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Abstract

The theory of Petri Nets provides a general framework to specify the behaviors of real-time
reactive systems and Time Petri Nets were introduced to take also temporal specifications
into account. We present in this paper a forward zone-based algorithm to compute the
state space of a bounded Time Petri Net: the method is different and more efficient than
the classical State Class Graph. We prove the algorithm to be exact with respect to the
reachability problem. Furthermore, we propose a translation of the computed state space
into a Timed Automaton, proved to be timed bisimilar to the original Time Petri Net.
As the method produce a single Timed Automaton, syntactical clocks reduction methods
(Daws and Yovine for instance) may be applied to produce an automaton with fewer
clocks. Then, our method allows to model-check T-TPN by the use of efficient Timed
Automata tools.

KEYWORDS: Time Petri Nets, Timed Automata, Bisimulation, Reachability Analysis,
Zones.

1 Introduction

Framework

The theory of Petri Nets provides a general framework to specify the behaviors

of real-time reactive systems and time extensions were introduced to take also

temporal specifications into account. The two main time extensions of Petri Nets

are Time Petri Nets (TPN) (Merlin 1974) and Timed Petri Nets (Ramchandani

1974). While a transition can be fired within a given interval for TPN, in Timed

Petri Nets, transitions are fired as soon as possible. There are also numerous ways of

representing time. TPN are mainly divided in P-TPN, A-TPN and T-TPN where a

time interval is relative to places (P-TPN), arcs (A-TPN) or transitions (T-TPN).

Finally, Time Stream Petri Nets (Diaz and Senac 1994) were introduced to model

multimedia applications.

Concerning the timing analysis of these three models ((T,P,A)–TPN), few studies

have been realized about model-checking.
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Recent works (Abdulla and Nylén 2001; de Frutos Escrig et al. 2000) consider

Timed Arc Petri Nets where each token has a clock representing its “age”. Us-

ing a backward exploration algorithm (Abdulla and Jonsson 1998; Finkel and

Schnoebelen 1998), it is proved that the coverability and boundedness are decidable

for this class of Petri Nets. However, they assume a lazy (non-urgent) behavior of

the net: the firing of a transition may be delayed even if its clock’s value becomes

greater than its latest firing time, disabling the transition.

In (Rokicki 1993; Rokicki and Myers 1994), Rokicki considers an extension of

labeled Petri Nets called Orbitals Nets: each transition of the TPN (safe P-TPN)

is labeled with a set of events (actions). The state space is built using a forward

algorithm very similar to Alur and Dill region based method. Rokicki finally

uses partial order method to reduce time and space requirements for verification

purpose. The semantics used is not formally defined and seems to differ from another

commonly adopted proposed by Khansa (Khansa et al. 1996) for P-TPN.

In this paper, we consider T-TPN in which a transition can be fired within a time

interval. For this model, boundedness is undecidable and works report undecidabil-

ity results, or decidability under the assumption of boundedness of the T-TPN (as

for reachability, decidability (Popova 1991)).

Related Works

State Space Computation of a T-TPN. The main method to compute the

state space of a T-TPN is the State Class Graph (Menasche 1982; Berthomieu and

Diaz 1991). A class C of a T-TPN is a pair (M, D) where M is a marking and D

a set of inequalities called the firing domain. The variable xi of the firing domain

represents the firing time of the enabled transition ti relatively to the time when

the class C was entered in and truncated to nonnegative times. The State Class

Graph preserves markings (Berthomieu and Vernadat 2003) as well as traces and

complete traces but can only be used to check untimed reachability properties and

is not accurate enough for checking quantitative real-time properties. An alternative

approach has been proposed by Yoneda et al. (Yoneda and Ryuba 1998) in the

form of an extension of equivalence classes (atomic classes) which allow CTL model-

checking. Lilius (Lilius 1999) refined this approach so that it becomes possible to

apply partial order reduction techniques that have been developed for untimed sys-

tems. Berthomieu and Vernadat (Berthomieu and Vernadat 2003) propose an

alternative construction of the graph of atomic classes of Yoneda applicable to

a larger class of nets. In (Okawa and Yoneda 1997), Okawa and Yoneda pro-

pose another method to perform CTL model-checking on T-TPN, they use a region

based algorithm on safe T-TPN without ∞ as latest firing time. Their algorithm is

based on the one of (Alur and Dill 1994) and aims at computing a graph preserving

branching properties. Nevertheless, the algorithm used to construct the graph seems

inefficient (their algorithm do code regions) and no result can be exploited to com-

pare with other methods.
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From T-TPN to TA. Several approaches aim at translating a Time Petri Net

into a Timed Automaton in order to use efficient existent tools on TA. In (Cortès

et al. 2000), Cortès et al. propose to transform an extension of T-TPN into the

composition of several TA. Each transition is translated into an automaton (not

necessarily identical due to conflict problems) and it is claimed that the composition

captures the behavior of the T-TPN. In (Cassez and Roux 2004), Cassez and Roux

propose another structural approach: each transition is translated into a TA using

the same pattern. The authors prove the two models are timed bisimilar. In (Sava

and Alla 2001), Sava and Alla compute the graph of reachable markings of a

T-TPN. The result is a TA. However, they assume the T-TPN is bounded and

does not include ∞ as latest firing time. No proof is given of the timed bisimilarity

between the two models. In (Lime and Roux 2003), Lime and Roux propose a

method for building the State Class Graph of a bounded T-TPN as a TA. They

prove the T-TPN to be timed bisimilar to the generated TA.

