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In order to analyze whether timing requirements of a real-time application are met, we propose an extension of the T-time Petri net model which takes into account the scheduling of the software tasks distributed over a multi-processor hardware architecture. The paper is concerned with static priority pre-emptive based scheduling. This extension consists in mapping into the Petri net model the way the different schedulers of the system activate or suspend the tasks. This relies on the introduction of two new attributes for the places (allocation and priority). First we give the formal semantics of this extended model as a timed transition system (TTS). Then we propose a method for its analysis consisting in the computation of the state class graph. Thus the verification of timing properties can be conducted (possibly together with an observator) and comes to analyze the such obtained state class graph.

RÉSUMÉ. Dans un objectif de vérification du respect des contraintes temporelles d'exécution d'une application temps réel, nous proposons une extension des réseaux de Petri T-temporels permettant de prendre en compte l'ordonnancement des différentes entités logicielles de l'application réparties sur une architecture matérielle multiprocesseurs. La politique d'ordonnancement considérée est préemptive et à priorités fixes. Cette extension consiste à projeter sur le modèle l'activation ou le blocage (par les différents ordonnanceurs du système) des entités logicielles que modélisent les places du réseau et ce, à partir de deux nouveaux paramètres (placement et priorité) associés aux places. Nous donnons dans un premier temps la sémantique formelle de ce modèle sous la forme d'un système de transitions temporisé (TTS) puis nous proposons une méthode d'analyse de ce modèle par le calcul du graphe des classes d'état. La vérification de propriétés temporelles peut alors être effectuée (avec ou non l'adjonction d'un observateur) par un examen du graphe des classes d'état ainsi obtenu.

Introduction

. 1. Context of the work

An emerging stage in the development process of real-time control applications is based on the design of validated operative architecture [START_REF] Durand | Description et vérification d'architecture d'application temps réel : CLARA et les réseaux de Petri temporels[END_REF]. By operative architecture, one means generally the result of the mapping of the software architecture elements onto the hardware architecture ones. Such an operative architecture has to be validated to make it possible to assert a priori that the application (timing and dependability) requirements will be met (once the detailed design and implementation have taken place). Tailored tools to support the real-time architectural design process have to be made available for the architecture designer. Our work is concerned with a particular form of this wide problem. Its main characteristics are listed hereafter :

-the software architecture is composed of a set of interacting tasks that execute applicative functions. It is static (tasks can not be created nor destructed on-line) ; -the underlying hardware architecture is composed of multiple processors. It is static as well. The allocation of tasks to processors is known and fixed (no migration of tasks dynamically). Each processor is equipped with a dedicated operating system called executive that includes among other things a scheduler ; -among the various scheduling techniques, the static priority pre-emptive based scheduling (at any time, among all the ready tasks, it is the one with the highest priority which runs) is commonly implemented by executives off-the-shelf. It is the scheduling strategy addressed by this work. Thus a priority is assigned to each task ; -only timing constraints (deadline, cadence, latency, etc) on task execution are considered ;

-then, the problem to be solved is to determine a priori whether timing requirements could be missed or not due to the scheduling of tasks on the different processors.

. 2. Related works

Since Liu & Layland [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard real-time environment[END_REF], the scheduling theory has received and still receives consideration, and in particular the « analytical » study of real-time task schedulability [START_REF] Lehoczky | The rate monotonic scheduling algorithm : exact characterization and average case behavior[END_REF] [START_REF] Audsley | Applying new scheduling theory to static pre-emptive scheduling[END_REF] [START_REF] Klein | A practitioner's handbook for real-time analysis : guide to rate monotonic analysis for real-time systems[END_REF] [START_REF] Tindell | Holistic schedulability analysis for distributed hard real-time systems[END_REF] [START_REF] Palencia | Best-case analysis for improving the worst-case schedulability test for distributed hard real-time systems[END_REF]. For the most part it consists in deriving exact (necessary and sufficient conditions) or only approximate (sufficient conditions) schedulability tests, depending on the complexity of the considered model for the tasks. Thus the original configurations of independent tasks have been extended so as to take into account shared resources, then precedence relations. Nevertheless the behavioral models for the tasks remain quite simple and do not yet support some complex synchronization schemes such as those allowed by real-time executive services. Moreover, these tests require known computation times for the tasks (often refered by WCET as "Worst Case Execution Time"). Besides the difficulty to measure or estimate such execution times, taking into consideration a fixed time (even if it is the longest) does not lead to the worst case. Actually it is easy to show that reducing the computation time of a task may surprisingly induce a decrease of timing performances for the application [START_REF] Roux | Une extension des réseaux de Petri T-temporels pour la prise en compte de l'ordonnancement de tâches temps-réel dans un système multiprocesseurs[END_REF]. Moreover these approaches confine the schedulability to the sole analysis of task deadline meeting. More sophisticated timing constraints (end-to-end ones involving several interacting tasks, or cadence ones so as to bound jitter, etc) are not directly taken into account.

