, (wm)} — {Uo(wm)}
in /2 as n— + co. Indeed, the tails on [T}, +00), T > 1 of the integrals (2.9) are
small uniformly in n (this comes from the boundedness of u,, in B), and on the
finite interval [0, T] the convergence is uniform.)

14



This implies that ug € © and

H(ug) < inf  H(u).
u€Be(0,e)

The fact that uy € Bg(0,¢) follows from the Fatou lemma and lower weak
semicontinuity of norms. Thus we have (2.26).

Step 2. To complete the proof, we need to show that H(ug) = 0. Suppose,
by contradiction, that H(ug) > 0. As we shall see below, this implies that there
is v € Bg(0,¢) such that

SH((1 D)o +10) <o, (2.27)

Since (1—t)ug+tv € Be(0,¢) for all t € [0, 1], (2.27) is a contradiction to (2.26).
To construct such a function v, notice that the derivative is given explic-
itly by

+00
S = o + 1) =2 " Rel(0leom) — o) a0 — o)

In view of this equality, the existence of v follows immediately from the following
lemma.

Lemma 2.13. Under the conditions of Proposition 2.9, the set
U :={{t(wm)}: v e Be(0,¢)}
is dense in (3.

Proof. Suppose that h € £3 is orthogonal to U. Then for any u € Bg(0,¢) N
C&°((0,400)) we have

—+oo

> ii(wm)hm = 0. (2.28)

m=1

Replacing in this equality @(w;,) by its integral representation, we get integrat-
ing by parts

+0 rtoo _ +oo .
0= Z/ e“mu(s)dshp, :/ P,(s)u'P (s)dshy
m=170 0

eiwms

+oo “+ o0
+ / ————uP(s)dsh,,
T; 0 (—iwn, )P

15



where P, is a polynomial of degree p > 1. Since this equality holds for any
u € Bg(0,e)NC§°((0,+00)), there is a polynomial P,_1(s) of degree p — 1 such
that for any s > 0

too W S
— etWm N ~
Pp(s)hl + mZZQ mhm = prl(s).
By Lemma 2.14, we have h,, = 0 for any m > 2. Equality (2.28) implies that
hy = 0. This proves that U is dense. O
O

The following lemma is a generalization of Lemma 3.10 in [22].

Lemma 2.14. Suppose that r; € R* and v, # rj for k # j and P, is a
polynomial of degree p > 1. If

oo

> i€t = By(s) (2.29)

Jj=1

for any s > 0 and for some sequence c; € C such that Z;i1 lej| < oo, then
cj =0 forallj>1 and P, =0.

Proof. Since the sum in the left hand side of (2.29) is bounded in s, the poly-
nomial P,(s) is constant. The case of constant right hand side follows from
Lemma 3.10 in [22]. O

3 Controllability of nonlinear system

3.1 Well-posedness of Schrodinger equation

In this section, we suppose that d = 1, D = (0,1). We consider the following
Schrodinger equation

0%z

iz = 02 +V(z)z +u®)Q(z)z + v(t)Q(x)y, (3.1)
zlap =0, (3.2)
2(0,2) = zo(x). (3.3)

See Proposition 2 in [10] for the proof of well-posedness of this system with
V = 0. Here we prove well-posedness in the case of V # 0 and we give an
estimate for the solution which is important for the study of the controllability

property.
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Proposition 3.1. For any z € H(gv), u,v € LY(RL,R)NB andy € C(R,, H(gv)),
problem (3.1)-(3.3) has a unique solution z € C(Ry, H(3v))- Furthermore, there
is a constant C > 0 such that

sup [12()

s.v < Clllzolls,v + sup [ly()lls,v([vllLr @y + llvlls))
eERy teERy

x exp (C(lullray ) + 1) exp(flul3) ) (3.4)
If v =0, then for allt > 0 we have

121 = llzoll- (3-5)

Proof. The proof follows the ideas of Proposition 2 in [10]. We give all the
details for the sake of completeness.
Let us rewrite (3.1)-(3.3) in the Duhamel form

z(t) = S(t)z0 — i/o S(t— s)[u(s)Qz(s) + v(s)Qy(s)]ds. (3.6)

For any u € L*(R4,R)NB and z € C(R4, H(?’V)), we estimate the function

Gi(2) ::/O S(—s)(u(s)Qxz(s))ds.

