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We demonstrate an original approach to achieving a tunable 1.55-µm vertical-cavity 

surface-emitting laser. The tunability is based on an electro-optic index modulator using nano-

sized droplets of liquid crystal as a phase layer. Such an approach can produce a robust and a 

low-cost device. A 10-nm tuning range with less than 170 V applied voltage has been 

demonstrated. The device is formed by a conventional InP-based active region with an 

epitaxial and a dielectric Bragg mirror. This optically pumped device exhibits an excellent 

side-mode suppression ratio of higher than 20-dB over the whole spectral range. 

 

PACS: 42.55.Px, 42.60.Fc, 61.30.Pq 
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Long-wavelength vertical-cavity surface-emitting lasers (VCSELs) operating at 1.3 

µm and 1.5 µm have been extensively studied during the last decade. Their circular and 

spatial single-mode beam provides very efficient fiber coupling and makes them very 

attractive light sources for telecommunication.
1
 In order to increase embedded fiber 

communication capacities, advanced VCSELs with a tunable emission have been 

investigated.
2
 These devices are suitable for wavelength division multiplexing applications in 

metro and local access networks. Most of the tunable VCSELs developed by researchers are 

comprised of an active region and an air-gap sandwiched between top and bottom distributed 

Bragg reflectors (DBR). The top DBR is a part of a micro-electromechanical system (MEMS) 

and can be moved by applying an electrostatic force which results in a change in cavity 

length. Electrically or optically pumped VCSELs combined with MEMS technology offer an 

ideal solution for wide wavelength tuning with mode-hop free emission.
3,4

 However, this 

solution requires a complex processing
5
 and is limited by their fragility. Furthermore, these 

mechanical systems exhibit a relatively low switching speed which depends on the MEMS 

structure size (few ms).
2
 Another way to obtain a wide VCSEL bandwidth is to use a liquid 

crystal as an electro-optic material placed inside the cavity. The liquid crystal (LC) solution 

provides a large refractive index variation, but the tuning speed is less than a millisecond and 

it also suffers from polarization dependence due to the nematic LC birefringence. Recently, 

the use of nano-polymer dispersed liquid crystal (PDLC) for optical applications has shown 

potential for polarization independence and fast tuning speed.
6,7

 

In this letter, we present an original use of such an electro-optic material to provide 

tunability of a long wavelength VCSEL. The device using a nano-PDLC material as an 

electro-optic index modulator is robust and easy to fabricate. The device is comprised of a 

conventional InP based active region, and an InP/InGaAsP bottom Bragg reflector. This half-

cavity is combined with a SiO2/TiO2 top dielectric Bragg reflector and the electro-optic phase 
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modulator in order to tune the laser emission wavelength. This optically pumped VCSEL 

requires less than 170V to achieve a 10 nm tunability and presents laser emission at room-

temperature under pulsed-operation. 

 

The periodic gain active region, grown by molecular beam epitaxy, has an optical 

length of three half-wave periods. Seven lattice-matched InGaAs/InGaAsP quantum wells 

(QW) are located at each antinode of the standing wave for modal gain improvement. The 

thicknesses of the wells and barriers are 8 nm and 10 nm, respectively. Each set is surrounded 

by Q1.18 layers and InP layers (Q1.18 is a quaternary alloy In0.8Ga0.2As0.435P0.565 emitting at a 

wavelength of 1.18 μm). This active region is designed in order to obtain an homogenous 

optical absorption of the pump power and then an homogenous carrier distribution.
8
 Prior the 

realization of this active region, the growth of the bottom DBR is achieved with 

semiconductor materials. InP and Q1.45 materials (Q1.45 is a quaternary alloy 

In0.628Ga0.372As0.8P0.2 emitting at a wavelength of 1.45µm) are used as low and high refractive 

index, respectively. The low refractive index difference between these two materials implies 

the growth of 40 periods to reach a theoretical reflectivity of 99%. Following the realization 

of this half cavity where bottom mirror and active region are grown in a single run, a 

dielectric mirror is deposited on a glass substrate with an electron-beam evaporation system in 

order to obtain a top mirror as illustrated in Fig. 1(a). The use of dielectric materials for long 

wavelength VCSEL allows to obtain a high reflectivity with a small number of periods.
9
 In 

our case, we use silicon dioxide and titanium dioxide material to form eight and a half pairs of 

TiO2/SiO2 DBR on a glass substrate. The measured reflectivity for a such mirror is greater 

than 99.5% inside a spectral window centered around 1.55 µm. Before the realization of this 

dielectric DBR, a thin semi-transparent indium-thin-oxide (ITO) layer is deposited on the 

glass substrate in order to apply the electric field on the phase layer. The second electrode 
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consists in a 200 nm gold layer on the back of the InP substrate. The InP substrate and the 

epitaxial layers are N-doped. Consequently, the major part of the electric field is applied on 

the nano-PDLC phase layer and the dielectric DBR. 