Consequently we have chosen to work with a more precise behavioral model for the tasks while enabling a timing labeling and a quantitative timing analysis. Different models (in most cases their structure is initially a purely behavioral one) have been modified so as to introduce time. For example, it is the case for the realtime temporal logic, a temporal extension of process algebra (known as "timed CCS"), the timed automata, the timed Petri nets, or the time Petri nets [START_REF]A study of the recoverability of computer system[END_REF]. We have been interested in the latter ones. Intrinsically time Petri nets allow to model behaviors exhibiting parallelism, synchronization and sharing of resources. Moreover by allowing time specification in the form of time intervals, it is possible to express variation of processor or device performances (no determinism on task execution times is required). The structural element to which is associated the time (place, token, transition, arc) distinguishes some time sub-classes for Petri nets. It mainly gives rise to T-time Petri nets [START_REF] Berthomieu | Modeling and verification of time dependant systems using time Petri nets[END_REF], P-time Petri nets [START_REF] Khansa | Réseaux de Petri p-temporels : contribution à l'étude des systèmes à évènements discrets[END_REF], and time stream Petri nets [START_REF] Diaz | Time Stream Petri Nets : a model for timed multimedia information[END_REF]. Our study takes place in the context of T-time Petri nets.

The modeling of process scheduling with Petri nets is not well-off and has formed the subject of rare works. One can mention for example the approach of [START_REF] Choquet-Geniet | Etude hors ligne d'une application temps réel à contraintes strictes[END_REF] that is based on Petri nets with a maximal firing functioning mode. The processor is modeled by a place connected by an arc to each transition of the system. The firing of a transition represents the passing of a unit of time. The goal is to extract optimal scheduling sequences from such a model. An other approach consists in modeling priorities of tasks with inhibitor arcs added to the Petri net [START_REF] Robert | Modélisation et vérification de politiques d'ordonnancement de tâches temps-réel[END_REF]. An inhibitor arc is then placed from each transition of the pattern representing a task towards each transition of the patterns representing the other lower priority tasks. In the case of timed Petri nets with inhibitor arcs, computation times are introduced through time specifications attached to transitions. Finally Okawa and Yoneda [START_REF] Okawa | Schedulability verification of real-time systems with extended time Petri nets[END_REF] propose an approach with time Petri nets consisting in defining groups of transitions together with rates (speeds) of execution. Transition groups correspond to transitions that model concurrent activities and that can be simultaneously ready to be fired. In this case, their rate are then divided by the sum of transition execution rates.

In our approach, we do not model explicitly the scheduling neither as an extra Petri net (that would model the computing resource, the pre-emptions or the scheduler), nor as explicit clusters. Instead the scheduling strategy is inherently included in the semantics of our model. Consequently, only the parameters that the scheduler knows are provided to the model as two parameters and this, without requiring any preliminary calculation.

. 3. Organization of the paper

The purpose of this paper is to present the extension we have defined for the time Petri net formalism. The remainder of the paper is organized as follows. Section 2 introduces Time Petri Nets with their scheduling extension. At first a definition is given in section 2.1 together with an intuitive then formal semantics. The computation of the marking is extended as well to the one of a new marking (we name it "active marking") which integrates the priority based scheduling for each of the processors. In section 2.2 the properties of these "scheduling extended time Petri nets" are listed. Since timing checking requires an analysis of the modeled behaviors, we give details of the way the state class graph is computed in section 3. Section 4 offers our summary and conclusions.

