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Abstract

We considerTime Petri Nets(TPN) for which a firing time interval is associated with eachtransition. State
space abstractions for TPN preserving various classes of properties (LTL, CTL, CTL∗) can be computed, in terms
of so called state classes. Some methods were proposed to check quantitative timed properties but are not suitable
for effective verification of properties of real-life systems.

In this paper, we considersubscriptTCTL for TPN (TPN-TCTL) for which temporal operators are extended
with a time interval, specifying a time constraint on the firing sequences. We prove the decidability ofTPN-TCTL
on bounded TPN and give its theoretical complexity.

We propose a zone based state space abstraction that preserves marking reachability and traces of the TPN.
As for Timed Automata (TA), the abstraction may use an over-approximation operator on zones to enforce the
termination. A coarser (and efficient) abstraction is then provided and proved exact w.r.t. marking reachability and
traces (LTL properties).

Finally, we consider a subset ofTPN-TCTLproperties (TPN-TCTLS ) for which it is possible to propose efficient
on-the-fly model-checking algorithms. Our approach consists in computing and exploring the zone based state space
abstraction. On a practical point of view, the method is integrated in ROMEO [24], a tool for Time Petri Nets edition
and analysis. In addition to the old features it is now possible to effectively verify a subset of TCTL directly on
Time Petri Nets.

Index Terms

Time Petri Net, Model-checking, TCTL, zone based state space abstraction.

I. INTRODUCTION

Framework

Verification of concurrent systems is a complex task that requires powerful models and efficient analysis tech-
niques. Model checking is one of the most popular verification techniques of concurrent systems. In this framework,
the behavior of a system is represented by a finite (or infinite) transition system, and the properties to be verified are
expressed in either a standard temporal logic (LTL, CTL, CTL∗), or in its time extension (MITL, TCTL). Properties
are checked by exploring the transition system.

This paper aims to apply the TCTL model checking techniques to Time Petri Nets.
The two main time extensions of Petri Nets are Time Petri Nets(TPN) [33] and Timed Petri Nets [37]. While a

transition can be fired within a given interval for TPN, in Timed Petri Nets, transitions are fired as soon as possible.
There are also numerous ways of representing time. TPN are mainly divided in P-TPN, A-TPN and T-TPN where
a time interval is relative to places (P-TPN), arcs (A-TPN) or transitions (T-TPN). Concerning the timing analysis
of these three models ((T,P,A)–TPN), few studies have been realized about model-checking.

The class T-TPN is the most commonly-used subclass of TPN andin this paper we focus on this subclass that
will be henceforth referred to as TPN. For classical TPN, boundedness and reachability are undecidable, and works
on this model report undecidability results, or decidability under the assumption that the TPN is bounded (e.g.
reachability in [36]).

Another common formalism to model timed systems is the one ofTimed Automaton (TA). TA consists in a time
extension of finite state automaton with clocks. Clocks constraints can be associated with transitions (guards) or
with states (invariants) and are interpreted as firing constraints of the transition or as a delay constraint for idling in
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a state. The model-checking of TCTL properties was proven decidable [3] and some efficient tools were developed
to model-check both qualitative and quantitative time properties (i.e.: UPPAAL [30], KRONOS [41], HYTECH [29]).

Related Work

State space abstractions for TPN:We can find in the literature several state space abstractions for the TPN
model. The well known are: theState Class Graph (SCG)[10], the Geometric Region Graph (GRG)[40], the
Strong State Class Graph (SSCG)[13], the Zone Based Graph (ZBG)[25] and theAtomic State Class Graphs
ASCGs[40], [13], [15]. These abstractions may differ from the class of properties they preserve. State Class
Graphs provide finite representations for the state space ofbounded TPN preserving either the LTL properties [10]
or CTL∗ properties [13], [40], [15] of the state space. The Geometric Region Graph [40] preserves LTL properties
and the region based algorithm in [34] preserves CTL properties on safe T-TPN without∞ as latest firing time.
The Zone Based Graph marking preserves reachability or LTL properties according to the convergence criterion
selected to compute the state graph.

TCTL model checking of TPN:Given these abstractions, some methods were proposed to check quantitative
timed properties but are not suitable for effective verification of properties on real-life systems. The first approach
to verify quantitative properties was the translation of the TPN into a timed bisimilar TA. [19], [20] proposes a
structural approach: each transition is translated into a TA using the same pattern. In [31], [32], the authors propose
a method for building the State Class Graph of a bounded TPN asa TA. Such translations show that TCTL and
CTL are decidable for bounded TPN and that developed algorithms on TA may be extended to TPN. Recently,
Virbitskaite and Pokozy in [39] proposed a method to model-check TCTL properties on TPN. The method is based
on the region graph and is similar to the one proposed by Alur and Dill [1] extended by Yovine and Tripakis [38],
and Penczeck [35] for TA. The TCTL formula is translated intoa CTL formula and then model-checked using
classical CTL algorithms on a modified TA. However, the region graph is known to be a theoretical method which
is not applicable in practice because of its lack of efficiency. In [28], authors proposed, using the observer and the
state class graph methods, an on-the-fly model checking for asubclass of TCTL properties. However, the state class
graph method is known [13] to be not suitable for the classical CTL model checking such as fix point technique.

Our contribution

We define a TCTL for TPN (TPN-TCTL) based on Generalized Mutual Exclusion Constraints (GMEC) [27].
A direct proof of the decidability of the model-checking ofTPN-TCTLon bounded TPN is given as well as its
complexity.

We propose a zone based state space abstraction that preserves marking reachability and traces of the TPN.
As for Timed Automata (TA), the abstraction may use an over-approximation operator on zones to enforce the
termination. A coarser (and efficient) abstraction is then provided and proved exact w.r.t. marking reachability and
traces.

We finally consider a subset ofTPN-TCTLproperties (TPN-TCTLS) for which it is possible to propose efficient
“on-the-fly” model-checking algorithms, that is, model-checking the property while the state space is computed.
Thus, it allows to stop the construction as soon as the truth-hood of the property is known. The method, based on
the zone based state space abstraction, is implemented and integrated in the tool ROMEO [24].

Outline of the paper

We first recall the definitions and semantics of TPN in sectionII. Section III is dedicated toTPN-TCTL, its
decidability and its complexity. In section IV, we present azone based forward method to compute the state space
of a bounded TPN and in section V, some coarser approximations to reduce the effective cost of its computation.
Finally, we consider in section VI the on-the-fly model-checking of a subset ofTPN-TCTL (TPN-TCTLS) and
provide algorithms based on the Zone Based Graph method. Practical examples are then considered in section VII.
Finally, we conclude with our ongoing works and perspectives in Section VIII.
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II. D EFINITIONS

A. Notations

We denoteAX the set of mappings fromX to A. If X is finite and|X| = n, an element ofAX is also a vector
in An. The usual operators+,−, < and = are used on vectors ofAn with A = N,Q,R and are the point-wise
extensions of their counterparts inA. For avaluationν ∈ AX , d ∈ A, ν+d denotes the vector(ν+d)(x) = ν(x)+d,
and forX ′ ⊆ X, ν[X ′ ← 0] denotes the valuationν ′ with ν ′(x) = 0 for x ∈ X ′ and ν ′(x) = ν(x) otherwise.
Finally, we denoteQ≥0 (respectivelyIR≥0) the set of positive (or null) rational (respectively real)numbers.

B. Timed Transition Systems

Definition 1 (Timed Transition Systems):A timed transition system (TTS)over the set of actionsΣ is a tuple
S = (Q,Q0,Σ,−→) whereQ is a set of states,Q0 ⊆ Q is the set of initial states,Σ is a finite set of actions
disjoint from IR≥0, −→⊆ Q× (Σ ∪ IR≥0)×Q is a set of edges. We also writeq

e
−−→ q′ for (q, e, q′) ∈−→.

In the case ofq
d
−−→ q′ with d ∈ IR≥0, d denotes a delay and not an absolute time (q′ is also denotedq + d).

