
HAL Id: hal-00489291
https://hal.science/hal-00489291

Submitted on 4 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Methods for Systems Engineering Behavior
Models

Charlotte Seidner, Olivier Henri Roux

To cite this version:
Charlotte Seidner, Olivier Henri Roux. Formal Methods for Systems Engineering Behavior Models.
IEEE Transactions on Industrial Informatics, 2008, 4 (4), pp.280-291. �hal-00489291�

https://hal.science/hal-00489291
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS - FORMAL METHODS FOR EMBEDDED SYSTEMS DESIGN, NOVEMBER 2008 1

Formal Methods for Systems Engineering Behavior
Models

Charlotte Seidner and Olivier H. Roux

Abstract—Safety analysis in Systems Engineering (SE) pro-
cesses, as usually implemented, rarely relies on formal methods
such as model checking since such techniques, however powerful
and mature, are deemed too complex for efficient use. This
paper thus aims at improving the verification practice in SE
design: considering the widely-used model of EFFBDs (Enhanced
Function Flow Block Diagrams), it formally establishes its syntax
and behavioral semantics. It also proposes a structural translation
of EFFBDs to transition time Petri nets (TPNs); this translation
is then proved to preserve the behavioral semantics (i.e. timed
bisimilarity). After proving results on the boundedness of the
resulting TPNs, it was possible to extend a number of fundamen-
tal properties (such as the decidability of liveness, state-access,
etc.) from bounded TPNs to so-called bounded EFFBDs . Finally,
these results led to both implementing and integrating a formal
verification tool within a development platform for system design
for defense applications and in which the underlying complexity
is totally concealed from the end-user.

Index Terms—Systems Engineering, time Petri nets, embedded
system design, formal verification, timed bisimulation.

I. INTRODUCTION

SYSTEMS Engineering (SE) is defined by the INCOSE1 as
an “interdisciplinary approach” to perform the “realization

of successful systems”, from the definition of “customer needs
and required functionality early in the development cycle”
to “design synthesis and validation” [1]–[3]. Application
fields, and particularly in embedded system design, are quite
numerous: defense, aerospace engineering, road or railroad
transport, computer science, etc. However, the development
of ever larger and more complex systems has made safety
and dependability assessment most essential. Verification and
validation processes are then used to assess some (temporal)
properties, which are usually classified into safety (“something
bad will never occur”) and liveness (“something good will
eventually happen”) properties ([4]).

To assess the system safety, a common practice consists
in performing simulations on a behavioral model of the
system. However, this analysis cannot be exhaustive, even
on “reasonably-sized” systems and carries the risk of missing
potential safety-critical situations. On the other hand, model
checking techniques, where specifications to be respected are
formally expressed and confronted to a formal model of the
system, may address the simulation method shortcomings. In
addition, when considering high-level models usually handled
in SE processes and rather than develop specific methods
(along with a complex body of theory), it appears more
efficient first to supply them with a behavioral semantics,
then to translate them into formal lower-level models, such

1 INternational COuncil on Systems Engineering.

as Petri nets, on which model checking techniques and results
are well established. As the translation is designed to preserve
the behavior and properties to be checked, the method benefits
from the powerful tools and results obtained on the lower-level
model to assess high-level, temporal properties.

This work focuses on the use of Enhanced Function Flow
Block Diagrams (EFFBDs, [5]), a graphical formalism widely
used in SE projects developed by major companies such as
the NASA, BOEING or AIRBUS [6]. Although no formal
semantics was ever established for this model, it has shown
to be consistent and mature over the last decades and its
implementation in various design and modeling tools provides
de facto a consistent semantics. Concerning the lower-level
model, time Petri nets (TPNs, [7]) appeared well-suited to
the EFFBD structure and the use of a model checker such
as ROMÉO [8] an adequate tool for the identified needs [9].
Finally, TPN (as well as timed automaton or TA, [10])
semantics is expressed as a time transition system (TTS, [11]).
It is thus pertinent to describe EFFBD semantics as another
TTS and then to define a translation from EFFBD to TPN (or
TA) that preserves the behavioral semantics2.

A. Related works

Over the last decades, a large number of research efforts
have focused on safety and dependability methods. In the
software engineering field, in particular, it led to numerous
works in safety and dependability analysis for UML-based
system design (see for instance [12] and [13]).

In SE (which application field is even broader than software
engineering), similar projects have been emerging during the
last few years. Amongst the modeling tools used or developed
within the SE community, the Systems Modeling Language
(SysML, [14]) should be mentioned as the result of the Object
Management Group (OMG) and the INCOSE joint initiative3.
SysML is also widely based on a subset of UML. However,
the well-known issue of the lack of precise semantics in UML
has not yet been solved in SysML [15].

Recently, the Architecture Analysis and Design Language
(AADL, [16]) has gained importance as a powerful modeling
tool by allowing a number of formal analyses [17]. However,
it appears that the language still suffers from semantical
imprecisions. For instance, whereas some dynamical aspects

2 It would actually be easier to express EFFBD semantics as a TA or a
TPN as the expressive power of both these models is greater. However, TA
and TPN expressivities (w.r.t. bisimulation) are not comparable. Therefore,
there is no translation from “general” (i.e. potentially unbounded) TPN into
TA (and conversely). As a consequence, a semantics given with one of these
models would be difficult to exploit with the other one.

3 The specification is actually inspired by the EFFBD formalism.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS - FORMAL METHODS FOR EMBEDDED SYSTEMS DESIGN, NOVEMBER 2008 2

in AADL are described with hybrid automata, others are
not covered, thus allowing different interpretations. Moreover,
AADL still lacks the maturity of models such as EFFBDs
which go back, in their simplest form, to the 1950’s.

Lastly, the author of [18] proposed a semi-formal semantics
for FFBDs (a subset of EFFBDs) and a translation to Petri nets
(PNs) preserving the “causal chain representation” i.e. a non
temporal bisimilarity. However, no formal proof is given for
the translation; in addition, FFBDs are strictly less expressive
than EFFBDs as they cannot represent data flows nor resource
usage.

B. Contribution – outline of the paper
This paper formally establishes EFFBDs syntax and behav-

ioral semantics. To the authors’ knowledge, this formalization
was never proposed so far. It also proposes a structural
translation of EFFBDs to transition time Petri nets (TPNs);
this translation is proved to preserve behavioral semantics (i.e.
timed bisimilarity). After proving results on resulting TPNs
boundedness, it was possible to extend a number of fundamen-
tal properties (such as the decidability of liveness, state-access,
etc.) from bounded TPNs to the so-called bounded EFFBDs.
These results eventually led to both the implementation and
integration of an operational formal verification tool within
a development platform, used in systems design for defense
applications.

Section II gives an informal presentation of the EFFBD
formalism, whereas Section III proposes a formal definition of
the formalism including its semantics. Due to the formalism
richness, however, parts of the description are shown in Ap-
pendix A. Section IV briefly introduces the TPNs and presents
the patterns used to translate EFFBDs into TPNs. Section V
establishes some properties of the translation and particularly
the method correctness. Section VI gives an insight of the
tools developed in application of these results and Section VII
concludes the paper by presenting further research works.