Fig. 1(a) illustrates the last processing stage, where the half cavity and the top mirror 

are joined together thanks to micrometric spacers in order to obtain an air gap of 6 µm with an 

accuracy to within 2%. The phase layer, which is comprised of a suspension of nematic LC 

(BL 24 from Merck) and a ultraviolet (UV) curable monomer (NOA 81 from Norland) is 

introduced between the dielectric Bragg mirror and the active region. The mixture, with a LC 

ratio of 30% in weight, is irradiated through the top mirror with strong UV light ( = 365 nm - 

350 mW/cm
2
) in order to realize the photopolymerization-induced phase separation (PIPS).

10
 

Finally, the index modulator layer, whose refractive index is close to n = 1.55, has an optical 

length of 6λ, and can be used to obtain an isotropic refractive index variation for the plane 

which is perpendicular to the applied electric field. The applied bias voltage orients the LC 

droplets with respect to the induced electric field and hence creates a refractive index 

decrease. The refractive index variation is maximum when almost all of the LC droplets are 

oriented along the field direction. Fig. 1(b) illustrates the squared modulus of the intra-cavity 

stationary electrical field. The active and tuning layer thicknesses (0.7 µm and 6 µm 

respectively) were chosen in order to reach high enough gain for laser emission and a 

relatively large tuning range. A large fraction of the intensity is thus located in the nano-

PDLC layer. Consequently nano-PDLC absorption must be low. The major contribution for 

these losses is related to the scattering of light by the LC droplets. However, for our LC 

droplets, the expected size is close to 100 nm and the absorption is minimized. Optical losses 

close to 15 cm
-1

 at 1.55 µm have been measured for samples comprising a nano-PDLC layer 

sandwiched between two glass substrate. These optical losses are observed when LC droplets 

are randomly oriented without electric field and they are reduced when an electric field is 



C. LEVALLOIS et al 5 

applied. The switching time also depends on the size of the LC droplets, and it decreases as 

the droplet size is reduced.
11

 However, the electrical field needed to switch LC droplets 

increases. Thus, the size of LC droplets is a crucial parameter which can be controlled by the 

UV power during PIPS process.
11

 

The fabricated VCSEL have been optically pumped in order to achieve lasing 

emission. The optical pumping experiment consists of focusing a pulsed laser beam ( = 

1.064 µm) with a microscope objective on the dielectric DBR. The constant pulse width is 1 

ns with a repetition rate of 6.6 kHz. The photopumped spot is circular with an area of 200 

µm
2
, and the laser emission is collected back with the same objective and transmitted through 

a beam splitter and a filter. The signal is injected in a large core diameter optical fiber 

connected to a spectrum analyzer. Fig. 2 shows emission spectra under constant optical 

pumping at different tuning voltage values. As the applied voltage between the top and 

bottom DBRs is increased from 0 to 170 V, the VCSEL wavelength is tuned from 1561.6 to 

1551.8 nm. The increase of the applied voltage on the VCSEL reduces the refractive index of 

the nano-PDLC layer and therefore shifts the laser emission to shorter wavelengths. A tuning 

range of 9.8 nm is then demonstrated with an applied voltage close to 170V. All the spectra 

presented in Fig. 2 have been recorded for a pump power level equal to one and a half times 

the threshold pump power value at 0V. For no applied electric field, the threshold power 

density has been estimated at 30 kW.cm
-2

 and this value will be discussed afterwards. As 

illustrated in Fig.2, the side-mode suppression ratio is in excess of 20 dB for the whole tuning 

range. The peak power emitted by the VCSEL at 0V, for the pump power used to record the 

lasing spectra, is 2.1 mW. The free spectral range (FSR) has been estimated using a transfer 

matrix formalism based on our VCSEL structure. The calculated FSR is larger than 50 nm 

which is highly compatible with the observed tuning range of 10 nm. Consequently, the FSR 

is sufficient to eliminate mode hopping during wavelength tuning. In addition, the two nearest 
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optical modes are outside of the narrow spectral bandwidth of the InP/InGaAsP bottom 

mirror. Thus, only a single wavelength emission can be obtained and tuned.  