We assume that in any TTS there is a transitionq
0
−−→ q′ and in this caseq = q′. Let qi ∈ Q be a state ofS. A

run ρ of qi is a maximal (finite or infinite) sequence of alternating timeand discrete transitions of the form:

ρ = qi
di−−→ qi + di

ai−−→ qi+1
di+1

−−−−→ qi+1 + di+1
ai+1

−−−−→ · · ·

The total elapsed time ofρ, denotedtime(ρ), is the sum
∑l

k=0 di+k, l being the number of time transitions inρ (
l =∞ if ρ is an infinite run). In caseρ is infinite, it is said to bezenoiff time(ρ) <∞. The trace ofρ is the sequence
wuntimed(ρ) = (ai)(ai+1) · · · and the timed trace ofρ is the sequencewtimed(ρ) = (di, ai)(di+1, ai+1) · · · . ρ is a
run of S iff qi ∈ Q0. The set of runs ofqi is denotedπ(qi). The set of runs ofS is the union of runs of its initial
states (

⋃

q0∈Q0

π(q0)). Similarly, the set of traces (resp. timed traces) ofS is the union of traces (resp. timed traces)

of its initial states.

C. Time Petri Nets

Time Petri Nets (TPN) are a time extension of classical Petrinets. Informally, with each transition of the net is
associated an implicit clock and an explicit time interval.The clock measures the time since the transition has been
enabled and the time interval is interpreted as a firing condition: the transition may fire if the value of its clock
belongs to the time interval.

Formally:
Definition 2 (TPN): A Time Petri Net is a tuple(P, T,•(.), (.)•, α, β,M0) defined by:
• P = {p1, p2, . . . , pm} is a non-empty set of places,
• T = {t1, t2, . . . , tn} is a non-empty set of transitions,
• •(.) : T → INP is the backward incidence function,
• (.)• : T → INP is the forward incidence function,
• M0 ∈ INP is the initial marking of the Petri Net,
• α : T → Q≥0 is the function giving the earliest firing times of transitions,
• β : T → Q≥0 ∪ {∞} is the function giving the latest firing times of transitions.

As a shorthand, we noteαi andβi for α(ti) andβ(ti).
A Petri netmarkingM is an element ofINP such that for allp ∈ P , M(p) is the number of tokens in the place

p.
Let M be a marking of a TPN.M enablesa transitiont if M ≥• ti. The set of transitions enabled by a marking

M is notedenabled (M).
A transition tk is said to benewlyenabled by the firing of a transitionti if M −•ti + t•i enablestk andM −•ti

does not enabletk. If ti remains enabled after its firing thenti is considered newly enabled. The set of transitions
newly enabled by the firing of a transitionti for a markingM is noted↑enabled(M, ti).

We notexi the clock associated with a transitionti ∈ T of the TPN.v ∈ (IR≥0)
T is a valuationof the system.

For anyti ∈ T , v(ti) (also notedvi), is the time elapsed since the transitionti has been newly enabledi.e. the
valuation of the clockxi. 0̄ is the initial valuation with∀i ∈ [1..n], 0̄i = 0.
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The semantics of a TPN is defined as a Timed Transition System (TTS).
A state of the TTS is a coupleq = (M,v) whereM is a marking of the TPN andv a valuation of the system.

Definition 3 (Semantics of a TPN):The semantics of a TPNN = (P, T,•(.), (.)•, α, β,M0) is defined by the
Timed Transition SystemSN = (Q, {q0},Σ,→):

• Q = INP × (IR≥0)
T

• q0 = (M0, 0̄)
• Σ = T

• →∈ Q× (T ∪ IR≥0)×Q is the transition relation including a discrete transitionand a continuous transition.
• The continuous transition is defined∀d ∈ IR≥0 by:

(M,v)
d
−→ (M,v′) iff

{

v′ = v + d

∀k ∈ [1..n], M ≥• tk ⇒ v′k ≤ βk

• The discrete transition is defined∀ti ∈ T by:

(M,v)
ti−→ (M ′, v′) iff































M ≥• ti

M ′ = M −•ti + t•i

αi ≤ vi ≤ βi

∀k ∈ [1, n], v′k =

{

0 if tk ∈ ↑enabled(M, ti)

vk otherwise

The Time Petri Net runs are those of its Timed Transition System. A TPN model is said to bezenoif at least
one of its runs is zeno. The set ofreachable markingsof N is denotedReach(N ). If the setReach(N ) is finite

we say thatN is bounded. As a shorthand, we write(M,v)
(d,t)
−−−→ (M ′, v′) for a sequence of time elapsing and

discrete steps like(M,v)
d
−→ (M,v + d)

t
−→ (M ′, v′).

III. TCTL FOR TIME PETRI NETS

In this section, we will introduce a TCTL for the TPN (TPN-TCTL) and prove that the model-checking of a
TPN-TCTLformula on any bounded TPN is decidable and is a PSPACE-complete problem.

A. TCTL for Time Petri Nets

We propose a definition of TCTL [1], for the TPN, based on Generalized Mutual Exclusion Constraints (GMEC)[27].
A definition withoutGMECwas already introduced in [20] and translated into a standard TCTL for Timed Automata;
the TCTL property is then checked on a structural translation of the TPN into TA.

The following definition extends the Generalized Mutual Exclusion Constraints (GMEC) introduced in [27].

Definition 4 (GMEC): Assume a TPN withm placesP = {p1, p2, · · · , pm}. A Generalized Mutual Exclusion
Constraint (GMEC) is inductively defined by:

GMEC ::=

(

m
∑

i=1

ai ∗M(pi)

)

⊲⊳ c | ϕ ∨ ψ | ϕ ∧ ψ | ϕ⇒ ψ

whereai ∈ Z, M is a keyword representing a marking,pi ∈ P , ⊲⊳ ∈ {<,≤,=, >,≥}, c ∈ N andϕ,ψ ∈ GMEC.
Operators∨,∧ and⇒ are defined as usual.

Intuitively, M(pi) ⊲⊳ c means that the current marking of the placepi is in relation⊲⊳ with c.
Given a markingM and aGMEC γ, we denoteM |= γ (respectivelyM 6|= γ) when the GMECγ is true

(respectively false) for the markingM .

Definition 5 (TCTL for TPN):The temporal logicTPN-TCTLis inductively defined by:

TPN-TCTL::=GMEC | false | ¬ϕ | ϕ⇒ ψ | ∃ϕ UIψ | ∀ϕ UIψ
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wherefalse is a keyword,ϕ,ψ ∈ TPN-TCTL, I ∈ {[a, b], [a, b), (a, b], (a, b)} with a ∈ N andb ∈ N ∪ {∞}.

Operators (¬, ⇒, ∧, ∨ are defined as usual. We also use the following familiar abbreviations:true = ¬false,
∃♦Iφ = ∃true UIφ, ∀♦Iφ = ∀true UIφ, ∃�Iφ = ¬∀♦I¬φ, ∀�Iφ = ¬∃♦I¬φ.

The semantics ofTPN-TCTLis defined on timed transition systems. Let us consider a TPNN = (P, T,•(.), (.)•, α, β,M0)
and its semanticsSN = (Q, {q0}, T,→). The truth value of aTPN-TCTLformula for a stateq = (M,v) is given
in the figure 1.

q |= GMEC iff M |= GMEC
q 6|= false

q |= ¬ϕ iff q 6|= ϕ

q |= ϕ⇒ ψ iff q 6|= ϕ or q |= ψ

q |= ∃ϕ UIψ iff ∃ρ = q1
d1−→ q1 + d1

t1−→ q2... ∈ π(q), ∃i > 0,∃δ ∈ [0, di], s.t.










(
∑i−1

j=0 dj

)

+ δ ∈ I (with d0 = 0) andqi + δ |= ψ

(∀δ′ ∈ [0, δ[, qi + δ′ |= ϕ)

(∀j s.t. 0 < j < i,∀δ′ ∈ [0,dj], qj + δ′ |= ϕ)

q |= ∀ϕ UIψ iff ∀ρ = q1
d1−→ q1 + d1

t1−→ q2... ∈ π(q), ∃i > 0,∃δ ∈ [0, di], s.t.