II. AN INFORMAL PRESENTATION OF THE EFFBDS

In order to provide an efficient specification of both func-
tional and data control, systems engineers often use rela-
tively simple graphical representations such as EFFBDs. These
diagrams provide the designer with an easy framework to
describe the behavior of complex, distributed, hierarchical,
concurrent and communicating systems. EFFBDs describe the
functions performed by the system and the order in which
they are to be executed. This order is specified through the
functions dynamic parameters (i.e. their execution duration),
control environment (control constructs) and data (or items)
environment.

EFFBDs offer a large range of control constructs such
as parallel branches, loops, selection branches, etc4. This
section provides an informal presentation of available control
structures and item controls. Fig. 1 shows an example of
an EFFBD; the diagram does not correspond to an actual
system but rather illustrates the main features of the EFFBD
formalism.

4 Only well-formed diagrams are valid which implies that constructs are
exited in the reverse order they were entered.

����������
	�
����

��

��

��

��

��

�� ��

�� ��

��
����
 �
 ����
���
��

��
����
 �

��������

��
����
 �

��������
 ���

��
����
 �

��������
 ���

����

��
����
 �

���

� �����

�

�

Fig. 1. Example of an EFFBD (adapted from [6])

The description given in this section is largely inspired by
the implementation realized in the COREr software tool, a
system design platform developed by VITECH CORP.5

A. Parallel structures (AND nodes)

A parallel structure consists of two AND nodes and n
parallel branches (n ≥ 2). After the structure has been
entered, the first construct of every branch is enabled. The
structure is exited as soon as the last construct on every branch
has been completely executed; this rule may induce some
synchronization-waiting states.

B. Selection structures (OR nodes)

A selection structure consists of two OR nodes and n select
branches (n ≥ 2). When the structure is entered, one of the
branches is selected and its first construct is enabled. The
structure is exited as soon as the last structure of the chosen
branch has been completely executed.

The selection process, i.e. the set of rules determining the
branch choice, takes various forms in the different implemen-
tations such as selection probabilities or internal scripts, all
of which are not part of the EFFBD formalism. To make the
study simpler, this paper considers that every branch can be
selected (no information on the probabilities is given).

C. Iteration structures (IT nodes)

An iteration structure consists of two IT nodes surrounding
an iterated branch, an internal counter and a maximal iteration
value imax (imax ≥ 2). Entering the iteration enables the first
construct of the iterated branch and initializes the counter to 1.
When the last construct of the branch is exited, two behaviors
are then possible:
• if the counter value is strictly less than imax, the first

construct of the iterated branch is enabled again and the
counter incremented;

• else, the structure is exited.

5 http://www.vitechcorp.com

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS - FORMAL METHODS FOR EMBEDDED SYSTEMS DESIGN, NOVEMBER 2008 3

D. Loop structures (LP nodes)

A loop construct consists of two LP nodes surrounding a
loop branch. Entering the loop enables the first construct of the
loop branch; when the last construct of the branch is exited, the
control returns to the loop opening. The behavior thus defined
is infinite.

E. Functions and items

Function constructs (represented by rectangular nodes) are
the system functions containers and thus the model core.
Function constructs can be single-exit or multi-exit, in which
case they have n exit branches (n ≥ 2) converging on a closing
OR node. As multi-exit functions are equivalent to single-exit
functions followed by a selection structure, they shall not be
discussed hereunder.

A function can start its execution if and only if it is both
enabled (by the control environment) and triggered (by the
item environment). Functions wait for all their input items to
be available in proper quantity before consuming them and
beginning their execution. Execution durations are described
by probability laws; however, for the sake of simplicity, it
is considered here that execution durations belong to a time
interval [α, β]. Taking more complex probability laws into
consideration would induce the resort to stochastic models
such as Generalized Stochastic Petri Nets, which is beyond the
scope of this paper. When the execution has been completed,
the (potential) output items are produced and the function
construct is exited.

F. Other structures

EFFBDs support a few additional structures, such as sub-
scenarios or termination structures. The former can be brought
down to a simplifying and compact model design but add no
expressivity to the model and shall therefore not be discussed
hereunder.

Termination structures help modeling the early termination
of parallel branches or the forced exit from a loop construct;
they do add to the expressivity of the model but, since this is
preliminary work, this feature shall not be considered hence-
forward6. However, these structure types are both extensively
presented in [19].

III. FORMAL PRESENTATION OF THE EFFBDS

This section presents EFFBDs syntax and behavioral seman-
tics. To the authors’ knowledge, this semantics has never been
formally established so far. Only a simplified version of the
formalism is presented here; a complete version can be found
in [19]. Most of the formalization presented here (as well as
in the following section) were designed so as to provide a
straightforward proof of the equivalence between an EFFBD
and its corresponding TPN.

6 The translation of such structures in TPNs actually involve reset arcs.

A. Notations and definitions

The notations adopted in this paper are the following:
• N, Z and R≥0 are respectively the sets of natural integers,

integers and positive real numbers; Z∗ is the set Z \ 0;
• the usual operators +,−, <,≤,≥, >,= are extended

(element-wise) to vectors of An with n ∈ N and A =
N,Z,R≥0;

• given two sets A and B, BA is the set of applications
from A to B;

• \ denotes the set minus operator;
• 0 is the null vector and ∅ the empty set.
Unless otherwise specified, opening brackets stand for “and”

conditions.
The behavioral semantics considered in the following sec-

tions are described as TTS, the definition of which is recalled
below. TTS are in fact usual transition systems with two types
of labels (discrete labels for modeling events and positive real
labels for time elapsing).

Definition III.1 (Timed Transition System [11]). A timed tran-
sition system over the set of actions Σ is a tuple (Q,Q0,Σ,→)
where Q is a set of states, q0 ∈ Q the initial state, Σ a finite
set of actions disjoint from R≥0 and →⊆ Q× (Σ∪R≥0)×Q
a set of edges7.

The definition of the strong-timed bisimulation which shall
be needed in Section V-C, is recalled below.

Definition III.2 (Strong-timed bisimulation [20]). Let S1 =
(Q1, q

1
0 ,Σ,→1) and S2 = (Q2, q

2
0 ,Σ,→2) be two TTS and

∼ a binary relation8 over Q1 × Q2. ∼ is a strong-timed
bisimulation between S1 and S2 if:
R0 q1

0 ∼ q2
0

Rd ∀ q1, q
′
1, q2, d ∈ R≥0 s.t. q1

d→1 q
′
1 and q1 ∼ q2, ∃ q′2

s.t. q2
d→2 q

′
2 and q′1 ∼ q′2

R′d ∀ q2, q
′
2, q1, d ∈ R≥0 s.t. q2

d→2 q
′
2 and q1 ∼ q2, ∃ q′1

s.t. q1
d→1 q

′
1 and q′1 ∼ q′2

Rσ ∀ q1, q
′
1, q2, σ ∈ Σ s.t. q1

σ→1 q′1 and q1 ∼ q2, ∃ q′2
s.t. q2

σ→2 q
′
2 and q′1 ∼ q′2

R′σ ∀ q2, q
′
2, q1, σ ∈ Σ s.t. q2

σ→2 q′2 and q1 ∼ q2, ∃ q′1
s.t. q1

σ→1 q
′
1 and q′1 ∼ q′2

B. Syntax of an EFFBD

The syntax of both untimed and timed EFFBDs is given
hereunder.