Integration by parts gives (we write A;, e; instead of A; v, e;v)

L
(@2(5).65) =5 (=3 + V)(@2).¢1)
1, o 02 1 9° .
=35 + V@) (5 + Vo) = 353 @zl
1 02 o, 0 0
+ )\—?(W(*@ +V)(Qz),¢e5) + <%(*@ +V)(Qz), %eﬁ)
= Ij + Jj.
Thus
+oo t 9
Gy =D (5 [ e outs)@z(s).e5)as)
j=1
+oo t 2
-y (j3/ eNsu(s) (1 Jri)ds) . (3.7)
j=1 0
Using (1.9), we get
2 2
V)@, mes) = 7 (o + V)Qz, VEeos(jme)) + 3(2),
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where |s;(z)] < C|\z||s,v for all j > 1. The definition of J;, the fact that
{v/2cos(jmx)} is an orthonormal system in L2, (1.7) and the Minkowski in-
equality yield

+oo

> (j3 /Ot ei)‘jsu(S)des)Q < c(/ot |U(S)|||z(s)||37vds)2. (3.8)

j=1

On the other hand, (1.9) implies that
82 0 rx=1
a7 (@) g Cilam0 =

where |§;| < C||z||3,v for all j > 1. Again applying the Minkowski inequality,
we obtain

f (i_z /Ot e“ﬂ'%(s)ég’(zods)2 < O(/Ot ()1 2(s)

Since ¢;(z) depends on the parity of j, without loss of generality, we can assume
that ¢(z) := ¢;(z) does not depend on j. Thus we cannot conclude as in the
case of J;. Here we use the fact that v € B. Let P > 1 be an integer such that
P <t < P+ 1. Using the Cauchy—Schwarz and the Ingham inequalities, we
obtain

0? z=1 . .
jW@(Qz)\/Qcos(jmr)’z:é +5i(2) = je;(2) + 85(2),

)2. (3.9)

J_ri(/ot 6’“]‘Su(s)C(z)ds)2 io ((/Pt+ : /ppl)ei,\ s (S)c(z)ds>2

j=1 p=1 p=1
P +oo 2
< Cluele ey + €30t Y ([ e utee(s)as)
p=1 j=1 -
P
< Cllu(s)e(z )||L2([P,t]) + CZP HU(S)C(Z)H%Z([;)—L;)])
p=1

t
< [ w1 s
where w(s) = |u(s)[*x[pq(s) + 2521p2|u(s)|2><[p,17p](s). Notice that

t
/ w(s)ds < ||lul|% for all t > 0. (3.10)
0
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Combining (3.7)-(3.10), we get

1Gi()ls.v < O / w(s)|2()}yds) " +C / [u(s) l2(s)ls.vds.  (3.11)
The quantity ,
Gl i= [ S-9)(v(5)Qu(s)ds
0

is estimated in a similar way

IGillw < C( [ a e Buds)” +C [ lollnts) s

< C sup |ly(s)lls,v (vl ey + llvls), (3.12)
s€[0,T]

. P
where @(s) = |v(s)|*x (P (s) + 22 ,—1 P[V(8)*X[p—1,p1 (5).

Existence of a solution is obtained easily from (3.11) and (3.12), by a fixed
point theorem (cf. Proposition 2 in [10]). Uniqueness follows from (3.4).

Let us prove (3.4). From (3.6) and (3.11) we have

20115,y < C(ll=l

§c<|zO||§,v+||ét||§,v+ JECIEEIRE |u(5)||z(8)|3,vd5)2>-

v G v + 1GlIE v)

The Gronwall inequality implies

- t 2
l=®l3v < c(|zo||§,v + G v + ( / [u(s)[12(5) |3, ds )

x exp (C /0 w(s)ds).

Taking the square root of this inequality, using (3.10) and the Gronwall inequal-
ity, we obtain

I2®llsv < Clllzolls,v + 1Gellsv)
t

<o (0 wisis + [ utsyaseal [ wis)as)

< C(lzol

sy + [ Giellaw) exp (Cllulliz, ) + 1) exp(|lull3) ).
In view of (3.12), this completes the proof of the proposition. O

Remark 3.2. Let us notice that, one should not expect to have a well-posedness
property in any Sobolev space H* with controls in L!. Indeed, exact controlla-
bility property in H?, proved by Beauchard and Laurent [10] in the case d = 1,
implies that the problem is not well posed in spaces H3+7 for any o > 0 (a point
21 € H®\ H3T7 would not be accessible from a point zp € H3*7). Schrédinger
equation is well posed in higher Sobolev spaces, when control w is more regular.