Considering the translation of T-TPN into TA, in order to study model’s prop-

erties, raises the problem of the model-checking feasibility of the resulting TA. The

model-checking complexity on TA is exponential in the number of clocks of the

TA. The proposed transformation in (Cassez and Roux 2004; Cortès et al. 2000)

is to build as many TA as the number of transitions of the T-TPN. Consequently,

there are as many clocks as in the initial T-TPN. It has also to be considered that

reduction method (Daws and Yovine 1996) can not be applied to the resulting TA:

the parallel composition has to be computed first. Nevertheless, the construction of

TA is straightforward and linear in the number of transitions of the T-TPN. Con-

cerning the method in (Lime and Roux 2003), the resulting TA has a lower number

of clocks. The method we propose produces an automaton with more clocks than

the previous method but its computation is faster.

Such translations show that TCTL and CTL are decidable for bounded T-TPN

and that developed algorithms on TA may be extended to T-TPN.

Contributions

This paper is devoted to presenting an alternative approach to the state space

construction of a T-TPN. The method is mainly based upon the region graph

algorithm of Alur and Dill on Timed Automaton. We propose to use a derived

method using zones to compute the state space of the T-TPN. The algorithm is

proved to be exact with respect to the reachability problem and we propose to

translate the state space it computes into a Timed Automaton, bringing so the

power of TA model-cheking algorithms to T-TPN.

We first recall the semantics of T-TPN and present a forward zone-based al-

gorithm that computes the state space of a T-TPN. Next, we present the labeling

of the state space that produces a TA we proved to be timed bisimilar to the ori-

ginal T-TPN. We then compare our method to other used methods on T-TPN and

show its advantages. Finally, some applications are proposed.
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2 Time Petri Nets

2.1 Definitions

Time Petri Nets (T-TPN) are a time extension of classical Petri Nets. Informally,

with each transition of the Net is associated a clock and a time interval. The clock

measures the time since the transition has been enabled and the time interval is

interpreted as a firing condition: the transition may fire if the value of its clock

belongs to the time interval.

Formally:

Definition 1 (T-TPN )

A Time Petri Net is a tuple (P, T,•(.), (.)•, α, β, M0) defined by:

• P = {p1, p2, . . . , pm} is a non-empty set of places,

• T = {t1, t2, . . . , tn} is a non-empty set of transitions,

• •(.) : T → INP is the backward incidence function,

• (.)• : T → INP is the forward incidence function,

• M0 ∈ INP is the initial marking of the Petri Net,

• α : T → Q≥0 is the function giving the earliest firing times of transitions,

• β : T → Q≥0∪{∞} is the function giving the latest firing times of transitions.

A Petri Net marking M is an element of INP such that for all p ∈ P , M(p) is the

number of tokens in the place p.

A marking M enables a transition t if: M ≥• ti. The set of transitions enabled

by a marking M is enabled (M).

A transition tk is said to be newly enabled by the firing of a transition ti if

M −•ti + t•i enables tk and M −•ti did not enable tk. If ti remains enabled after its

firing then ti is newly enabled. The set of transitions newly enabled by a transition

ti for a marking M is noted ↑enabled (M, ti).

v ∈ (IR≥0)
T is a valuation of the system. vi is the time elapsed since the transition

ti has been newly enabled.

The semantics of T-TPN is defined as a Timed Transition Systems (TTS). Firing

a transition is a discrete transition of the TTS, waiting in a marking, the continuous

transition.

Definition 2 (Semantics of a T-TPN )

The semantics of a T-TPN is defined by the Timed Transition System S = (Q, q0,→):

• Q = INP × (IR≥0)
T

• q0 = (M0, 0̄)

• →∈ Q×(T ∪IR≥0)×Q is the transition relation including a discrete transition

and a continuous transition.

• The continuous transition is defined ∀d ∈ IR≥0 by:

(M, v)
e(d)
−−→ (M, v′) iff

{

v′ = v + d

∀k ∈ [1, n] M ≥• tk ⇒ v′k ≤ β(tk)
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• The discrete transition is defined ∀ti ∈ T by:

(M, v)
ti−→ (M ′, v′) iff



































M ≥• ti

M ′ = M −•ti + t•i

α(ti) ≤ vi ≤ β(ti)

∀k ∈ [1, n] v′k =

{

0 if tk ∈ ↑enabled (M, ti)

vk otherwise

2.2 The State Class Method

The main method for computing the state space of a Time Petri Net is the State

Class Method introduced by Berthomieu and Diaz in (Berthomieu and Diaz

1991).

Definition 3 (State Class)

A State Class C of a T-TPN is a pair (M, D) where M is a marking and D a set of

inequalities called the firing domain. The variable xi of the firing domain represents

the firing time of the enabled transition ti relatively to the time when the class C

was entered in.