Definition III.3 (Untimed EFFBD). An untimed EFFBD is
a tuple EU = (N , I,A, count, n0, I0) where:
• N is a finite, non-empty set of nodes defined as the union

of the following subsets:
– ANDin and ANDout: the set of opening and clos-

ing AND nodes;
– ORin and ORout: the set of opening and closing OR

nodes;

7 (q, •, q′) ∈→ is also written q
•→ q′.

8 (q1, q2) ∈∼ is written q1 ∼ q2.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS - FORMAL METHODS FOR EMBEDDED SYSTEMS DESIGN, NOVEMBER 2008 4

– ITin and ITout: the set of opening and closing IT
nodes;

– LPin and LPout: the set of opening and closing LP
nodes;

– FC: the set of function constructs.
• I is a finite set of items;
• A is a finite, non-empty set of control and item arcs:
A = AC ∪ AI where:

– AC ⊂ N ×N is the set of control arcs9;
– AI ⊆ FC × I × Z∗ is the set of item arcs;

• count : ITin → N \ {0, 1} is the counter function
giving for each iteration construct the maximum number
of iterations;

• n0 ∈ N is the initial node;
• I0 ∈ NI gives the initial item amounts.

Let (f, item, k) be an element of AI ; if k < 0, item is
consumed by f in the quantity k and if k > 0, item is
produced by f in the quantity k.

Definition III.4 (Timed EFFBD). A timed EFFBD is a tuple
ET = (EU , α, β) where:
• EU is an untimed EFFBD;
• α ∈ NFC and β ∈ (N ∪ {∞})FC are respectively

the lower bound and the upper bound of the function
execution duration mappings (α ≤ β).

C. Additional definitions

Some additional definitions are provided below in order to
make the subsequent semantic expressions simpler.

Definition III.5 (Predecessors and successors of a node). Let
N be a set of nodes and AC a set of control arcs. The
predecessors of a node n ∈ N form the set Pre(n) defined
by:

Pre(n) = {n′ ∈ N | (n′, n) ∈ AC}

The successors of a node n ∈ N form the set Post(n)
defined by:

Post(n) = {n′ ∈ N | (n, n′) ∈ AC}

These definitions are extended to describe the content of
constructs, so as to formalize the notion of well-formed
EFFBDs.

Definition III.6 (Extended predecessors). The operator Pre
is extended to p̂re(E) where E is a set: p̂re(E) is defined by
p̂re(E) =

⋃
e∈E{Pre(e)}

The operator −→prei (for i ≥ 0) is defined for the elements x
and y by −→prei(x, y) ={
{x} \ y if i = 0
−→prei−1(x, y) ∪ (p̂re(−→prei−1(x, y))) \ y otherwise
−→pre∗(x, y) denotes the fixed point : −→pre∗(x, y) = −→prej(x, y)

s.t. −→prej(x, y) = −→prej+1(x, y)

p̂re(E) is the set of the predecessors of E obtained in one
step; −→prei(x, y) is the set of the predecessors of x in i steps,

9 Note that ∀n ∈ N , (n, n) /∈ AC .

excluding y and its predecessors. Finally, −→pre∗(x, y) is the set
of the nodes between y and x, in a well-formed model.

The extended successor operator
−−→
post∗ is likewise defined

by replacing Pre by Post in previous definitions.
The definition of a well-formed EFFBD ensues:

Definition III.7 (Well-formed EFFBDs). An EFFBD is well-
formed iff for all opening nodes n ∈ ANDin∪ORin∪ITin∪
LPin, there is exactly one closing node of the same type n such
that:
• (Atomicity)

−−→
post∗(n, n) \ n = −→pre∗(n, n) \ n. This set is

denoted atom(n, n) and represents the nodes contained
in the structure delimited by n and n10;

• (Imbrication) ∀e ∈ atom(n, n), e being an opening node,
there is exactly one closing node of the same nature e
such that atom(e, e) ⊂ atom(n, n) i.e. e ∈ atom(n, n);

• (Continuity) ∀e ∈ Post(n), ∃e′ ∈ Pre(n) s.t. e′ ∈−−→
post∗(e, n) and ∀e ∈ Pre(n), ∃e′ ∈ Post(n) s.t.
e′ ∈ −→pre∗(n, e)

In a well-formed EFFBD, a branch 〈n, e, n〉 comprised
between nodes n and n and beginning with node e (e ∈
Post(n)) is then the set

−−→
post∗(e, n). In addition, the set of loop

structures (i.e. the nodes couples surrounding a loop branch)
is denoted LP ; the set of iteration structures is denoted IT .

Finally, the item consuming relation is defined as follows.

Definition III.8 (Consuming relations). Let FC be a set of
function constructs, I a set of items and AI a set of item arcs.
The consuming relation Cons : FC → NI is defined for all
f ∈ FC and A ∈ I by:

Cons(f)[A] =

{
|k| if ∃ k < 0 s.t. (f,A, k) ∈ AI
0 otherwise

The producing relation Prod : FC → NI is similarly
defined for k > 0.

D. Semantics of an EFFBD

The behavioral semantics of untimed EFFBDs is defined
as a transition system (TS). The TS states are triplets that
represent the node activity, the iteration counters and the item
levels11. The activity A(n) of a node n takes its value in the set
A = {inactive, enabled, executing, executed} if n ∈ FC
and in the set A∗ = {inactive, enabled, executed} otherwise.
The activity executed denotes the fact that a node preceding
an ANDout node has completed its own execution but is
waiting for the other branches to complete their execution.
As functions must be in the executing state before becoming
executed or inactive, they are the only nodes that cannot
directly transit from enabled to executed. In addition, in the
case of closing IT and LP nodes, control always comes back
to the corresponding opening node, even if (in the iteration
case) the proper number of iterations was reached, hence an
additional constraint on these nodes.

10 If
−−→
post∗(n, n) \ n 6= −→pre∗(n, n) \ n, then atom(n, n) = ∅ by

convention.
11 They either represent the current quantity of a resource or the number

of times some data was produced without being consumed.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS - FORMAL METHODS FOR EMBEDDED SYSTEMS DESIGN, NOVEMBER 2008 5

The value of the counter relative to an iteration is defined as
the number of times the first construct on the iterated branch
was enabled.

In order to make reading easier, the semantic rules are
decomposed in propositions Px, according to the nature of the
processed node. Only Pgen,PF and P ′F are provided here; the
other rules are given in Appendix A. The former describes the
generic rule “each successor of the processed node is enabled;
other nodes, counters and item levels are not affected”. PF
describes the function execution start (including input item
consuming) and P ′F describes the function execution end
(including output item producing).