Scheduling Extended Time Petri Nets

We propose an extension for the TPN 1 that enables to take into account the way the real-time tasks of an application distributed over different processors are scheduled. At first this extension consists in adding two parameters to the TPN's places ; we call them "processor " and "priority", and they correspond respectively to the allocation and the priority of the task which is associated with the place. However all places of a TPN do not require such parameters. Actually when a place does not represent a true activity for a processor (for example a register or memory state), neither a processor nor a priority have to be attached to it. In this specific case, the semantics remains unchanged with respect to a standard TPN. One can notice that it is equivalent to attach to this place a processor for its exclusive use and any priority (it does not matter in this case).

These two parameters, processor and priority, determine those transitions that are enabled and the one that is fireable from a particular state of the system. For this it is considered that there are as many schedulers as processors, and that each of them implements a priority-driven scheduling strategy. From a state, places corresponding to the tasks that should be running on each processor are searched. In this way a submarking of the standard marking is obtained that we call "active marking". Fireable transitions are looked for among those transitions that are enabled by this active marking.

. 1. Définition

A Scheduling Extended T-time Petri Net is a tuple :

> < = γ ω, , Pr , , , , Pr , , 0 oc I M Post e T P R
where :

-

{ } P p pm = 1,..., is a finite set of places ; - { } T t tn = 1,...,
is a finite set of transitions ;

- N T P : pre → ×
is the backward incidence function ;

- N T P : post → ×
is the forward incidence function ;

-M 0 : P  Ν is the initial marking ; -

) ( : 0 0 ∞ ∪ × → ≥ ≥ Q Q T I
is the static timing function (earliest and latest firing times of transitions);

-Proc = {Proc 1 ,….,Proc r } is a finite set of processors ; -ω : P→ N is the priority assignment function ; -γ : { } φ ∪ → Proc P is the allocation function 2 .
From a simple definition point of view, Proc, ω and γ are the specific elements that extend TPN to SETPN. 
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-The firing of a transition t i from a marking M gives a new marking M ' defined by :

) ( ) ( ' i i t post t pre M M + - = 2.1.2. Formal semantics
The semantics of SETPN can be given in term of "Timed Transition Systems"(TTS) [START_REF] Larsen | Model-checking for real-time systems[END_REF] which are usual transition systems with two types of transitions : discrete transitions for events and continuous transitions for time elapsing.
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which is true if the transition t k is newly enabled by the firing of t i and false otherwise. Formally this gives :
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of the discrete and continuous transition relations :

the discrete transition relation is defined
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The proposed extension relies on some assumptions that are relevant to our applicative context.

-Two tasks allocated to the same processor can not have the same priority. However, the behavior of a task can be modeled by several places that inherit the same priority from it. The sequential execution of a task excludes that several places with the same priority and attached to the same processor are marked simultaneously. At the model level, it comes down to forbid SETPN for which the next property is not satisfied : ∀ p, p'∈ P 2 , ( p≠p' and γ(p)=γ(p') φ ≠ and M(p)≥1 and M(p')≥1) ⇒ ω(p)≠ω(p') -Furthermore synchronization between tasks are achieved by means of calls to executive services that appear explicitly while modeling the system behavior. Consequently, we assume that all direct synchronization between the models of tasks that are allocated to identical or different processors are not allowed. It can be formalized as : -At first, for a given marking M of a SETPN, we define the set E ma of its sub-markings : E ma = {ma 1 , ma 2 , … ma s } with ∀i, ma i ≤ M. An element of E ma is called an "admissible marking".
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For the modeled application, E ma corresponds, for a given state, to the set of the possible task activations without taking into account the scheduling algorithm. These activations are those for which : -one and only one task is being running on a The "active marking" (act(M)) is the element of E ma such that, for each of its marked places, it does not exist an other admissible marking such that a higher priority place allocated to the same processor is marked3 there. It can be express in the following way :
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-We have proven [START_REF] Roux | Une extension des réseaux de Petri T-temporels pour la prise en compte de l'ordonnancement de tâches temps-réel dans un système multiprocesseurs[END_REF] that, for a given marking M :

-The set E ma is not empty and the null marking is always element of E ma -There always exists an active marking act(M) (that may be the null marking).