The State Class Graph is computed iteratively as follows:

Definition 4

Given a class C = (M, D) and a firable transition tj , the successor class C′ =

(M ′, D′) by the firing of tj is obtained by:

1. Computing the new marking M ′ = M −•tj + t•j .

2. Making variable substitution in the domain: ∀i 6= j, xi ← x′
i + xj .

3. Eliminating xj from the domain using for instance the Fourier-Motzkin method.

4. Computing a canonical form of D′ using for instance the Floyd-Warshall

algorithm.

In the state class method, the domain associated with a class is relative to the

time when the class was entered in and as the transformation (time origin switching)

is irreversible, absolute values of clocks cannot be obtained easily. The produced

graph is an abstraction of the state space for which temporal information has been

lost and generally, the graph has more states than the number of markings of the

T-TPN. Transitions between classes are no longer labeled with a firing constraint

but only with the name of the fired transition: the graph is a representation of the

untimed language of the T-TPN.

2.3 Limitations of the State Class Method

As a consequence of the State Class Graph construction, sophisticated temporal

properties are not easy to check. Indeed, the domain associated with a marking is

made of relative values of clocks and the function to compute domains is not biject-

ive. Consequently, domains can not easily be used to verify properties involving

constraints on clocks.
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In order to get rid of these limitations, several works construct a different State

Class Graph by modifying the equivalence relation between classes. To our know-

ledge, proposed methods (Berthomieu and Vernadat 2003) depend on the property

to check. Checking LTL or CTL properties will lead to construct different State

Class Graphs.

Another limitation of methods and proposed tools to check properties is the need

to compute the whole state space while only the reachability of a given marking is

needed (e.g. for safety properties). The graph is then analyzed by a model-checker.

The use of T-TPN observers is even more costly: actually, for each property to be

checked, a new State Class Graph has to be built and the observer can dramatically

increase the size of the state space.

In the next section we will present another method to compute the state space of

a bounded T-TPN. It will be used in a later section to propose a Timed Automaton

that is timed bisimilar to the original T-TPN. As the graph has exactly as many

nodes as the number of reachable markings of the T-TPN, we obtain a compact

representation of the state space which may be efficiently model-checked using TA

tools.

3 A Forward Algorithm to Compute the State Space of a Bounded

T-TPN

The method we propose in this paper is an adaptation, proved to be exact, of the

region based method for Timed Automaton (Alur and Dill 1994; Rokicki 1993).

This algorithm starts from the initial state and explores all possible evolutions of

the T-TPN by firing transitions or by elapsing a certain amount of time.

First, we define a zone as a convex union of regions as defined by Alur and

Dill (Alur and Dill 1994). For short, considering n clocks, a zone is a convex

subset of (IR≥0)
n
. A zone could be represented by a conjunction of constraints on

clocks pairs: xi − xj ∼ c where ∼∈ {<,≤, =,≥, >} and c ∈ ZZ.

3.1 Our Algorithm: One Iteration

Given the initial marking and initial values of clocks (null vector), timing successors

are iteratively computed by letting time pass or by firing transitions.

Let M0 be a marking and Z0 a zone. The computation of the reachable markings

from M0 according to the zone Z0 is done as follows:

• Compute the possible evolution of time (future):
−→
Z0. This is obtained by

setting all upper bounds of clocks to infinity.
• Select only the possible valuations of clocks for which M0 could exist, i.e.

valuations of clocks must not be greater than the latest firing time of enabled

transitions :

Z ′
0 =
−→
Z0 ∩ {

∧

i {xi ≤ βi | ti ∈ enabled (M0)}}

So, Z ′
0 is the maximal zone starting from Z0 for which the marking M0 is

legal according to the T-TPN semantics.
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• Determine the firable transitions: ti is firable if Z ′
0∩{xi ≥ αi} is a non empty

zone.

• For each firable transition ti leading to a marking M0i, compute the zone

entering the new marking:

Zi = (Z ′
0 ∩ {xi ≥ αi}) [Xe := 0], where Xe s the set of clocks of newly

enabled transitions.

This means that each transition which is newly enabled has its clock reset.

Then, Zi is a zone for which the new marking M0i is reachable.

3.2 Convergence Criterion

To ensure termination, a list of zones is associated with each reachable marking.

It will keep track of zones for which the marking was already analyzed or will be

analyzed. At each step, we compare the zone currently being analyzed to the ones

previously computed. If the zone is included in one of the list there is no need to go

further because it has already been analyzed or it will lead to compute a subgraph.

3.3 Unboundedness in T-TPN

An algorithm to enumerate reachable markings for a bounded T-TPN could be

based on the described algorithm but, generally, it will lead to a non-terminating

computation. Though the number of reachable markings is finite for a bounded T-

TPN, the number of zones in which a marking is reachable is not necessarily finite

(see figure 1).

• •P1 P2

P3

T1[0,∞[ T2[1, 1] T3[1, 1]

Figure 1. Time Petri Net with an unbounded number of zones

Let us consider the infinite firing sequence: (T2, T3)
∗. The initial zone is {x1 =

0∧ x2 = 0∧ x3 = 0} (where xi is the clock associated with Ti), the initial marking

M0 = (P1, P2, P3) = (1, 1, 0). By letting time pass, M0 is reachable until x2 = 1.