Definition III.9 (Semantics of an untimed EFFBD). The se-
mantics of an untimed EFFBD EU = (N , I,A, count, n0, I0)
is a tuple ||EU || = (S, s0,N ,→) where:

• S ⊆ AN ×NITin ×NI is the set of the states reachable
by iteratively applying → from s0;

• s0 = (A0, 0, I0) is the initial state, where A0(n0) =
enabled and A0(n) = inactive for n 6= n0;

• →⊆ S×N×S is the (discrete) transition relation, defined
∀n ∈ N by:

(A,C, I) n→ (A′, C ′, I ′)⇔
A′(n) = NextAct{

(A(n) = enabled ∧ PreCondition)
or (n ∈ FC ∧A(n) = executing ∧ P ′F)

with:

NextAct =


executed if


n /∈ ITout ∪ LPout
Post(n) ∩ANDout 6= ∅
A(n) = enabled⇒ n /∈ FC

executing if (n ∈ FC ∧A(n) = enabled)
inactive otherwise

PreCondition



n ∈ ANDin ∪ORout ∪ LPin ⇒ Pgen
n ∈ ANDout ⇒ PAo

n ∈ ORin ⇒ POi

(n ∈ ITin ∧ C(n) < count(n))⇒ PIi

(n ∈ ITin ∧ C(n) = count(n))⇒ P ′Ii

n ∈ ITout ⇒ PIo

n ∈ LPout ⇒ PLo

n ∈ FC ⇒ PF

NextAct thus describes the resulting activity of the pro-
cessed node (most of the time, it becomes inactive). Please
note the set of conditions for the executed cases, as explained
above. PreCondition describes the conditions to fulfill in
order to process the node; it is a set of mutually exclusive
propositions. Defining Nn as the set N \ {n}, the definition

of propositions Pgen, PF and P ′F are:

Pgen

∀n
′ ∈ Nn, A′(n′) =

{
enabled if n′ ∈ Post(n)
A(n′) otherwise

C ′ = C, I ′ = I

PF


∀n′ ∈ Nn, A′(n′) = A(n′)
C ′ = C

(I ≥ Cons(n)) ∧ (I ′ = I − Cons(n))

P ′F


∀n′ ∈ Nn, A′(n′) =

{
enabled if n′ ∈ Post(n)
A(n′) otherwise

C ′ = C

I ′ = I + Prod(n)

The semantics of a timed EFFBD is defined as a TTS. A
valuation is a mapping ν ∈ (R≥0)FC such that ∀f ∈ FC,
ν(f) is the time elapsed since f started its execution. ν(f)
is only meaningful if the function f is in execution. The
TTS states are 4-tuples representing node activity, iteration
counters, item levels and valuations.

Definition III.10 (Semantics of a timed EFFBD). The seman-
tics of a timed EFFBD ET = (N , I,A, count, n0, I0, α, β) is
a tuple ||ET || = (S, s0,N ,→) where:
• S ⊆ AN ×NITin×NI× (R≥0)FC is the set of the states

reachable by iteratively applying → from s0;
• s0 = (A0, 0, I0, 0), A0 being defined as above;
• →⊆ S×(N∪R≥0)×S is the transition relation including

a discrete transition relation and a continuous transition
relation.

– The continuous transition relation is defined ∀d ∈
R≥0 by:

(A,C, I, ν) d→ (A,C, I, ν′)⇔
∀n /∈ FC,A(n) 6= enabled

∀n ∈ FC,A(n) = enabled⇒ I < Cons(n)
∀n ∈ FC,A(n) = executing ⇒ ν(n) + d ≤ β(n)
ν′ = ν + d

– The discrete transition relation is defined ∀n ∈ N
by:

(A,C, I, ν) n→ (A′, C ′, I ′, ν′)⇔
A′(n) = NextAct as defined above{

(A(n) = enabled ∧ PreConditionT)
or (n ∈ FC ∧A(n) = executing ∧ P ′TF)

with:

PreConditionT



n ∈ ANDin ∪ORout ∪ LPin ⇒ PTgen
n ∈ ANDout ⇒ PTAo

n ∈ ORin ⇒ PTOi

(n ∈ ITin ∧ C(n) < count(n))⇒ PTIi

(n ∈ ITin ∧ C(n) = count(n))⇒ P ′TIi

n ∈ ITout ⇒ PTIo

n ∈ LPout ⇒ PTLo

n ∈ FC ⇒ PTF

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS - FORMAL METHODS FOR EMBEDDED SYSTEMS DESIGN, NOVEMBER 2008 6

The definition of the PTx conditions are:

PTF


PF as defined above

∀f ∈ FC

{
ν′(f) = 0 if f = n

ν′(f) = ν(f) otherwise

P ′TF

{
P ′F as defined above
α(n) ≤ ν(n) ≤ β(n)

The other conditions are the same as in the untimed case,
though with addition of constraint ν′ = ν. The definition of
the continuous transition relation imposes that time cannot
elapse until the system has reached a “stable state” (i.e. no
instantaneous transition can be taken).

IV. TRANSLATION OF AN EFFBD INTO A TPN

This section briefly presents the TPN formalism and the
structural translation of an EFFBD into a TPN. To make read-
ing easier, most translation patterns are given in Appendix B.

A. Time Petri nets

Transition time Petri nets (which will simply be known
as TPN hereunder) form a timed extension of classical Petri
nets, where transitions are taken (or fired) within a given time
interval [7]. The semantics described here corresponds to the
single-server, intermediate case (see for instance [21] for a
discussion on the different TPN semantics).

Definition IV.1 (Labeled time Petri nets). A labeled time Petri
net over a set of actions Σ is a tuple T = (P, T,•(.), (.)•,M0,
a, b,Σ,Λ) where:
• P = {p1, ..., pm} is a finite, non empty set of places;
• T = {t1, ..., tn} is a finite, non empty set of transitions;
• •(.) ∈ (NP)T is the backward incidence function;
• (.)• ∈ (NP)T is the forward incidence function;
• M0 ∈ NP is the initial marking of the net;
• a ∈ (N)T and b ∈ (N ∪ {∞})T are functions giving for

each transition respectively its earliest and latest firing
times (a ≤ b);

• Λ : T → A is the labeling function.

A marking M of the net is an element of NP such that
∀p ∈ P , M(p) is the number of tokens in place p. A transition
t is said to be enabled by the marking M if M ≥• (t);
it is denoted by t ∈ enabled(M). A transition t is said
to be firable when it has been enabled for at least a(t)
time units. A transition tk is said to be newly enabled by
firing transition ti from the marking M , which is denoted by
↑ enabled(tk,M, ti), if the transition is enabled by the new
marking M−•(ti)+(ti)• but was not by M−•(ti). Formally,

↑ enabled(tk,M, ti) = ((tk = ti) ∨ (•(tk) > M −• (ti)))
∧(•(tk) ≤M −• (ti) + (ti)•)

TPNs semantics is defined as a TTS: states are the associ-
ation of both a marking M and a vector of clock valuations
v, v(t) representing the time elapsed since transition t was
enabled.

Definition IV.2 (Semantics of a TPN). The semantics of a
labeled TPN T is defined as a TTS ‖T ‖ = (Q, q0, T,→) such
that:
• Q ⊆ NP × (R≥0)T is the set of the states reachable by

iteratively applying → from q0;
• q0 = (M0, 0);
• →⊆ Q × {T ∪ R≥0} × Q is the transition relation

including a discrete transition relation and a continuous
transition relation.