(
∑i−1

j=0 dj

)

+ δ ∈ I (with d0 = 0) andqi + δ |= ψ

(∀δ′ ∈ [0, δ[, qi + δ′ |= ϕ)

(∀j s.t. 0 < j < i,∀δ′ ∈ [0,dj], qj + δ′ |= ϕ)

Fig. 1. Semantics ofTPN-TCTL

The TPNN satisfies the formulaϕ of TPN-TCTL, which is denoted byN |= ϕ, iff the first state ofSN satisfies
ϕ, i.e. (M0, 0) |= ϕ.

B. Decidability and complexity of TPN-TCTL

We give a short direct proof of the decidability ofTPN-TCTLbased on theregion graph[1], [3]. Note that the
decidability was already proven in [20], [32] as a corollaryof bisimilar translations from TPN to TA. Moreover
we prove that the model-checking of aTPN-TCTLformula on a bounded TPN is a PSPACE-complete problem.

1) Decidability of TPN-TCTL:LetN = (P, T,•(.), (.)•, α, β,M0) be a TPN andSN = (Q, {q0}, T,→) its TTS.

Definition 6 (Clock equivalence – Region):Let q = (M,v) ∈ Q be a state of a TPN andCM the set of clocks
associated with transitions enabled for markingM . For each clockxi ∈ CM associated with transitionti, let ci = βi

if βi 6=∞ elseci = αi. For a ∈ IR≥0 we denote⌊a⌋ the integer part ofa and 〈a〉 its fractional part.
The equivalence relation≃ is defined over the set of statesQ. (M,v) ≃ (M ′, v′) iff all the following conditions

hold:
1) M = M ′

2) For all xi ∈ CM , either⌊v(xi)⌋ and⌊v′(xi)⌋ are the same, or bothv(xi) andv′(xi) are greater thanci.
3) For all xi, xj ∈ CM with v(xi) ≤ ci andv(xj) ≤ cj , 〈v(xi)〉 ≤ 〈v(xj)〉 iff 〈v′(xi)〉 ≤ 〈v

′(xj)〉.
4) For all xi ∈ CM with v(xi) ≤ ci, 〈v(xi)〉 = 0 iff 〈v′(xi)〉 = 0.

A region is an equivalence class of clock valuations induced by the relation ≃.
Intuitively, the meaning of such a definition is that the integral parts allow to determine whether or not a particular

firing condition is satisfied whereas the ordering of the fractional parts is necessary to decide which clock will
change its integral part first (and thus the successor region) when the time elapses.

In dimension 2 withci = 3 and cj = 2 we obtain the partition of the figure 2. The regions are: integer points,
open segment between two integer points, inside of the surfaces delimited by the segments.

For example, regionsr1 andr2 of figure 2 can be described by :r1 : (2 < v(xi) < 3) ∧ (1 < v(xj) < 2) ∧ 0 <
〈v(xj)〉 < 〈v(xi)〉 andr2 : (v(xi) > 3) ∧ (1 < v(xj) < 2)
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xj

xi0
1

r1 r2

2 3

1

2

Fig. 2. Partition for 2 clocksxi andxj with ci = 3 andcj = 2

Definition 7 (TPN-Region Graph):Given a TPNN and its timed transitions systemSN , the TPN-region graph
is the quotient graph ofSN with respect to the equivalence relation≃.

In [2], [1], authors show that TCTL model-checking can be performed by computation of the region graph of
timed graph with an additional clockx used to measure time elapsing between configurations. Letϕ be any TCTL-
formula. For every subscript∼ c appearing in a formulaϕ let there be a new propositionp∼c. A vertex (s, γ)
(whereγ is an equivalence class induced by the clock equivalence relation) is labeled withp∼c if γ |= x ∼ c, else
with ¬p∼c. Then vertexes are labelled with syntactic subformulas ofϕ, or their negation, starting from subformulas
of length 1, length 2, and so on. To label the vertex(s, γ) of the region graph satisfying∃ϕ1U∼cϕ2, it needs to
check the formula∃ϕ1U(p∼c ∧ ϕ2) on state(s, γ[x← 0])

The TPN-region graph then allows to prove the following theorems for TPN (we refer the reader to [3], [2], [1]
for detailed proofs of these two theorems):

Theorem 1 (TPN-TCTL decidability): TPN-TCTLis decidable for bounded TPN.

Theorem 2:Given a k-bounded TPNN , its number of regions is bounded by:

(k + 1)|P |.|T |! · 2|T | ·
∏

ti∈T

(2 · ci + 2)

Proof: For a fixed marking, the number of equivalence classes of clock valuations induced by the relation≃
is bounded (like in [3]) by|T |! · 2|T | ·

∏

ti∈T

(2 · ci + 2). Moreover, the number of markings of a k-bounded TPN, is

bounded by(k + 1)|P |.

2) Complexity of TPN-TCTL:To our knowledge reachability and model-checking complexities are still open for
TPN. For a state (M,ν), the value of a clock associated with a transition which is not enabled by the marking
M does not matter. The region graph proposed here is then exponential in the size of the input i.e. the maximum
number of transitions simultaneously enabled + the number of places of a TPN. However, the following theorem
holds :

Theorem 3 (PSPACE-completeness):The model-checking of aTPN-TCTL formula on a bounded TPN is a
PSPACE-complete problem.

Proof:

• First, there exists a PSPACE algorithm based on the TPN-region graph to decideTPN-TCTLon bounded TPN:
For k-bounded TPN, each marking belongs to([0..k])P . By encoding in binary, marking can be represented
in |P |.log2(k + 1) bits i.e. in polynomial space. Then, a region can be represented in polynomial space too.
Since the number of regions of the TPN region graph is exponential in the size of the inputl ( the number
of transitions simultaneously enabled + the number of places of a TPN), if we construct it entirely, and label
its vertices with the subformulas of a TPN-TCTL properties,the algorithm will need space exponential inl.
However, we can proceed like in [1]: for formulas of the formϕ = ∃ϕ1UIϕ2, it is possible to check TCTL
formulas by nondeterministically exploring a path, regionby region. The path is labelled on-the-fly by a
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polynomial space procedure like in [1] (A recursive procedure label(vertex, ϕ) which returnstrue if vertex
should be labelled withϕ otherwisefalse). It just needs to remember the current guess and the previous
guess. By Savitch’s theorem, the deterministic version of the algorithm uses only polynomial space. The cases
ϕ = GMEC, ϕ = false andϕ = ϕ1 ⇒ ϕ2 are straightforward. For the caseϕ = ∀ϕ1UIϕ2, the negation of
ϕ can be written using existential path-quantifiers.

• The PSPACE-hardness is a consequence that reachability in untimed 1-safe Petri net is a PSPACE-complete
problem [21].

IV. STATE SPACE ABSTRACTION

Since we consider a dense time semantics for our model of TPN,the set of configurations of its Timed Transitions
Systems cannot generally be exhaustively enumerated. The region graph presented in the previous section abstracts
finitely and in a correct way the behaviors of timed automata or bounded time Petri nets. However, such a
construction does not support a natural implementation as it runs up against the state explosion problem. We
will present, in this section, an abstraction of the state space of a bounded TPN based on convex union of regions.
This abstraction will allow to develop a complete frameworkfor the analysis and model-checking of reachability
properties (reachability of markings), both linear (LTL) and branching (CTL) properties and quantitative branching
properties (TCTL).

A. Zone based state space computation

We briefly present the method used to compute the state space of a TPN using a zone based forward algorithm.
We refer the reader to [25], [26] for a detailed presentationof the algorithm. Model-checking algorithms will be
adaptations of this algorithm.

1) Definitions: We first give some classical definitions.

Definition 8 (Zone):LetX be a finite set of clocks. AzoneoverX is a convex set of clock valuations representing
a conjunction of atomic constraints of the formxi−xj ≺ cij , xi ≺ ci0, −xj ≺ c0j wherexi, xj ∈ X, cij , ci0, c0j ∈
Q ∪ {−∞,∞} and≺∈ {≤, <,=,≥, >}.

Let x0 be a clock zero1 andZ a zone over set of clocksX. All atomic constraints ofZ can be rewritten as
constraints on clock differencesxi − xj ≺ zij , with xi, xj ∈ X ∪ {x0}, zij ∈ Q ∪ {∞} and≺∈ {≤, <}, i.e.:

Z =
⋂

xi,xj∈X∪{x0}

(xi − xj ≺ zij)

A zone is a particular form of polyhedra that can be efficiently encoded using DBM (Difference Bounded Matrices
[11], [23]). This data structure allows easier representation and lower complexity algorithms (at most cubic in the
number of clocks of the DBM) than general polyhedra.