19



Corollary 3.3. Denote by U(-,-) : H(gv) x LR, R)N B%H(gv) the resolving
operator of (1.1), (1.2). Then U(-,-) is locally Lipschitz continuous, i.e., for
any § > 0 there is C > 0 such that

sup [t (zo0, ) —Us(z0,W)ls,v < Cll(20,u) = (20, W)l 13, 212y 05 (3:13)
+

for all (z0,u), (20,u') € BH?V)XLl(R+,R)ﬂB(O, 5), where LY (R, R)NB is endowed

with the norm || - |\L1(R+7R)QB =l + - |5
Proof. Notice that z(t) := Uy(z0,u) — Up(2(), u) is a solution of problem

i = = 07 Q)= + (u(t) — (D)Q)s (),
zlop =0,

2(0,2) = zo(x) — 2(x).

Applying Proposition 3.1, we get (3.13). O

3.2 Exact controllability in infinite time

For any control v € ©, problem (3.1), (3.2) is well-posed in Sobolev space H(3v)-
Equality (3.5) implies that it suffices to consider the controllability properties
of (3.1), (3.2) on the unit sphere S in L?. Let Usc(20,u) be the H}, -weak w-
limit set of the trajectory corresponding to control u € © and initial condition
20 € H(?’V):

Uoo(z0,u) :={z € H(3V) : Uy, (z0,u) — z in H(3V) for some t,, — +oo}. (3.14)

By (3.4), Ui(20,u) is bounded in H(Bv)’ thus Uso (20, 1) is non-empty.

Definition 3.4. We say that (3.1), (3.2) is exactly controllable in infinite time
in subset H C S, if for any z9,2z1 € H there is a control uw € © such that
21 € Uoo (20, u).

Below theorem is one of the main results of this paper.

Theorem 3.5. Under Condition 2.5, for any Z € SN H(‘O’V) there is 6 > 0 such
that problem (3.1), (3.2) is exactly controllable in infinite time in SOBH?V) (2,9).

See Section 3.3 for the proof.

Remark 3.6. Let us emphasize that the novelty of Theorem 3.5 with respect to
the previous result proved for (3.1), (3.2) in [23] (see Theorem 3.1) is that the
controllability here is realized with controls which have small norms.

Working in higher Sobolev spaces, one can prove similar exact controllability
results with more regular controls. For example:
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Theorem 3.7. Under Condition 2.5, for any z € SN H(‘Q"f)", o € (0,2] there is
6 > 0 such that problem (3.1), (3.2) is exactly controllable in infinite time in

SN BH(SJ)G (2,8) with controls u € WHH (R, R) N H*(Ry,R) for any s > 1.

These local exact controllability properties imply the following global exact
controllability result.
Theorem 3.8. Under Condition 2.5, problem (3.1), (3.2) is exactly controllable
in infinite time in SN H(gv) in the following sense: for any zg € SN H(3‘"}')‘T, o€
(0,2] and z1 € SN H(‘O’V) there is a control u € L'(Ry,R) such that z; €
Uoo (20, u).

Proof. Let ~: |0, 1]—>SOH(3V) be any continuous function such that v(0) = zo,
¥(1) = z; and ~(s) € H(B‘j)" for any s € [0,1). Using the compactness of the
curve v and Theorem 3.7, we prove that there is a control v and time 7" > 0 such
that Ur(zo,v) € BH(SV)(zl,ézl), where 0., > 0 is the constant in Theorem 3.5
corresponding to z;. This completes the proof. o

Remark 3.9. We do not know if problem (1.1)-(1.3) is well posed in the space V
for d > 2 with O-controls. Well-posedness in V with u € © would imply
the controllability of the multidimensional problem. The nonlinear problem’s
solution is in V for more regular controls.

3.3 Proof of Theorem 3.5

The proof is based on an inverse mapping theorem for multivalued functions. We
apply the inverse mapping theorem established by Nachi and Penot [21], which
suits well to the setting of Schrédinger equation. For the reader’s convenience,
we recall the statement of their result in Appendix (see Theorem 5.3).