-The active marking act(M) is unique.

EXAMPLE. -The following example illustrates these notions with a simple SETPN.

Figure 1. Example

From the given marking, one can find three admissible markings from which the active marking is determined :
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. 2. Reachability and boundedness

T H E O R E M . -The reachability and boundedness problems for SETPN are undecidable.

PROOF. -A Petri net can be expressed as a SETPN ; Petri nets are particular cases of SETPN. Moreover a TPN can be described by a SETPN ; TPN are particular cases of SETPN. On the other hand, Menasche [START_REF] Menasche | Analyse des réseaux de Petri temporisés et application aux systèmes distribués[END_REF] proved that Petri nets , timed Petri nets and Petri nets with inhibitor arcs can be expressed as TPN , and consequently as SETPN too. Properties of boundedness and reachability are undecidable for Petri nets with inhibitor arcs, and are therefore equally undecidable for SETPN.  However, as for TPN [START_REF] Berthomieu | Modeling and verification of time dependant systems using time Petri nets[END_REF], if the limits of the initial intervals of a SETPN (fixed by the static timing function) are rational numbers, and if the associated PN is bounded then the SETPN is bounded.

Outside of sufficient boundedness conditions [START_REF] Berthomieu | Modeling and verification of time dependant systems using time Petri nets[END_REF], only the computation of the state space allows to determine if an SETPN is bounded or not.

P 3 ( ) ( ) 1 1 3 3 = = p p ω γ t 2 [θ 2min , θ 2max ] P 1 P 2 t 1 [θ 1min , θ 1max ] γ (p 1 ) = 1 ω(p 1 ) = 2 γ (p 3 ) = 1 ω(p 3 ) = 1 γ (p 2 ) = φ

State space : computation of the state class graph

TPN relying on a dense model of time, the state space is potentially infinite. Techniques for reducing the infinite state space to a finite one are necessary : several approaches have been introduced to define and compute the state class graph [START_REF] Berthomieu | Modeling and verification of time dependant systems using time Petri nets[END_REF] [START_REF] Boucheneb | Toward a simplified building of time Petri nets reachability graph[END_REF] [START_REF] Yoneda | Efficient verification of parallel real-time systems[END_REF] or the region graph that defines the state space too [START_REF] Yoneda | CTL Model checking of time Petri nets using geometric regions[END_REF].

From now on we are interested in bounded SETPN for which we propose a technique for computing the extended class graph inspired from [START_REF] Menasche | Analyse des réseaux de Petri temporisés et application aux systèmes distribués[END_REF] [START_REF] Berthomieu | Modeling and verification of time dependant systems using time Petri nets[END_REF]. The building of the state class graph consists in determining the set of accessible classes from a given class and repeating this operation until convergence (equality of classes) is obtained. We introduce now the specificities of the proposed extension.

-As for a TPN, the state of a SETPN is defined by a 2-uple called « class », ( )

D M C , =
such that :

-M : P  Ν is the "marking" of the class. A place p is marked if M (p)>0. M defines the set of the marked places (afterwards it will be confused with the function as well as the vector).

-D is the "firing domain" of the class and is defined as a set of inequalities deduced from the functions α , β et δ :
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-Furthermore, for each class ( )

i i i D M C , =
of the class graph of a SETPN, we compute :

-its "active marking" : act(M i ) ; -its "active domain" : D A i , defined in the same way as the domain D i but restricted to those transitions that are enabled by the active marking.

-By definition, for SETPN (as for TPN), two classes C 1 = (M 1 ,D 1 ) and C 2 = (M 2 ,D 2 ) are equal if and only if M 1 = M 2 and D 1 = D 2 . It implies that act(M 1 )= act(M 2 ) and DA 1 = DA 2 .

. 1. Active domain

Concisely we recall that the domain D of a class C = (M, D) is a system of inequalities that define the time intervals during which those transitions enabled by the marking M can be fired. These inequalities have two forms :

) ( / ) ( ) ( i i i i i t pre M t t t ≥ ∀ ≤ ≤ β θ α         ≥ ≥ ∀ ≤ - ≤ - ) ( ) ( / , ) , ( ) , ( k j j k j k j k k j t pre M and t pre M t t t t t t δ θ θ δ
where i θ is the firing date of the transition t i with regard to the class C = (M,D).

The active domain DA corresponding to a class C = (M,D) is a subset of the domain D limited to the transitions enabled by the active marking. This can be expressed as shown hereafter : 
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The firing space Θ [START_REF] Menasche | Analyse des réseaux de Petri temporisés et application aux systèmes distribués[END_REF] [START_REF] Berthomieu | Modeling and verification of time dependant systems using time Petri nets[END_REF] attached to a domain DA is the set of vectors θ = (θ 1 ,.. θ N ) solution of the inequality system that defines DA. Its canonical form noted DA * is obtained as follows :

2 , Ν ∈ ∀ j i α i * = min { θ i = θ (i) | θ ∈ Θ } β i * = max { θ i = θ (i) | θ ∈ Θ } δ ij * = max { θ i -θ j = θ (i)-θ (j) | θ ∈ Θ }
From the canonical form of the firing space DA * , it is possible to determine the "effective upper bound" (or "UP") which is the smallest upper bound of the inequality system that defines the canonical form of the active domain. That is to say : UP = min {β i * | i≤N}.

. 2. Transition firing

From a class, firing a transition gives rise to a new class for which the marking and the domain have to be determined. A class C' = (M',D') -3) In accordance with the static timing function I, insert new equalities for those transitions that are newly enabled by M.

. 3. State class graph properties

Just as the class graph of a standard TPN, the class graph of a SETPN has two drawbacks : the number of classes may increase exponentially with the system size [START_REF] Lilius | Efficient state space search for time Petri nets[END_REF] and the normalizing operation of the domain (canonical form) has to be conducted for each reached state ; it is a great disadvantage to its efficiency. This normalizing operation has a complexity in

) ( 3 n O
, where n is the number of enabled transitions.

Conclusion

We have proposed an extension to T-time Petri nets allowing to take into account a pre-emptive and fixed priority based scheduling strategy. This extension allows the formal modeling of real-time processes distributed over a multi-processor hardware architecture. From bounded SETPN, the computation of the state class graph makes it possible to check timing constraints expressed as observers.

Works presented in this paper have been implemented in a tool « ROMEO » (including a graphic interface written in "tcl/tk" for editing SETPN together with a computation module written in C++ for the state class graph) [START_REF] Romeo | [END_REF].

Our current works are concerned with the building of the SETPN state class graph as a timed automaton. That will allow to use efficient methods and tools of "model-checking" of properties expressed in temporal logic on the obtained timed automaton.

.

  β are respectively the earliest and latest firing times of the transition t .-We refer to the active marking associated to the marking M by It will be determined from Proc, ω et γ. We note act(M,p) the active marking of the place p.2.1.1. Unformal semanticsMain aspects of SETPN are hereafter listed in an intuitive manner.-
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The value φ is introduced so as to specify that a place is not assigned to an effective processor of the hardware architecture.

The consideration (in the framework of a future work) of an other scheduling strategy could consist in choosing an other element of E ma as the active marking.

We also plan to investigate other scheduling algorithms (Round Robin, EDF, etc) either with an extension of the current analysis method, or with a structural translation of SETPN to hybrid automata.

processor ; -and a task can be running if all its conditions for execution are met. The "active marking" is then the element of E ma that satisfies to the priority-based scheduling strategy. It corresponds to the execution sequence which ensures that, for each processor, it is the ready task with highest priority that is running. It is noteworthy that the timing aspect of the SETPN is not yet taken into account in this step.

In other words, E ma is the set of the sub-markings ma of M (ma(p -The computation of D' is carried out following three steps :

-1) Remove from D the inequalities in relation with transitions that are no more enabled due to the firing of t i ; -2) Translate the time origin for D with α i * or UP according to the direction of the inequality and the fact that a transition is or not enabled by the active marking act(M) :