Though a set of clocks valuations may be expressed by different conjunctions of constraints, there exists a
unique form, called canonical form, that allows to compare zones together. A canonical form of a zoneZ is the
representation with tightest bounds on all clock differences. Its computation is based on the shortest pathFloyd-
Warshall’s algorithm and is considered as the most costly operation (cubic in the number of clocks of the zone).
A zoneZ is then in canonical form iff∀xi, xj ∈ (X ∪ {x0}), zij = SupZ(xi − xj), whereSupZ(xi − xj) is the
supremum (i.e. the least upper bound) ofxi−xj in Z. In all the following, we will only consider the canonical form
of a zone, that is any zoneZ will stand for its canonical form. Therefore, the set of clocks ofZ contains the clockx0.

Let Z be a zone over a set of clocksX andX ′ ⊆ X a subset of clocks ofX. The restriction ofZ to X ′ denoted
Z|X′ is the zoneZ ′ obtained by puttingZ in canonical form and then eliminating all variables ofX −X ′.

1The value of this clock is always 0.
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The future ofZ, denoted
−→
Z , is the zone obtained by puttingZ in canonical form and then replacing each

constraint of the formxi − x0 ≺ zi0, wherexi 6= x0, by xi − x0 <∞.

Definition 9 (Symbolic state):A symbolic stateof a TPN is a couple(M,Z) whereM is a marking andZ is a
zone whose clocks are those associated with transitions enabled by the markingM .

Informally, the symbolic state(M,Z) represents the set of clock valuations (Z) for which the markingM is
reachable according with the TPN semantics.

Definition 10 (Discrete Successors):Let s = (M,Z) be a symbolic state andti a transition ofenabled(M).
Transition ti is firable from s iff the zoneZ ∩ {xi ≥ αi} is non-empty. Ifti is firable from s, then the set of
discrete successorsof s by the firing of transitionti is:

Postti
(s) =

(

M ′, Z ′
)

with







M ′ = M −•ti + t•i

Z ′ = (
(

Z ∩ {xi ≥ αi})|O
)

∩
⋂

xj∈N

{xj = 0}

Z ∩ {xi ≥ αi} represents the set of valuations for which the transitionti is firable.O is the set of clocks of
transitions which are enabled inM ′ but not newly enabled.N is the set of clocks newly enabled by the firing of
transitionti in the markingM (i.e. the clocks associated with transitions of↑enabled(M, ti)).

Posttk
(s) represents all states that are reachable froms by the firing of the discrete transitiontk.

Definition 11 (Time Successors):Let s = (M,Z) be a symbolic state andX the clock set ofZ. The set oftime
successorsof s is the symbolic state:

−−→
Post (s) = (M,Z ′) with Z ′ =

−→
Z ∩

⋂

xi∈X−{x0}

{xi ≤ βi}

−−→
Post (s) is the set of states that are reachable froms by elapsing time in the markingM . Time can grow until

a clock reaches its latest firing time.
In addition we note :

−−→
Postti

(s) =
−−→
Post (Postti

(s))

2) State Space Computation Algorithm:The aim of the algorithm is to iteratively compute from a symbolic state
the set of reachable symbolic states.Starting from the initial symbolic state

−−→
Post ((M0, Z0)) (whereM0 is the

initial marking and clocks ofZ0 are all equal to0) of a TPN, successor symbolic states are iteratively computed
as follows: Lets = (M,Z) be a reachable symbolic state. For each transitiontk firable in the symbolic states:

1) Compute the discrete successors′ = Posttk
(s), that is the symbolic state resulting by firing transitiontk.

2) Compute the time successors” =
−−→
Post (s′), that is all states (including those of s’) reachable by timeelapsing

from those ofs′.

The construction of the ZBG is given in Algorithm 1, whereWaiting is a list to store the symbolic states to
be analyzed andPassed symbolic states that were analyzed. According to the criterion of convergence selected
(equality of symbolic states or inclusioni.e. how s 6∈ Passed is coded), one can compute the marking graph of
the TPN or a graph preserving markings and traces of the TPN (LTL properties).

3) k-approximation: If the net contains some transitions with∞ as latest firing time, a last step consisting in
applying an approximation operator is needed to ensure the convergence, else the algorithm exactly computes the
state space of the TPN. Actually, if we consider the TPN of figure 3, the infinite firing sequence(t2, t3)∗ generates
the infinite sequences of zonesZi = {2i ≤ x1 ≤ 2i+ 1 ∧ x1 − x2 = 2i}, even if the model is bounded (i.e. has a
finite number of reachable markings).
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Algorithm 1 Zone Based Graph Algorithm
s0 = (M0, Z0)

Waiting ← {
−−→
Post (s0)}

Passed← ∅
while Waiting 6= ∅ do
s = pop(Waiting)
if s 6∈ Passed then

for all t ∈ enabled(s) do
s′ =

−−→
Post (Postt (s))

Waiting ←Waiting ∪ {s′}
end for
Passed← Passed ∪ {s}

end if
end while

• •p1 p2

p3

t1[0,∞[ t2[1, 1] t3[1, 1]

Fig. 3. Bounded TPN with an unbounded number of zones

V. A PPROXIMATIONS OF ZONES

A. Introduction

Approximation of zones is needed, for TPN with unbounded transitions to ensure the finiteness for clock based
abstractions (region as well as zone based). This operationtakes into account the constants with which clocks
are compared and consists of extending domains of clocks whilst preserving reachable markings and traces of the
model (i.e. each state added by an approximation can be simulated by a state within the originate zone).

Moreover, the coarser we may choose the abstraction, the more efficient the method will be.

Related work: The classical abstraction method for timed automata, knownunder the namesnormalization,
extrapolationor k-approximation, takes into account the maximum constants to which the various clocks are
compared. [22] describes this method and a number of additional abstraction techniques including active clock
reduction and the over-approximating convex hull abstraction. In [4], the maximum constants used in the abstraction
do not only depend on the clocks but also on the particular locations of the timed automata. In [5], [6], authors
show that, by distinguishing maximal lower and upper bounds, significant coarser abstractions can be obtained.

Most of the above zone based abstractions require that guards are restricted to conjunctions of simple lower or
upper bounds on individual clocks. We refer the reader to [18] to learn more about zone based abstractions in the
presence of difference constraints, and to [4] for a solution based on zone splitting.

Specificities of TPN:Contrary to TA, in TPN, a transition cannot be disabled by elapsing time [8]. It means
that if a transition is enabled in a particular stateq, for all runs starting fromq, either this transition is fired or is
disabled by the firing of another transition. A consequence is that the notion of active clocks can obviously be used
by considering in a zone only the enabled transitions. Moreover, we can search improvement ofk-approximation
by focussing our attention on the following case : a valuation of a clock cannot exceed its maximal bound.

In this section, we apply thek-approximationto TPN (as in [25], [26]) and we propose
• an adaptation of the well known improvement on TA [22], [7] based on a different value ofk for each

unbounded transition.
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• an improvement of the method leading to an abstraction that we show coarser than that of [6].
Moreover, we prove that these abstractions are exact w.r.t.reachable markings and traces.

B. k-approximation

The first approximation proposed for timed automata [22] consists of selecting an integerk equal to the maximum
finite constant appearing in the time constraints of the model. This approximation is based on the fact that once
the clock has over passed the valuek, its precise value does not matter anymore. In the context oftime Petri nets,
k is equal to the maximum finite constant appearing in the firingtime intervals of the TPN. Each symbolic state
(M,Z) is then approximated in(M,Z ′) using the followingk-approx function:

Definition 12 (k-approx): Let Z be a zone (in canonical form) over a set of clocksX. k-approx (Z) = Z ′ is
defined by:

∀xi, xj ∈ X, z′ij =











∞ if zij > k

−k if zij < −k

zij otherwise.

