Marc Boyer
email: marc.boyer@enseeiht.fr

Olivier Henri Roux
email: olivier-h.roux@irccyn.ec-nantes.fr

Olivier H Roux Irccyn

On the compared expressiveness of arc, place and transition time Petri nets

 (p. 23).

Introduction

The two main extensions of Petri nets with time are Time Petri Nets (TPNs) [START_REF] Merlin | A study of the recoverability of computing systems[END_REF] and Timed Petri Nets [START_REF] Ramchandani | Analysis of asynchronous concurrent systems by timed Petri nets[END_REF]. For TPNs a transition can fire within a time interval whereas for Timed Petri Nets it has a duration and fires as soon as possible or with respect to a scheduling policy, depending on the authors. Among Timed Petri Nets, time can be considered relative to places (P-Timed Petri Nets), arcs (A-Timed Petri Nets) or transitions (T-Timed Petri Nets) [START_REF] Sifakis | Performance Evaluation of Systems using Nets, Net theory and applications[END_REF][START_REF] Pezzè | Time Petri Nets: A Primer Introduction, Tutorial presented at the Multi-Workshop on Formal Methods in Performance Evaluation and Applications[END_REF]. The same classes are defined for TPNs i.e.T-TPN [START_REF] Merlin | A study of the recoverability of computing systems[END_REF][START_REF] Berthomieu | Modeling and Verification of Time Dependent Systems Using Time Petri Nets[END_REF], A-TPN [START_REF] Hanisch | Analysis of place/transition nets with timed-arcs and its application to batch process control[END_REF][START_REF] Abdulla | Timed Petri Nets and BQOs, 22nd International Conference on Application and Theory of Petri Nets (ICATPN'01)[END_REF][START_REF] De Frutos Escrig | Decidability of properties of timed-arc Petri nets[END_REF] and P-TPN [START_REF] Khansa | P-Time Petri Nets for manufacturing systems[END_REF][START_REF] Khanza | Réseau de Petri P-Temporels. Contribution à l'étude des systèmes à évènements discrets[END_REF]. It is known that P-Timed Petri Nets and T-Timed Petri Nets are expressively equivalent [START_REF] Sifakis | Performance Evaluation of Systems using Nets, Net theory and applications[END_REF][START_REF] Pezzè | Time Petri Nets: A Primer Introduction, Tutorial presented at the Multi-Workshop on Formal Methods in Performance Evaluation and Applications[END_REF] and these two classes of Timed Petri Nets are included in the two corresponding classes T-TPN and P-TPN [START_REF] Pezzè | Time Petri Nets: A Primer Introduction, Tutorial presented at the Multi-Workshop on Formal Methods in Performance Evaluation and Applications[END_REF] Depending on the authors, two semantics are considered for {T,A,P}-TPN: a weak one, where no transition is never forced to be fired, and a strong one, where each transition must be fired when the upper bound of its time condition is reached. Moreover there are a single-server and several multi-server semantics [START_REF] Boyer | Multiple enabledness of transitions in time Petri nets[END_REF][START_REF] Berthomieu | La méthode des classes d'états pour l'analyse des réseaux temporels. Mise en oeuvre, extension à la multi-sensibilisation[END_REF]. The number of clocks to be considered is finite with single-server semantics (one clock per transition, one per place or one per arc) whereas it is not with multi-server semantics.

A-TPN have mainly been studied with weak (lazy) multi-server semantics [START_REF] Hanisch | Analysis of place/transition nets with timed-arcs and its application to batch process control[END_REF][START_REF] Abdulla | Timed Petri Nets and BQOs, 22nd International Conference on Application and Theory of Petri Nets (ICATPN'01)[END_REF][START_REF] De Frutos Escrig | Decidability of properties of timed-arc Petri nets[END_REF]: this means that the number of clocks is not finite but the firing of transitions may be delayed, even if this implies that some transitions are disabled because their input tokens become too old. The reachability problem is undecidable for this class of A-TPN but thanks to this weak semantics, it enjoys monotonic properties and falls into a class of models for which coverability and boundedness problems are decidable.

Conversely T-TPN [START_REF] Merlin | A study of the recoverability of computing systems[END_REF][START_REF] Berthomieu | Modeling and Verification of Time Dependent Systems Using Time Petri Nets[END_REF] and P-TPN [START_REF] Khansa | P-Time Petri Nets for manufacturing systems[END_REF][START_REF] Khanza | Réseau de Petri P-Temporels. Contribution à l'étude des systèmes à évènements discrets[END_REF] have been studied with strong single-server semantics. They do not have monotonic features of weak semantics although the number of clocks is finite. The marking reachability problem is known undecidable [START_REF] Jones | Complexity of Some Problems in Petri Nets[END_REF] but marking coverability, k-boundedness, state reachability and liveness are decidable for bounded T-TPN and P-TPN with strong semantics.

Related work : Expressiveness of models extended with time Time Petri Nets versus Timed Automata. Some works compare the expressiveness of Time Petri Nets and Timed Automata. In [START_REF] Srba | Timed-Arc Petri Nets vs. Networks of Timed Automata[END_REF], the author exposes mutual isomorphic translations between 1-safe Time-Arc Petri Nets (A-TPN) and networks of Timed Automata.

In [START_REF] Cassez | Structural Translation from Time Petri Nets to Timed Automata -Model-Checking Time Petri Nets via Timed Automata[END_REF][START_REF] Bérard | Comparison of the expressiveness of Timed Automata and Time Petri Nets[END_REF] it was proved that bounded T-TPN with strong semantics form a strict subclass of the class of timed automata w.r.t. timed bisimilarity. Authors give in [START_REF] Bérard | When are timed automata weakly timed bisimilar to time Petri nets ?[END_REF] a characterisation of the subclass of timed automata which admit a weakly timed bisimilar T-TPN. Moreover it was proved in [START_REF] Bérard | Comparison of the expressiveness of Timed Automata and Time Petri Nets[END_REF] that bounded T-TPN and timed automata are equally expressive w.r.t. timed language acceptance.

Arc, Place and Transition Time Petri Nets. The comparison of the expressiveness between A-TPN, P-TPN

and T-TPN models with strong and weak semantics w.r.t. timed language acceptance and timed bisimulation have been very little studied 1 .

In [START_REF] Cerone | Timed based expressivity of time Petri nets for system specification[END_REF] authors compared these models w.r.t. language acceptance. With strong semantics, they established P-TPN ⊆ L T-TPN ⊆ L A-TPN 2 and with weak semantics the result is P-TPN = L T-TPN = L A-TPN.

In [START_REF] Boyer | Language and bisimulation relations between subclasses of timed Petri nets with strong timing semantic[END_REF] authors study only the strong semantics and obtain the following results: T-TPN ⊂ L A-TPN and P-TPN ⊂ L T-TPN.

These results of [START_REF] Cerone | Timed based expressivity of time Petri nets for system specification[END_REF] and [START_REF] Boyer | Language and bisimulation relations between subclasses of timed Petri nets with strong timing semantic[END_REF] are inconsistent.

Concerning bisimulation, in [START_REF] Boyer | Language and bisimulation relations between subclasses of timed Petri nets with strong timing semantic[END_REF] (with strong semantics) we have T-TPN ⊂ ≈ A-TPN, P-TPN ⊆ ≈ A-TPN and P-TPN ⊆ ≈ T-TPN. But the counter-example given in this paper to show P-TPN ⊆ ≈ T-TPN uses the fact that the T-TPN 'à la Merlin' cannot model strict timed constraint 3 . This counter example fails if we extend these models to strict constraints.

In [START_REF] Khanza | Réseau de Petri P-Temporels. Contribution à l'étude des systèmes à évènements discrets[END_REF] P-TPN and T-TPN are declared incomparable but no proof is given.