– The discrete transition relation is defined by:

∀t ∈ T (M, v)
Λ(t)−→ (M ′, v′)⇔

t ∈ enabled(M)
a(t) ≤ v(t) ≤ b(t)
M ′ = M −• (t) + (t)•

∀tk ∈ T, v′(tk) =

{
0 if ↑ enabled(tk,M, t)
v(tk) otherwise

– The continuous transition relation is defined by:

∀d ∈ R≥0 (M,v) d→ (M, v′)⇔{
v′ = v + d

∀tk ∈ T, tk ∈ enabled(M)⇒ v′(tk) ≤ b(tk)

B. Translation patterns

The approach proposed in this work is to perform a struc-
tural translation by using elementary TPN patterns for each
type of node and for each item. A superscript is added to the
place and transition labels to distinguish the elementary TPNs.
The complete TPN is then simply obtained by connecting
patterns together. It should be noted that untimed EFFBDs are
simply translated by Petri nets and timed EFFBDs by TPNs

1) Item patterns: An item A is simply translated by a single
place pItemA with the initial marking I0(A).

2) Control patterns: each pattern encoding a node n is a
labeled TPN T n = (Pn, Tn,•(.)n, (.)•n,Mn

0 , a
n, bn, n,Λ).

To make reading easier, only one pattern has been provided
here: Fig. 2 gives the EFFBD representation of a function
F consuming items A1 to An and producing items B1 to
Bm and of its corresponding TPN pattern. Dashed elements
correspond to the item patterns and therefore are not part of the
pattern. However, it is considered here that item places belong
to the function patterns, so as to simplify the expression of the
composition operator, given below.

The other node patterns are provided in Appendix B. Each
pattern begins with one entry place (m for an ANDout node
with m predecessors) and ends with one transition (m for an
ORin node, none for an LPout node).

The initial marking Mn
0 depends on the nature of the node;

it also depends whether n = n0 or not. Let pEntryn be the en-
try place of the pattern associated with node n. Mn

0 [pEntryn]
is 1 if n = n0 and 0 otherwise12. In addition, if n ∈ ITin,
then Mn

0 [pNoMoren] = count(n) where pNoMoren is the
place in the pattern ensuring that the iteration is performed at

12 If n ∈ ANDout, then n 6= n0 and all pSynchn
′,n synchronization

places are initially empty.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS - FORMAL METHODS FOR EMBEDDED SYSTEMS DESIGN, NOVEMBER 2008 7

�
�����

�� ��

��

	� 	

��

�� �

����������	 �
���	 �
���	

�����

������

�������

����������	

��

������

�������

��

������

�������

������

�������

����

Fig. 2. Pattern of a function construct F

most count(n) times. Item places initial markings are set as
described above. All other places are initially empty.

Functions an and bn also depend on the nature of n:

• if n /∈ FC: ∀t ∈ Tn, an(t) = bn(t) = 0;
• if n ∈ FC : an(tExecn) = α(n) and bn(tExecn) =
β(n); all remaining transition intervals are set to [0, 0].

The labeling function is defined as: ∀t ∈ Tn,Λ(t) = n

3) Building the complete net: once every item and node
pattern has been created, partial nets are connected with
additional arcs to obtain the final net T = (P, T,•(.), (.)•,M0,
α, β,N ,Λ) where:

• P = (
⋃
n∈N P

n) ∪ (
⋃
A∈I pItem

A);
• T = (

⋃
n∈N T

n);
• ∀t ∈ T,•(t) =• (.)n where n ∈ N is such that t ∈ Tn;
• ∀t ∈ T, ∀p ∈ P, (t)•[p], the weight of the arc linking t to
p in T is defined as:

1 if t = tExitn ∧ p = pEntryn
′

∧(n, n′) ∈ AC ∧ (n′, n) /∈ IT ∪ LP
(.)•n[p] if p ∈ Pn

0 otherwise

where:
– n (resp. n′) is such that t ∈ Tn (resp. p ∈ Pn′

);
– tExitn is the exit transition of T n13;
– pEntryn

′
is the entry place of T n′ 14.

• ∀p ∈ P,M0[p] = Mn
0 [p] where n ∈ N ∪ I is such that

p ∈ Pn;
• α and β are built as •(.).

An example illustrating the translation process is provided
in Appendix C.

13 For ORin nodes, the transition is in fact tSelectk,n where k is the
branch number containing n′.

14 For ANDout nodes, the place is in fact tSynchk
′,n where k′ is the

branch number containing n′.

V. PROPERTIES

This section presents some properties obtained from the
resulting TPNs. In addition, after proving the behavioral
equivalence between both formalisms, some interesting results
on TPNs are applied to EFFBDs.

A. Non re-entrance of the EFFBDs

A fundamental result on well-formed EFFBDs is provided
below.

Proposition 1 (Non re-entrance of the EFFBDs). A well-
formed EFFBD is not reentrant i.e. each node and structure
must be exited before being enabled again.

Proof: As there is only one initial node in the EFFBD,
only opening AND nodes can create two (or more) independent
control flows. However, under the assumption of having a well-
formed EFFBD, these flows cannot converge to any node but
the corresponding closing AND node. Therefore, no node can
be enabled while still in execution.

In the following, EFFBDs are supposed to be well-formed.

B. Boundedness

A number of powerful results have been proved for bounded
TPNs (i.e. for which the marking of any place stays finite).
Likewise, this section provides a few results on a sub-class15 of
EFFBDs so-called bounded EFFBDs, the definition of which
is given below.

Definition V.1 (Bounded EFFBD). Let E be an EFFBD and
(S, s0,N ,→) its semantics. E is bounded iff:

∀(A,C, I, ν) ∈ S, ∀item ∈ I,∃k ∈ N I(item) ≤ k

Two sufficient conditions to ensure the boundedness of an
EFFBD are given hereunder. The proofs are trivial enough
to be omitted (they rely on the fact that the only potentially
unbounded places correspond to items and that the only
“infinite behavior” is caused by loops).

Proposition 2. An EFFBD that contains no item is bounded.

Proposition 3. An EFFBD in which no loop construct con-
tains item producing functions is bounded.

The example presented in Appendix C further illustrates
EFFBD- and TPN-boundedness. The consequence on the
boundedness of the resulting TPN is immediate.

Proposition 4. Let E be a bounded EFFBD and m defined
as:

m = max(max
iter∈ITin

count(iter), max
item∈I

I(item))

Let T be the TPN obtained from E and (Q, q0, T,→) its
semantics. T is m−bounded:

∀(M, v) ∈ Q,∀p ∈ P M(p) ≤ m
15 Most of the models designed in SE are actually bounded; therefore, the

restriction is not too limiting.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS - FORMAL METHODS FOR EMBEDDED SYSTEMS DESIGN, NOVEMBER 2008 8

Proof: As there is only one initial node, each node pattern
is, by construction, 1-bounded (or safe) except for ITin

n

patterns which are k-bounded with k = count(n). In addition,
as the EFFBD is bounded, all pItemX places in T keep a
finite marking. Therefore, T is bounded.

C. Strong timed bisimulation

A binary relation ∼ is defined over the behavior of EFFBD
models and the corresponding TPNs.