The algorithm then computes at each iteration:
−−→
Postkti

(s) = k-approx
(−−→
Postti

(s)
)

Recent works on Timed Automaton [17], [18] proved that this operation generally leads to an over-approximation
of the reachable localities of TA. For TPN, [25], [26] prove the correctness of the zone based abstraction with
k-approximation w.r.t. the set of reachable markings and traces of the TPN.

C. kx-approximation

The first improvement ofk-approximationis to consider a distinct valuekxi
for each clockxi. kxi

is equal to
the maximum finite constant appearing in time constraints onclock xi. The underlying idea is: if a clockxi grows
beyond the valuekxi

, its precise value does not matter and the resulting zone hasexactly the same behavior than
its originate symbolic state(M,Z) w.r.t. traces.

Definition 13 (kx-approx): Let Z be a zone (in canonical form) over a set of clocksX.
kx-approx(Z) = Z ′ is defined by:

∀xi, xj ∈ X, z′ij =











∞ if zij > kxi

−kxj
if zij < −kxj

zij otherwise.

For time Petri nets, clocks are associated with transitionsand compared with bounds of static firing intervals of
their transitions. Therefore, for a clockxi of a transitionti, its kxi

is defined by:

kxi
=

{

αi if βi =∞

βi otherwise.

In addition, for any bounded transitionti (i.e. βi 6= ∞), its clock cannot overpassβi. Note that, in this case,
kxi

= βi. Then, the following relations hold:∀ti, tj ∈ enabled(M),

(1) βi 6=∞ ⇒ zij ≤ zi0 ≤ βi = kxi

(2) βj 6=∞ ⇒ −kxj
= −βj ≤ z0j ≤ zij

Using the above relations, we can rewrite thekx-approx for time Petri nets as follows:

∀xi, xj ∈ X, z′ij =











∞ if zij ≥ αi ∧ βi =∞

−αj if zij ≤ −αj ∧ βj =∞

zij otherwise.
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By convention we suppose thatα0 = β0 = 0. Note that since intervals of time Petri nets are closed by the left, we
have replaced the strict relation (<) betweenzij , kxi

andkxj
by a larger one (≤).

By applying the forward algorithm usingkx-approx instead ofk-approx, we then build a coarser abstraction
(and consequently less symbolic states to explore) but still exact with respect to reachable markings and traces. We
refer the reader to section V-F for the proof of its exactness.

D. Lower and Upper bounds based approximations

In [6], authors have proposed two other approximations for timed automata, referred in the sequel byLUx-Approx
andLU∗

x -Approx. In these approximations, authors distinguish between lower and upper bounds of clocks. They
define, for each clockxi, two maximal bounds denoted respectivelyL(xi) and U(xi). L(xi) and U(xi) are
respectively the maximal lower bound and the maximal upper bound of clockxi in the time constraints of the
model. More precisely,L(xi) (resp.U(xi)) is the maximal constantk such that there exists, in the model, a
constraintxi ≥ c or xi > c (resp.xi ≤ c or xi < c). If such a constant does not exist,L(xi) (resp.U(xi)) is set
to −∞.

Definition 14 (LUx-Approx): Let Z be a zone (in canonical form) over a set of clocksX.
LUx-Approx(Z) = Z ′ is defined by:

∀xi, xj ∈ X, z′ij =











∞ if zij > L(xi)

−U(xj) if − zij > U(xj)

zij otherwise.

Definition 15 (LU∗
x -Approx): Let Z be a zone (in canonical form) over a set of clocksX.

LU∗
x -Approx(Z) = Z ′ is defined by:

∀xi, xj ∈ X, z′ij =































∞ if zij > L(xi)

∞ if − z0i > L(xi)

∞ if − z0j > U(xj), i 6= 0

−U(xj) if − z0j > U(xj), i = 0

zij otherwise.

In the context of time Petri nets, for each clockxj, L(xj) = αj, U(xj) = βj if βj 6=∞, U(xj) = −βj otherwise.
Moreover,xj cannot neither be negative nor overpassβj , it follows that∀ti, tj ∈ enabled(M),

(3) − βj ≤ z0j ≤ zij ≤ zi0

Then, the following relations always holds:∀ti, tj ∈ enabled(M), U(xj) = βj ≤ z0j ≤ zij , if βj 6= ∞, U(xj) =
−βj ≤ z0j ≤ zij otherwise.
Using the above relations,LUx-Approx(Z) = Z ′ can be simplified (by eliminating relations which never hold)
and rewritten for time Petri nets as follows:

∀xi, xj ∈ X, z′ij =











∞ if zij > αi

∞ if (βj =∞)

zij otherwise.

LU∗
x -Approx(Z) = Z ′ can be simplified and rewritten for time Petri nets as follows:

∀xi, xj ∈ X, z′ij =























∞ if zij > αi

∞ if − z0i > αi

∞ if (βj =∞)

zij otherwise.
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E. Our approximation

We propose to use another approximation operation which is exact and leads to much compact graphs. We refer
the reader to the section V-F, lemma 2 and theorem 4 for the proof of its exactness.

Definition 16 (k′x-approx): Let (M,Z) be a symbolic state in canonical form andX the clock set ofZ. Our
approximation ofZ, denotedk′x-approx(Z), is the canonical form of the DBMZ ′ defined as follows:

∀xi, xj ∈ X, z′ij =











∞ if βj =∞

∞ if zij − αi ≥ z0j

zij otherwise.

xj − xi = zji

xj = zj0

xi = zi0

xi − xj = zij

zij

xj = −z0j

xi = −z0i

αi zi0

xj

xi

Fig. 4. a DBM (light gray area) and itsk′
x-approx (light + dark gray area)

The comparison between [6] is depicted in figure 4. This figureshows that with our approximation the clock
domain ofxi is extended earlier (zij − z0j ≥ αi) than with approximations proposed in [6] (zij ≥ αi). Indeed,
for the DBM (light gray area) of the figure 4, we havezij 6≥ αi and the approximation of [6] can not be applied
whereaszij − z0j ≥ αi leading with our approximation to add the dark gray area. Such a situation can be obtained,
for example, with the TPN of figure 5 after firing of the sequence t1, t2, t3.

• • •P1 P2 P3

P4 P5

t1[0, 3] t2[4, 4] t3[1, 3]

t4[3, 3] t5[3, 5]

Fig. 5. Time Petri Net leading to the DBM of figure 4.

The following lemma establishes that our approximation leads to coarser graphs than those obtained using
LU∗

x -Approx. Indeed, our approximation produces larger zones than those obtained byLU∗
x -Approx(Z) and then

leads to coarser abstractions.

Lemma 1:For everyZ, it holds thatLU∗
x -Approx(Z) ⊆ k′x-Approx(Z).

Proof: It suffices to show that∀xi, xj ∈ En(M), if zij > αi ∨ −z0i > αi thenzij − αi ≥ z0j .
1) If zij > αi thenzij − αi > 0. Sincez0j ≤ 0, it follows that zij − αi ≥ z0j .
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2) If −z0i > αi then relationz0i + zij ≥ z0j implies that−z0j + zij ≥ −z0i > αi. Thenzij − αi ≥ z0j .
Moreover, sinceαi ≥ 0, relation−z0i > αi implies thati 6= 0.

F. Correctness of our zone based forward method

We now prove that the Zone Based Graph (ZBG) computed withkx-approximation or k′x-approximation is
exact i.e. both sound2 and complete.3

We have then to show that a symbolic state(M,Z) and its approximation (as proposed in section V-E) have
exactly the same traces. To achieve this goal, we prove, in lemma 2, that a zoneZ and its approximation have the
same firing domain. More precisely, a symbolic state and its approximation map to the sameBerthomieu’s state
class [13].We first show, in proposition 1, how to compute the firing domain of a zone. The idea of this proposition
is borrowed from [14] and adapted to zones. In [14], authors have shown how to compute the firing domain of
their state classes. Their state classes are based on past firing instants whileBerthomieu’s state classes are based
on future firing instants.

Definition 17: The firing domain of a symbolic state [14], [13].
Let (M,Z) be a symbolic state (Z is in canonical form) andq = (M,v) one of its states. The firing domainIv of
q = (M,v) is defined byIq : enabled(M)→ Q≥0 × (Q≥0 ∪ {∞}), Iq(ti) = [max(0, αi − vi), βi − vi].
The firing domain of(M,Z) is the union of the firing domains of all its states, i.e.:{Iq | q ∈ (M,Z)}

Proposition 1: Let (M,Z) be a symbolic state (Z is in canonical form) andX the set of clocks ofZ. The
canonical form of its firing domainD is:

∀xi, xj ∈ X, dij =

{

βi +min(z0i, zji − αj) if i 6= j

0 otherwise.