The Fig. 3 depicts the wavelength tunable range as a function of the voltage applied 

on the VCSEL structure. The wavelength decreases with a sigmoid behaviour when voltage 

increases and approaches saturation at around 150V. The tunability efficiency is maximum in 

the middle of the sigmoid curve, close to 90V, and reaches 0.16 nm/V. The saturation 

tendency which occurs at high voltage means that the LC droplets become almost completely 

aligned in the direction of the electric field and the maximum index variation is reached. This 

index variation is given by the following expression:
12

 nmax = XCL··n/3, where XCL is the 

fraction of LC in the polymer, n, equal to 0.2, is the birefringence of the LC, and  the factor 

which takes into account the effective part of LC which can participate in the refractive index 

change. In our case, the tuning range of 10 nm corresponds to a refractive index variation of 

nmax = 1.5.10
-2

. This suggests that the efficient fraction of LC droplets in the polymer matrix 

(XCL·) which can contribute to the index change is about 20%. 

The solid line curve plotted in Fig. 3 shows the laser peak wavelength calculated 

from the quadratic dependency of the refractive index with the electric field. In agreement 

with a previous work,
6
 the simulation based on the transfer matrix formalism and this 

relationship provide a good approximation of the wavelength shift in the weak electrical field 

limit. As illustrated in Fig. 3, for a constant pump power, the VCSEL output power depends 

on the applied electric field. As the applied voltage between the top and bottom DBR is 

increased from 0 to 170V, the VCSEL output power increases by 3 dB. However, the 

simulated modal gain given by the following expression: gmod = Γ·gmat, where gmat is the 

material gain for the used QWs and Γ is the spatial overlap factor, remains constant for a 

spectral range of 10 nm around 1.55 µm. Now, we consider the net gain: gnet = gmod – α, where 

α is the average loss coefficient per unit length in the cavity taking account losses in the 
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semiconductor, nano-PDLC and through the mirrors. The losses through the mirrors and 

semiconductor materials are also approximately constant within the tunable spectral window. 

Thus, this variation of the emitted power can be explained by the decrease of losses related to 

LC droplets scattering during the wavelength tuning. When LC droplets are randomly 

oriented, the scattering losses inside the phase layer are higher than when the voltage is 

maximum and almost of the LC droplets are aligned with the applied electric field. 

Consequently, the pump power threshold is higher when all the LC droplets are 

randomly oriented without voltage applied on the VCSEL. As previously stated, for no 

applied voltage, this power is close to 30 kW.cm
-2

. This threshold value is high but it can be 

explained by optical losses which are higher than expected. As mentioned above, the UV 

power used during PIPS process is a crucial parameter. In our case, a part of the incident UV 

power is absorbed by the SiO2/TiO2 dielectric Bragg mirror. Consequently the size of the LC 

droplets is probably larger than 100 nm which implies optical losses higher than 15 cm
-1

. A 

spin-coated method is under study to improve the UV irradiation of the polymer in order to 

obtain smaller optical losses for the electro-optic layer.
6
 Others optimizations can be carried 

out like the use of a more efficient semiconductor DBR for the bottom mirror. Larger tuning 

ranges could be obtained with larger birefringence LCs
13

 or higher concentration of LC 

droplets. For practical use, the main limiting factor is the driving voltage. However, this 

voltage can be reduced by introducing thin ITO electrodes with a low optical absorption 

inside the cavity, close to the nano-PDLC layer to avoid the voltage drop induced by the 

dielectric DBR.  

 

In conclusion, a VCSEL with an electro-optic material inside the cavity shows a laser 

emission with a 10 nm tuning range around 1.55 µm wavelength under 170V applied voltage. 

The device is easy to realize and does not need complex processing as in MEMS VCSEL. The 
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switching times are expected to be about a hundred µs. The use of a more efficient bottom 

DBR and smaller LC droplets will improve pump power near the threshold in order to 

develop an electrically pumped VCSEL. Finally, the high voltage value can be reduced by 

employing and introducing ITO electrodes with low optical losses inside the cavity, close to 

the nano-PDLC layer. 
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Figures captions 

 

Figure 1 

(Color online). Schematic of the cross-section of the tunable nano-PDLC VCSEL (a). 

Modulus squared of the stationary electric field intensity in the structure layers with no 

applied voltage on VCSEL (b). 

 

Figure 2 

(Color online). Emission spectra at different tuning voltage values for a constant pump power 

(Ppump = 1.5·Pth at 0V). Tuning voltage values are indicated above each peak, in volts . 

 

Figure 3 

Emission wavelength and output power of the VCSEL as function of the applied voltage. The 

solid curve is the simulated wavelength variation for low tuning voltage. 
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FIG. 1. 
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FIG. 2. 
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FIG. 3. 
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