Let E = (N , I,A, count, n0, I0, α, β) be an EFFBD,
TE = (P, T,•(.), (.)•,M0, a, b,N ,Λ) the labeled TPN ob-
tained by the translation of E . Let ||E|| = (S, s0,N ,→E) and
‖TE‖ = (Q, q0,N ,→T) be their respective semantics. The
binary relation ∼⊆ S ×Q is defined as follows:

∀s = (A,C, I, ν) ∈ S, ∀q = (M,v) ∈ Q, s ∼ q ⇔{
Activityen ∧Activityex′ing ∧Activityex′ed

Counter ∧ Item ∧ V aluation

with:

Activityen :∀n ∈ N : A(n) = enabled⇔{
M(pEntry)n = 1 if n /∈ ANDout∑
n′∈Pre(n)M(pSynchn

′,n) ≥ 1 else

Activityex′ing :∀f ∈ FC : A(f) = executing ⇔
M(pExecf) = 1

Activityex′ed : ∀n ∈ N s.t. ∃αo ∈ ANDout ∩ Post(n) :
A(n) = executed⇔M(pSynchn,αo) = 1

Counter : ∀it ∈ ITin,∀k ∈ N : C(it) = k ⇔
M(pNoMoreit) = count(it)− k

Item : ∀A ∈ I,∀k ∈ N : I(A) = k ⇔
M(pItemA) = k

V aluation :∀f ∈ FC,∀x ∈ R≥0 : ν(f) = x⇔
v(tExecf) = x

Proposition 5. The relation ∼ is a strong-timed bisimulation
relation.

The proof is given in Appendix D.

D. Additional results

This section recalls theorems about TPNs and describes
their extension to EFFBDs.

Theorem 6 (Decidability of the k-boundedness). For any TPN
T with the semantics (Q, q0, T,→) and a given k ∈ N, the
following problem is decidable [22]:

∀(M,v) ∈ Q, ∀p ∈ P : M(p) ≤ k

Corollary 1. For any EFFBD E with the semantics
(S, s0,N ,→) and a given k ∈ N, the following problem is
decidable:

∀(A,C, I, ν) ∈ S,∀A ∈ I, I(A) ≤ k

Proof: Using proposition 5 and theorem 6, the proof is
immediate.

As a result, it is always possible to check whether the item
level of any EFFBD stays under a limit specified by the system
designer, which is particularly useful when assessing the size
of a system in the course of the design process.

Theorem 7. For any bounded TPN T with the semantics
(Q, q0, T,→), the following problems are decidable [22]:
• Accessibility of a marking: “given a marking M , is there

a state (M ′, v′) ∈ Q such that M = M ′?”
• Accessibility of a state: “given a state q = (M, v), q ∈
Q?”

Corollary 2. For any bounded EFFBD E with the semantics
(S, s0,N ,→) the following problems are decidable:
• Accessibility of an activity state: “given a node n, can n

be enabled ?”
• Accessibility of a state: “given a state s, s ∈ S?”

As mentioned in the introduction of this paper, the final
purpose of this work is to assess the safety of the designed
systems. It is therefore necessary to express sometimes com-
plex properties such as “Upon the reception of an alarm, the
system always reacts in an appropriate way in less than 5 time
units.”

In that respect, a temporal logic such as the Time Com-
putation Tree Logic (TCTL [23]) is particularly well-suited to
express these specifications. Due to a lack of space, its seman-
tics will not be described here; however, it should be noted that
the model checking of TCTL has been proved decidable on
bounded TPN [24]. Moreover, a subset of TCTL, named TPN-
TCTL, has been described by the author of [25]: informally
speaking, the formula atomic propositions are expressed in
terms of linear inequalities on the marking of the TPN. TPN-
TCTL has also been proved as decidable on bounded TPN.
In addition, a TPN-TCTL model checker was implemented
in ROMÉO16, a TPN-analysis software tool developed by the
authors of [8]. As a result, if a property over a bounded
EFFBD can be translated into a TPN-TCTL formula over the
corresponding TPN, then it is also decidable. This result shall
be discussed in the next section.

VI. APPLICATIONS

The translation method proposed in section IV has been
fully implemented and embedded in KIMONO, an operational
systems engineering development platform designed as a series
of ECLIPSE plug-ins [9]. KIMONO was specifically developed
for a French Department of Defense branch, partly by SODIUS
and the IRCCYN research laboratory, with the goal, amongst
others, of providing the system engineer with efficient tools
to assess the system safety during the design process17.

For this purpose, and in addition to the transition module
mentioned above, a deep-analysis module was also developed
and implemented. This module:

16 http://romeo.rts-software.org/
17 KIMONO being partially protected by confidentiality clauses, no official

project page is available.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS - FORMAL METHODS FOR EMBEDDED SYSTEMS DESIGN, NOVEMBER 2008 9

1) creates a safety property P expressed in natural language
over the system functions;

2) transforms this high-level property in a TPN-TCTL
formula F over the resulting TPN;

3) checks the formula by using ROMÉO model checker and
adapted on-the-fly algorithms;

4) returns the truth value of F and, if applicable, a
“witness” of the formula computed by ROMÉO (i.e. a
sequence of transition firing);

5) returns the truth value of P and a witness of the property
in terms of a sequence of functions.

In addition, the module allows the EFFBD simulation
through the TPN simulation by using ROMÉO simulation
engine.

For the time being, a limited set of property classes are
proposed, such as “the system always reaches its final state”
or “executing the function F always leads to the execution of
function G in less than x time units”. The translation from P
to F , as well as the correctness of the method, shall be dis-
cussed in a subsequent paper. A practical example, including
the property classes currently investigated, is presented in [26].

It should eventually be noted that steps 2 to 4 are totally
concealed to the user. A major concern throughout this study
was indeed to develop an efficient and usable tool: therefore,
the use of ROMÉO and, more generally the resort to TPN
is hidden in a “black box”. As a conclusion, this module,
combined with the simulation capability, can be used to point
out the modeling weaknesses (such as deadlocks) at an early
stage of the design, therefore providing valuable help to the
system architect.

VII. CONCLUSION

This paper has proposed a formal description and behav-
ioral semantics for a modeling language widely used in SE
processes although, to the authors’ knowledge, never formally
established. This first step led to the definition of a transforma-
tion from EFFBD to TPN, proved as preserving the behavior
of the high-level model. As a result, a number of fundamental
properties, inherited from the research works carried on TPN
were applied to EFFBDs. In turn, this work hinted at the
possibility and benefit of performing safety assessment on
models designed by a typical systems engineer via model
checking techniques, in a completely transparent way. Finally,
the paper gave a short glance on the tools developed in
application of those results.

Further work will focus on proving the correctness of the
translation of high-level properties to TPN-TCTL formulas,
and on the study of the method algorithms complexity. In
addition, it has been planned to extend KIMONO features by
providing the system designer with a complementary tool of-
fering safety and dependability-inspired design patterns based
on the results given by the developed analysis module.

APPENDIX A
SEMANTICS RULES

This appendix provides the Px propositions describing the
conditions the system state must fulfill to process nodes in

ANDout, ORin, ITin (distinguishing whether the iteration
maximum number has been reached or not) and LPout.

PAo


∀n′ ∈ Nn


A(n′) = executed ∧A′(n′) = inactive

if n′ ∈ Pre(n)
A′(n′) = enabled if n′ ∈ Post(n)
A′(n′) = A(n′) otherwise

C ′ = C, I ′ = I

POi


∃ nSel ∈ Post(n)



A′(nSel) = enabled

∀nNoSel ∈ Post(n) \ {nSel}
A′(nNoSel) = inactive

∀n′ ∈ Nn \ Post(n),
A′(n′) = A(n′)

C ′ = C, I ′ = I

PIi



∀n′ ∈ Nn, A′(n′) =

{
enabled if n′ ∈ Post(n)
A(n′) otherwise

∀it ∈ ITin

{
C ′(it) = C(it) + 1if it = n

C ′(it) = C(it) otherwise
I ′ = I

P ′Ii



∀n′ ∈ Nn, A′(n′) =



enabled if n′ ∈ Post(io)
where (n, io) ∈ IT

executed if (n′ = io)
∧Post(io) ∩ANDout 6= ∅

A(n′) otherwise

∀it ∈ ITin

{
C ′(it) = 0 if it = n

C ′(it) = C(it) otherwise
I ′ = I

PIo

∀n
′ ∈ Nn, A′(n′) =

{
enabled if (n′, n) ∈ IT
A(n′) otherwise

C ′ = C, I ′ = I

PLo

∀n
′ ∈ Nn, A′(n′) =

{
enabled if (n′, n) ∈ LP
A(n′) otherwise

C ′ = C, I ′ = I

APPENDIX B
TRANSLATION PATTERNS

Fig. 3 to 6 show for each construct its EFFBD represen-
tation and its corresponding patterns. Since most constructs
contain two nodes, patterns are in fact composed of two
elementary TPNs. In addition, when the interval associated
with a transition is [0, 0], it has been omitted on the graphical
representation of the TPN. Likewise, when the weight of an
arc is 1, it is not shown on the arrow.

Fig. 3 gives the pattern of a parallel structure. Note the
pSynchx,O places: they perform the synchronization ending
the parallel structure.

Fig. 5 gives the pattern of an iteration structure. Note
the additional places pNoLessI and pNoMoreI ; the former
ensures that the iterate branch is taken at least count(I) = iM
times while the latter ensures it is taken at most iM times. The

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS - FORMAL METHODS FOR EMBEDDED SYSTEMS DESIGN, NOVEMBER 2008 10

������

��������	

�	�����	
� �

������
� ������

� �����	�

����
���

����
���

Fig. 3. Patterns of nodes I ∈ ANDin and O ∈ ANDout

��������	

�	�����	

�� ��

��

�����
� ������

� ������
�

�	
�
��
��

�	
�
�����

Fig. 4. Patterns of nodes I ∈ ORin and O ∈ ORout

additional arc between pIT Iin and tIT Iexit enforces a complete
reset of the pattern at the exit.

�������� ��

�� 	�
��

��

��������

�����	
�����
� 	����

� 	����	

��

���
����

	�����	
�

��

��

Fig. 5. Patterns of nodes I ∈ ITin and O ∈ ITout

APPENDIX C
EXAMPLE OF A BOUNDED EFFBD

The EFFBD represented Fig. 7 models a (very basic)
bounded buffer. Task Write (or W) writes some data in
an initially empty bounded buffer while task Read (or R)
reads and erases previous data. Items BufferIn (BI) and
BufferOut (BO) model the space occupied or left in the
buffer; the initial amount of BI is 0 and BO initial amount is
the buffer size (set to 3 in this example). Function durations
respectively belong to in the intervals [αW , βW] and [αR, βR].

�� ��������

� �

�����
� �����

� ������
	������

	

Fig. 6. Patterns of nodes I ∈ LPin and O ∈ LPout

� ��������

�

�� �������

�� ����	

��������	 ��

Fig. 7. Example of a bounded EFFBD

To write data in a full buffer, W must wait for R to free at
least on space; conversely, R cannot access an empty buffer
and must wait for W to provide at least one data piece. This
EFFBD only provides a coarse modeling as, for instance, no
monitoring task is defined18.

The translation into a TPN is given Fig. 8. As no monitoring
task was defined to stop the system, both loops are infinite and
therefore, the closing AND pattern is useless.

������

������ �������

�	
���

�	
����

�����

����� ����������������������

���������� ������

�������

������

������� �������

������

������ ������������������������

����������

������

�������������

Fig. 8. Translation of the EFFBD of Fig. 7

Although this model does not respect the sufficient condi-
tions given in Section V-B, both EFFBD and TPN are trivially
bounded.

APPENDIX D
PROOF OF PROPOSITION 5

Proof: only well-formed EFFBDs are considered here.
The proof mechanism is based on a structural induction: the
bisimulation is proved, point by point, on every possible tran-
sition (here, only the ANDin case is given; the proof for other
nodes follows the same arguments and is left to the reader).

18 It would actually be modeled by a termination structure.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS - FORMAL METHODS FOR EMBEDDED SYSTEMS DESIGN, NOVEMBER 2008 11

Due to the atomicity, imbrication and continuity properties of
the well-formed EFFBD, these elementary bisimulation results
are straightforwardly propagated to any combination.

Let E = (N , I,A, count, n0, I0, α, β) be an EFFBD and
TE = (P, T,•(.), (.)•,M0, a, b, N ,Λ) the TPN obtained by
the translation of E . Let ||E|| = (S, s0,N ,→E) and ||TE || =
(Q, q0, T,→T) be their respective semantics and ∼ be the
binary relation defined in Section V-C.

R0 Trivially, s0 ∼ q0.
Rd Let s = (A,C, I, ν), s′ = (A,C, I, ν′) ∈ S and d ∈

R>0
19 s.t. s d→E s′. Let q = (M,v) ∈ Q s.t. s ∼ q. It

follows:
– from the definition of ||E||, ν′ = ν+d and ∀f ∈ FC

s.t. A(f) = executing, ν(f) + d ≤ b(f)
– according to the definition of ∼ and to the function

pattern, ∀f ∈ FC, ν(f) = v(tExecf) and β(f) =
b(tExecf)

– enabled(M) =
{
tExecf |A(f) = executing

}
as

nodes n /∈ FC are not enabled and ∀f ′ ∈
FC s.t. A(f) = enabled, I < Cons(f ′) i.e.
tWait Itemf ′

/∈ enabled(M)
– as a result, ∀t ∈ enabled(M), v(t) + d ≤ β(t)

Let q′ = (M,v + d). Trivially, q d→T q′ and s′ ∼ q′.
R′d Conversely, let q = (M,v), q′ = (M,v′) ∈ Q and d ∈

R>0 s.t. q d→T q′. Let s = (A,C, I, ν) ∈ S s.t. s ∼ q. It
follows:

– from the definition of ||TE ||, v′ = v + d and ∀t ∈
enabled(M), v(t) + d ≤ b(t)

– according to the definition of ∼ and to the function
pattern, ∀f ∈ FC, ν(f) = v(tExecf) and β(f) =
b(tExecf)

– since d > 0, only tExecf transitions are enabled
where f ∈ FC i.e. ∀n /∈ FC, A(n) 6= enabled and
∀f ′ ∈ FC, A(f ′) = enabled⇒ I < Cons(f ′)

– as as result, ∀f ∈ FC, A(f) = executing ⇒ ν(f)+
d ≤ β(f)

Let s′ = (A,C, I, ν + d). Trivially, s d→E s′ and s′ ∼ q′.
Rσ Let s = (A,C, I, ν), s′ = (A′, C, I, ν) ∈ S and σ ∈

ANDin s.t. s σ→E s′. Let q = (M, v) ∈ Q s.t. s ∼ q. It
follows:

– by definition of ||E||, A(σ) = enabled, any node
contained in the AND structure is inactive, A′(σ) =
inactive20 and ∀n ∈ Post(σ), A′(n) = enabled

– according to the definition of ∼ and to the trans-
lation patterns, M(pANDinσ) = 1 and therefore
tANDinσ ∈ enabled(M)

– v(tANDinσ) = 0
Let q′ = (M ′, v) s.t. M ′(pANDinσ) = 0 and ∀n ∈
Post(σ), M ′(pEntryn) = 1 where pEntryn is the entry
place of the TPN T n. Trivially, q σ→T q′. According to
the translation patterns, the firing interval of any transition
newly enabled by M ′ is [0, 0] and therefore s′ ∼ q′.