Proof: First we have to show that the firing domainD of (M,Z) is characterizable by a set of atomic
constraints. The following steps show how to do it:
Let Y = {yi | xi ∈ X} andY ′ = {y′i | xi ∈ X} be two disjoint sets of new variables (Y ∩ X = Y ′ ∩ X =
Y ∩ Y ′ = ∅). We suppose thatx0 = y0 = y′0 = 0.

1) Initialize D with
Z ∩

⋂

xi∈X−{x0}

{0 ≤ yi ∧ αi − xi ≤ yi ≤ βi − xi} (1)

Note that variables ofY represent delays.
2) Replace inD eachyi of Y by −y′i. We can then rewrite it to obtain:

Z ∩
⋂

xi∈X−{x0}

{

y′i ≤ 0 ∧ y′i − xi ≤ −αi ∧ xi − y
′
i ≤ βi

}

(2)

3) PutD in canonical form, renamex0 in y0 and eliminate all variablesxi.
4) Replace inD eachy′i by −yi.

The resultingD is a set of atomic constraints. Therefore,D is convex and has a unique canonical form defined
by: ∀yi, yj ∈ Y, dij = SupD(yi − yj).
The rest of the proof is based on theconstraint graphs. Let F be a set of atomic constraints. The constraint graph
of F is a weighted directed graph, where nodes represent variables of F, with one extra node representing the value
0. An arc connecting a nodeui to a nodeuj with weight (≺, c), where≺ is either< or ≤, represents any atomic
constraint equivalent toui − uj ≺ c.
We have the two following known results:

2Any trace in the model state space is also possible in the ZBG.
3Any trace in the ZBG is also possible in the model state space.
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• F has, at least, one solution (one tuple of values that satisfies, at once, all constraints inF ) if and only if, the
constraint graph ofF has no negative cycle,

• If the constraint graph ofF has no negative cycle, the weight of the shortest path, in thegraph, going from a
nodeui to a nodeuj , is equal to the supremum of(ui − uj) in F (SupF (ui − uj)).

Consider now the set of atomic constraints(2) above obtained at step2. Its constraint graph is shown in figure 6,
where solid arrows represent constraints ofZ and dashed ones are constraints to be added to obtain the constraint
graph of the firing domainD of Z. Recall thatx0 andy0 are respectively ”zero” nodes of constraint graphs ofZ

andD.
SinceZ is not empty,(2) is consistent and then its constraint graph has no negative cycle. In addition, since for all
xi ∈ X, y

′
i = −yi andx0 = y0 = y′0 = 0, it follows that the weight of the shortest path, in the constraint graph of

formula (2), connecting a nodey′i to a nodey′j is equal todji. By assumption,Z is in canonical form. The weight
of the shortest path connecting a nodexi to a nodexj, in the constraint graph ofZ, is thenzij . Knowing that for
all xi ∈ X, 0 ≤ xi ≤ βi, it follows that: for allxi, xj ∈ X, 0 ≤ zi0 ≤ βi, z0i ≤ 0 andzij ≤ zi0 + z0j ≤ βi + z0j .
Then, the added nodes and edges, to obtain the constraint graph of formula(2), do not affect weights of the shortest
paths connecting nodes ofX. It follows that:

dji = min(0 + z0j + βj ,−αi + zij + βj)

x0, y
′
0

y′i
xi xj

y′j

z0izi0 z0j

zj0

zij

zji

0
0

βi

−αi βj

−αj

Fig. 6. Constraint graph ofZ ∩
T

xi∈X−{x0}
{y′

i ≤ 0 ∧ y′
i − xi ≤ −αi ∧ xi − y′

i ≤ βi}

Lemma 2:Let (M,Z) be a symbolic state in canonical form,X its set of clocks,(M,Z ′) and (M,Z ′′) be
respectively itskx-approximation andk′x-approximation.
Then:(M,Z ′), (M,Z ′) and (M,Z ′′) have the same firing domain.

Proof: Let D, D′ andD′′ be respectively the firing domains of(M,Z), (M,Z ′) and (M,Z ′′). We have to
show thatD = D′ = D′′.
Note that we give only here the proof ofD = D′′. The proof ofD = D′ is very similar. Recall the canonical
forms ofD, D′′ andZ ′′: ∀xi, xj ∈ X,

dji =

{

βj +min(z0j , zij − αi) if i 6= j

0 otherwise.

d′′ji =

{

βj +min(z′′0j , z
′′
ij − αi) if i 6= j

0 otherwise
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Z ′′ is the canonical form of the zoneB defined by:∀xi, xj ∈ X,

bij =











∞ if βj =∞

∞ if zij − αi ≥ z0j

zij otherwise

Note thatZ ⊆ Z ′′ and then∀xi, xj ∈ X, zij ≤ z′′ij ≤ bij. Consequently, ifbij = zij, for somei and j, then
z′′ij = zij .

Let us now show that∀xi, xj ∈ X, dji = d′′ji:

• In case(i = j): we havedji = d′′ji = 0.
• In casei 6= j:

1 If βj =∞ then:
dji = βj +min(z0j , zij − αi) =∞ = βj +min(z′′0j , z

′′
ij − αi) = d′′ji

2 If βj <∞ andzij − αi ≥ z0j , we have:z′′ij ≥ zij , b0j = z0j = z′′0j . It follows that:
dji = βj +min(z0j , zij − αi) = βj + z0j = βj + z′′0j = βj +min(z′′0j , z

′′
ij − αi) = d′′ji

3 If βj <∞ andzij − αi < z0j , we havebij = zij = z′′ij andb0j = z0j = z′′0j .
Then:d′′ji = βj +min(z′′0j , z

′′
ij − αi) = βj +min(z0j , zij − αi) = dji.

Consequently,D = D′′

Theorem 4:LetN be a TPN andSN its semantics. The zone-based abstraction (computed withkx-approximation
or k′x-approximation) of the state space ofN preserves reachable markings and traces ofSN .

Proof: On a TPNN , the zone-based forward algorithm (without k-approximation)4 computes exactly all
states and traces of the semanticsSN [25]. Furthermore the lemma 2 proves that a symbolic state and its
kx-approx andk′x-approx approximations have the same firing domain. In [10] and [14],authors have shown that
all state classes sharing the same marking and firing domain share also the same traces. Therefore, our abstraction
(with kx-approximation or k′x-approximation) is exact: These approximations add states but preserve reachable
markings and traces.

G. Comparisons of the three approximations

In table I, we compare the number of symbolic states (i.e. the number of zones) needed to compute the state
space of TPN preserving reachable markings (i.e. an abstraction by inclusion and reverse inclusion) when we use
the kx-approximation, the LU∗

x -Approx improvement of [6] and ourk′x-approximation improvements. These
three approximations have been implemented in the tool ROMEO. We use the classical level crossing forn trains
proposed in [13] and presented in section VII.

The gain of our approximation in both time and size is significant and grows with the size of the model. It has
also to be noted that, for one example (train6.xml,i.e. the classical gate controller problem with 6 trains) it made
the computation feasible while other abstraction ran out ofmemory.

H. Comparisons with other methods

We have implemented and tested approximations proposed here and other abstractions developed in the literature:
SCGs [9] (linear state class graphs),SSCG [13](linear strong state class graphs) andASCG [13] (atomic state
class graphs),ZBGk [25]. Table II reports the results obtained for the classical level crossing model with number
of trains equal to 2, 3 or 4 trains, and for some producer/consumer model with number of producer/consumer equal
3, 4, 5, 6 or 7. The figures represent the size of the graph computed in term of states and edges, and the time
needed to compute it.