When x2 = x1 = 1 the transition T2 has to be fired. The zone corresponding to

clock values is: Z0 = {0 ≤ x1 ≤ 1∧ x1 − x2 = 0}. By firing T2 and then T3, the net

returns to its initial marking. Entering it, values of clocks are: x1 = 2, x2 = 0 and

x1 − x2 = 2. Indeed, T1 remains enabled while T2 and T3 are fired and x2 is reset

when T3 is fired because T2 is newly enabled. Given these new values, the initial

marking can exists while x2 ≤ 1 i.e. for the zone: Z1 = {2 ≤ x1 ≤ 3∧x1− x2 = 2}.
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By applying infinitely the sequence (T2, T3), there exists an infinite number of zones

for which the initial marking is reachable.

Actually, the number of zones is not bounded because infinity is used as latest

firing time (T1). If infinity is not used as latest firing time, all clocks are bounded

and so, the number of different zones is bounded (Alur and Dill 1994). The “naive”

algorithm is then exact and can be used to compute the state space of a bounded

T-TPN.

Consequence 1

For a bounded T-TPN without infinity as latest firing time, this forward analysis

algorithm using zones computes the exact state space of the T-TPN.

In the next section, we propose a more general algorithm which computes the

state space of a T-TPN as defined in section 2, i.e. with infinity as latest firing time

allowed.

3.4 General Algorithm

A common operator on zones is the k-approx operator. For a given k value, the

use of this operator allows to create a finite set of distinct zones. The algorithm

proposed is an extension of the one presented in the previous section. It consists in

applying the k-approx operator on the zone resulting from the last step:

Zi = k − approx ((Z ′
0 ∩ {xi ≥ αi}) [Xe := 0])

This approximation is based on the fact that once the clock associated with an

unbounded transition ([α,∞[) has reached the value α, its precise value does not

matter anymore.

Unfortunately recent works on Timed Automaton (Bouyer 2002; Bouyer 2003)

proved that this operator generally leads to an overapproximation of the reach-

able localities of TA. However, for a given class of TA (diagonal-free), there is no

overapproximation of the reachable localities.

Results of Bouyer are directly extensible for T-TPN. As computation on zones

only involved diagonal-free constraints, the following theorem holds:

Theorem 1

A forward analysis algorithm using k-approx on zones is exact with respect to T-

TPN marking reachability for bounded T-TPN.

A detailed proof is available in (Gardey et al. 2003).

3.5 Example

Let us consider the T-TPN of figure 1.

We associate the clock xi with the transition Ti of the T-TPN and recall that

clocks associated with each transition count the time since the transition has been

newly enabled.
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The algorithm starts from the initial state: l0 = (M0, Z0), with M0 =
(

1 1 0
)

and Z0 = {x1 = x2 = 0}. At marking M0, transitions T1 and T2 are enabled.

The first step is to compute the possible future, i.e. the maximal amount of time

for which the marking M0 may exist:

−→
Z0 ∩ Inv(M0) = {x1 = x2 ∈ [0,∞[} ∩ {x1 ≤ ∞∧ x2 ≤ 1}

= {x1 = x2 ∈ [0, 1]}

From this zone, two transitions are firable: T1 and T2.

Firing of T1

• the new marking is M1 =
(

0 1 0
)

• the new zone is obtained by intersecting the previous zone (
−→
Z0 ∩ Inv(M0))

with the guard x1 ≥ 0, deleting clocks of transitions that are no longer

enabled in M1 (x1) and reseting clocks of newly enabled transitions (none).

Z1 = {x1 = x2 ∈ [0, 1]} ∩ {x1 ≥ 0} (intersect with guard)

= {x1 = x2 ∈ [0, 1]}

= {x2 ∈ [0, 1]} (delete x1)

Firing of T2

• the new marking is M3 =
(

1 0 1
)

• the new zone is obtained by intersecting the previous zone (
−→
Z0 ∩ Inv(M0))

with the guard x2 ≥ 1, deleting clocks of transitions that are no longer

enabled in M3 (x2) and reseting clocks of newly enabled transitions (x3).

Z3 = {x1 = x2 ∈ [0, 1]} ∩ {x2 ≥ 1} (intersect with guard)

= {x1 = x2 = 1}

= {x1 = 1} (delete x2)

= {x1 = 1 ∧ x3 = 0} (reset x3)

We got two new states to analyze: (M1, Z1) and (M3, Z3). We apply the same

algorithm to these two states.

Considering (M1, Z1):

Z ′
1 =
−→
Z1 ∩ Inv(M1) = {x2 ∈ [0, 1]} ∩ {x2 ≤ 1}

= {x2 ∈ [0, 1]}

T2 is firable and leads to the new state: (M2, Z2) with M2 =
(

0 0 1
)

and Z2 =

{x3 = 0}. Analyzing (M2, Z2) leads to the new state (M1, {x2 = 0}). As {x2 =

0} ⊂ Z1, the algorithm stops and get a new state to analyze: (M3, Z3).

Considering (M3, Z3):

Z ′
3 =
−→
Z3 ∩ Inv(M3) = {x1 − x3 = 1, x1 ∈ [0,∞[} ∩ {x1 ≤ ∞∧ x3 ≤ 1}

= {x1 − x3 = 1 ∧ x3 ≤ 1}

T3 and T1 are firable...
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The analysis is performed until no new states are created. We then build the

following graph of reachable markings.

M0

M1 M2

M3

T1 T1

T2

T3

T2

T3

Figure 2. Graph of reachable markings

In this section we have presented an algorithm that exactly computes the reach-

able markings of a bounded T-TPN with ∞ as latest firing time. The graph com-

puted is not suitable to verify time logic properties. So, in the next section we

present a transformation of the graph into a Timed Automaton we proved to be

timed bisimilar to the original T-TPN. Consequently, model-checking methods on

TA become available for the model-checking of T-TPN.

4 Marking Timed Automaton of Time Petri Net

We first recall the definition of Timed Automata, introduced by Alur and Dill (Alur

and Dill 1994) and their semantics.

4.1 Timed Automaton: Definitions

Timed Automata are an extension of classical automata providing timing con-

straints. A transition can occur if clocks valuations satisfy constraints called “guard”.

Actions on clocks (reset for instance) are associated with transition. The system can

idle in a locality if valuations of clocks satisfy some constraints called “invariant”.

Definition 5 (Constraints)

Let V be a set of clocks, C(V ) is the set of timing constraints upon V i.e. the set

of expressions δ defined by:

δ := v ∼ c | v − v′ ∼ c | ¬ δ1 | δ1 ∧ δ2

with v, v′ ∈ V , ∼∈ {<,≤, =,≥, >} and c ∈ IN.

Definition 6 (TA)

A Timed Automaton is a tuple (L, l0, C, A, E, Inv) defined by:

• L a finite set of locations,

• l0 ∈ L the initial location ,

• C a finite set of positive real-valued clocks,

• A a finite set of actions,
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• E ⊂ L×C(C)×A× 2C ×L a finite set of transitions. e = (l, γ, a, R, l′) is the

transition from location l to location l′ with the guard γ, the label a and the

set of clocks to reset R,
• Inv : L × C(C) → {true, false}, a function assigning to each location an

invariant.

The semantics of a Timed Automaton is given by a Timed Transition System

(TTS).

Definition 7 (Semantics of a TA)
The semantics of a Timed Automaton is the Timed Transition System S = (Q, Q0,→)

where:

• Q = L× (IR≥0)
C ,

• Q0 = (l0, 0̄),
• → is the transition relation including a discrete transition and a continuous

transition.

• The discrete transition is defined ∀a ∈ A by:

(l, v)
a
−→ (l′, v′) iff ∃(l, γ, a, R, l′) ∈ E such as :















γ(v) = true

v′ = v[R← 0]

Inv(l′)(v′) = true

• The continuous transition is defined ∀d ∈ IR≥0 by:

(l, v)
ǫ(d)
−−→ (l, v′) iff

{

v′ = v + d

∀t′ ∈ [0, d], Inv(l)(v + t′) = true

4.2 Labeling algorithm

The algorithm given in section 3 represents the marking graph of the T-TPN. We

show here that it can easily be labeled to generate a Timed Automaton timed

bisimilar to the T-TPN.

Let G = (M, T ) be the graph produced by the algorithm where:

• M is the set of reachable markings of the T-TPN: M0, . . . , Mp

• T is the set of transitions: T0, . . . , Tq.

The Timed Automaton will be obtained by associating to each marking an in-

variant and to each transition a guard and some clocks assignments.

4.2.1 Invariant

First, an invariant is associated with each marking Mk. By construction, in each

marking, only the possible evolution of time is computed: the entering zone is

intersected with the set of constraints {xi ≤ βi}, where xi are clocks of transitions

enabled by the marking Mk. Then, the invariant associated with each marking Mk

is defined by:

I (Mk) = {xi ≤ βi | ti ∈ enabled (Mk)}
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4.2.2 Guard

Each transition Tk of the graph G corresponds to the firing of a transition ti. Then

we label Tk by:

• the action name ti,

• the guard: xi ≥ αi,

• the clocks assignments: xk ← 0 for all clocks xk associated with a newly

enabled transition tk

4.3 Marking Timed Automaton

The Timed Automaton we obtain is then defined as follows:

Definition 8 (Marking Timed Automaton)

• L = {M0, . . . , Mp} is the set of localities i.e. the set of reachable markings of

the T-TPN.

• l0 = M0 is the initial locality.

• C = {x1, . . . , xq} is the set of clocks i.e. the set of all clocks associated with

a transition.

• A = {t1, . . . , tq} is the set of actions i.e. the transitions of the T-TPN.

• E ⊂ L×C(C)×A×2C×L is the finite set of transitions. Let e = (Mi, γ, a, R, Mj)

a transition, e is defined as follows:

— a = tk
— γ = xk ≥ αk

— R = {xi | ti ∈↑enabled (Mi, tk)}

• Inv : L× C(C)→ {true, false}, with:

Inv(Mi) = {xi ≤ βi | ti ∈ enabled (Mi)}

Example

Considering the T-TPN of figure 1, the resulting Timed Automaton is:

M0

x1 ≤ ∞

∧ x2 ≤ 1

M1

x2 ≤ 1
M2

x3 ≤ 1

M3

x3 ≤ 1
∧ x1 ≤ ∞

T1, x1 ≥ 0 T1, x1 ≥ 0

T2, x2 ≥ 1, x3 := 0

T3, x3 ≥ 1, x2 := 0

T2, x2 ≥ 1, x3 := 0

T3, x3 ≥ 1, x2 := 0

Figure 3. Time Marking Automaton
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4.4 Bisimulation

Definition 9

As defined in the time transition system for a T-TPN T , we note QT the set of

states of T . QA is the set of states of a TA A.