Many problems remain open concerning the relationships between these models.

Our Contribution. In this paper, we consider safe Arc, Place and Transition Time Petri Nets with strict and large timed constraints and with single-server semantics. We give the formal strong and weak semantics of these models in terms of Timed Transition Systems. We compare each model with the two others in the weak and the strong semantics, and also the relationships between the weak and the strong semantics for each model (see Fig. 19, p. 23). The comparison criterion is the weak timed bisimulation. In [START_REF] Boyer | Comparison of the expressiveness of Arc, Place and Transition Time Petri Nets[END_REF], a previous version of this work, only 7 of the 9 relations where covered. Here, the 2 missing ones are also presented, in Theorems 4.10 and 4.12.

The paper is organised as follows: Section 2 gives some "framework" definitions. Section 3 presents the three timed Petri nets models, with strong and weak semantics. Section 4 is the core of our contribution: it lists all the new results we propose. Section 5 concludes.

Framework definition

We denote A X the set of mappings from X to A. If X is finite and |X| = n, an element of A X is also a vector in A n . The usual operators +, -, < and = are used on vectors of A n with A = N, Q, R and are the point-wise extensions of their counterparts in A.

For a valuation ν ∈ A X , d ∈ A, ν + d denotes the vector (ν + d)(x) = ν(x) + d . The set of boolean is denoted by B. The set of non negative intervals in Q is denoted by I(Q ≥0). An element of I(Q ≥0) is a constraint ϕ of the form α ≺ 1 x ≺ 2 β with α ∈ Q ≥0 , β ∈ Q ≥0 ∪ {∞} and ≺ 1 , ≺ 2 ∈ {<, ≤ }, such that I =[[ϕ]]. We let I ↓ =[[0 ≤ x ≺ 2 β]]
= (Q, Q 0 , Σ , -→) where Q is a set of states, Q 0 ⊆ Q is the set of initial states, Σ is a finite set of actions disjoint from R ≥0 , -→⊆ Q × (Σ ∪ R ≥0) × Q is a set of edges. If (q, e
, q) ∈-→, we also write q e -→ q . Moreover, it should verify some time-related conditions: time determinism (td), time-additivity (ta), nul delay (nd) and time continuity (tc). ∀d, d ∈ R ≥0 , ∀q, q , q ∈ Q :

td ≡ q d -→ q ∧ q d -→ q ⇒ q = q ta ≡ q d -→ q ∧ q d -→ q ⇒ q d+d ---→ q nd ≡ q 0 -→ q tc ≡ q d -→ q ⇒ ∀d ≤ d, ∃q d , q d -→ q d
In the case of q d -→ q with d ∈ R ≥0 , d denotes a delay and not an absolute time. In a TTS S = (Q, Q 0 , Σ , -→), a run ρ of length n ≥ 0 is a finite (n < ω) or infinite (n = ω) sequence of alternating time and discrete transitions (starting from q 0 ∈ Q 0) of the form:

ρ = q 0 d 0 --→ q 0 a 0 --→ q 1 d 1 --→ q 1 a 1 --→ • • • q n dn --→ q n • • • A run ρ from a state q 1 is a run starting from q 1 ∈ Q. A trace of ρ is the timed word w = (a 0 , d 0)(a 1 , d 1) • • • (a n , d n) • • • that consists of the sequence of letters of Σ.
We write

Untimed(ρ) = Untimed(w) = a 0 a 1 • • • a n • • •
for the untimed part of w, and Duration(ρ) = Duration(w) = d k for the duration of the timed word w and then of the run ρ. As a shorthand, we denote :

• ρ = q abc --→ q or ρ = q a -→ q a b -→ q b c -→ q for the sequence in null time of discrete steps a, b and c like ρ = q 0 -→ q a 0 a -→ q a 0 -→ q b 0 b -→ q b 0 -→ q c 0 c -→ q • ρ = q * a
--→ q for a sequence in null time of some epsilon transition followed by a ∈ Σ like in the

run ρ = q -→ • • • -→ q ε * a -→ q • q (a,d)
---→ q for a sequence of time elapsing and discrete steps like

q d -→ q a -→ q . • ρ = q (* ,d) ----→ q for a run ρ = q (,d 1) ----→ q 1 (,d 2) ----→ • • • q n (,dn) ----→ q such that 1≤i≤n d i = d Definition 2.2. (Strong Timed Bisimilarity) Let S 1 = (Q 1 , Q 1 0 , Σ, -→ 1) and S 2 = (Q 2 , Q 2 0 , Σ, -→ 2)
be two TTS 4 and ≈ S be a binary relation over

Q 1 × Q 2 .
We write q ≈ S q for (q, q) ∈ ≈ S . ≈ S is a timed bisimulation relation between S 1 and S 2 if:

• q 1 ≈ S q 2 , for all (q 1 , q 2) ∈ Q 1 0 × Q 2 0 ;
• if q 1 t -→ 1 q 1 with t ∈ R ≥0 and q 1 ≈ S q 2 then q 2 t -→ 2 q 2 for some q 2 , and q 1 ≈ S q 2 ; conversely if q 2 t -→ 2 q 2 and q 1 ≈ S q 2 then q 1 t -→ 1 q 1 for some q 1 and q 1 ≈ S q 2 ;

• if q 1 a -→ 1 q 1 with a ∈ Σ and q 1 ≈ S q 2 then q 2 a -→ 2 q 2 and q 1 ≈ S q 2 ; conversely if q 2 a -→ 2 q 2 and q 1 ≈ S q 2 then q 1 a -→ 1 q 1 and q 1 ≈ S q 2 . Two TTS S 1 and S 2 are timed bisimilar if there exists a timed bisimulation relation between S 1 and S 2 . We write S 1 ≈ S S 2 in this case.

Let S = (Q, Q 0 , Σ ε , -→) be a TTS. We define the ε-abstract TTS S ε = (Q, Q ε 0 , Σ, -→ ε) (with no ε-transitions) by:

• q d -→ ε q with d ∈ R ≥0 iff there is a run ρ = q * -→ q with Untimed(ρ) = ε and Duration(ρ) = d,
• q a -→ ε q with a ∈ Σ iff there is a run ρ = q * -→ q with Untimed(ρ) = a and Duration(ρ) = 0,

• Q ε 0 = {q | ∃q ∈ Q 0 | q * -→ q and Duration(ρ) = 0 ∧ Untimed(ρ) = ε}. Definition 2.3. (Weak Timed Bisimilarity) Let S 1 = (Q 1 , Q 1 0 , Σ ε , -→ 1) and S 2 = (Q 2 , Q 2 0 , Σ ε , -→ 2)
be two TTS and ≈ W be a binary relation over

Q 1 × Q 2 . ≈ W is

{T,A,P}-TPN: definitions and semantics

The classical definition of T-TPN [START_REF] Merlin | A study of the recoverability of computing systems[END_REF] is based on a single server semantics (see [START_REF] Boyer | Multiple enabledness of transitions in time Petri nets[END_REF][START_REF] Berthomieu | La méthode des classes d'états pour l'analyse des réseaux temporels. Mise en oeuvre, extension à la multi-sensibilisation[END_REF] for other semantics). With this semantics, bounded-TPN and safe-TPN (i.e. one-bounded) are equally expressive w.r.t. timed-bisimilarity and then w.r.t. timed language acceptance [START_REF] Bérard | Comparison of the expressiveness of Timed Automata and Time Petri Nets[END_REF]. For multi-sever semantics, it is easy to show for {T,A,P}-TPN that bounded-TPN and safe-TPN are equally expressive w.r.t. timed-bisimilarity and then w.r.t. timed language acceptance. A proof of this result can be found for {T,A,P}-TPN in appendix ??. [START_REF] Boyer | Comparison of the expressiveness w.r.t. timed bisimilarity of k-bounded Arc, Place and Transition Time Petri Nets with weak and strong single server semantics[END_REF]. Thus, in the sequel, we will consider safe TPN. We now give definitions and semantics of safe {T,A,P}-TPN.