4with no guaranty of termination
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TPN Nb. of symbolic states
kx-approx LU∗

x -Approx k′
x-approx

train2 76 70 70
train3 383 296 296
train4 2 202 1518 1286
train5 12 068 6573 5748
train6 × 28530 26 280
traffic-lights 3 856 3 014 2872

TABLE I

COMPARISON BETWEEN THE DIFFERENT APPROXIMATIONSCOMPUTED ON A PIV 3GHZ, 1GB RAM

TPN ASCG SSCG SCG Our TPN ASCG SSCG SCG Our

Train2 1 192 141 123 114 PrCs3 79 253 24 784 8 961 6 392
Arcs 2 844 254 218 200 Arcs 1 200 714 115 458 41 159 29 092
CPU < 1s < 1s < 1 s < 1s CPU 8 min 10s 7s 1s < 1s
Train3 6 967 5 051 3 101 2 817 PrCs4 130 161 40 507 14 852 10 670
Arcs 49 826 13 019 7 754 6 944 Arcs 2 476 886 232 586 84 478 60 814
CPU 4.6s < 1s < 1s < 1s CPU 21 min 23s 23s 3s 2s
Train4 356 952 351 271 134 501 122 290 PrCs5 191 297 60 785 22 577 16 378
Arcs 3 448 100 1 193 376 436 896 391 244 Arcs 4 294 211 408 116 150 923 110 748
CPU 6 min 51s 53s 16s 56 s CPU 43 min 46s 56s 5s 3.6s
PrCs6 262 673 86 303 32 456 23 761 PrCs7 346 304 117 792 44 837 33 085
Arcs 6 734 676 658 918 247 142 184 482 Arcs 9 915 3425 1 002 194 380 725 288 421
CPU 1h 24min 2 min 9.4s 6.2s CPU 3h 29min 3 min 51s 16s 9s

TABLE II

SIZE COMPARISONS OF GRAPHS COMPUTED BY ABSTRACTIONS PRESERVING LINEAR OR BRANCHING PROPERTIES

aNumber of symbolic states of the graph computed
bNumber of edges of the graph computed

All tests have shown that our approximation is very appropriate since it is exact and results in a much smaller
graphs.

Note that tables I and II are based on two different criteria of comparison of zones. In table I, we report results
obtained, for different approximations, when we use inclusion as criterion of comparison (abstractions by inclusion).
Such abstractions are known to preserve markings but do not necessarily preserve firing sequences. Table II reports
results obtained, when we use equality as criterion of comparison (exact abstractions). Such abstractions preserve
markings and firing sequences.

VI. ON-THE-FLY TPN-TCTLMODEL-CHECKING

An on-the-fly model-checking algorithm generates the statespace of the investigated system and verifies the
property of interest simultaneously. In contrast to the approach of generating the whole state space before verification,
this allows the verification to be stopped as soon as the truth-hood of the property

The efficiency of such on-the-fly methods were proven for TA with tools like UPPAAL [30] (on TA) for instance.
These tools restrict the set of TCTL properties that can be verified in order to provide efficient on-the-fly algorithms
and faster convergence criteria. Though the set of properties is reduced, practical case studies show they were
sufficient for most of the models studied.

We can now use our abstraction to efficiently perform on-the-fly model-checking of Time Petri Nets. In this
section, we propose a subset ofTPN-TCTLfor which we give algorithms to decide their truth value for abounded
TPN.

A. TPN-TCTLS : a subset of TPN-TCTL for on-the-fly model-checking

We consider the subset ofTPN-TCTLwhere formulas are not imbricated. However, in practice themost interesting
property for real-time systems is the bounded response (liveness) property which is an imbricated formula.
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The response (liveness) property is defined by :ϕ  I ψ corresponding to∀�(ϕ ⇒ ∀♦Iψ). For example, the
time-bounded leads-to operatorϕ [0,c] ψ expresses that whenever the state propertyϕ holds then the state property
ψ must hold within at mostc time-units thereafter.

Thus we add it to our subset ofTPN-TCTL.
Definition 18 (TPN-TCTLS): TPN-TCTLS is the sub-class of the temporal logicTPN-TCTLdefined by:

TPN-TCTLS ::= ∃ϕ UIψ | ∀ϕ UIψ | ∃♦Iϕ | ∀♦Iϕ | ∃�Iϕ | ∀�Iϕ |ϕ Il
ψ

whereϕ,ψ ∈ GMEC, (ϕ Il
ψ) = ∀�(ϕ⇒ ∀♦Il

ψ), I ∈ {[a, b], [a, b), (a, b], (a, b)} with a ∈ N andb ∈ N∪{∞},
andIl ∈ {[0, c], [0, c)} with c ∈ N.

B. On-the-fly TPN-TCTLS model-checking

TPN-TCTLS is adapted to “on-the-fly” model-checking, that is computing the state space while testing the truth
value of theTPN-TCTLS formula. Compared to other classical methods based on fix-point computation (TA), it
allows to only explore the relevant part of the state space relatively to the property being checked. Besides, the
practical use of fix-point algorithms on TPN is discussable since, at the contrary to TA, the discrete structure of
the state space (i.e. the set of reachable markings) is not known a priori.

Proposition 2: (Sketch of TPN-TCTLS Model-checking Algorithm)

• kx-approximation
Since we choose to add a time interval toTPN-TCTLS operators, we need an additional clock to test if a run
of the TPN verifies the timing constraint of the formula beingmodel-checked. Classically, we add to the model
an additional clock to be able to check the timing constraint. It counts the time length of firing sequences of
the TPN. Adding this clock is strictly equivalent to extend the TPN model with a transition ([0,∞[ as firing
interval) that is never fired. Since it is an unbounded clock,we need to choose a constantkc to perform the
kx-approximation. Its value is chosen as follows:

– If the TPN-TCTLS formula has a bounded interval andcmax is its upper bound, we choosekc = cmax.
This ensures that we will compute the exact time of TPN firing sequences.

– If the TPN-TCTLS formula has an unbounded interval andCmin is its lower bound, we choosekc = cmin.
This allows to detect runs whose time length are greater thancmin.

• k′x-approximation
In the case of thek′x-approximation, the transition added has to be specially handled while approximating.
Actually, the first step of the approximation, that is to replacez0j with 0 if βj = ∞, will erase the minimal
absolute time at which a marking is reachable. To avoid the problem, this clock has to be approximated in the
usual way with thekx-approximation.

Theorem 5:The proposition 2 is exact forTPN-TCTLS model-checking.
Proof: Thanks to lemma 2, a zone and its approximations (kx-approximation andkx’-approximation) map

to the same firing domain and then have same traces. The proof of this lemma 2 can be easily extended for any
approximation values greater than the values selected for thekx’-approximation. To verifyTPN-TCTLS we add an
additional clock for which we apply the particularkx-approximation of the proposition 2. Consequently, the ZBG
of the extended TPN preserves markings and traces. Since theadded clock is used to measure the time lengths of
some traces, it remains to show that these times are exact. In[16], authors have shown that the time lengths of the
TPN traces, including those of its states, can be computed using markings and firing domains. It follows that the
approximations proposed here do not affect time lengths of the traces.

Consequently, we can build on-the-fly the state space of the extended TPN with the forward based algorithm
presented in the previous section. Note that to deal with zeno TPN, we record the current explored path in order
to detect zeno runs. In order to verifyTPN-TCTLS properties, we introduced three new algorithms (seeAppendix)
that will handle the verification of:∃ϕUIψ, ∃�Iϕ and∀ϕUIψ. The other operators can be deduced from them.
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VII. E XPERIMENTAL RESULTS

A. Implementation

A prototype of the on-the-fly model-checker was implementedin the tool ROMEO [24], a tool for edition and
analysis of TPN. It currently allows to model-checkTPN-TCTLS properties on a bounded TPN. According to
the formula to check, a trace (counter-example or witness) may be generated for analysis purpose. The three
approximations (kx-approx, LU∗

x -Approx andk′x-approx) were also implemented to compare their efficiency.

B. Example

Let us consider the classical level crossing example. A TPN version of this example is proposed in [13]. The net
is obtained by the parallel composition ofn train models (figure 8) synchronized with the gate controller model
(app, exit, n instantiated) (figure 7) and a gate model (down, up) (figure 8).