Let us first slightly modify the definition (3.14) of the set U (20, u). Let
T,,— + oo be the sequence defined in Section 2.1. Define

Uso(z0,u) :={z € H(3v) tUr,, (z0,u) — z in H?3 for some ny, — +oo}. (3.15)
Consider the multivalued function
Use () 1 SN HY) x 02500,
(207 u)%b{oo (ZOa U)

Since the result of Nachi and Penot is stated in the case of Banach spaces,
we cannot apply it directly to Us,. Following Beauchard and Laurent [10], we
project the system onto the tangent space T3:. We apply Theorem 5.3 to the
following multivalued function

Uso ()« T N Hy x @270
(zo,u)—>PUOO(P_12:O,u),
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where P is the orthogonal projection in L? onto T, i.e., Pz = z —Re(z,2)z,z €
L?. Notice that P~ : Br.(0,8)—S is well defined for sufficiently small § > 0.
By the definition of T},, we have lim, 4. Uz, (2,0) = Z. Hence (3.15) implies
that Us(2,0) = 2 and Us(0,0) = {0}. If we show that U, is strictly differen-
tiable at (xq,yo) with zg = (0,0) € Tz N H(3V) x©and yo=0€T:N H(Q’V) (see
Definition 5.2), and the derivative admits a right inverse, then Theorem 3.5 will
be proved as a consequence of Theorem 5.3.

Proposition 3.10. The multifunction Us, is strictly differentiable at (0,0) €
T: N H(gv) X © in the sense of Definition 5.2. Moreover, the differential is the

mapping
Roo(+,-) : Tz N H(3V) x ©—=T: N Hf’v),

(20, u) = Roo (20, u),

where Ry is defined in Section 2.1.

Proof of Theorem 3.5. Case 1. Let us suppose that Z € SN H(Q’V) \ &. For any
(z0,u) € BTEQH?V) «6(0,8), the set Us (20, 1) is closed and non-empty, if § > 0 is
sufficiently small. The mapping R, is invertible in view of Theorem 2.6. Thus
Theorem 5.3 completes the proof.

Remark 3.11. Let us point out that in case 1 the controls u can be chosen such
that u(0) = ... =u(5"Y(0) = 0.

Case 2. In the case Z € SN H(3v) N &, the linearized system (2.2), (2.3)
is not controllable, and R, is not invertible. Controllability in finite time
near Z is obtained combining the results of [8] and [10]: there is a constant
6 > 0 and a time 7' > 0 such that for any zp,z; € SN BH?V)(Z,cS) there is
a control v € L2([0,T],R) verifying Ur(z0,v) = z1. Let us prove that the
problem is exactly controllable in infinite time in S N B H?V)(Z, 8). Take any
z1€9N BH?V)(Z,é) and let us show that there is a control u € © such that
21 € Uso(Z,u). Let us suppose first that z; ¢ £. Then, by case 1, there is 6., > 0
such that exact controllability in infinite time holds in SN B H(SV)(Zla 0z). By
exact controllability property in finite time and by an approximation argument,
one can find a control uy € C§°((0,T),R) such that Up(Z,u;) € BH(SV)(Zl, 82y)-
Thus the existence of u; follows from case 1 and Remark 3.11.

Now let us suppose that z; € £. Since £ C ﬂzole(kv), by [8] and [10],
there is a control u; € C*([0,T],R) such that Ur(Z,u1) = 21 and u(0) = ... =
u®)(0) = uw(T) = ... = ul®)(T) = 0. Extending u; by 0 on [T, 400), we obtain
21 € Uso(Z,u1).

o

Proof of Proposition 3.10. It suffices to show that for any € > 0 there exists
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6 > 0 for which

e(z:loo(z()a u)fRoo (207 ’LL), L?OO (267 ul)fROO (267 ul)) S E|| (ZOa U)*(Z{), u/)HTgﬂH(SV) X0

(3.16)
whenever (zg,u), (2),u') € BTEQH?V)X@((O, 0),8). Here e(-,-) stands for the
Hausdorff distance (see Appendix for the definition). It is clear from the defini-
tion of e(-,-), that (3.16) follows from the following stronger estimate

sup et (P~ 20, u) — Re(z0,u) = Up(P~ 2, 0) + Rl 0) ez,
teRy

< l(z0,w) ~ (2 )z, xo
To prove this estimate, notice that the function
y(t) == U (P 20,u) — Ri(20,u) — U (P 20, 0") + Ry(2h, 1)
is a solution of the problem
. d2y / —1 ~
W=-12 + (u—u)Q (U (P~ 20, u) — Uy(Z,0))
+ u’Q(L{t(Pfle, u) — L{t(Pflzé, u)),
y|6D = Oa
y(0,2) = P 'z — 20 — P72} + 2.
We have
1y (0)lls,v < ellz0 — zolls,v (3.17)
for any zo, () € BTiﬂH?V) (0,9) and for sufficiently small § > 0. Using (3.4) (we

use the version of the inequality with v f1 + va f2 instead of vf), Corollary 3.3
and (3.17), we get

sup [[y(t)lls,y < C(ly(0)[|s,v + sup [[th(P~" 20, u) — Us(Z,0)|l3,v[|u — '[le
tE]R+ t€R+
+ sup [[Uy (P~ 20, u) = Up(P~ 120, u) ||, v [ ]|o)
teRy
< C(ly(0)ls.v+llzollsv+lulle)lu—u'llo+1z0 — zlls.v[v'lle)

< EH(ZO’U) - (Zé)’ul)HTgﬁH?V)x(—)

for sufficiently small §. This proves the proposition. O

4 Non-controllability result

4.1 Main result

In this section, we study the problem of non-controllability of Schrodinger sys-
tem (1.1)-(1.3), where D C R? is a bounded domain with smooth boundary,
V,Q € C>(D,R) are arbitrary given functions. The following lemma estab-
lishes the well-posedness of system (1.1)-(1.3) in the space LZ.
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Lemma 4.1. For any zo € L? and for any u € L, (R, R), problem (1.1)-
(1.3) has a unique solution z € C(R, L?). Furthermore, the resolving operator

Us(-,u) : L? — L2 taking zo to z(t) satisfies the relation
Ui (z0, w)|| = llzol, = 0.

See [11] for the proof. Let us define the set of attainability of system (1.1),
(1.2) from an initial point zo € S:

A(z0) := {Us(20,u) : for all w € W5 (R4, R) and t >0 }. (4.1)
The following theorem is the main result of this section.

Theorem 4.2. For any constant k € (0,d), any initial condition zo € S and
any ball B C H(kv), we have

.AC(Z()> ﬂBﬁS# .

Let us emphasize that this theorem does not exclude exact controllability in
H (kv) with controls form a larger space than V[/licl (R4, R).

The proof of this theorem is an adaptation of ideas of Shirikyan [28] to the
case of Schrédinger equation. Using a Holder type estimate for the solution of
the equation, we show that the image by the resolving operator I/ of a ball in
the space of controls has a Kolmogorov e-entropy strictly less than that of a ball
B in the phase space H, (kv). As we show, this implies the non-controllability.

4.2 Some c-entropy estimates

Let X be a Banach space. For any compact set K C X and € > 0, we denote by
N (K, X) the minimal number of sets of diameters < 2¢ that are needed to cover
K. The Kolmogorov e-entropy of K is defined as H.(K,X) = In N.(K, X).

Let Y be another Banach space and let f : K — Y be a Holder continuous
function:

1 (ur) = fuz)lly < Lljur - uallk (4.2)

for any u1,us € K and for some constants L > 0 and 6 € (0,1). The following
lemma follows immediately from the definition of e-entropy (cf. Lemma 2.1
in [28]).

Lemma 4.3. For any compact set K C X and any function f : K — Y
satisfying inequality (4.2), we have

H.(f(K),Y)<H K, X) for all e > 0.

(03
We also need the following two lemmas.

Lemma 4.4. For any T > 0 and for any closed ball B C WH1([0,T],R), there
is a constant C > 0 such that
c 1

H.(B,L'(]0,T],R)) < z1ng.

24



This is Proposition 2.3 in [28].

Lemma 4.5. For any k > 0 and any closed ball B := BH(;CV)(ZO,T) such that
BH(kV) (z0,7) NS # @ there is a constant C > 0 such that

1\ d
H.(BNS,HY) > c(—) . (4.3)
€
Proof. Tt is well known that
1\d - 1\d
- < < - .
01(5) < H.(B,H )_02(5) (4.4)

for some constants Cq,Cs > 0 (e.g., see [14]). Consider the mapping

1
§] x BNS—H1,

f:[552

(s,2)—sz.

The set f([%, %] x BN S) has a non-empty interior, so there is a ball B in H*
such that

1 3
Clearly,
[ f(s1,21) = f(s2,22)|lk-1 < C(|s1 — s2| + [|21 — 22| k—1)-

Using (4.5) and Lemma 4.3, we get
13

Hé(BaHk_l) < Hg(f([§, 5] X Bﬂs)’Hk_l)
1
gH%([a,;] BNS,R x H*1)
13 -
SH%([§,§],R)+H%(BQS,HI€ 1)
gC(ln%—f—Ha(BﬂS,Hk_l)).

Combining this with (4.4) for B, we obtain (4.3). O

4.3 Proof of Theorem 4.2

Let us suppose, by contradiction, that there is k € (0, d), an initial point zy € S

and a ball B C H(kv) such that

BNS C Alzp), (4.6)
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where A is the set of attainability of system (1.1), (1.2) from the initial point
zo defined by (4.1). Let us set

Bm L= [O,m] X BW1,1([01m]1R)(0,m),
U(Bp,) : = {Ue(z0,u) : for all (t,u) € Bp}.

We have

R x Wy (R4, R) =

W
3

P
&
I
<
™
:

(4.7)

TCriCs

—

Combining (4.6), (4.7) and the Baire lemma, we see that there is a ball Q C H(kv)

and an integer m > 1 such that U(B,,) is dense in Q N S with respect to H*-
norm.

Step 1. Let us define the set
B = {(t,u) € B,, : such that U;(z,u) € Q}.

Here we prove that B:m is compact in [0,m] x L1([0,m],R). Indeed, take any
sequence (tn,un) € Bp. As (tn,un) € Bn, and By, is compact in [0,m] x
LY([0,m],R), there is a sequence ny — oo and (tg, ug) € By, such that

[tn), — tol + [un, — uollL1(j0,m],r) — 0,k — oc.

We need to show that (o, uo) € By,. As U, (20, un,) € Q, there is z € @ such
that Uy, (20,un,) — zin HF (again extracting a subsequence, if necessary). On
the other hand, Lemma 4.1 implies that U4, (20, Un,,) — Us, (20,u0) in L?. Thus
Uy, (20,u0) = z and (to, ug) € Byn. Thus B, is compact in [0,m] x L*([0,m], R).

In particular, this implies that U(B,,) is compact in L2, as an image of a

compact set by a continuous mapping. On the other hand, U (Bm) is dense in
the compact set QN S in L2. Thus QNS = U(B,,).

Step 2. Using standard arguments, one can show that we have
1Ly (20, u) — Uy (20, )| < C(It = '] + lu = u'[| 1 ((o,m), 7))

for any (t,u), (t,u’) € By, where C' > 0 is a constant not depending on (t,u)
and (¢, u’). Combining this with the interpolation inequality

l ﬂ
Izllk—1 < Cllzll= (2]l "

we get

[Us (20, 0) — Usr (2o, Y51 < Ot = 21 + = | Fa oy y)
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for any (t,u), (t',u') € B,,. Here we used the fact that (2o, u), Uy (z0,u’) € Q.
Appying Lemmas 4.3 and 4.4 and of the fact that @ NS C U(B,,), we obtain

H.(QN S, H* ') < H.(U(By,), H* ') < CH.x (B, [0,m] x L*([0,m],R))
< CHx (B, [0,m] x L'([0,m],R))

This estimate contradicts Lemma 4.5 and proves the theorem.

Remark 4.6. The same proof works also in the case of Schrodinger equation
with any finite number of controls:

iz2=—-Az4+V(@x)z +u1(t)Q1(z)z + ... + un(t)Qn(x)z,

where n > 1 is any integer, Q; € C*°(D,R) are arbitrary functions and u; are
the controls j =1,...,n.

5 Appendix

5.1 Genericity of Condition 2.5
Let us assume that D = (0,1)? and introduce the space

G:={VeC®D,R):V(xy,...,zq) =Vi(x1) + ...+ Va(zq)
for some V3, € C*°([0,1],R),k =1,...,d}.
Then G, endowed with the metric of C* (D, R), is a closed subspace in C>° (D, R).
By Lemma 3.12 in [22], the set A of all functions V' € G such that property (ii)

in Condition 2.5 is verified is Gs set (i.e., countable intersection of dense open
sets). First let us prove genericity of property (i) in the case d = 1.

Lemma 5.1. For any V € C*([0,1],R), the set of functions Q € C*°([0,1],R)
such that

inf [p°j*(Qep.v,ejv)| >0 (5.1)
p,j>1
is dense in C*([0,1],R).

Proof. If V.= 0, then a straightforward calculation gives

(CD)"8p5 ;

2 Tz, AL p#
(2€p,0,€j0) = {’g (©*=3%) N
3 T pIady up=y,

which implies (5.1) for @ = 2% and V = 0. In the general case, taking any
p # j, we integrate by parts (we write A;, e; and 2", 2" instead of \; v, e; v and
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4?2z dz

5> 1o, respectively)

(@epe5) =3 s+ V)(@ep), )
(< Q"ep,ej) + <—Q'€;a€j> + Ap(Qep, €5)).

This implies that
1

(Qep,ej) = = ((Q"ep, e5) + (Q'eyr ). (5.2)
j P
Again integrating by parts, we get
/1 _ 1 /1 d2 v
<Q ep?e]> A_‘7<Q ( sz + )e]>
Lo, ==t 1 cl2
- . —{(- 5.3
5%yt g V@ e (63)
Notice that
d2 "1

(= V)@Q'ey) e5) =(VQ'ey €) + (—Q" ey e5) + (—Q"ely, €5)

+ /\p<Q/ep,ej> —(Q'(Vep)', €5).

da?

Replacing this into (5.3), we get

1 I/I:

ﬁ( €5l +(VQ'ep,e5) + (—Q"ep )
+(=Q"e,,e5) — <Q (Vep)'aeﬁ)- (5.4)
Using (5.2) and (5.4) and the fact that

< Q// " > — _<Q”Vep,ej> + )\p<QlI€p)€j>’

(Qepre5)

we obtain
1 p Ap I
(Qep, €;) :(*m@ €p; €5) — m@ €p€5))
- ﬁ( Q'e,e’ : +(VQ'e,, e5)
+(=Q"eye5) —(Q"Vep,e5) —(Q'(Vep,) s €5))
=11 + 5.

Let @ be such that A := Q'(z) cos(pmx) cos(jmc)’ # 0. Clearly, this is
verified for almost any @, since A depends only on the parity of p and j. Let
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us choose @ such that (Qep,e;) # 0 for all p,j > 1; the set of such functions
Q is Gs, by Section 3.4 in [22]. Using the estimates (1.7)-(1.9), it is easy to see
that inf, j>1,p2; [p?312| > 0. Iterating the same arguments for I7, we see that
inf, j>125 [P273(Qep v, ejv)| > 0 for almost any polynomial Q.

If p = j, using (1.8), we get

(Qep, ep) = 2(Q, sinQ(pﬂ'x» + Sp,

where s,—0. Thus
1
(Qep, ep) = (Q,1 — cos2pmx) + 5 = / Qdx — (Q, cos 2pmx) + s,
0

Taking @ such that fol Qdzx # 0, we complete the proof of the lemma.
O

Take any functions Qr € C*([0,1],R), &k = 1,...,d in the dense set of
Lemma 5.1 corresponding to V. € C*°([0,1],R), k =1,...,d. Then Q(z1,...,xq)
=Q1(x1) - ...  Qa(xq) satisfies (1) with V(z1,...,2q) := Vi(x1) + ...+ Va(zaq).

5.2 Inverse mapping theorem for multifunctions

In this section, we recall the statement of the inverse mapping theorem for
multivalued functions or multifunctions. We refer the reader to the paper [21]
by Nachi and Penot for details and for a review of the literature on this subject.

Let X and Y be Banach spaces. For any non-empty sets C, D C X, define
the Hausdorff distance

d(@.D) = inf [lz = .

e(C,D) = sup d(z, D).
zeC

We call a multifunction from X to Y any mapping F from X to 2V.

Definition 5.2. A multifunction F from an open set Xo C X to Y is said to
be strictly differentiable at (xq,yo) if there exists some continuous linear map
A X—=Y such that for any € > 0 there exist 3,0 > 0 for which

e(F(x) N By (yo, ) — A(x), F(a') — A(a')) < ellz — 2/l x,
whenever x,x’ € B(xg,0). The map A is called a derivative of F at (xo,yo)-

The following theorem is a generalization of the classical inverse function
theorem to the case of multifunctions.

Theorem 5.3. Let F be a multifunction from an open set Xg C X to Y
with closed non-empty values. Suppose F is strictly differentiable at (xq,y0) €
Gr(F), and some derivative A of F at (x0,y0) has a right inverse. Then for any
neighborhood U of xq there exists a neighborhood V' of yo such that V- C F(U).

See Theorem 22 in [21] for the proof.
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