Common definitions

We assume the reader is aware of Petri net theory, and only recall a few definitions.

Definition 3.1. (Petri Net)

A Petri Net N is a tuple (P, T, • (.), (.) • , M 0 , Λ) where: P = {p 1 , p 2 , • • • , p m } is a finite set of places and T = {t 1 , t 2 , • • • , t n } is a finite set of transitions; • (.) ∈ ({0, 1} P) T is the backward incidence mapping; (.) • ∈ ({0, 1} P) T is the forward incidence mapping; M 0 ∈ {0, 1} P is the initial marking, Λ : T → Σ ∪ {ε} is the labeling function.

Notations for all Petri nets

We use the following common shorthands:

p ∈ M def = M (p) ≥ 1, M ≥ • t def = ∀p : M (p) ≥ • (t, p), • t def = {p • (t, p) ≥ 1}, t • def = {p (t, p) • ≥ 1}, • p def = {t (t, p) • ≥ 1}, p • def = {t • (t, p) ≥ 1}.
A marking M is an element M ∈ {0, 1} P . M (p) is the number of tokens in place p. A transition t is said to be enabled by marking

M iff M ≥ • t, denoted t ∈ enabled(M). The firing of t leads to a marking M = M -• t + t • , denoted by M t -→ M .
Often, the alphabet is the set of transitions and the labeling function the identity (Σ = T, Λ(t) = t). In these cases, the label of the transition will not be put in figures.

Notations for all timed Petri nets

In timed extensions of Petri nets, a transition can be fired only if the enabling condition and some time related condition are satisfied. In the following, the expressions enabled and enabling refer only to the marking condition, and firable is the conjunction of enabling and the model-specific timed condition.

Then, t ∈ firable(S) denotes that t is firable in timed state S, and t ∈ enabled(M) that t is enabled by marking M .

Weak vs. strong semantics

The basic strong semantics paradigm is expressed in different ways depending on the authors: one expression could be "time elapsing can not disable the firable property of a transition", or "whenever the upper bound of a firing interval is reached, the transition must be fired". Depending on the models and the authors, this principle is described by different equations. In this paper, the one we are going to use is: a delay d is admissible from state S (5) iff

t / ∈ firable(S + d) ⇒ ∀d ∈ [0, d] : t / ∈ firable(S + d) (1)
which means that from S, if a transition is not firable after a delay d, it never was between S and S + d, which is equivalent 6 to say that, if a transition is enabled now or in the future (without discrete transition firing), it remains firable with time elapsing.

Transition Time Petri Nets (T-TPN)

The model. Time Petri Nets were introduced in [START_REF] Merlin | A study of the recoverability of computing systems[END_REF] and extend Petri nets with timing constraints on the firings of transitions.

Definition 3.2. (Transition Time Petri Net)

A Time Petri Net N is a tuple (P, T, • (.), (.) • , M 0 , Λ, I) where: (P, T, • (.), (.) • , M 0 , Λ) is a Petri net and I : T → I(Q ≥0) associates with each transition a firing interval.

Semantics of Transition Time Petri Nets.

The state of T-TPN is a pair (M, ν), where M is a marking and ν ∈ R T ≥0 is a valuation such that each value ν(t i) is the elapsed time since the last time transition t i was enabled. 0 is the initial valuation with ∀i ∈ [1..n], 0(t i) = 0.

For Transition Time Petri Net, notations enabled and f irable are defined as follows :

t ∈ enabled(M) iff M ≥ • t t∈ firable(M, ν) iff t ∈ enabled(M) ν(t) ∈ I(t)
The newly enabled function ↑enabled(t k , M, t i) ∈ B is true if t k is enabled by the firing of transition t i from marking M , and false otherwise. This definition of enabledness is based on [START_REF] Berthomieu | Modeling and Verification of Time Dependent Systems Using Time Petri Nets[END_REF][START_REF] Aura | A Causal Semantics for Time Petri Nets[END_REF] which is the most common one. In this framework, a transition t k is newly enabled after firing t i from marking M if "it is not enabled by M -• t i and is enabled by

M = M -• t i + t •
i " [START_REF] Berthomieu | Modeling and Verification of Time Dependent Systems Using Time Petri Nets[END_REF]. A discussion on other semantics can be found in [START_REF] Bérard | Comparison of Different Semantics for Time Petri Nets, Automated Technology for Verification and Analysis[END_REF]. Formally this gives:

↑enabled(t k , M, t i) = M -• t i + t • i ≥ • t k ∧ (M -• t i < • t k) ∨ (t k = t i) (2)
Notice that the condition t k = t i is useless in the safe context.

Lemma 3.1. (Equivalent definition of "newly enabled" in safe T-TPN)

If N is a safe T-TPN, then ↑enabled(t k , M, t i) = t k ∈ enabled(M -• t i + t • i) t • k ∪ • t i = ∅ Definition 3.3

. (Strong Semantics of T-TPN)

The semantics of a T-TPN N is a timed transition system S N = (Q, q 0 , →) where:

Q = {0, 1} P × (R ≥0) n , q 0 = (M 0 , 0), -→∈ Q × (Σ ε ∪ R ≥0) × Q consists of
the discrete and continuous transition relations:

• the discrete transition relation is defined ∀t ∈ T :

(M, ν) Λ(t) ---→ (M , ν) iff            t ∈ firable(M, ν) M = M -• t + t • ∀t ∈ T : ν (t) = 0 if ↑enabled(t , M, t), ν(t) otherwise.
• the continuous transition relation is defined ∀d ∈ R ≥0 :

(M, ν) d -→ (M, ν) iff      ν = ν + d ∀t ∈ T : t / ∈ firable(M, v + d) ⇒ (∀d ∈ [0, d] : t / ∈ firable(M, v + d)) (3)
Notice that, for the sake of simplicity, a valuation is associated to each transition, even those who are not enabled. The same will apply for P-TPN and A-TPN.

Lemma 3.2. (Equivalent definition of the continuous transition relation)

An equivalent definition of the continuous transition relation is:

(M, ν) d -→ (M, ν) iff ν = ν + d ∀t ∈ T, M ≥ • t =⇒ ν (t) ∈ I(t) ↓ (4)

Proof:

First of all, a little property is needed: for all reachable states, if a transition is enabled, its clock is in the downward closure of its timing interval.

M ≥ • t ⇒ ν(t) ∈ I(t) ↓ (5)
This comes from the fact that, in strong semantics, the clock of a transition can never overtake the upper bound of its interval. It can be easily proved by induction.

(3) ⇒ (4) Let be t a transition and ν = ν + d.

Then (3) ⇐⇒ t ∈ firable(M, ν+d)∨(∀d ∈ [0, d], t / ∈ firable(M, ν + d)). If t ∈ firable(M, ν+ d), then M ≥ • t and ν +d ∈ I(t) ⊂ I(t) ↓ . Otherwise, we have ∀d ∈ [0, d], t / ∈ firable(M, ν +d). If M < • t

Definition 3.4. (Weak Semantics of T-TPN)

For safe T-TPN, the only difference of the weak semantics is on the continuous transition relation defined ∀d ∈ R ≥0 :

(M, ν) d -→ (M, ν) iff ν = ν + d Examples. [1,2] [3,4] [5,5] t u v Figure 1. Priority in strong se- mantics [0,2] [0,2] [1,1] u v t Figure 2. Synchronization [1,1] [2,2] t u
Figure 3. Continuous enabling

Figure 1 illustrates the difference between weak and strong semantics: in the initial marking, only t and u are enabled. After one time unit delay, u is firable, in both semantics. Then, the behaviours split:

• in the strong semantics, because u reaches its upper interval always before t becomes firable (3 >

2), t can never be fired. v is fired exactly five time units after the firing of u.

• in the weak semantics, u can overlap its upper bound, and t can be fired after being enabled 3 times units up to 4 time units. It also can not be fired. If u is fired, v can be fired 5 time units after firing of u, but it also may not.

Figure 2 illustrates the synchronization rule: u (resp. v) is fired at an absolute date θ u ≤ 2 (resp. θ v ≤ 2), and t can be fired at max(θ u , θ v) + 1. The difference between the weak and strong semantics is that, in the weak semantics, transitions may not be fired.

Figure 3 illustrates another important point: the continuous enabling. In this T-TPN with the strong semantics, transition u will never be fired, because, at each time unit, t is fired, removing the token and putting it back immediately. Then, u is at most 1 time unit continuously enabled, never 2 time units. With the weak semantics, u is fired iff t overlaps its upper bound.

Place Time Petri Nets (P-TPN)

The model. Place Time Petri Nets were introduced in [START_REF] Khansa | P-Time Petri Nets for manufacturing systems[END_REF], adding interval on places and considering a strong semantics.

Putting interval on places implies that clocks are handled by tokens: a token can be use to fire a transition iff its age in the place is in the interval of the place. A particularity of this model is the notion of dead token. A token whose age is greater than the upper bound of its place can never leave this place: it is a dead token.

Let dead be a mapping in {0, 1} P . dead(p) is the number of dead tokens in place p (∀p ∈ P : dead(p) ≤ M (p)). We use the following shorthands : M \dead for Mdead and thus p ∈ M \dead for M (p)dead(p) ≥ 1.

Definition 3.5. (Place Time Petri Net)

A Place Time Petri Net N is a tuple (P, T, • (.), (.) • , M 0 , Λ, I) where: (P, T, • (.), (.) • , M 0 , Λ) is a Petri net and I : P → I(Q ≥0) associates with each place a residence time interval.

Semantics of Place Time Petri Nets.

The state of P-TPN is a tuple (M, dead, ν) where M is a marking, dead is the dead token mapping and ν ∈ R M ≥0 the age of tokens in places. A transition can be fired iff all tokens involved in the firing respect the residence interval in their places. Tokens are dropped with age 0. In strong semantics, if a token reaches its upper bound, and if there exists a firable transition that can consume this tokens, it must be fired.

For Place Time Petri Net, notations enabled and f irable are defined as follows :

t ∈ enabled(M \dead) iff M -dead ≥ • t t ∈ firable(M, dead, ν) iff t ∈ enabled(M \dead) ∀p ∈ • t, ν(p) ∈ I(p) Definition 3.

(Strong Semantics of P-TPN)

The semantics of a P-TPN N is a timed transition system S N = (Q, q 0 , →) where:

Q = {0, 1} P × {0, 1} P × (R ≥0) P , q 0 = (M 0 , 0, 0), -→∈ Q × (Σ ε ∪ R ≥0) × Q consists of

the discrete and continuous transition relations:

The discrete transition relation is defined ∀t ∈ T :

(M, dead, ν)

Λ(t) ---→ (M , dead, ν) iff            t ∈ firable(M, dead, ν) M = M -• t + t • ν (p) = 0 if (dead(p) = 0) ∧ (p ∈ t •) ν(p) otherwise.
The continuous transition relation is defined ∀d ∈ R ≥0 :

(M, dead, ν) d -→ (M, dead , ν) iff            ν = ν + d ∀t ∈ T : t / ∈ firable(M, dead, v + d) ⇒ (∀d ∈ [0, d] : t / ∈ firable(M, dead, v + d)) dead (p) = 1 if (p ∈ M \dead) ∧ (v (p) / ∈ I(p) ↓) dead(p) otherwise Definition 3.7

. (Weak Semantics of P-TPN)

The weak semantics is exactly the same as the strong one without the condition ∀t ∈ T :

t / ∈ firable(M , dead, v + d) ⇒ (∀d ∈ [0, d] : t /
∈ firable(M , dead, v + d) in the continuous transition relation.

Arc Time Petri Nets (A-TPN)

The model. Arc Time Petri Nets were introduced in [START_REF] Walter | Timed Net for Modeling and Analysing protocols with time[END_REF], adding interval on arcs and considering a weak semantics.

Like in P-TPN, an age is associated with each token. A transition t can be fired iff the tokens in the input places p satisfy the constraint on the arc from the place to the transition.

As for P-TPN, there could exist dead tokens, that is to say, tokens whose age is greater than the upper bound of all output arcs.

Definition 3.8. (Arc Time Petri Net)

An Arc Time Petri Net N is a tuple (P, T, • (.), (.) • , M 0 , Λ, I) where: (P, T, • (.), (.) • , M 0 , Λ) is a Petri net and I : P × T → I(Q ≥0) associates with each arc from place to transition a time interval.

For Arc Time Petri Net, notations enabled and f irable are defined as follows:

t ∈ enabled(M \dead) iff M -dead ≥ • t t ∈ firable(M, dead, ν) iff t ∈ enabled(M \dead) ∀p ∈ • t, ν(p) ∈ I(p, t)
Semantics of Arc Time Petri Nets. Like for P-TPN, the state of A-TPN is a tuple (M, dead, ν) where M is a marking, dead is the dead token mapping and ν ∈ R M ≥0 the age of tokens in places. A transition t can be fired iff all tokens involved in the firing respect the constraint on arc from their place to the transition. Tokens are dropped with age 0. In strong semantics, if a token reaches one of its upper bound, and if there exists a transition that consumes this tokens, it must be fired.

Definition 3.9. (Strong Semantics of A-TPN)

The semantics of a P-TPN N is a timed transition system S N = (Q, q 0 , →) where:

Q = {0, 1} P × {0, 1} P × (R ≥0) P , q 0 = (M 0 , 0), -→∈ Q × (Σ ε ∪ R ≥0) × Q consists of
the discrete and continuous transition relations: The discrete transition relation has the same definition that the one of A-TPN (with its specific definition of firable). The continuous transition relation is defined ∀d ∈ R ≥0 :

(M, dead, ν) d -→ (M, dead , ν) iff                ν = ν + d ∀t ∈ T : t / ∈ firable(M, dead, v + d) ⇒ (∀d ∈ [0, d] : t / ∈ firable(M, dead, v + d)) dead (p) =      1 if p ∈ M \dead ∀t ∈ p • , ν (p) ∈ I(p, t) ↓ dead(p) otherwise (6)
The definition of semantics of A-TPN and P-TPN are very similar: the only difference is that, in the definition of A-TPN, the timing condition for firable is ∀p ∈ • t : ν(p) ∈ I(p, t) as in P-TPN, it's ∀p ∈ • t : ν(p) ∈ I(p), and the same for the condition associated with dead.

Definition 3.10. (Weak Semantics of A-TPN)

The weak semantics is exactly the same as the strong one without the condition ∀t ∈ T :

t / ∈ firable(M , dead, v + d) ⇒ (∀d ∈ [0, d] : t / ∈ firable(M, dead, v + d))
in the continuous transition relation.

Comparison of the expressiveness w.r.t. bisimulation

In the sequel we will compare various classes of safe TPN w.r.t. bisimulation. We note T-TPN and T-TPN, for the classes of safe Transition Time Petri Nets respectively with strong and weak semantics. We note A-TPN and A-TPN, for the classes of safe Arc Time Petri Nets respectively with strong and weak semantics. We note P-TPN and P-TPN, for the classes of safe Place Time Petri Nets respectively with strong and weak semantics.

A run of a time Petri net N is a (finite or infinite) path in S N starting in q 0 . As a shorthand, we write that there is a run from a state q in N if there is a run q 0 ρ 0 --→ q ρ -→ in S N . Moreover, we write N for S N (i.e. we will use the shorthand : a run ρ of N or a state q of N).

X-TPN ⊆

≈ X-TPN with X ∈ {T, A, P } t p [0,0]

P-TPN ⊆ ≈ P-TPN T-TPN ⊆ ≈ T-TPN A-TPN ⊆ ≈ A-TPN

Proof:

By contradiction: assume there exists a T-TPN weakly timely bisimular to the T-TPN of Figure 4. From its initial state, a delay of duration d > 0 is possible (in weak semantics, a delay is always possible). By bisimulation hypothesis, it should also be possible from the initial state of the strong T-TPN of Figure 4. Since t is a visible action (Λ(t) = t =), this contradicts our assumption.

The same applies for P-TPN and A-TPN.

P-TPN ⊂ ≈ P-TPN

Let be N ∈ P-TPN. We construct a TPN N ∈ P-TPN as follow :

• we start from N = N and M 0 = M 0 ,

• for each place p of N , we add to N , the net in the gray area of the Figure 7 with a token in place p t 2 . for each transition t such that p ∈ • t, we add an arc from p t 2 to t and an arc from t to p t 2 .

Note that in the gray area, there is always a token either in place p t 1 or in the place p t 2 .

p p t 1 p t 2 [0, ∞[[0, ∞[I(p) ε ε t • •

(Translating a P-TPN into a P-TPN)

Let N ∈ P-TPN and N ∈ P-TPN its translation into P-TPN as defined previously, N and N are timed bisimilar.

Proof: N = (P, T, • (.), (.) • , M 0 , I) and N = (P , T , • (.), (.) • , M 0 , I). Note that P ⊂ P and T ⊂ T . Let (M, dead, ν) be a state of N and (M, dead, ν) be a state of N . We define the relation ≈ ⊆ (({0, 1} × R ≥0) P × ({0, 1} × R ≥0) P by:

(M, dead, ν) ≈ (M, dead, ν) ⇐⇒ ∀p ∈ P      (1) M (p) = M (p) (2) dead(p) = dead(p) (3) ν(p) = ν(p) (7)
Now we can prove that ≈ is a weak timed bisimulation relation between N and N .

Proof : First we have (M 0 , dead 0 , ν 0) ≈ (M 0 , dead 0 , ν 0). Let us consider a state q = (M, dead, ν) ∈ N and a state q = (M , dead, ν) ∈ N such that (M, dead, ν) ≈ (M, dead, ν).

• Discrete transitions Let t be a firable transition from q = (M, dead, in N . There is a run

ρ 1 = (M, dead, ν) t -→ (M 1 , dead 1 , ν 1) (with dead = dead 1). It means that ∀p ∈ • (t) ν(p) ∈ I(p) ↓ . Moreover, M 1 = M -• t + t • and ∀p ∈ M 1 \dead 1 , ν 1 (p) = 0 if p ∈ t • . In N , as (M, dead, ν) ≈ (M, dead, ν) we have ∀p ∈ • (t) ν(p) ∈ I(p) ↓ . Moreover ν(p t 2) ∈ I(p t
2) ↓ (with upper bound : ∞) and there is a token either in p t 1 or in p t 2 . Thus, there is a run

ρ 1 = (M , dead, ν)
The converse is straightforward following the same steps as the previous ones.

A-TPN ⊂ ≈ A-TPN Theorem (The strong semantics is strictly more expressive for A-TPN)

A-TPN ⊂ ≈ A-TPN

Proof:

As for Theorem 4.2

T-TPN ⊆ ≈ T-TPN

We first recall the following theorem :

Theorem 4.4. ([11])

There is no TPN ∈ T-TPN weakly timed bisimilar to A 0 ∈ T A (Fig. 8).

Theorem 4.5. (The strong semantics does not generalise the weak one for T-TPN)

T-TPN ⊆ ≈ T-TPN

Proof:

We first prove that the TPN N T 0 ∈ T-TPN of Fig. 9 is weakly timed bisimilar to A 0 ∈ T A (Fig. 8). Let (, v) be a state of A 0 ∈ T A where ∈ { 0 , 1 } and v(x) ∈ R ≥0 is the valuation of the clock x. We define the relation

≈ ⊆ ({ 0 , 1 } × R ≥0) × ({0, 1} × R ≥0) by: (, v) ≈ (M, ν) ⇐⇒      (1) = 0 ⇐⇒ M (P 1) = 1 = 1 ⇐⇒ M (P 1) = 0 (2) v(x) = ν(a) (8)
≈ is a weak timed bisimulation (The proof is straightforward). From Theorem 4.4, there is no TPN ∈ T-TPN weakly timed bisimilar to A 0 ∈ T A (Fig. 8) and the TPN N T 0 ∈ T-TPN of Fig. 9 is weakly timed bisimilar to A 0 .

l 0 l 1 a ; x < 1 Figure 8. The Timed Automaton A 0 P 1 a, [0, 1[• Figure 9. The TPN N T 0 ∈ T-TPN bisimilar to A 0 p a 1 p a 2 P 1 [0, ∞[[0, ∞[[0, 1[ε ε a • •

P-TPN ⊆ ≈ T-TPN

Lemma 4.2. The TPN N P 0 ∈ P-TPN (Fig. 10) is weakly timed bisimilar to A 0 ∈ T A (Fig. 8).

Proof:

From Lemma 4.1, N P 0 ≈ N P 1 . Obviously, N P 1 ≈ N T 0 . And, from proof of Theorem 4.5, N T 0 ≈ A 0 . By transitivity, N P 0 ≈ A 0 .

(N P 0 , N P 1 , N T 0 and A 0 are respectivly presented in Figures 10,[START_REF] Bérard | Comparison of the expressiveness of Timed Automata and Time Petri Nets[END_REF][START_REF] Boyer | Language and bisimulation relations between subclasses of timed Petri nets with strong timing semantic[END_REF][START_REF] Boyer | Comparison of the expressiveness of Arc, Place and Transition Time Petri Nets[END_REF].

Theorem 4.6. (In strong semantics, T-TPN does not generalise P-TPN)

P-TPN ⊆ ≈ T-TPN

Proof:

From Theorem 4.4, there is no TPN ∈ T-TPN weakly timed bisimilar to A 0 ∈ T A (Fig. 8) and from Lemma 4.2, the TPN N P 0 ∈ P-TPN is weakly timed bisimilar to A 0 .

T-TPN ⊆ ≈ P-TPN and T-TPN ⊆ ≈ P-TPN Definition 4.1. (Relevant clock of a P-TPN)

Let N = (P, T, • (.), (.) • , M 0 , Λ, I) be a P-TPN (P-TPN or P-TPN), and q = (M, dead, ν) be a state of N . In q, a clock x associated to a place p ∈ P is said to be relevant iff M (p) = 1.

We first give a lemma stating that "in P-TPN (P-TPN or P-TPN) a relevant clock (associated to a token in a marked place p) can become irrelevant or can be reset only in its firing interval (ν(p) ∈ I(p))".

Lemma 4.3. (Reset of relevant clock in P-TPN)

In P-TPN, a relevant clock can become irrelevant or can be reset only in its firing interval. Let N , be a P-TPN (P-TPN or P-TPN). Let (M, dead, ν) be a state of N such that M (p) > 0 and ν(p) > 0. If (M, dead, ν) -→ (M , dead , ν) (where -→ is a discrete or a continuous transition) and ν (p) = 0 or M (p) = 0 then ν(p) ∈ I(p)

Proof:

From the semantics of P-TPN (P-TPN or P-TPN), a relevant clock associated to a place p (M (p) = 1) can become irrelevant or can be reset only by a discrete transition (M, dead, ν) t -→ (M , dead, ν) such that p ∈ • t (if p ∈ t • the relevant clock is reset, otherwise it become irrelevant). Then, as t ∈ firable(M, dead, ν), we have ν(p) ∈ I(p).

P 1 u, [2, 2] v, [0, ∞[• Figure 12. The TPN N T 1 ∈ T-TPN Theorem 4.7.
There is no TPN ∈ P-TPN weakly timed bisimilar to N T 1 ∈ T-TPN (Fig. 12).

Proof:

The idea of the proof is that in the T-TPN N T 1 the clock associated to the transition u can be reset at any time (in particular before 2 time units). In the P-TPN, time measure is performed by a finite number of clock.

Corollary 4.1. (In strong semantics, P-TPN does not generalise T-TPN)

T-TPN ⊆ ≈ P-TPN

Proof:

Direct from Theorem 4.7.

Moreover, the Theorem 4.7 remains valid in weak semantics. Indeed, we can consider the net of the Fig. 12 with a weak semantics and the proof of Theorem 4.7 remains identical. It just needs to rewrite the no-death assumption as : there exists q 0 such that behaviour from q 0 in N is bisimilar to N T 1 without death of any token. The proof is then : if a state q 0 require the death of a token in a place p to be bisimilar to q 0 , we can kill this token (by firing the corresponding run) and then fire v to go back to a state which must be bisimilar to q 0 and so on until q 0 .

We have then the following corollary.

Corollary 4.2. (In weak semantics, P-TPN does not generalise T-TPN)

T-TPN ⊆ ≈ P-TPN

T-TPN ⊂ ≈ A-TPN and T-TPN ⊆ ≈ A-TPN

The proof of this strict inclusion is done in two steps: Lemma 4.4 (in Section 4.7.1) shows that T-TPN ⊆ ≈ A-TPN (by construction: for each T-TPN, a weak-bisimilar A-TPN is built), and Lemma 4.5 shows that there exists a A-TPN bisimilar to A 0 ∈ T A (Fig. 8) already used in Theorem 4.4. With these two lemmas, the strict inclusion is straightforward (Section 4.7.3).

Weak inclusion: : T-TPN ⊆ ≈ A-TPN and T-TPN

T-TPN ⊆ ≈ A-TPN T-TPN ⊆ ≈ A-TPN
The proof is done by construction: for each T-TPN N , a weak-bisimilar A-TPN N is built. The main issue is to emulate the T-TPN "start clock when all input places are marked" rule with the A-TPN rule "start clock as soon as the token is in place".

The main idea is, for each transition t in a T-TPN N , to build a chain of places • t 0 , . . . ,

• t n (with n = | • t|) in the translated A-TPN N , such that p∈ • t M N (p) = i ⇐⇒ M N (• t i) = 1 (with i ∈ [1, n]).
Therefor, the time interval I N (t) is set to arc from • t | • t| to t. Then, the rule "start clock in I(t) when all input places of t are marked" is emulated by the rule "start clock constraint in

I(• t | • t| , t) when • t | • t| is marked" which is equivalent because I N (• t | • t| , t) = I N (t) and p∈ • t M N (p) = n ⇐⇒ M N (• t n) = 1.
Once this done, a little stuff has to be added to handle conflict and reversible nets 7 .

It should be noticed that exactly the same translation applies for weak and strong semantics. Nevertheless, to improve readability, two proofs are given. One technical difficulty of the proof comes from the dead tokens: the are no dead tokens in T-TPN definitions, but there are in P-TPN. With the strong semantics, these dead tokens never appear, then, they can be neglected. But in weak semantics, they have to be handled.

Emulating the T-TPN firing rule

The emulation pattern is presented with help of an example: the T-TPN of Figure 2 is translated into the A-TPN of Figure 13.

In T-TPN, a timed condition is activated when a transition t is enabled, that is to say, when there are enough tokens in the places • t. Conversely, in A-TPN a timed condition is activated when a token enter into a place. To emulate the first condition with the second one, a chain of places • t 0 , . . . , • t | • t| is introduced 8 , like in Figure 13. Then, the firing condition is activated only when there is one token in place • t | • t| (• t 2 in the example), that is to say, when there are enough tokens in the emulated places • t.

With this chain structure, the firing of the transition u (resp. v) must increase the marking of • t, i.e. put a token in • t 1 or • t 2 (depending on the previous marking).

Since bisimulation is based on the timed transition system where only labels of transitions are visible, the transition u can be replaced by two transitions, one putting a token in • t 1 and the other in • t 2 , as long as they have the same label.

In Figure 13, these two transitions are called u (t:0,1) and u (t:1,2) and Λ(u (t:0,1)) = Λ(u (t:1,2)) = Λ(u) (9). been chosen to underline the fact that this chain of places • t 0 , . . . , • t | • t| in the A-TPN emulates the marking of the places • t in the T-TPN. 9 Notation u (t:1,2) is used to denotes that this firing of u makes the marking of • t going form 1 to 2. But the firing of a transition does not, in the general case, increment the input marking of just one transition: it can modify several input marking transition, adding or removing tokens.

[1, 1] [0, 2] [0, 2] [0, 2] [0, 2] t • t 0 • t 1 • t 2 u (t:0,1) u (t:1,2) v (t:0,1) v (t:1,2)
The full translation should also be able to modify several chains, by increase or decrease. For a given transition t ∈ T , its firing will remove tokens in the input places of some transitions and add in the input places of others. Then, for each of these transitions, for each possible marking of the input chain of these transition, the impact of the firing of t must be encoded in N .

Let N = (P, T, • (.), (.) • , M 0 , Λ, I) be a T-TPN. For each t, let us define:

InfluencedBy (t) = {u ∈ T • u ∩ (• t ∪ t •) = ∅} InflOf (t, u) = p∈ • u (t, p) • -• (t, p)
Then, let N = (P , T , P re , P ost , M 0 , Λ , I) built as follow:

• the set of places is the one of N augmented with the chains • t 0,...,| • t|

P = P ∪ t∈T i∈{0,...,| • t|} • t i
• each transition t is replaced by a set of transitions that emulates all it possible firing: for all transition u k influenced 10 by the firing of t, and for each pair i k , j k of possible marking of • u k such that firing of t leads from i k to j k , a transition t {(u 1 :i 1 ,j 1)•••(un:in,jn)} is created. Let Change (t) be the set of tuples {(u

1 : i 1 , j 1) • • • (u n : i n , j n)}. Change (t) = u∈InfluencedBy(t) i,j∈{0,...,| • u|} j=i+InflOf(t,u) {(u : i, j)} T = t∈T u∈Change(t)
t u 10 That is to say: {u k } k = InfluencedBy (t).

• the P re and P ost set of transition t {(u 1 :i 1 ,j 1)•••(un:in,jn)} are:

P re t {(u 1 :i 1 ,j 1)•••(un:in,jn)} = • t ∪ • t | • t| ∪ • u i 0 0 , . . . , • u in n P ost t {(u 1 :i 1 ,j 1)•••(un:in,jn)} = t • ∪ • u j 0 0 , . . . , • u jn n • the new initial marking is M 0 = M 0 ∪    • t n t ∈ T ∧ n = p∈ • t M 0 (p)   
• the labeling function is very simple: Λ (t u) = Λ(t) for all u ∈ Change (t)

• and the time interval function associates interval I(t) to the arcs Let us define a state q such that for all run from q, an action b is continuously possible during 0.5 time unit and impossible after 0.5 time unit. Formally it gives :

(• t | • t| , t u) for all u ∈ Change (t) and [0, ∞[otherwise.
∀q st q (* ,d) ----→ q we have d ∈ [0, 0.5] ⇒ ∃q * b --→ d > 0.5 ⇒ ∃q * b --→ If such state q = (ν, M) is a state of N then ∃t b with Λ(t b) = b such that      ν(t b) + 0.5 = β(t b) I(t b) is closed on the right α(t b) ≤ β(t b) - 1
The lemma could also states with every value in]0, 1[, other than 0.5. But for the proof, 0.5 is sufficient.

Proof:

When q is a state, and d a delay (a real number), let q + d denotes the state reached from q by a delay of duration d (because of the time determinism property, it is unique). Formally, it gives : q d -→ q + d with q = (M, ν) and q + d = (M, ν + d)

Because of the weak semantics, the state q + d can always be reached, The proof is decomposed into several steps.

1. Let m be the minimal delay such that no transition met its upper bound between q +m and q +0.5.

As q = (M, ν), for each enabled transition t, β(t)ν(t) is the remaining time before disabling of the transition.

m is then formally defined by : m = max {β(t)ν(t) M ≥ • t and β(t)ν(t) < 0.5} If the set is empty, m = 0.

As the number of transitions is finite, m obviously exists.

2.

From the state q + m, action b is accessible, by a null duration path ρ.

From the hypothesis, there exists a sequence of transitions ρ such that q + m ρ -→ t b -→, with Λ(t b) = b, untimed(ρ) = * and duration(ρ) = 0 (the sequence ρ may be emtpy).

The same path ρ can be used a little later

Let d be such that m + d < 0.5. Because of the definition of m, the state q + m + d can be reached without disabling any transition. Let us denote q 1 = q + m + d.

By definition of m, every transition firable in q + m is still firable in q 1 : no upper bound β(t) have been ovelapped by its clock value ν(t). Then, the same transition sequence can be used: 4. But this path can no more be used once the 0.5 limits have been overlapped: it means a transition have overlapped its upper bound

q 1 ρ -→ t b -→.
Let now be d such that m + d + d > 0.5. From our hypothesis, the action b is no more reachable, and then, the path ρt b can no more be used as shown in Fig. 17. It means that there exists a transition t 1 in ρt b (i.e. ρt b = ρ 1 t 1 ρ 2) that was firable from q 1 and whose upper bound have been overlapped. That is to say a transition t 1 such that ν q 1 (t 1) ≤ β(t 1) ≤ ν q 1 +d (t 1).

5. The transition t 1 was firable from q + m and α(t 1) < β(t 1).

As ρ 1 is in null time, t 1 is not newly enabled by the firing of a transition in ρ 1 (Indeed, obviously, β(t 1) can not be overlapped without time elapsing). Then t 1 is enabled in state q 1 and then in q and q + m since the marking of these states is the same. Moreover, as t 1 is firable from q 1 and from q + m we have β(t 1) ≥ d > 0 and α(t 1) ≤ β(t 1)d < β(t 1).

6. The transition t b was firable from q + m and α(t b) < β(t b).

If t 1 = t b , we can stop (cf previous step).

If not, ρ 2 is not empty and ρ 2 = ρ 2 t b . We can consider q 2 defined by q 1 ρ 1 t 1 ---→ q 2 (see Fig. 18). Because q 2 is reachable from q with a path of duration m + d < 0.5, the same reasoning can be applied, with ρ 2 instead of ρ. Each t i is enabled in q + m (see previous item). Thus, since the number of enabled transitions in q + m is finite, after a finite n number of steps, we get t n = t b and transition t b was firable from q + m and α(t b) < β(t b). Let us consider the TPN N P ∈ P-TPN of the Figure 16.

Theorem 4.10. There is no TPN ∈ T-TPN weakly timed bisimilar to N P ∈ P-TPN (Fig. 16).

Proof:

The proof is done by contradiction.

Let N P ∈ P-TPN the net of the Figure 16. Assume there exists N T ∈ T-TPN = (P, T, • (.), (.) • , M 0 , Λ, I) that is timed bisimilar to N P . We denote ∼ the bisimulation relation such that N T ∼ N P .

Let Const = {α(t) > 0, β(t) > 0} be the set of constant of N T and k, be the least common denominator of Const.

Let N T k ∈ T-TPN = (P, T, • (.), (.) • , M 0 , Λ, k.I) be the TPN obtained by multiplying by k all bound α and β of the firing intervals I. The bounds of the firing intervals of N T k are in N.

Moreover N T k is timed bisimilar to the net N P k obtained by the same operation.

Let be the run ρ k P = q 0 k-0.5

----→ q 1 a -→ q 2 in N P k . From q 2 , every delay of duration d ≤ 0.5 can be followed by a firing of b, and every delay of duration d > 0.5 can not. Let q 0 be the initial state of N T k . By bisimulation assumption, there exists a run ρ k T = q 0 (* ,k-0.5)

-------→ q 1 * a --→ q 2 , with q 2 = (M 2 , ν 2). By bisimulation assumption, q 2 respects the hypotheses of Lemma 4.9. It implies that there exists t b with Λ T k (t b) = b such that α T k (t b) ≤ β T k (t b) -1.

In q 2 , t b is enabled, and t b is firable since 0.5 time unit, that is to say, t b is firable before the firing of the transition of label a, which contradicts the bisimulation assumption.

T-TPN ⊂ ≈ A-TPN

Conclusion

Several timed Petri nets models have been defined for years for different purposes. They have been individually studied, some analysis tools exists for some of them, and the users know that a given problem can be modelled with one or the other with more or less difficulty, but a clear map of their relationships was missing. This paper draws most of this map (cf. Fig. 19).

Behind the details of the results, a global view of the main results is the following:

• P-TPN and A-TPN are really close models, since their firing rule is the conjunction of some local clocks, whereas the T-TPN has another point of view, its firing rule taking into account only the last clock; • the A-TPN model generalises all the other models, but emulating the T-TPN firing rule with A-TPN ones is not possible in practice for human modeller; • the strong semantics generalises the weak one for P-TPN and A-TPN, but not for T-TPN.

The next step will be to study the language-based relationships.

 be the downward closure of I and I ↑ =[[α ≺ 1 x]] be the upward closure of I. Let Σ be a fixed finite alphabet s.t. ε ∈ Σ and Σ ε = Σ ∪ {ε}, with ε the neutral element of sequence (∀a ∈ Σ ε : εa = aε = a).Definition 2.1. (Timed Transition Systems)A timed transition system (TTS) over the set of actions Σ is a tuple S

Figure 4 .

 4 Figure 4. A "non-delay" T-TPN

Figure 5 .

 5 Figure 5. A "non-delay" P-TPN

Figure 6 .

 6 Figure 6. A "non-delay" A-TPN

Figure 7 .

 7 Figure 7. The translation from P-TPN into P-TPN

Theorem 4 . 2 .

 42 (The strong semantics is strictly more expressive for P-TPN) P-TPN ⊂ ≈ P-TPN Proof: As P-TPN ⊆ ≈ P-TPN (Theorem 4.1) and thanks to Lemma 4.1.

Figure 10 .P 1 ,Figure 11 .

 10111 Figure 10. The TPN N P 0 ∈ P-TPN bisimilar to A 0

⊆ ≈ A-TPN Lemma 4 . 4 .

 44 (From T-TPN to A-TPN)

Figure 13 .

 13 Figure 13. A translation of the T-TPN of Figure 2 into A-TPN

Proof 4 . 7 . 2 . A specific A-TPN Lemma 4 . 5 . 4 . 7 . 3 . 4 . 8 .

 4724547348 The TPN N A0 ∈ A-TPN of Fig.15is weakly timed bisimilar to A 0 ∈ T A (Fig.8).The bisimulation relation and the proof are identical to those of Lemma 4.2. Strict inclusion in strong semantics Theorem 4.8. (Strict inclusion of T-TPN into A-TPN in strong semantics) T-TPN ⊂ ≈ A-TPN Proof: Thanks to Lemma 4.4 we have T-TPN ⊆ ≈ A-TPN. Moreover from Theorem 4.4, there is no TPN ∈ T-TPN weakly timed bisimilar to A 0 ∈ T A (Fig. 8) and from Lemma 4.5, the TPN N A0 ∈ A-TPN is weakly timed bisimilar to A 0 . P-TPN ⊂ ≈ A-TPN and P-TPN ⊂ ≈ A-TPN Lemma 4.6.(P-TPN included in A-TPN (strong and weak semantics))P-TPN ⊆ ≈ A-TPN P-TPN ⊆ ≈ A-TPNProof:The translation is obvious: for a given P-TPN N , a A-TPN N is built, with the same untimed Petri net, and such that, ∀p, ∀t ∈ p • : I (p, t) = I(p). Then, considering their respective definitions for enabled, f irable and the discrete and continuous translation, the only difference is that, when the P-TPN condition is ν(p) ∈ I(p) or ν(p) ∈ I(p) ↓ , the A-TPN condition is ∀t ∈ p • : ν(p) ∈ I(p, t) or ν(p) ∈ I(p, t) ↓ . And in our translation, I (p, t) = I(p).

Figure 16 .Lemma 4 . 9 .

 1649 Figure 16. A TPN N P ∈ P-TPN

Figure 17 . 9 qFigure 18 .

 17918 Figure 17. States and path illustrating steps 2, 3, 4 and 5 of the proof of lemma 4.9

ν

 q+(m+d) (t b) ≤ β(t b) ≤ ν q+(m+d+d) (t b) 7. β(t b) = ν(t b) + 0.5 and α(t b) ≤ ν(t b) -0.5 We have proved ν q+m+d (t b) ≤ β(t b) ≤ ν q+m+d+d (t b) ⇐⇒ ν q (t b) + m + d ≤ β(t b) ≤ ν q (t b) + m + d + dfor all values of d, d such that m + d < 0.5 and m + d + d > 0.5. When m + d tends to 0.5 from the left, and m + d + d tends to 0.5 from the right, both values tends to ν(t b) + 0.5, then ν(t b) + 0.5 = β(t b).

 Moreover, because α(t b) and β(t b) are integers, and α(t b) < β(t b) we have α(t b) ≤ β(t b) -1, and also α(t b) ≤ ν(t b) -0.5.

Theorem 4 .

 4 11. (In weak semantics, T-TPN does not generalise P-TPN)P-TPN ⊆ ≈ T-TPNProof:This is a direct application of Theorem 4.10.

Theorem 4 .

 4 12. (In weak semantics, A-TPN are strictly more expressive than T-TPN)T-TPN ⊂ ≈ A-TPN

Definition 2.4. (Expressiveness w.r.t. (Weak) Timed Bisimilarity)

 Note that if S 1 ≈ S S 2 then S 1 ≈ W S 2 and if S 1 ≈ W S 2 then S 1 and S 2 have the same timed language.In this paper, we consider weak timed bisimilarity and we note ≈ for ≈ W . The class C is more expressive than C w.r.t. timed bisimilarity if for all B ∈ C there is a B ∈ C s.t. B ≈ B . We write C ⊆ ≈ C in this case. If moreover there is a B ∈ C s.t. there is no B ∈ C with B ≈ B , then C is strictly more expressive than C , denoted by C ⊂ ≈ C. If both C ⊆ ≈ C and C ⊆ ≈ C then C and C are equally expressive w.r.t. timed bisimilarity, and we write C = ≈ C .

	a weak (timed) bisimulation relation between S 1 and S 2 if it is a strong timed
	bisimulation relation between S ε 1 and S ε 2 .

Moreover, all studies consider only closed interval constraints, and from results in[START_REF] Boyer | Language and bisimulation relations between subclasses of timed Petri nets with strong timing semantic[END_REF], offering strict constraints makes a difference on expressiveness.

We note ∼L and ∼≈ with ∼∈ {⊂, ⊆, =} respectively for the expressiveness relation w.r.t. timed language acceptance and timed bisimilarity.

The intervals are of the form [a, b] and they can not handle a behavior like "if x < 1".

Note that they contain no ε-transitions.

The encoding of the state depends on the model.

Because (A ⇒ B) ≡ (¬B ⇒ ¬A), then (eq 1) ≡ ∃d ∈ [0, d] : t ∈ firable(S + d) ⇒ t ∈ firable(S + d).

This translation pattern have been used in[START_REF] Boyer | Translation from timed Petri nets with interval on transitions to interval on places (with urgency)[END_REF] to translate T-TPN into P-TPN, but it was a mistake. The translation only apply in some specific cases: when transitions are conflict-free or when the lower bound of time intervals is 0 for example (see[START_REF] Boyer | Comparison of the expressiveness w.r.t. timed bisimilarity of k-bounded Arc, Place and Transition Time Petri Nets with weak and strong single server semantics[END_REF]).

Be careful to this notation : • t is the set of input places of a transition t, and • t i is a place in the built P-TPN. This notation has

Then, all evolution rules are the same and both are strongly bisimilar.

Lemma 4.7. (No P-TPN is bisimilar to a A-TPN)

There exists N A1 ∈ A-TPN such that there is no N ∈ P-TPN weakly timed bisimilar to N A1 .

Proof:

The proof is based on Theorem 4.7. The A-TPN N A1 (cf. Fig. 14) is the same net than the T-TPN N T 1 (cf. Fig. 12). Obviously, N A1 and N T 1 are (strongly) bisimilar. Then, from Theorem 4.7 that states that there is no P-TPN weakly bisimilar to N T 1 , there neither is any P-TPN weakly bisimilar to N A1 .

Lemma 4.8. (No P-TPN is bisimilar to a A-TPN)

There exists N A1 ∈ A-TPN such that there is no N ∈ P-TPN weakly timed bisimilar to N A1 .

The proof is the same as for Lemma 4.7.

Theorem 4.9. (A-TPN are strictly more expressive than P-TPN)

P-TPN ⊂ ≈ A-TPN P-TPN ⊂ ≈ A-TPN

Proof:

Obvious from Lemma 4.6, 4.7 and 4.8.

P-TPN ⊆ ≈ T-TPN

According to Corollary 4.2, we have T-TPN ⊆ ≈ P-TPN. To prove that T-TPN is not more expressive than P-TPN, we prove that the TPN N P of Figure 16 can not be bisimulated by any net of T-TPN. The intuition of the proof is that, in weak semantics, the transition can never be forced to be fired. Then, the bisimulation relation should be achieved with some "direct" mapping, which is impossible due to the very different synchronisation rules, like in the strong semantics case. The Lemma 4.9 proves this "direct" mapping property in a specific case, used in the proof of the Theorem 4.10.

A technical point of the proof could be highlighted: the proof is, like the one of Theorem 4.7, based on the smallest constant of the nets, but, to simplify the notations, the problem can be reduced to a problem on integer, by multiplying by the least common multiple of all denominators.

Proof:

We already know that T-TPN ⊆ ≈ A-TPN (Lemma 4.4, p. 16).

From the previous Theorem 4.10, there exists N P ∈ P-TPN (Figure 16) that can not be bisimulated by any T-TPN.

From Lemma 4.6, there exists N A ∈ A-TPN bisimilar to N P . Then, N A can not be bisimulated by any T-TPN, that is to say A-TPN ⊆ ≈ T-TPN.

Sum up

We are now going to sum-up all results in a single location, Figure 19.

T-TPN P-TPN A-TPN T-TPN P-TPN

Figure 19. The classification explained (1) and (7) A P-TPN can always be translated into a A-TPN and there exist some A-TPN that can not be simulated by any P-TPN (Theorem 4.9).

(2) A T-TPN can be translated into a A-TPN (Lemma 4.4) and there exist a A-TPN that can not be simulated by any P-TPN (Theorem 4.12).

(