19 If d = 0, the case is trivial.
20 A′(σ) 6= executed in a EFFBD where no branch is empty, which is

supposed true here.

R′σ Conversely, let q = (M,v), q′ = (M,v′) ∈ Q, σ ∈
ANDin s.t. q σ→T q′. Let s = (A,C, I, ν) ∈ S s.t.
s ∼ q. It follows:

– by definition of ||TE ||, M(pANDinσ) = 121 and ∀p
s.t. (tANDinσ)•[p] = 1, M ′(p) = 1

– according to the definition of ∼ and to the translation
patterns, A(σ) = enabled, A′(σ) = inactive and
∀n ∈ Post(σ), A(n) = enabled

Let s′ = (A′, I, C, ν) s.t. A′(σ) = inactive and ∀n ∈
Post(σ), A′(n) = enabled. Trivially, s σ→E s′. Finally,
according to the translation patterns, the valuation of any
tExecf transition for f ∈ FC are not affected by the
firing of tANDinσ . Therefore s′ ∼ q′.

Since nodes are either in sequence or fully nested, the
bisimulation relation is propagated throughout the complete
EFFBD. The binary relation ∼ is therefore a strong-timed
bisimulation.

REFERENCES

[1] What is Systems Engineering?, INCOSE, 2004. [Online]. Available:
http://www.incose.org

[2] IEEE, “IEEE-1220: Application & management of systems engineering
process,” 1994.

[3] INCOSE Technical Board, Systems Engineering handbook: a “what to”
guide for all SE practitioners (version 2a). INCOSE, Jun. 2004.

[4] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
Transactions on Software Engineering, vol. 3, no. 2, pp. 125–143, 1977.

[5] US Air Force, “MIL-STD-499 Functional Flow Diagrams,” 1968, dI-S-
3604/S-126-1.

[6] J. Long, “Relationships between common graphical representations in
Systems Engineering,” in 5th International Symposium of the INCOSE.
St. Louis, Missouri: INCOSE, Jul. 1995, updated July 2002.

[7] P. Merlin, “A study of recoverability of computing systems,” Ph.D.
dissertation, Dpt. of Computer Science, University of California, Irvine,
CA, 1974.

[8] G. Gardey, D. Lime, M. Magnin, and O. H. Roux, “Romeo: A tool
for analyzing time Petri nets,” in Proceedings of the 17th International
Conference on Computer-Aided Verification (CAV’05), Lecture Notes in
Computer Science, 2005.

[9] C. Seidner, J.-P. Lerat, and O. H. Roux, “Usability of formal verifica-
tion on EFFBD models: Applying Petri nets to Systems Engineering
issues,” in 17th International Symposium of the International Council
on Systems Engineering (IS2007), San Diego, CA, Jun. 2007.

[10] R. Alur and D. L. Dill, “A theory of timed automata,” Theorical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[11] T. A. Henzinger, Z. Manna, and A. Pnueli, “Timed transition systems,”
Real Time: Theory in Practice, Lecture Notes in Computer Science,
1992.

[12] A. Bondavalli, M. Dal Cin, D. Latella, I. Majzik, A. Pataricza, and
G. Savoia, “Dependability analysis in the early phases of UML based
system design,” Journal of Computer Systems Science and Engineering,
vol. 16, no. 5, pp. 265–275, 2001.

[13] S. Bernardi and J. Merseguer, “A UML profile for dependability analysis
of real-time embedded systems,” in WOSP ’07: Proceedings of the 6th
international Workshop on Software and Performance, 2007, pp. 115–
124.

[14] SysML Finalization Task Force, OMG Systems Modeling Language
(OMG SysML

TM
) Specification – Proposed Available Specification.

Object Management Group, Mar. 2007. [Online]. Available: http:
//www.omg.org/cgi-bin/apps/doc?ptc/07-02-03.pdf

[15] Y. Vandeperren and W. Dehaene, “SysML and Systems Engineering
applied to UML-based SoC design,” in 2nd UML-SoC Workshop at
42nd Design Automation Conference, Jun. 2005.

[16] SAE Aerospace, “Architecture Analysis & Design Language (AADL)
– SAE AS 5506,” Nov. 2004. [Online]. Available: http://www.aadl.info

21 M(pANDinσ) ≤ 1 as shown in Section V-A.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS - FORMAL METHODS FOR EMBEDDED SYSTEMS DESIGN, NOVEMBER 2008 12

[17] A.-E. Rugina, “System dependability evaluation using AADL (Architec-
ture Analysis and Design Language),” in Rencontres Jeunes Chercheurs
en Informatique Temps-Réel (RJCITR), Sep. 2005.

[18] E. Herzog, “An approach to Systems Engineering tools data representa-
tion and exchange,” Ph.D. dissertation, Linköpings Universitet, 2004.

[19] C. Seidner and O. H. Roux, “On the formal verification of EFFBD
models using a structural translation to time Petri nets,” IRCCyN,
Nantes, France, Tech. Rep. RI2007-3 ref. 3695, Oct. 2007. [Online].
Available: http://www.irccyn.ec-nantes.fr/∼seidner

[20] D. Park, “Concurrency on automata and infinite sequences,” Conf. on
Theoretical Computer Science, Lecture Notes in Computer Science, vol.
104, 1981.

[21] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux, “Comparison
of different semantics for time Petri nets,” in Automated Technology for
Verification and Analysis (ATVA’05), ser. Lecture Notes in Computer
Science, vol. 3707. Springer, Oct. 2005.

[22] B. Berthomieu and M. Menasche, “An enumerative approach for analyz-
ing time Petri nets,” in IFIP Congress Series, vol. 9, 1983, pp. 41–46.

[23] R. Alur, C. Courcoubetis, and D. L. Dill, “Model-checking for real-time
systems,” in 5th IEEE Symposium on Logic in Computer, June 1990,
pp. 414–425.

[24] F. Cassez and O. H. Roux, “Structural translation from time Petri nets to
Timed Automata - Model-checking time Petri nets via Timed Automata,”
The Journal of Systems and Software, vol. 79, no. 10, pp. 1456–1468,
2006.

[25] G. Gardey, “Contribution à la vérification et au contrôle des systèmes
temps réel – Application aux réseaux de Petri temporels et aux automates
temporisés,” Ph.D. dissertation, École Centrale de Nantes – Université
de Nantes, 2006.

[26] C. Seidner, J.-P. Lerat, and O. H. Roux, “Usability and usefulness of
formal verification in a system design process,” in 18th International
Symposium of the INCOSE. Utrecht, Netherlands: International Council
on Systems Engineering, Jun. 2008.