Definition 10

Let R ⊂ QT ×QA be the relation between a state of the Timed Automaton and a

state of the Time Petri Net defined by:
{

∀(M, v) ∈ QT

∀(l, v̄) ∈ QA

, (M, v)R(l, v̄)⇔

{

M = M(l)

v = v̄

where M is the function giving the associated marking of a TA state l.

Two states are in relation if their “markings” and their clocks valuations are

equals.

Theorem 2

R is a bisimulation:

For all (M, v), (l, v̄) such that (M, v)R (l, v̄):

• (M, v)
ti−→ (M ′, v′) ⇔

{

(l, v̄)
ti−→ (l′, v̄′)

(M ′, v′)R(l′, v̄′)

• (M, v)
δ
−→ (M, v′) ⇔

{

(l, v̄)
δ
−→ (l, v̄′)

(M, v′)R(l, v̄′)

Proof

Continuous transition – time elapsing.

Let (M, vT ) ∈ QT , (l, vA) ∈ QA, and δ ∈ IR≥0.

We prove that if the T-TPN can idle in a state, this is allowed on the constructed

TA i.e. if the system can idle for any δ such that ∀k ∈ [1, n] M ≥ •tk ⇒ vT (tk)+δ ≤

β(tk) then the automaton verifies: ∀t ∈ [0, δ] Inv(l)(vA + t) = true.

By construction, the invariant of the location l is obtained by the conjunction of

the latest firing times of enabled transitions. So Inv(l) =
∧

{xi ≤ β(ti)} where ti ∈

enabled(M(l)). (M, vT ) and (l, vA) are in relation so vT = vA. As vT (ti)+δ ≤ β(ti)

then for all t ∈ [0, δ] vA(ti)+ t ≤ β(ti). This means that ∀t ∈ [0, δ] Inv(l)(vA + t) =

true.

To conclude, the automaton can idle in the state and (M, vT + δ)R(l, vA + δ).

Symmetrically, we prove that if the TA can idle for a time δ, the T-TPN can idle

for the same time δ.

According to the semantics of T-TPN, a continuous transition can occur if and

only if ∀tk ∈ enabled(M), vT (tk) + δ ≤ β(tk). As (M, vT ) and (l, vA) are in

relation, vT = vA. The TA can idle in the state for all t ∈ [0, δ] vA(ti) + t ≤ β(ti)

by construction of the invariant. Then, t = δ prove the result.

The T-TPN can idle in the marking and (M, vT + δ)R(l, vA + δ).
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Concerning continuous transitions, R is a bisimulation.

Discrete transition – firing a transition ti Let (M, vT ) ∈ QT and (l, vA) ∈ QA

be two states in relation.

We prove that if a transition is firable for the T-TPN, it is firable for the TA and

the two resulting states are in relation.

A transition ti of the T-TPN can be fired if: M ≥ •ti and α(ti) ≤ vT (ti) ≤ β(ti).

The resulting marking is M ′ = M−•ti+t•i and the resulting valuation is v′T (tk) = 0

for all newly enabled transition tk, all others valuations remain unchanged.

The corresponding action is allowed on the constructed TA if and only if

∃(l, γ, a, R, l′) ∈ E such as :















γ(v) = true

vA = vA[R← 0]

Inv(l′)(v′A) = true

As ti is firable, it exits by construction a transition of the TA from l, such that

M(l) = M , to a location l′ such that M(l′) = M ′. The guard is by construction,

γ = xi ≥ α(ti). Thus, as ti is firable γ(vA) = true.

Also by construction, the clocks to be reset for the TA are the same clocks to be

reset for the T-TPN. Thus, v′A = v′T .

As clocks newly enabled are set to 0, they verifies the inequalities xj ≤ β(tj) in

the invariant of l′. All other clocks stay unchanged: v′A(tj) ≤ β(tj) for all other

enabled clocks. Thus, Inv(l′)(v′A) = true.

So the transition on TA is allowed and (M ′, v′T )R(l′, v′A).

Symmetrically, we prove that if ti is firable for the TA, it is firable for the T-TPN.

The two resulting states are in relation.

A transition e = (l, ti, γ, R, l′) of the TA can occur and leads to a new state

(l′, v′A) if and only if γ(vA) = true and Inv(l′)(v′A) = true. Then v′A = vA[R← 0].

The corresponding action is allowed on the T-TPN and leads to a new state

(M ′, v′T ) if and only if:


































M ≥• ti

M ′ = M −•ti + t•i

α(ti) ≤ vi ≤ β(ti)

∀ transitions tk v′T (tk) =

{

0 if tk ∈ ↑enabled(M, ti)

vT (tk) otherwise

By definition of the Marking Timed Automaton, if ti is firable for the TA, it is for

the T-TPN. So M ≥• ti and the resulting marking is by definition M ′ = M−•ti+t•i .

(l, vA) and (M, vT ) are in relation so vT = vA.

As, γ(vA) = true and Inv(l)(vA) = true so, α(ti) ≤ vT (ti) ≤ β(ti).

By construction, the clocks to be reset are the clocks of newly enabled transitions

i.e. the clocks of R. So v′A = v′T .

To conclude, ti is firable for the T-TPN and (M ′, v′T ) and (l′, v′A) are in relation.

R is a bisimulation for discrete transitions.
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Table 1. Time to compute the state space of a T-TPN

Time Petri Net T-TPN (p./t.) Tina Gpn Mercutio

Example 1 (oex15) 16 / 16 10.5 s 12.9 s 2 s
Example 2 (oex7) 22 / 20 30.5 s 9.8 s 1.3 s
Example 3 (oex8) 31 / 21 29 s 12.2 s 1.4 s
Example 4 (P6C7) 21 / 20 31.6 s 1 min 17 s 7.9 s
Example 5 (P10C10) 32 / 31 4.2 s 6.8 s 1 s
Example 6 (GC - 3) 20 / 23 2 s 1.2 s 0.1 s
Example 7 (GC - 4) 24 / 29 3 min 8 s 1 min 3 s 10.8 s
Example 8 (P6C9) 25 / 24 2 min 49 s 6 min 2 s 22.9 s
Example 9 (P6C10) 27 / 26 8 min 53 s 36 min 1 min
Example 10 (P6C11) 29 / 28 14 min 36 s 1 h 1 min 2 min 20s
Example 11 (P6C12) 31 / 30 23 min 34 s 2 h 7 min 3 min 59s
Example 12 (P6C13) 33 / 32 36 min 25 s × 6 min 3s

5 Performances

We have implemented the algorithm to compute all the reachable markings of a

bounded T-TPN using DBM (Difference Bounded Matrices) to encode zones. The

tool implemented (Mercutio) is integrated into Romeo (Romeo 2003), a software

for T-TPN edition and analysis.

As boundedness of T-TPN is undecidable, Mercutio offers stopping criteria:

number of reached markings, computation time, bound on the number of tokens in

a place. It also provides an on-the-fly reachability test of markings and export the

automaton in Kronos or Uppaal syntax. Concerning the on-the-fly reachability

test, Mercutio also provides a trace (sequence of transitions and interval in which

they are fired) leading to the marking.

5.1 Comparison with other methods

We present here a comparison (Table 1) of three methods to compute the state

space of a T-TPN:

• the method proposed in this paper with our tool Mercutio.

• the State Class Graph computation (Berthomieu) with the tool Tina.

• the State Class Timed Automaton (Lime and Roux) with the tool Gpn.

Computations were performed on a Pentium 2 (400MHz) with 320MB of RAM.

Examples 1 to 5 come from real-time systems (parallel tasks [1], periodic tasks[2–

3], producer-consumer [4–5,8–12]). Examples 7 and 8 are the classical level crossing

example (3 and 4 trains).

For this set of examples and for all nets we have tested, our tool performs better

than Tina and than Gpn. For example 12, Gpn ran out of memory.
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Table 2. Structure of resulting Timed Automata

Time Petri Net Clocks(1)1
Marking(2) TA State Class TA (3)

Cl. 2 N.3 T.4 Cl. N. T.

Example 1 (oex15) 16 4 361 1095 4 998 3086
Example 2 (oex7) 20 11 637 2284 7 1140 3990
Example 3 (oex8) 21 11 695 2444 7 1277 4344
Example 4 (P6C7) 20 13 449 4175 3 11490 50268
Example 5 (P10C10) 31 4 1088 5245 2 1088 5245
Example 6 (GC - 3) 23 5 94 271 3 286 763
Example 7 (GC - 4) 29 6 318 1221 4 2994 11806
Example 8 (P6C9) 24 15 1299 12674 3 24483 117918
Example 9 (P6C10) 26 16 2596 27336 3 59756 313729
Example 10 (P6C11) 28 17 4268 44620 3 82583 440540
Example 11 (P6C12) 30 18 6846 70856 3 112023 606771
Example 12 (P6C13) 32 19 10646 108842 × × ×

Number of: 1clocks of the original T-TPN , 2clocks of the TA , 3nodes of the TA ,
4transitions of the TA .

5.2 Reducing the number of clocks

A major issue in model checking TA is the number of clocks in the automaton.

Time computation is exponential in the number of clocks. Consequently, obtaining

an automaton with a reduced number of clocks is of importance.

The algorithm we propose assigns a clock to each transition. Thus, the resulting

automaton has as many clocks as transitions of the T-TPN. However we have

underlined that for each location, only a reduced number of clocks (active clocks)

really matter for the timing evolution of the T-TPN.

Daws and Yovine in (Daws and Yovine 1996) proposed a syntactical method to

reduce the number of clocks of a TA. As a single Timed Automaton is build with our

method (no need to compute parallel composition) we applied this reduction. The

table 2 presents the comparison between the clocks of (1) the Timed Automaton

obtained, (2) the Timed Automaton obtained after syntactical clocks reduction (we

used Optikron from Kronos (Yovine 1997)), (3) the State Class Timed Auto-

maton using Gpn that ensures a minimal number of clocks using classes.

These results are all the more encouraging that, reducing the number of clocks

is made syntactically and is made at no cost comparatively to the state space

computation. The State Class Timed Automaton always as a lower number of

clocks but its construction is not as fast as our method: the Timed Automaton has

lower clocks at the price of a greater size. For example 12, we have not succeeded

in computing the State Class Timed Automaton (out of memory).

6 Applications

We propose in this section some applications of our method to model-check T-TPN.
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6.1 Model checking of Quantitative Properties

Since they were introduced, Timed Automata are an active research area and several

methods and tools have been developed to analyze them. Tools like Uppaal (Larsen

et al. 1997) or Kronos (Yovine 1997) successfully implement efficient algorithms

and data structures to provide model-checking on TA (TCTL model-checking for

instance): numerous case studies have been performed with real reactive systems.

Concerning T-TPN, few studies were realized and properties that can be checked

are mainly safety untimed properties (reachability). Time or untime properties are

mainly verified over T-TPN using “observers”. Basically, properties are transformed

in an additional T-TPN motif called “observer”, and then, the problem is trans-

formed into a reachability test. Such methods are not easy to use: (1) modeling the

property with an observer is not easy (it exists some generic observers (Toussaint

et al. 1997), but for few properties), (2) the observer’s size may be as large as the

initial T-TPN, (3) due to the increase of the T-TPN’s size, computing the state

space will be more time expensive.

The method we propose here, is to use existent TA tools to perform model-

checking of T-TPN. As a Timed Automaton is produced, model-check a T-TPN

(LTL,CTL) becomes possible and verifying quantitative time property (TCTL) is

possible. Moreover, as the automaton constructed is a Timed Automaton with

diagonal free constraints, model checking could be done using on-the-fly algorithms

on TA (Uppaal(Larsen et al. 1997), Kronos(Yovine 1997)).

Example

Let us consider the classical level crossing example. The system is modeled using

the three patterns of the figure 4. This model is made of a controller (4(a)), a barrier

model (4(b)) and four identical trains (4(c)). The resulting Petri Net is obtained

by the parallel composition of these T-TPN.

The property “the barrier is closed when a train crosses the road” is a safety

property and is interpreted as a reachability test: we want to check if there exists

a state such that for any train i: M(Oni) = 1 and M(Closed) = 0. This could

be checked directly on the computed graph using Mercutio or using Uppaal

to test the property. In Uppaal, the property is expressed as: E<>((M[On1]==1

or M[On2]==1 or M[On3]==1 or M[On4]==1) and M[Closed]==0). In both cases, the

result is False, proving that no train may cross the road while the barrier is not

closed.

Using the automaton, it is possible to model time properties. For instance, “when

the train i approaches, the barrier closes within delay δ” may be checked. In

TCTL this property is expressed by: M(closei) = ↑ 1 =⇒ ∀♦≤δM(closed) = 1.

M(closei) = ↑ 1 means that only states for which M(closei) = 1 in the state and

M(closei) = 0 for all the preceding states. To check this property on the TA using

Uppaal or on the T-TPN using reachability analysis leads to create an observer or

modify the model. For instance, to use Uppaal we have to add an additional clock

that starts when a train change its state to closei. By using Kronos, there is no
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•
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Exit [0, 0]App
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Figure 4. Gate Controller

need to modify or create an observer. Given the TA and a TCTL formula, Kronos

can perform model-checking using classical TCTL forward or backward algorithms.

6.2 Mixing Timed Automata and Time Petri Nets

The method proposed in this paper provides a common framework for using and

analyzing reactive systems modeled with Timed Automata or Time Petri Nets.

Many systems are modeled using T-TPN (FIP, CAN), nevertheless some prob-

lems (time controller synthesis for instance) benefit of larger studies and efficient

tools. Then, it may be necessary to have a mixed representation of the system.

We give here some examples of mixing Timed Automata and Time Petri Nets:

Test Case Given a reactive system expressed with a T-TPN, different scenarios

may be studied by synchronizing it with a Test Automaton. This Test Automaton

represents the sequence of transitions to be fired and the synchronization is made

over the firing of transitions.

Controller Given a reactive system expressed with a T-TPN, a controller may be

modeled using TA to constraint the execution of the system.
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7 Conclusions

In this paper, we proposed an efficient method to compute the state space of a

bounded T-TPN. The proposed algorithm performs a forward computation of the

state space and we proved it is exact with respect to reachability even for bounded

T-TPN with ∞ as latest firing time. We proposed a labeling algorithm of the

produced graph to build a Timed Automaton that we proved to be timed bisimilar

to the original T-TPN. Some examples were given to show that our tool performs

better than two other methods used to compute the state space of a T-TPN: the

State Class Timed Automaton (Gpn) and the State Class Graph (Tina). Though

the number of clocks of our TA is greater than the one of the State Class Timed

Automaton, our construction is faster and syntactical clocks reduction algorithms

may be successfully applied to reduce it.

Consequently, our method allows the use of Timed Automaton tools to model-

check T-TPN. In particular, the Timed Marking Automaton makes TCTL model-

checking feasible for bounded T-TPN, which, to our knowledge has not been done

before.

We are currently involved in two different research area. First, we think possible

to use efficient data structures (BDD-like structure) to improve our implementation

and we are studying Partial Order methods to reduce time and space requirements.

Finally, it would be useful to develop a full model-checker for T-TPN without

having to build the Timed Automaton. Then, a further step in the analysis of real-

time reactive systems will be to provide methods for the time controller synthesis

problem for T-TPN.
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