C. Properties

Nonquantitative timed properties like ”when no train approches, the gate eventually opens” can be checked on
the Atomic State Classes Graph [13] computed with tool TINA [12]. We first compared our computation with that
of [13] in terms of number of state classes and edges of the computed graph. Figures for TINA are the size of the
graph preserving CTL properties, the ones for ROMEO are the size of the graph computed on-the-fly to decide the
truth-hood of the property:

far ¬far ∨ open

wherefar is the GMEC :M(far) = n. The results are reported in table III. They show the efficiency of the
on-the-fly method compared to the method proposed in [13] that consists in computing the whole graph preserving
CTL properties and then applying a model-checker.

Besides CTL properties, the main interest of the method is that we are now able to verify quantitative properties
over TPN.

For instance, the following properties can be proved true:
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TPN Graph preserving CTL On the fly CTL model-checking
(computed with TINA ) (computed with ROMEO)

3 trains Statesa 6 967 519
Edges or Effective Statesb 49 826 1 817

4 trains States 356 952 8 887
Edges or Effective States 3 448 100 36 619

5 trains States × c 185 304
Edges or Effective States × 957 119

TABLE III

GRAPH SIZES TO VERIFY A CTL FORMULA OVER THE GATE CONTROLLER MODEL

aFor TINA , the figures correspond to the number of stong atomic classescomputed. For ROMEO, this is the number of symbolic states of
the graph computed to verify the property.

bFor TINA , the number of transitions is the number of transitions of the graph preserving CTL properties. For ROMEO, it represents the
number of symbolic states effectively computed by the algorithm to decide the truth-hood of theTPN-TCTLS formula.

cComputation aborted due to lack of memory.

• Whenever a train crosses the gate, the gate is closed:

φ1 = ∀�[0,∞[

((

∨i∈[1,n]oni

)

⇒ closed
)

• A train can approach whereas the gate is raising.

φ2 = ∃♦[0,∞[(
(

∨i∈[1,n]closei
)

∧ raising)

• In the first 1000 time units, the gate is not closed until a train approaches

φ3 = ∀¬closed U[0,1000] coming

• If a train approaches, the gate is closed in less than 2 time units.

φ4 = coming  [0,2] closed

We give in the table IV some computation times and the number of symbolic states computed for the model-
checking ofφ1,2,3,4. Experiments were led on a Pentium IV 3GHz with 1Gb of memory.It has to be noted that
for these properties the whole state-space has to be generated to decide the truth value of the formula. It shows
how efficient is thek′x-approx for the practical verification ofTPN-TCTLS formulas in comparison to the classical
kx-approximation.

We also compared our tool with UPPAAL. The gate model provided in UPPAAL distribution corresponds ton
trains and1 track with stop of train and a queue to restart the train. Though the models are not the same, we first
use a modified version of the TA model for 7 trains and 7 tracks.We obtain the following results: on gate model (7
trains and 7 tracks), a computation time of 85s forφ2 with UPPAAL against 17s with ROMEO. On the contrary, if we
use the UPPAAL gate model (n trains and 1 track with stop of train and a queue to restart the train), we obtain the
following results (for 7 trains) a computation time of 12.42s for the propertyTrain(i).Appr  Train(i).Cross
with UPPAAL against 127.25s with ROMEO for the comparable propertyclosei  lefti on the TPN model. It
comes from the fact that the queue is done by an interpreted algorithm with UPPAAL whereas we model it by a
TPN (with all the possible combinations) leading to a state space explosion.

These comparisons are not very significative as models are different but it shows the efficiency of our method
and tool. Moreover, some implementation improvements (such as the use of Clock Difference Diagrams) are not
yet integrated in ROMEO. Finally, the use of subscript TCTL in ROMEO eases the expression of quantitative
properties: for instance the TA model must be modified (with an observer) to model-checkTrain(i).Appr  [0,2]

Train(i).Cross with UPPAAL while it is not necessary for ROMEO.
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φ1 φ2

kx k′
x k k′

x

3 trains CPU time < 1 s < 1 s < 1 s < 1 s
Nb. Zones 3803 1 310 43 36

4 trains CPU time 2.44 s < 1 s < 1 s < 1 s
Nb. Zones 60550 29 020 117 82

5 trains CPU time ×a 2 min 24s < 1 s < 1 s
Nb. Zones × 753 119 1242 645

φ3 φ4

kx k′
x kx k′

x

3 trains CPU time < 1 s < 1 s < 1 s < 1 s
Nb. Zones 58 58 2 407 1 828

4 trains CPU time < 1 s <1 s 3.46 s < 1 s
Nb. Zones 226 226 84 659 38 761

5 trains CPU time < 1s < 1s × 2 min 37 s
Nb. Zones 1046 1046 × 958 537

TABLE IV

COMPUTATION TIME TO MODEL-CHECKTPN-TCTLS FORMULAS.

aComputation aborted - Ran out of memory

VIII. C ONCLUSION

We have considered TCTL model-checking of Time Petri Nets. From a theoretical point of view, we have proved
using region graphs the decidability of the model-checkingof TPN-TCTLon bounded TPN as well as its PSPACE
complexity. However, in practice, region graphs are not useful as they run up against the state explosion problem.
To overcome this limitation, we have considered a subset ofTPN-TCTLproperties (TPN-TCTLS) for which we
have proposed efficient on-the-fly forward model-checking algorithms using zone based abstractions. As for Timed
Automata, an over-approximation operator on zones is used to enforce the termination of the algorithms. In order
to speed up the convergence of these algorithms, we have defined a finer approximation operator over zones which
leads to a much compact abstraction. We have shown that our abstraction is exact and allows the effective verification
of TPN-TCTLS properties. The method was implemented and integrated in the tool ROMEO [24]. It is then possible
to check efficiently real-time properties with this tool, and to benefit from all the advantages of it: counter example
generation when a property is false, simulation environment.

From a theoretical point of view, the complexity of model-checking should be explored for general TPN or
subclasses of TPN as well as combining reduction methods (structural or partial order methods) to decrease the
practical cost of the model-checking of TPN.
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APPENDIX

This appendix details the model-checking algorithms forTPN-TCTLS . Versions presented are depth-first-search
algorithms, however non-recursive implementations are also available in ROMEO.

A. Model-checking algorithms for TPN-TCTLS

1) Model Checking∃ϕUIψ: The aim of the algorithm is to look for a path(s0, v0)→ · · · → (sn, vn) such that
for all states(si, vi) |= ϕ and (sn, vn) |= ψ in the time constraint windowI. Finding such a path is possible by
enumerating the reachable states of the TPN and looking for astate verifyingψ in the time intervalI.

Algorithm 2 CheckEU(s, ϕ, ψ, I)

V isited← ∅
s0 =

−−→
Post (M0, 0̄)

return checkEUaux(s, ϕ, ψ, I)

Algorithm 3 CheckEUaux(s, ϕ, ψ, I)

(M,Z)← s

if M |= ψ ∧ Z ∩ I 6= ∅ then
// First stopping criterion:
// The propertyψ is true for some valuations inI.
return True

else ifM 6|= ϕ then
// Second stopping criterion:
// The propertyϕ doesn’t hold.
// Don’t investigate further for this state.
return False

else
Z ′ ← Z ∩ [0, Imax)
if Z ′ = ∅ then

// Third stopping criterion:
// There is no time left for the property to hold.
return False

else
// ϕ is true and there is time left forEϕUIψ to hold.
// Look in successors to find an accepting run
V isited← V isited ∪ {s}
for all t ∈ firable(M,Z ′) do
s′ =

−−→
Postt (M,Z ′)

if s′ 6⊆ V isited then
if checkEUaux(s′, ϕ, ψ, I) then

return True
end if

end if
end for
// No successors verify the property
return False

end if
end if

The algorithm converges by inclusion: if we reach a states = (M,Z) ⊆ V isisted,i.e. there exists(M,Z ′) ∈
V isited such thatZ ⊂ Z ′, the successors ofs are not computed since they will generate runs that are already
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covered byZ ′. Consequently, if the property is false for(M,Z ′) then it is also false for(M,Z); reciprocally, if
the property is true for(M,Z) then it is true for(M,Z ′).

2) Model Checking∃♦Iϕ: By definition ∃♦Iϕ == ∃TrueUIϕ.
3) Model Checking∀�Iϕ: By definition ∀�Iϕ = ