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Abstract

We considerTime Petri Nets(TPN) for which a firing time interval is associated with eacansition. State
space abstractions for TPN preserving various classesopeptiies (LTL, CTL, CTL*) can be computed, in terms
of so called state classes. Some methods were proposeddk ghantitative timed properties but are not suitable
for effective verification of properties of real-life systs.

In this paper, we considesubscript TCTL for TPN (TPN-TCTL for which temporal operators are extended
with a time interval, specifying a time constraint on thenfirisequences. We prove the decidabilityTéfN-TCTL
on bounded TPN and give its theoretical complexity.

We propose a zone based state space abstraction that peseavking reachability and traces of the TPN.
As for Timed Automata (TA), the abstraction may use an oymraximation operator on zones to enforce the
termination. A coarser (and efficient) abstraction is thesvijgled and proved exact w.r.t. marking reachability and
traces (LTL properties).

Finally, we consider a subset ®PN-TCTLproperties TPN-TCTlLs) for which it is possible to propose efficient
on-the-fly model-checking algorithms. Our approach cdssiscomputing and exploring the zone based state space
abstraction. On a practical point of view, the method isgraged in RRMEO [24], a tool for Time Petri Nets edition
and analysis. In addition to the old features it is now pdssib effectively verify a subset of TCTL directly on
Time Petri Nets.

Index Terms

Time Petri Net, Model-checking, TCTL, zone based state edustraction.

. INTRODUCTION
Framework

Verification of concurrent systems is a complex task thatireg powerful models and efficient analysis tech-
niques. Model checking is one of the most popular verificatehniques of concurrent systems. In this framework,
the behavior of a system is represented by a finite (or injitrigasition system, and the properties to be verified are
expressed in either a standard temporal logic (LTL, CTL, QTbr in its time extension (MITL, TCTL). Properties
are checked by exploring the transition system.

This paper aims to apply the TCTL model checking techniqoeBime Petri Nets.

The two main time extensions of Petri Nets are Time Petri NJEEN) [33] and Timed Petri Nets [37]. While a
transition can be fired within a given interval for TPN, in BochPetri Nets, transitions are fired as soon as possible.
There are also numerous ways of representing time. TPN airdynthvided in P-TPN, A-TPN and T-TPN where
a time interval is relative to places (P-TPN), arcs (A-TPN)Yransitions (T-TPN). Concerning the timing analysis
of these three models ((T,P,A)-TPN), few studies have bealized about model-checking.

The class T-TPN is the most commonly-used subclass of TPNrattds paper we focus on this subclass that
will be henceforth referred to as TPN. For classical TPN,fomdness and reachability are undecidable, and works
on this model report undecidability results, or decidapilinder the assumption that the TPN is bounded (e.g.
reachability in [36]).

Another common formalism to model timed systems is the onEraed Automaton (TA). TA consists in a time
extension of finite state automaton with clocks. Clocks transts can be associated with transitions (guards) or
with states (invariants) and are interpreted as firing caimgs of the transition or as a delay constraint for idling i



a state. The model-checking of TCTL properties was proveiddéle [3] and some efficient tools were developed
to model-check both qualitative and quantitative time prtips (.e.: UPPAAL [30], KRONOS[41], HYTECH [29]).

Related Work

State space abstractions for TPNVe can find in the literature several state space abstracfmmthe TPN
model. The well known are: th8tate Class Graph (SCJ}10], the Geometric Region Graph (GRGJ0], the
Strong State Class Graph (SSC{38], the Zone Based Graph (ZBd}p5] and theAtomic State Class Graphs
ASCGs[40], [13], [15]. These abstractions may differ from the sdaof properties they preserve. State Class
Graphs provide finite representations for the state spabewfided TPN preserving either the LTL properties [10]
or CTL* properties [13], [40], [15] of the state space. The Geomdegion Graph [40] preserves LTL properties
and the region based algorithm in [34] preserves CTL pragmen safe T-TPN withouto as latest firing time.
The Zone Based Graph marking preserves reachability or Libpgrties according to the convergence criterion
selected to compute the state graph.

TCTL model checking of TPNGiven these abstractions, some methods were proposed ¢& go@ntitative
timed properties but are not suitable for effective vertfma of properties on real-life systems. The first approach
to verify quantitative properties was the translation of PN into a timed bisimilar TA. [19], [20] proposes a
structural approach: each transition is translated intd aiding the same pattern. In [31], [32], the authors propose
a method for building the State Class Graph of a bounded TP& BS. Such translations show that TCTL and
CTL are decidable for bounded TPN and that developed algoston TA may be extended to TPN. Recently,
Virbitskaite and Pokozy in [39] proposed a method to modedek TCTL properties on TPN. The method is based
on the region graph and is similar to the one proposed by Aldr@ill [1] extended by Yovine and Tripakis [38],
and Penczeck [35] for TA. The TCTL formula is translated iatcCTL formula and then model-checked using
classical CTL algorithms on a modified TA. However, the regiwaph is known to be a theoretical method which
is not applicable in practice because of its lack of efficietia [28], authors proposed, using the observer and the
state class graph methods, an on-the-fly model checkings$abelass of TCTL properties. However, the state class
graph method is known [13] to be not suitable for the classided. model checking such as fix point technique.

Our contribution

We define a TCTL for TPNT{PN-TCTL based on Generalized Mutual Exclusion Constrai@MEC) [27].

A direct proof of the decidability of the model-checking ®PN-TCTLon bounded TPN is given as well as its
complexity.

We propose a zone based state space abstraction that pseseavking reachability and traces of the TPN.
As for Timed Automata (TA), the abstraction may use an oygraximation operator on zones to enforce the
termination. A coarser (and efficient) abstraction is thesvigled and proved exact w.r.t. marking reachability and
traces.

We finally consider a subset aGfPN-TCTLproperties TPN-TCTlLs) for which it is possible to propose efficient
“on-the-fly” model-checking algorithms, that is, modelecking the property while the state space is computed.
Thus, it allows to stop the construction as soon as the trathd of the property is known. The method, based on
the zone based state space abstraction, is implementedhimgdaited in the tool &4EO [24].

Outline of the paper

We first recall the definitions and semantics of TPN in sectiorSection Il is dedicated tofPN-TCTL, its
decidability and its complexity. In section IV, we preserzane based forward method to compute the state space
of a bounded TPN and in section V, some coarser approxingatmmeduce the effective cost of its computation.
Finally, we consider in section VI the on-the-fly model-ckiag of a subset offlPN-TCTL(TPN-TCTlLs) and
provide algorithms based on the Zone Based Graph methoctidieexamples are then considered in section VII.
Finally, we conclude with our ongoing works and perspestiveSection VIII.



[I. DEFINITIONS
A. Notations
We denoted” the set of mappings fronX to A. If X is finite and|X| = n, an element ofA¥X is also a vector
in A™. The usual operators, —, < and = are used on vectors o™ with A = N, Q,R and are the point-wise
extensions of their counterparts.ih For avaluationy € AX,d € A, v+d denotes the vectdv+d)(z) = v(z)+d,
and for X’ C X, v[X’ «— 0] denotes the valuation’ with v/(z) = 0 for € X’ andv/(z) = v(z) otherwise.
Finally, we denote).., (respectivelylR>,) the set of positive (or null) rational (respectively real)mbers.

B. Timed Transition Systems

Definition 1 (Timed Transition Systemg): timed transition system (TT®)Ver the set of action¥ is a tuple
S = (Q,Q, X, —) where@ is a set of states)y C Q@ is the set of initial statesy. is a finite set of actions
disjoint fromR>o, —C Q x (X UIR>g) x Q is a set of edges. We also write—— ¢ for (¢,e,q') €—.

In the case ofy 4, ¢ with d € IR, d denotes a delay and not an absolute tinjlei also denoted + d).
We assume that in any TTS there is a transi'@oﬂo—> ¢’ and in this casg = ¢'. Let ¢; € Q be a state of5. A
run p of ¢; is a maximal (finite or infinite) sequence of alternating tiamed discrete transitions of the form:

p=q —— ¢ +di = iy1 —— Gip1 + dipq —— -

The total elapsed time qf, denotedtime(p), is the sumZLZO d;1k, | being the number of time transitions jin(
[ = xoif pis aninfinite run). In casg is infinite, it is said to beenaiff time(p) < co. The trace op is the sequence
Wyntimed(P) = (a;)(ai+1) -+ and the timed trace gf is the sequencey;,eq(p) = (di, a;)(dit1,ai41) . pis a
run of S iff ¢; € Qy. The set of runs of; is denotedr(g;). The set of runs of is the union of runs of its initial

states (|J 7(go)). Similarly, the set of traces (resp. timed traces)Sofs the union of traces (resp. timed traces)

.. 90€Qo
of its initial states.

C. Time Petri Nets

Time Petri Nets (TPN) are a time extension of classical Rets. Informally, with each transition of the net is
associated an implicit clock and an explicit time interviie clock measures the time since the transition has been
enabled and the time interval is interpreted as a firing dandithe transition may fire if the value of its clock
belongs to the time interval.

Formally:

Definition 2 (TPN): A Time Petri Net is a tuplé P, 7,*(.), (.)*, «, 3, My) defined by:
e P={p1,p2,...,pm} is a non-empty set of places,

o T ={ty,ts,...,t,} IS a non-empty set of transitions,

*.) : T — IN? is the backward incidence function,

o ()*: T — IN" is the forward incidence function,

o My € IN? is the initial marking of the Petri Net,

o« a:T — Q- is the function giving the earliest firing times of transits

o f:T — Q- U {oo} is the function giving the latest firing times of transitions

As a shorthand, we note; and g; for «(t;) and 5(¢;).

A Petri netmarking M is an element ofN” such that for allp € P, M(p) is the number of tokens in the place
p.

Let M be a marking of a TPNM enablesa transitiont if M >*t,. The set of transitions enabled by a marking
M is notedenabled (M).

A transitiont; is said to benewlyenabled by the firing of a transitior if M —*¢; +t? enables;, and M —°¢;
does not enable,. If ¢; remains enabled after its firing thenis considered newly enabled. The set of transitions
newly enabled by the firing of a transition for a markingM/ is noted{enabled MM, t;).

We notez; the clock associated with a transitione T' of the TPN.v € (]RZO)T is avaluation of the system.
For anyt; € T, v(t;) (also notedv;), is the time elapsed since the transitignhas been newly enabldck. the
valuation of the clocke;. 0 is the initial valuation withvi € [1..n],0; = 0.



The semantics of a TPN is defined as a Timed Transition Syst@i8)(
A state of the TTS is a couple= (M,v) where M is a marking of the TPN and a valuation of the system.

Definition 3 (Semantics of a TPNJfhe semantics of a TP = (P, T7.°(.),(.)*, a, 3, My) is defined by the
Timed Transition SystenSy = (Q, {q}, %, —):
° Q = ]NP X (IRZ())T
q0 = (Mo, 0)
« =T
—€ Q x (T'UR>) x @ is the transition relation including a discrete transitemd a continuous transition.

e The continuous transition is defined € IR>( by:

v =v+d
Vk e [1.n], M >*t, = v, < G

(M,v) % (M, o) iff {
e The discrete transition is definett; € T' by:

M >*t;
M/:M—.ti+t;
(M,’U)t—i>(M/,U/) lff aigvigﬂi

0if ¢ enabled M, t;
Vk € [1,n], v;:{ il AM, t:)

v otherwise

The Time Petri Net runs are those of its Timed Transition &pstA TPN model is said to beenoif at least

one of its runs is zeno. The set mfachable marking®f N is denotedReach(N). If the setReach(N) is finite
we say that\/ is bounded As a shorthand, we writ€M, v) La8), (M',v") for a sequence of time elapsing and

discrete steps likéM, v) 4, (M,v+d) 5 (M),

[1l. TCTL FORTIME PETRI NETS

In this section, we will introduce a TCTL for the TPN'PN-TCTL and prove that the model-checking of a
TPN-TCTLformula on any bounded TPN is decidable and is a PSPACE-@mploblem.

A. TCTL for Time Petri Nets

We propose a definition of TCTL [1], for the TPN, based on Gatised Mutual Exclusion Constraint&§ MEC)[27].
A definition withoutGMECwas already introduced in [20] and translated into a stah@&TL for Timed Automata;
the TCTL property is then checked on a structural transtatibthe TPN into TA.

The following definition extends the Generalized Mutual Es@n ConstraintsGMEC) introduced in [27].

Definition 4 (GMEC): Assume a TPN withn placesP = {p1,p2,--- ,pm}. A Generalized Mutual Exclusion
Constraint GMEC) is inductively defined by:

GMEC::= (Z%*M(Pi)> XieleVy|pAYy|e=1
=1
wherea; € Z, M is a keyword representing a marking, € P, < € {<,<,=,>,>}, c€ N andyp, ¢y € GMEC,
Operatorsv,A and=- are defined as usual.
Intuitively, M(p;) > ¢ means that the current marking of the plagés in relations with c.
Given a markingM and aGMEC ~, we denoteM = v (respectivelyM [~ ~) when the GMECy is true
(respectively false) for the markingy.

Definition 5 (TCTL for TPN):The temporal logicTPN-TCTLis inductively defined by:
TPN-TCTL::=GMEC| false | ~¢ | ¢ = ¢ | Jp U | Vo Urtp



wherefalse is a keyword,p, ) € TPN-TCTL I € {[a,b], [a,b), (a,b], (a,b)} with a € N andb € NU {oo}.

Operators £, =, A, V are defined as usual. We also use the following familiar abétiens: true = —false,
E|<>[§Z5 = dtrue u]@b, \V/<>[§Z5 = Ytrue U[¢, E|D[¢ = —|V<>[—|¢, VD[¢ = —|E|<>[—|<;5.

The semantics ofPN-TCTLis defined on timed transition systems. Let us consider a PN (P, T.°(.), (.)*, o, 3, Mp)
and its semantics$r = (@, {qo}, T, —). The truth value of &/PN-TCTLformula for a state; = (M, v) is given
in the figure 1.

¢ = GMEC iff M = GMEC

q [~ false

qFE -y iff gl

IFEp=1 iff qgFEporgEY

q = 3o U iff  Jp=q g +di o €7(q), Ji> 0,30 € 0,dy], s.t
(X020 d;) + 6 € T (with dy = 0) andg; + 6 =1
(V0" €10,6[,qi + " = )
(Vjst. 0<j<i,Vd €0,dj],q5+¢ = o)

q = Vol iff  Vo=q % q +d 5 go... €w(q), Ji > 0,36 € [0,d;], st
(X020 ds) + 6 € T (with dy = 0) andg; + 6 =1
(V8" € 10,0, qi + &' = )
(Vjst. 0<j<i,Vd €0,dj],q5+9¢ E¢)

Fig. 1. Semantics of PN-TCTL

The TPNN satisfies the formula of TPN-TCTL which is denoted by = ¢, iff the first state ofS) satisfies
p, 1.e. (Mo,0) = ¢.

B. Decidability and complexity of TPN-TCTL

We give a short direct proof of the decidability ®PN-TCTLbased on theegion graph[1], [3]. Note that the
decidability was already proven in [20], [32] as a corollafybisimilar translations from TPN to TA. Moreover
we prove that the model-checking of @ N-TCTLformula on a bounded TPN is a PSPACE-complete problem.

1) Decidability of TPN-TCTLLet N = (P, T,*(.),(.)*, «, 3, My) be a TPN andSy = (Q, {qo}, T, —) its TTS.

Definition 6 (Clock equivalence — Regioret ¢ = (M,v) € Q be a state of a TPN and;, the set of clocks
associated with transitions enabled for markivig For each clock:; € Cj; associated with transition, let¢; = 5;
if 3; # oo elsec; = a;. Fora € IR>( we denote|a] the integer part of: and (a) its fractional part.

The equivalence relatiory is defined over the set of stat€s (M, v) ~ (M’,’) iff all the following conditions
hold:

1) M =M

2) For allz; € Cyy, either|v(z;)] and [v'(z;)| are the same, or both(ac,) andv'(x;) are greater than;.

3) For allz;,z; € Cp with v(z;) < ¢; andv(z;) < ¢j, (v(z;)) < (v(zy)) iff (V' (x;)) < (V' (z5)).

4) For allz; € Cy with v(z;) < ¢, (v(a;)) = 0iff (V/(x;)) = 0.

A regionis an equivalence class of clock valuations induced by tlsioa ~.

Intuitively, the meaning of such a definition is that the grt parts allow to determine whether or not a particular
firing condition is satisfied whereas the ordering of the tfoaal parts is necessary to decide which clock will
change its integral part first (and thus the successor rggiben the time elapses.

In dimension 2 withc; = 3 andc; = 2 we obtain the partition of the figure 2. The regions are: iatggpints,
open segment between two integer points, inside of the asfdelimited by the segments.

For example, regions; andr, of figure 2 can be described by : (2 < v(z;) <3) A (1 <wv(z;) <2)A0<
(v(z5)) < (v(x;)) andry = (v(x;) > 3) A (1 <v(xy) <2)



1 T2

1 2 3

Fig. 2. Partition for 2 clocksy; andz; with ¢; = 3 andc¢; = 2

Definition 7 (TPN-Region Graph)Given a TPNA/ and its timed transitions systef)s, the TPN-region graph
is the quotient graph af- with respect to the equivalence relation

In [2], [1], authors show that TCTL model-checking can befgened by computation of the region graph of
timed graph with an additional clock used to measure time elapsing between configurationsy betany TCTL-
formula. For every subscript ¢ appearing in a formulg let there be a new proposition._.. A vertex (s,~)
(where~ is an equivalence class induced by the clock equivalenedion) is labeled withp.. if v =z ~ ¢, else
with —p... Then vertexes are labelled with syntactic subformulag,adr their negation, starting from subformulas
of length 1, length 2, and so on. To label the vertexy) of the region graph satisfyingy,U~.p2, it needs to
check the formuladp U (p~.. A ¢2) on state(s, y[z < 0])

The TPN-region graph then allows to prove the following tteeas for TPN (we refer the reader to [3], [2], [1]
for detailed proofs of these two theorems):

Theorem 1 (TPN-TCTL decidability): TPN-TCTd.decidable for bounded TPN.

Theorem 2:Given a k-bounded TP, its number of regions is bounded by:

(k+pFL- 2™ JT @2 +2)
Proof: For a fixed marking, the number of equivalence classes okalatuations induced by the relatian

is bounded (like in [3]) by7|! - 271 TT (2- ¢; +2). Moreover, the number of markings of a k-bounded TPN, is
bounded by(k + 1)71. |

2) Complexity of TPN-TCTLTo our knowledge reachability and model-checking compiesiare still open for
TPN. For a state N/, v), the value of a clock associated with a transition which is emabled by the marking
M does not matter. The region graph proposed here is then erpiahin the size of the input i.e. the maximum
number of transitions simultaneously enabled + the humb@tazes of a TPN. However, the following theorem
holds :

Theorem 3 (PSPACE-completenestlte model-checking of aPN-TCTLformula on a bounded TPN is a
PSPACE-complete problem.
Proof:

« First, there exists a PSPACE algorithm based on the TPNegyiaph to decid@PN-TCTLon bounded TPN:
For k-bounded TPN, each marking belongs(fi@.%])”. By encoding in binary, marking can be represented
in |P|.log2(k + 1) bits i.e. in polynomial space. Then, a region can be reptedein polynomial space too.
Since the number of regions of the TPN region graph is exptalen the size of the input ( the number
of transitions simultaneously enabled + the number of [gaifea TPN), if we construct it entirely, and label
its vertices with the subformulas of a TPN-TCTL propertigse algorithm will need space exponentiallin
However, we can proceed like in [1]: for formulas of the fopm= 31 Urpo, it is possible to check TCTL
formulas by nondeterministically exploring a path, regioy region. The path is labelled on-the-fly by a



polynomial space procedure like in [1] (A recursive proaedubel (vertez, ) which returnstrue if vertex
should be labelled withy otherwise false). It just needs to remember the current guess and the peviou
guess. By Savitch’s theorem, the deterministic versiorhefélgorithm uses only polynomial space. The cases
0 =GMEC, ¢ = false andp = p1 = o are straightforward. For the cage= Vp,Urps, the negation of
@ can be written using existential path-quantifiers.

« The PSPACE-hardness is a consequence that reachabilitytimad 1-safe Petri net is a PSPACE-complete
problem [21].

IV. STATE SPACE ABSTRACTION

Since we consider a dense time semantics for our model of TeNset of configurations of its Timed Transitions
Systems cannot generally be exhaustively enumerated.efienr graph presented in the previous section abstracts
finitely and in a correct way the behaviors of timed automatabounded time Petri nets. However, such a
construction does not support a natural implementationt agns up against the state explosion problem. We
will present, in this section, an abstraction of the statecepof a bounded TPN based on convex union of regions.
This abstraction will allow to develop a complete framewéok the analysis and model-checking of reachability
properties (reachability of markings), both linear (LTljdabranching (CTL) properties and quantitative branching
properties (TCTL).

A. Zone based state space computation

We briefly present the method used to compute the state spac&RN using a zone based forward algorithm.
We refer the reader to [25], [26] for a detailed presentatbthe algorithm. Model-checking algorithms will be
adaptations of this algorithm.

1) Definitions: We first give some classical definitions.

Definition 8 (Zone):Let X be a finite set of clocks. Aoneover X is a convex set of clock valuations representing
a conjunction of atomic constraints of the fotm—xz; < ¢, x; < ci0, —; < coj Wherex;, x; € X, ¢, i, coj €
QU {—00,00} and=<e {<, <, =,>,>}.

Let 2o be a clock zerband Z a zone over set of clockX. All atomic constraints ofZ can be rewritten as
constraints on clock differences — z; < z;;, with z;, z; € X U {z0}, z;; € QU {0} and <€ {<, <}, i.e.:

7 = ﬂ (xi—wj "<Zij)
ZB,;,ZEJ'GXU{"EQ}

A zone is a particular form of polyhedra that can be efficieaticoded using DBM (Difference Bounded Matrices
[11], [23]). This data structure allows easier represémmaand lower complexity algorithms (at most cubic in the
number of clocks of the DBM) than general polyhedra.

Though a set of clocks valuations may be expressed by diffezenjunctions of constraints, there exists a
unique form, called canonical form, that allows to compasaes together. A canonical form of a zofeis the
representation with tightest bounds on all clock diffeendts computation is based on the shortest [palyd-
Warshalls algorithm and is considered as the most costly operatiobi¢ in the number of clocks of the zone).
A zone Z is then in canonical form iff'x;, x; € (X U {zo}), zij = Supz(x; — x;), whereSupz(z; — x;) is the
supremum (i.e. the least upper bound)pf-z; in Z. In all the following, we will only consider the canonicalrfo
of a zone, that is any zorg will stand for its canonical form. Therefore, the set of &ésof Z contains the clock.

Let Z be a zone over a set of clocks and X’ C X a subset of clocks oK. The restriction oZ to X’ denoted
Z|x+ is the zoneZ' obtained by puttingZ in canonical form and then eliminating all variables %f— X'.

1The value of this clock is always 0.
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The future of Z, denoted?, is the zone obtained by putting in canonical form and then replacing each
constraint of the forme; — z¢ < z;0, Wherex; # xg, by z; — z¢ < c0.

Definition 9 (Symbolic state)A symbolic stateof a TPN is a couplé M, Z) where M is a marking and” is a
zone whose clocks are those associated with transitiondezhly the marking\/.

Informally, the symbolic staté)M, Z) represents the set of clock valuatiors) (for which the markingM is
reachable according with the TPN semantics.

Definition 10 (Discrete Successord)et s = (M, Z) be a symbolic state and a transition ofenabled(M).
Transitiont; is firable froms iff the zone Z N {x; > «;} is non-empty. Ift; is firable from s, then the set of
discrete successos s by the firing of transitior; is:

(M =Mt
Posty, (s) = (M',Z") with < 1 _ (Zn{z; > ai})jo) N N {z; =0}

:L’je
Z N{z; > «a;} represents the set of valuations for which the transitipiis firable. O is the set of clocks of
transitions which are enabled i’ but not newly enabledV is the set of clocks newly enabled by the firing of

transitiont; in the marking)M/ (i.e. the clocks associated with transitions fanabled M, t;)).
Posty, (s) represents all states that are reachable fsooy the firing of the discrete transitiof.

Definition 11 (Time Successord)et s = (M, Z) be a symbolic state andl the clock set ofZ. The set oftime
successorsf s is the symbolic state:

Post(s)= (M, Z)with 2/ =Z n (| {z: <5}
z,€X—{xo}

Post (s) is the set of states that are reachable frolny elapsing time in the marking/. Time can grow until
a clock reaches its latest firing time.
In addition we note :
P P
Posty, (s) = Post (Posty, (s))

2) State Space Computation Algorithifihe aim of the algorithm is to iterati_ve)ly compute from a syilibstate
the set of reachable symbolic stat&tarting from the initial symbolic stat®ost ((My, Zy)) (Where M, is the
initial marking and clocks o7, are all equal td)) of a TPN, successor symbolic states are iteratively coatput
as follows: Lets = (M, Z) be a reachable symbolic state. For each transttjofirable in the symbolic state:

1) Compute the discrete successbe= Post;, (s), that is the symbolic state resulting by firing transitign

2) Compute the time successor= Post (s"), that is all states (including those of s’) reachable by tetapsing

from those ofs’.

The construction of the ZBG is given in Algorithm 1, whéféaiting is a list to store the symbolic states to
be analyzed andPassed symbolic states that were analyzed. According to the @iteof convergence selected
(equality of symbolic states or inclusidre. how s ¢ Passed is coded), one can compute the marking graph of
the TPN or a graph preserving markings and traces of the THN flroperties).

3) k-approximation: If the net contains some transitions with as latest firing time, a last step consisting in
applying an approximation operator is needed to ensuredheecgence, else the algorithm exactly computes the
state space of the TPN. Actually, if we consider the TPN ofrég8, the infinite firing sequende,, t3)* generates
the infinite sequences of zongs = {2i < x; < 2i 4+ 1 A x; — x9 = 2i}, even if the model is bounded (i.e. has a
finite number of reachable markings).



Algorithm 1 Zone Based Graph Algorithm

so = (Mo, Zo)
Waiting < {Post (sq)}
Passed — ()

while Waiting # () do
s = pop(Waiting)
if s ¢ Passed then
for all ¢ € enableds) do
—
s’ = Post (Post; (s))
Waiting «— Waiting U {s'}
end for
Passed «— Passed U {s}
end if
end while

b1 D2
tl[0,00[ t2[171] t3[171]
b3

Fig. 3. Bounded TPN with an unbounded number of zones

V. APPROXIMATIONS OF ZONES
A. Introduction

Approximation of zones is needed, for TPN with unboundedsitions to ensure the finiteness for clock based
abstractions (region as well as zone based). This oper&dkas into account the constants with which clocks
are compared and consists of extending domains of clockistwireserving reachable markings and traces of the
model (i.e. each state added by an approximation can be aieauby a state within the originate zone).

Moreover, the coarser we may choose the abstraction, the gfficient the method will be.

Related work: The classical abstraction method for timed automata, knanter the namesormalization
extrapolationor k-approximation takes into account the maximum constants to which the waridocks are
compared. [22] describes this method and a number of addltiabstraction techniques including active clock
reduction and the over-approximating convex hull absitacin [4], the maximum constants used in the abstraction
do not only depend on the clocks but also on the particulaations of the timed automata. In [5], [6], authors
show that, by distinguishing maximal lower and upper bousimificant coarser abstractions can be obtained.

Most of the above zone based abstractions require that gj@aedrestricted to conjunctions of simple lower or
upper bounds on individual clocks. We refer the reader t¢ {d8earn more about zone based abstractions in the
presence of difference constraints, and to [4] for a satubased on zone splitting.

Specificities of TPN:Contrary to TA, in TPN, a transition cannot be disabled bypsilag time [8]. It means
that if a transition is enabled in a particular staieor all runs starting frony, either this transition is fired or is
disabled by the firing of another transition. A consequesdat the notion of active clocks can obviously be used
by considering in a zone only the enabled transitions. Meggave can search improvement lefapproximation
by focussing our attention on the following case : a valuatid a clock cannot exceed its maximal bound.

In this section, we apply thg-approximationto TPN (as in [25], [26]) and we propose

« an adaptation of the well known improvement on TA [22], [7]sbd on a different value of for each
unbounded transition.
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« an improvement of the method leading to an abstraction tleashow coarser than that of [6].
Moreover, we prove that these abstractions are exact veathable markings and traces.

B. k-approximation

The first approximation proposed for timed automata [22]siste of selecting an integérequal to the maximum
finite constant appearing in the time constraints of the rotld@s approximation is based on the fact that once
the clock has over passed the valydts precise value does not matter anymore. In the contetitraf Petri nets,

k is equal to the maximum finite constant appearing in the fitinge intervals of the TPN. Each symbolic state
(M, Z) is then approximated M, Z’) using the followingk-approx function:

Definition 12 §-approz): Let Z be a zone (in canonical form) over a set of clocks k-approx (Z) = Z' is
defined by:
o0 if Zij > k
in,(L'j S X, Zz/'j =< -k if zij < —k
zj;  otherwise.

The algorithm then computes at each iteration:
Dok Dot
Posty (s) = k-approx <P08tti (s))

Recent works on Timed Automaton [17], [18] proved that thpgm@tion generally leads to an over-approximation
of the reachable localities of TA. For TPN, [25], [26] proveetcorrectness of the zone based abstraction with
k-approximation w.r.t. the set of reachable markings aades of the TPN.

C. k;-approximation

The first improvement ok-approximationis to consider a distinct valuk,, for each clockz;. k,. is equal to
the maximum finite constant appearing in time constraintslook z;. The underlying idea is: if a clock; grows
beyond the valué:,,, its precise value does not matter and the resulting zonexedly the same behavior than
its originate symbolic statéM, Z) w.r.t. traces.

Definition 13 &,-approz): Let Z be a zone (in canonical form) over a set of clocks
ky-approx(Z) = Z' is defined by:

o0 if Zij > k:cl
’ .
\V/l’i,l’j € X, Zij = —kxj if zij < _kxj
Zij otherwise.

For time Petri nets, clocks are associated with transitaon compared with bounds of static firing intervals of
their transitions. Therefore, for a cloak of a transitiont;, its k., is defined by:
(67 if ﬁz = 0
kSCi - .
0B; otherwise.
In addition, for any bounded transition (i.e. 5; # o), its clock cannot overpass;. Note that, in this case,
kz, = B;. Then, the following relations holdzt;,t; € enabled(M),

(1) Bi#oo = zj<zo<Bi=ka,

(2) BjFoo = —kg =05 <2, <z
Using the above relations, we can rewrite theapproz for time Petri nets as follows:

00 ifzijZai/\ﬁi:oo
Vwi,wj c X, Zz(j = —Qy if Zij < —Qj /\ﬂj =0

Zij otherwise.
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By convention we suppose that = 5y = 0. Note that since intervals of time Petri nets are closed byleft, we
have replaced the strict relatior’) betweenz;;, k., andk,, by a larger one<).

By applying the forward algorithm using,-approx instead ofk-approx, we then build a coarser abstraction
(and consequently less symbolic states to explore) bliestict with respect to reachable markings and traces. We
refer the reader to section V-F for the proof of its exactness

D. Lower and Upper bounds based approximations

In [6], authors have proposed two other approximationsifoed automata, referred in the sequellldy, - Approx
and LU-Approz. In these approximations, authors distinguish betweerelcand upper bounds of clocks. They
define, for each clocks;, two maximal bounds denoted respectivelyz;) and U(x;). L(z;) and U(x;) are
respectively the maximal lower bound and the maximal uppemid of clockz; in the time constraints of the
model. More preciselyL(z;) (resp.U(z;)) is the maximal constant such that there exists, in the model, a
constraintz; > ¢ or x; > ¢ (resp.z; < ¢ or z; < ¢). If such a constant does not exigt(x;) (resp.U(x;)) is set
to —oo.

Definition 14 (LU,-Approzx): Let Z be a zone (in canonical form) over a set of clocks
LU,-Approx(Z) = Z' is defined by:

o0 if Zij > L(SL’Z)
Vo, ;€ X, 2= —Uz;) if —z; > U(z)
Zij otherwise.

Definition 15 QU}-Approx): Let Z be a zone (in canonical form) over a set of clocks
LUZ-Approx(Z) = Z' is defined by:

00 if z; > L(x;)
00 if —zg; > L(x;)

Vi, x; € X, zgj: 00 if — 205 > Ul(xj),i#0
—U(z;) if — 205 >U(zj),i=0
Zij otherwise.

In the context of time Petri nets, for each clock L(z;) = oy, U(x;) = B; if §; # oo, U(z;) = —F; otherwise.
Moreover,z; cannot neither be negative nor overp@ssit follows thatVt;, t; € enabled(M ),
(3) =05 <25 < zij < zio

Then, the following relations always holdst;, t; € enabled(M), U(x;) = B < 205 < 25, if B # o0, U(x;) =
—Bj < 205 < z; otherwise.
Using the above relationd,U,-Approx(Z) = Z' can be simplified (by eliminating relations which never Hold
and rewritten for time Petri nets as follows:

oo if Zij > Oy

Vo, x5 € X, zj;=qo00 if (Bj=o00)
zj; otherwise.

LU;-Approx(Z) = Z' can be simplified and rewritten for time Petri nets as follows
oo if Zij > O
oo if — zp; > oy
V:L'Z',:L'j € X, Zgj = . 0i !
oo if (B = o0)

z;j otherwise.
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E. Our approximation

We propose to use another approximation operation whickasteand leads to much compact graphs. We refer
the reader to the section V-F, lemma 2 and theorem 4 for thef mrfoits exactness.

Definition 16 ¢..-approx): Let (M, Z) be a symbolic state in canonical form aid the clock set ofZ. Our
approximation ofZ, denotedk! -approxz(Z), is the canonical form of the DBM' defined as follows:

oo if ﬁj = 00
/ .
Vl’i,l'j € X, Zij = § 90 if Zij — Q4 > 205

z;j otherwise.

T = =20

/]
/

Zij oy 240
Fig. 4. a DBM (light gray area) and it&.,-approx (light + dark gray area)

The comparison between [6] is depicted in figure 4. This figsltews that with our approximation the clock
domain ofz; is extended earlierzf; — zo; > «;) than with approximations proposed in [63;( > «;). Indeed,
for the DBM (light gray area) of the figure 4, we havg ? «; and the approximation of [6] can not be applied
whereasy;; — z9; > «; leading with our approximation to add the dark gray areahSQusituation can be obtained,
for example, with the TPN of figure 5 after firing of the sequetic ts, ts.

P P P
t1[0, 3] to[4,4] t3[1, 3]

Py Py
t4[3, 3] t5(3, 5]

Fig. 5. Time Petri Net leading to the DBM of figure 4.

The following lemma establishes that our approximatiordée#o coarser graphs than those obtained using
LU}-Approx. Indeed, our approximation produces larger zones tharetbbtined byLU>-Approxz(Z) and then
leads to coarser abstractions.

Lemma 1:For everyZ, it holds thatLU;-Approxz(Z) C k.-Approx(Z).
Proof: It suffices to show tha‘V:L‘l',:L‘j S En(M), if Zij > 04 V. =20 > 4 then Zij — Q4 > 20;-
1) If Zij > Q4 then Zij — Qg > 0. Sincezoj <0, it follows thatzij —o; > 205
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2) If —z0; > oy then relationzg; + Zij > 20j ImplleS that—zoj + 25 > —zp; > Q. Thenzij —; > 20;-
Moreover, sincay; > 0, relation —zy; > «; implies thati # 0. [ |

F. Correctness of our zone based forward method

We now prove that the Zone Based Graph (ZBG) computed withpprozimation or kl-approximation is
exact i.e. both sourfdand completé.

We have then to show that a symbolic stéfd,7) and its approximation (as proposed in section V-E) have
exactly the same traces. To achieve this goal, we provenimig 2, that a zon& and its approximation have the
same firing domain. More precisely, a symbolic state and pf@imation map to the sanerthomiels state
class [13].We first show, in proposition 1, how to compute the firing damafi a zone. The idea of this proposition
is borrowed from [14] and adapted to zones. In [14], auth@gehshown how to compute the firing domain of
their state classes. Their state classes are based on pagirfstants whileBerthomiels state classes are based
on future firing instants.

Definition 17: The firing domain of a symbolic state [14], [13].
Let (M, Z) be a symbolic state is in canonical form) and = (M, v) one of its states. The firing domalip of
q = (M,v) is defined byl, : enabled M) — Qg x (Qso U {o0}), I(ti) = [maz(0, a; — v;), B — vi].
The firing domain of(M, Z) is the union of the firing domains of all its states, i.el; | ¢ € (M, Z)}

Proposition 1: Let (M, Z) be a symbolic stateA is in canonical form) andX the set of clocks ofZ. The
canonical form of its firing domairD is:

Voo, @j € X, dij = otherwise

{ﬁi + min(z20;, zji — o) if @ # j

Proof: First we have to show that the firing domain of (M, Z) is characterizable by a set of atomic
constraints. The following steps show how to do it:
LetY = {y; |2 € X} andY’ = {y, | x; € X} be two disjoint sets of new variable " X =Y' N X =
Y NY’' = 0). We suppose that, = yo = y, = 0.
1) Initialize D with

ZN ﬂ 0<yina; —o; <y <Bi —xi} (1)
z,€X—{xo}

Note that variables of represent delays.

2) Replace inD eachy; of Y by —y.. We can then rewrite it to obtain:

ZN ﬂ {yi <ONy;— o < —i Aoy —y; < Bi} (2)
z,€X—{x0}

3) PutD in canonical form, renameg in yo and eliminate all variables;.

4) Replace inD eachy, by —y;.
The resultingD is a set of atomic constraints. Therefoie,is convex and has a unique canonical form defined
by: Vyi,y; € Y,dij = Supp(yi — y;)-
The rest of the proof is based on thenstraint graphsLet ' be a set of atomic constraints. The constraint graph
of F' is a weighted directed graph, where nodes represent vasiablF, with one extra node representing the value
0. An arc connecting a nodg to a nodeu; with weight (<, ¢), where< is either< or <, represents any atomic
constraint equivalent ta; — u; < c.
We have the two following known results:

2Any trace in the model state space is also possible in the ZBG.
3Any trace in the ZBG is also possible in the model state space.
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« F has, at least, one solution (one tuple of values that satjsiteonce, all constraints iR) if and only if, the
constraint graph of’ has no negative cycle,
« If the constraint graph of' has no negative cycle, the weight of the shortest path, irgtaph, going from a
nodew; to a nodeu;, is equal to the supremum o6f;; — u;) in F' (Supp(u; — u;)).
Consider now the set of atomic constraif®$ above obtained at step Its constraint graph is shown in figure 6,
where solid arrows represent constraintsZond dashed ones are constraints to be added to obtain thigadions
graph of the firing domairD of Z. Recall thatzy andy, are respectively "zero” nodes of constraint graphsZof
andD.
SinceZ is not empty,(2) is consistent and then its constraint graph has no negatele.dn addition, since for all
x; € X,y = —y; andzo = yo = y,, = 0, it follows that the weight of the shortest path, in the caamist graph of
formula (2), connecting a nodg; to a nodey;. is equal tod;;. By assumption/ is in canonical form. The weight
of the shortest path connecting a nadeto a nodex;, in the constraint graph aof, is thenz;;. Knowing that for
all z; € X,0 < x; < 3, it follows that: for allz;, z; € X,0 < 20 < 35, 20 < 0 and z;; < 20 + 205 < Bi + 205
Then, the added nodes and edges, to obtain the constrapft gfdormula(2), do not affect weights of the shortest
paths connecting nodes of. It follows that:

dj; = min(o + 205 + 53', —oy + 2 + 53)

/
Z0, Yo

Fig. 6. Constraint graph o N, cx () 1% SOA Y —2i < —ai Awi —y; < Bi}

Lemma 2:Let (M, Z) be a symbolic state in canonical fornX its set of clocks,(M, Z’) and (M, Z") be
respectively itsk,-approximation and:.-approximation.
Then: (M, Z2"), (M, Z') and (M, Z") have the same firing domain.

Proof: Let D, D’ and D" be respectively the firing domains oM, Z), (M, Z') and (M, Z"). We have to
show thatD = D’ = D”.
Note that we give only here the proof @ = D”. The proof of D = D’ is very similar. Recall the canonical
forms of D, D" and Z": Va;,z; € X,
g — B + min(zo5, zij —y) if i #j
" otherwise.

g 1B min(egy, 2 — i) i i A
" 0 otherwise
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Z" is the canonical form of the zonB defined by:Vz;,z; € X,

oo if ﬁj = 00
bij = oo if zij — Oy Z Z()j
zjj otherwise

Note thatZ C Z” and thenvxz;, z; € X, z; < z; < b;;. Consequently, ib;; = z;;, for somei and j, then
Zz/; = Zij-
Let us now show tha¥z;, z; € X, d;; = dj;:
« In case(i = j): we haved;; = dj; = 0.
o In casei # j:
1 If 8; = oo then:
dji = B + min(zoj, zij — ;) = 00 = [3; + mz’n(z{)’j, zg — ;) = d;-’l-
2 If Bj < oo an.d zij — a; > 205, We havez; > z;, ?Oj = 20; = ;gj. /I/t fo/l/lows that: §
dji = B + min(zoj, zij — ;) = B + 205 = B + zo; = Bj + min(zq;, 25 — ;) = dj;
3If ﬁj < oo and zij — oy < 2pj, W€ havebij = zijj = ZZ/; andboj = zp; = Zg]
Then:d;-’i =B + mz‘n(zgj, 2 — og) = B + min(zo;, zij — ;) = dji.

ij
ConsequentlyD = D"

Theorem 4:Let A be a TPN and ) its semantics. The zone-based abstraction (computediwittpprozimation
or k! -approxzimation) of the state space of preserves reachable markings and traces of

Proof: On a TPNW, the zone-based forward algorithm (without k-approximai computes exactly all
states and traces of the semantgg [25]. Furthermore the lemma 2 proves that a symbolic stai it
ky-approx and kl-approx approximations have the same firing domain. In [10] and [&dihors have shown that
all state classes sharing the same marking and firing dorhaire slso the same traces. Therefore, our abstraction
(with k. -approximation or k! -approximation) is exact: These approximations add states but preserchabie
markings and traces. |

G. Comparisons of the three approximations

In table I, we compare the number of symbolic staies. the number of zones) needed to compute the state
space of TPN preserving reachable markings (i.e. an alistnaday inclusion and reverse inclusion) when we use
the k,-approzimation, the LU-Approx improvement of [6] and ouk/-approzimation improvements. These
three approximations have been implemented in the taWmE>. We use the classical level crossing fortrains
proposed in [13] and presented in section VII.

The gain of our approximation in both time and size is sigaiftcand grows with the size of the model. It has
also to be noted that, for one example (train6.xial, the classical gate controller problem with 6 trains) it made
the computation feasible while other abstraction ran ounemory.

H. Comparisons with other methods

We have implemented and tested approximations proposedinerother abstractions developed in the literature:
SCGs [9] (linear state class graphsy,SCG [13](linear strong state class graphs) andCG [13] (atomic state
class graphs)Z BGy, [25]. Table 1l reports the results obtained for the claddeeel crossing model with number
of trains equal to 2, 3 or 4 trains, and for some produceriomes model with number of producer/consumer equal
3, 4,5, 6 or 7. The figures represent the size of the graph cmupn term of states and edges, and the time
needed to compute it.

4with no guaranty of termination
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TPN Nb. of symbolic states
ks-approx | LU;-Approx | kL -approx
train2 76 70 70
train3 383 296 296
traind 2 202 1518 1286
trainb 12 068 6573 5748
trainé X 28530 26 280
traffic-lights 3 856 3014 2872
TABLE |

COMPARISON BETWEEN THE DIFFERENT APPROXIMATIONEOMPUTED ON APIV 3GHz, 1GB RAM

TPN ASCG SSCG SCG Our || TPN ASCG SSCG SCG Our
Train2? 192 141 123 114 || PrCs3 79 253 24 784 8 961 6 392
Arcs 2 844 254 218 200 || Arcs 1200 714 115 458 | 41 159| 29 092
CPU < 1s < 1s <1ls < 1s || CPU 8 min 10s 7s 1s < 1s
Train3 6 967 5051 3101 2 817 || PrCs4 130 161 40 507 | 14852 | 10670
Arcs 49 826 13 019 7 754 6 944 || Arcs 2 476 886 232586| 84478 | 60814
CPU 4.6s < 1s < 1s < 1ls || CPU 21 min 23s 23s 3s 2s
Train4 356 952 351 271 | 134 501 | 122 290 || PrCs5 191 297 60 785| 22 577| 16 378
Arcs 3448 100| 1 193 376| 436 896 | 391 244 || Arcs 4 294 211 408 116 | 150 923 | 110 748
CPU 6 min 51s 53s 16s 56 s || CPU 43 min 46s 56s 5s 3.6s
PrCs6 262 673 86 303 | 32456| 23761| PrCs7 346 304 117 792 | 44 837 | 33085
Arcs 6 734 676 658 918 | 247 142 | 184 482 || Arcs 9 915 3425| 1 002 194| 380 725 | 288 421
CPU 1h 24min 2 min 9.4s 6.2s || CPU 3h 29min | 3 min 51s 16s 9s
TABLE I

SIZE COMPARISONS OF GRAPHS COMPUTED BY ABSTRACTIONS PRESERIG LINEAR OR BRANCHING PROPERTIES

Number of symbolic states of the graph computed
PNumber of edges of the graph computed

All tests have shown that our approximation is very app@dprisince it is exact and results in a much smaller
graphs.

Note that tables | and Il are based on two different critefiaamparison of zones. In table I, we report results
obtained, for different approximations, when we use inoluss criterion of comparison (abstractions by inclusion)
Such abstractions are known to preserve markings but doauatssarily preserve firing sequences. Table Il reports

results obtained, when we use equality as criterion of coisga (exact abstractions). Such abstractions preserve
markings and firing sequences.

V1. ON-THE-FLY TPN-TCTLMODEL-CHECKING

An on-the-fly model-checking algorithm generates the ssm@ce of the investigated system and verifies the
property of interest simultaneously. In contrast to therapph of generating the whole state space before verifitatio
this allows the verification to be stopped as soon as the-tradd of the property

The efficiency of such on-the-fly methods were proven for Téhwbols like UPPAAL [30] (on TA) for instance.
These tools restrict the set of TCTL properties that can Ioéieg in order to provide efficient on-the-fly algorithms

and faster convergence criteria. Though the set of pragseit reduced, practical case studies show they were
sufficient for most of the models studied.

We can now use our abstraction to efficiently perform onfthenodel-checking of Time Petri Nets. In this

section, we propose a subsetT@®N-TCTLfor which we give algorithms to decide their truth value fob@unded
TPN.

A. TPN-TCTls: a subset of TPN-TCTL for on-the-fly model-checking

We consider the subset ®PN-TCTLwhere formulas are not imbricated. However, in practicentlost interesting
property for real-time systems is the bounded responsengiss) property which is an imbricated formula.
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The response (liveness) property is defined gy ~»; ¢ corresponding to/Cl(p = VOv). For example, the
time-bounded leads-to operatpr, . ¥ expresses that whenever the state propettylds then the state property
1 must hold within at most time-units thereafter.

Thus we add it to our subset 3PN-TCTL

Definition 18 (TPN-TCTL): TPN-TCTlLs is the sub-class of the temporal logi®N-TCTLdefined by:

TPN-TCTls ::= o U VYo Ur | 3010 | YO 10 | 3010 | VO 0 | @ 1,

wherep, 1 € GMEC, (¢ ~p, ¥) = VO(¢ = YOr,v), I € {[a,b],[a,b), (a,b],(a,b)} with a € Nandb € NU{oo},
and; € {[0,¢],[0,¢)} with ¢ € N.

B. On-the-fly TPN-TCT4 model-checking

TPN-TCTls is adapted to “on-the-fly” model-checking, that is compgtthe state space while testing the truth
value of theTPN-TCTls formula. Compared to other classical methods based on fix-gomputation (TA), it
allows to only explore the relevant part of the state spatagively to the property being checked. Besides, the
practical use of fix-point algorithms on TPN is discussaliees at the contrary to TA, the discrete structure of
the state space.€. the set of reachable markings) is not known a priori.

Proposition 2: (Sketch of TPN-TCELModel-checking Algorithm)
o ki-approximation
Since we choose to add a time intervaltBN-TCTls operators, we need an additional clock to test if a run
of the TPN verifies the timing constraint of the formula beingdel-checked. Classically, we add to the model
an additional clock to be able to check the timing constrdintounts the time length of firing sequences of
the TPN. Adding this clock is strictly equivalent to externe tTPN model with a transitior{(, co[ as firing
interval) that is never fired. Since it is an unbounded claek,need to choose a constdntto perform the
kz-approximation. Its value is chosen as follows:
— If the TPN-TCTls formula has a bounded interval amng,, is its upper bound, we chooge = ¢4
This ensures that we will compute the exact time of TPN firiaguences.
— If the TPN-TCTls formula has an unbounded interval afig,;,, is its lower bound, we choose = ¢,
This allows to detect runs whose time length are greater than
o k!l -approximation
In the case of th& -approximation, the transition added has to be specially handled while aqupiating.
Actually, the first step of the approximation, that is to @ zy; with 0 if 3; = oo, will erase the minimal
absolute time at which a marking is reachable. To avoid tleblpm, this clock has to be approximated in the
usual way with thek,-approximation.

Theorem 5:The proposition 2 is exact fofPN-TCTLs model-checking.

Proof: Thanks to lemma 2, a zone and its approximatidnsgpproximation and,’-approximation) map
to the same firing domain and then have same traces. The pkdbisdemma 2 can be easily extended for any
approximation values greater than the values selectedhé&t, t-approximation. To verifyTPN-TCTls we add an
additional clock for which we apply the particulas-approxzimation of the proposition 2. Consequently, the ZBG
of the extended TPN preserves markings and traces. Sincadthel clock is used to measure the time lengths of
some traces, it remains to show that these times are exdd6]nauthors have shown that the time lengths of the
TPN traces, including those of its states, can be computid) usarkings and firing domains. It follows that the
approximations proposed here do not affect time lengthdeftiaces. [ |

Consequently, we can build on-the-fly the state space of xtended TPN with the forward based algorithm
presented in the previous section. Note that to deal witlo ZEPN, we record the current explored path in order
to detect zeno runs. In order to verifPN-TCTls properties, we introduced three new algorithms (&ppendi)
that will handle the verification ofdpU;, 307 andVeUry. The other operators can be deduced from them.
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down

Fig. 7. Gate Controller model - Level crossing example

close;

Fig. 8. Train and Gate models - Level crossing example

VIl. EXPERIMENTAL RESULTS
A. Implementation

A prototype of the on-the-fly model-checker was implemeritethe tool RoMEO [24], a tool for edition and
analysis of TPN. It currently allows to model-che@®PN-TCTlLs properties on a bounded TPN. According to
the formula to check, a trace (counter-example or witnesay e generated for analysis purpose. The three
approximations X,-approx, LU}-Approz andkl-approz) were also implemented to compare their efficiency.

B. Example

Let us consider the classical level crossing example. A TBidign of this example is proposed in [13]. The net
is obtained by the parallel composition aftrain models (figure 8) synchronized with the gate contraftedel
(app, exit, n instantiated) (figure 7) and a gate modeébn, up) (figure 8).

C. Properties

Nonquantitative timed properties like "when no train apfres, the gate eventually opens” can be checked on
the Atomic State Classes Graph [13] computed with toelAT[12]. We first compared our computation with that
of [13] in terms of number of state classes and edges of theputad graph. Figures forifia are the size of the
graph preserving CTL properties, the ones faM&o are the size of the graph computed on-the-fly to decide the
truth-hood of the property:

far ~» = farV open

where far is the GMEC :M(far) = n. The results are reported in table Ill. They show the efficjeof the
on-the-fly method compared to the method proposed in [13]dbasists in computing the whole graph preserving
CTL properties and then applying a model-checker.

Besides CTL properties, the main interest of the methodaswe are now able to verify quantitative properties
over TPN.

For instance, the following properties can be proved true:
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TPN Graph preserving CTL On the fly CTL model-checking
(computed with TNA) (computed with RMEO)
3 trains Statés 6 967 519
Edges or Effective Statés 49 826 1817
4 trains States 356 952 8 887
Edges or Effective States 3 448 100 36 619
5 trains States x © 185 304
Edges or Effective States X 957 119
TABLE 11l

GRAPH SIZES TO VERIFY ACTL FORMULA OVER THE GATE CONTROLLER MODEL

2For TINA, the figures correspond to the number of stong atomic classaputed. For RMEO, this is the number of symbolic states of
the graph computed to verify the property.

BFor TINA, the number of transitions is the number of transitions ef ghaph preserving CTL properties. FODREO, it represents the
number of symbolic states effectively computed by the allgor to decide the truth-hood of thHEPN-TCTLs formula.

“Computation aborted due to lack of memory.

Whenever a train crosses the gate, the gate is closed:
¢1 = Vg o0 ((\/ie[l,n]on,—) = closed)
« A train can approach whereas the gate is raising.
Py = Ho[o,m[((vie[lm}ClOSGi) A raising)
« In the first 1000 time units, the gate is not closed until anti@proaches

¢3 = Vclosed Ujg 1000) coming

If a train approaches, the gate is closed in less than 2 tints.un
¢4 = coming ~>g g closed

We give in the table IV some computation times and the numbesymbolic states computed for the model-
checking of¢; 2 34. Experiments were led on a Pentium IV 3GHz with 1Gb of memtinhas to be noted that
for these properties the whole state-space has to be geddmtecide the truth value of the formula. It shows
how efficient is thek,-approz for the practical verification oT PN-TCTls formulas in comparison to the classical
kz-approximation.

We also compared our tool with RPAAL. The gate model provided in RPAAL distribution corresponds to
trains andl track with stop of train and a queue to restart the train. Tothhe models are not the same, we first
use a modified version of the TA model for 7 trains and 7 trag¥s.obtain the following results: on gate model (7
trains and 7 tracks), a computation time of 85sdgmwith UPPAAL against 17s with RMEO. On the contrary, if we
use the WrPAAL gate model (n trains and 1 track with stop of train and a queuestart the train), we obtain the
following results (for 7 trains) a computation time of 12s4fr the propertyl'rain(i). Appr ~ Train(i).Cross
with UPPAAL against 127.25s with ®vEO for the comparable propertylose; ~» left; on the TPN model. It
comes from the fact that the queue is done by an interpregamtitim with UPPAAL whereas we model it by a
TPN (with all the possible combinations) leading to a statace explosion.

These comparisons are not very significative as models #eratit but it shows the efficiency of our method
and tool. Moreover, some implementation improvementsh{saagthe use of Clock Difference Diagrams) are not
yet integrated in RMEO. Finally, the use of subscript TCTL in &MEO eases the expression of quantitative
properties: for instance the TA model must be modified (witholserver) to model-checkrain(i). Appr ~ 9
Train(i).Cross with UPPAAL while it is not necessary for ®EO.
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91 [

ko | 24 A

3trains CPUtime|] <1s <ls|[<ls|<1s

Nb. Zones 3803 1 310 43 36

4 trains CPU time|| 2.44 s <1ls <ls| <1s

Nb. Zones || 60550 29 020 117 82

5 trains  CPU time x8 [ 2min24s|] <1s| <1s
Nb. Zones X 753 119 1242 645

3 P4

ke | K ke ] k7
3trains CPUtime|] <1s| <1s <1ls <1ls
Nb. Zones 58 58 2 407 1828
4 trains CPU timel|| < 1s <ls 346 s <1ls
Nb. Zones 226 226 || 84 659 38 761
5trains CPU time|| < 1s < 1s X | 2min37s
Nb. Zones 1046 1046 X 958 537

TABLE IV

COMPUTATION TIME TO MODEL-CHECK TPN-TCTls FORMULAS.

4Computation aborted - Ran out of memory

VIIl. CONCLUSION

We have considered TCTL model-checking of Time Petri Netsnfa theoretical point of view, we have proved
using region graphs the decidability of the model-checldh@PN-TCTLon bounded TPN as well as its PSPACE
complexity. However, in practice, region graphs are nofuls#s they run up against the state explosion problem.
To overcome this limitation, we have considered a subsefRN-TCTL properties TPN-TCTls) for which we
have proposed efficient on-the-fly forward model-checkilggidthms using zone based abstractions. As for Timed
Automata, an over-approximation operator on zones is usexhforce the termination of the algorithms. In order
to speed up the convergence of these algorithms, we havesdefifiner approximation operator over zones which
leads to a much compact abstraction. We have shown that straation is exact and allows the effective verification
of TPN-TCTlLs properties. The method was implemented and integrateceitothl ROMEO [24]. It is then possible
to check efficiently real-time properties with this tool,dato benefit from all the advantages of it: counter example
generation when a property is false, simulation envirortmen

From a theoretical point of view, the complexity of modekchking should be explored for general TPN or
subclasses of TPN as well as combining reduction methodsc{stal or partial order methods) to decrease the
practical cost of the model-checking of TPN.
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APPENDIX

This appendix details the model-checking algorithmsTBIN-TCTls. Versions presented are depth-first-search
algorithms, however non-recursive implementations ase available in RMEO.

A. Model-checking algorithms for TPN-TC¥L

1) Model CheckingdoUi: The aim of the algorithm is to look for a pathg, vo) — -+ — (sn,vy,) such that
for all states(s;,v;) = ¢ and(s,,v,) = 9 in the time constraint window. Finding such a path is possible by
enumerating the reachable states of the TPN and looking ftate verifyingy in the time intervall.

Algorithm 2 CheckEU (s, @,1, 1)
Visited < 0
—_— _
sop = Post (M, 0)
return checkEUgyz (s, p, 1, 1)

Algorithm 3 CheckEU 4y (s, ¢, 1, 1)

(M,Z) «— s

if M =¢yAZNI#0then
/I First stopping criterion:
/I The propertyy is true for some valuations it.
return True

else if M |~ ¢ then
/I Second stopping criterion:
/I The propertyy doesn't hold.
/I Don't investigate further for this state.
return False

else
Z'— 7N [O,Imam)
if Z/ =0 then

/I Third stopping criterion:
/[ There is no time left for the property to hold.
return False
else
Il ¢ is true and there is time left foE'@Uvy to hold.
/I Look in successors to find an accepting run
Visited < Visited U {s}
for all ¢ € firable(M, Z") do
e
s’ = Posty (M, Z')
if s € Visited then
if checkEUgy: (s, @,,1) then
return True
end if

end if
end for
/I No successors verify the property
return False

end if
end if

The algorithm converges by inclusion: if we reach a state (M, Z) C Visisted,i.e. there existy M, Z')
Visited such thatZ c Z’, the successors of are not computed since they will generate runs that are dhirea
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covered byZ’. Consequently, if the property is false fah/, Z’) then it is also false fo(M, Z); reciprocally, if
the property is true fofM, Z) then it is true for(M, Z').

2) Model CheckingdQrp: By definition 30 ;¢ == 3T rueUrp.

3) Model Checking/U;: By definition VO = =30 ;¢

4) Model CheckinglJ;p: By definition30;¢ = =V{—. Since the model-checking ©X); needs to converge
by equality, and thap is a state formula in our subset 8PN-TCTls, we use a specific algorithm to cheékl;.
It uses a convergence by inclusion, which ensures a fastapation time if the property holds.

Algorithm 4 CheckEG (s, p, 9, 1)
Visited < ()
— _
so = Post (M, 0)
return checkEG gy (s, @, 0, 1)

Algorithm 5 CheckEG g% (s, ¢, 1)
(M,Z) «— s
/I First stopping criterion:
Il ¢ doesn't hold.
if M = ¢ then
return False
else
Visited <« Visisted U {s}
/I Second stopping criterion:
Il is true for all valuations
if I C ZnNI then
return True
else
/I lterate through successors
for all ¢ € firable(s’) do
—_—
s’ = Post; (s)
if s € Visited then
if checkEG 4. (s, ¢, 1) then
return True
end if
end if
end for
/I no successors verify the property
return False
end if
end if

5) Model Checkingv{re: By definition VO;p = VTrueUrpy = —30;-¢. SO we can use the algorithm
checkEG(s,—¢, I) to decide the truth value of the property.

6) Model Checkingy ~~<. 1: We consider here the bounded response. It consists in wgifat every time
» becomes truey always holds in less thantime units. Using an additional boolean propebtyhat stores the
requirement for) to hold within ¢ time units, the property can be transformed iRfGy o[ (b = 2z < t) (see PhD
thesis of P. Petterson). This reduced to chek ..((—b A z > t) or also 3Oy o[ (b A z > t). This result in a
slightly modified3$; algorithm, that is: (1) we add an additional clogko store the time requirement far, (2)
each time a state for which starts to hold is encountereldjs set to true and is reset; (3) each time is true
the value oft is set to false. The algorithm stops if it encounters a statd shatb is true andz > t.
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Algorithm 6 CheckBoundedResponse(sg, p, 1, )
Visited < ()

so = (Mo, 0)
return —check BoundedResponse_aux (s, v, 1, c)

Algorithm 7 Check BoundedResponse_auz(s, ¢, 1, c)
(M, Z,b) «— s
if ZN(b,00) # 0 then
/I Stopping criterion:
I 1 doesn't hold within the timing constraint < ¢
return True
end if
if s =1 then
Il v is true, stop the need to verify for successors
b« false
else if =b A s = ¢ then
Il ¢ starts to hold
b« true
Z — Z[z (]
end if
/I Compute time successors
——
Z «— Post (Z)
Visited < Visited U{(M, Z,b)}
for all ¢ € firable(s) do
s' — Posty (M, Z)
if s & Visited then
if checkBoundedResponse_aux(s',p,1,c) then
return True
end if
end if
end for
return False

7) Model Checking/pU;1): Let (M, Z) a symbolic state for which we want to cheelU;v. Informally, we

can decide its truth value for this state using the followstegps:

« If there are some valuations efgreater thar,,,, then the property is false.

« If M =1+ and all the valuations for the global cloekof Z are inI then the property is true for this state.

o If M [~ ¢ (ie ¢ Vv 4) then the property is false.

« We compute the time successors(df, 7).

« We remove all the states such thatis true andz € I and note(M, Z’) this new symbolic state. Actually,
these states removed belong to paths that verifies the pyopée only need to verify states for whiah is
true andz < I,,,;,, that is every runs starting from them will eventually leadat state such that A z € I is
true.

« For each firable transition we compute the discrete suctesso

Concerning the convergence criterion, let us first suppbaethe TPN is non-zenbe. there are no loops in

null time. If we consider convergence by inclusion, sinoe TN is non-zeno, it is guaranted that the global time
progresses. Consequently, if we reach a stafeZ) such that” is included in someZ’ of a state(M, Z') already
visited, we are sure this can’'t be a loop in null time. Therthé property is true fo(M, Z’) it is also true for
(M, Z) and reciprocally if the property is false fonz, Z’).
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The problem is then to handle zeno runs for zeno TPN. Actubtlye algorithm converges by inclusion, it isn't
able to detect null time loops which may invalidate the properhus, to detect loops, we record the prefie.(
the trace of symbolic states) of the symbolic state being ke

Algorithm 8 CheckAU (s, ¢, 1, 1)
Visited «— 0
Prefix « ()
s0 = (Mo, 0)
return check AUque (s, 0,0, 1)




26

Algorithm 9 Check AU gy (8, @, 1, 1)

AR
(M,Z) « s
2= 200 1nin) Y ZLin Tnaz) Y Lo ing)
if M =1 then
/I First stopping criterion:y) A I doesn't hold for all states
if Z(Inlazﬂ:nf) 75 (0 then
return False
end if
/l We select only states for whiehA I doesn’t hold.
7' — ZN(0, Lnin)
/I Sopping criterion:p doesn’t hold
else if M £ ¢ then
return False
else
/I We compute time successors
7' — timeNext(Z)
/I Iterate through successors to test if all path are valid
Visited — Visited U {s}
for all ¢ € firable(M,Z") do
Prefix «— PrefixUs
s’ «— discreteNext(M, Z',t)
/I Test if it is a loop state
if s’ € Prefixz then
return False
end if
/l'If it is already visited and not in prefix the property still Ids.
if s’ & Visited then
if not checkAU . (', p, 9, I) then
return False
end if
end if
Prefix «— Prefiz\ s
end for
/I All successors verify the property
return True
end if




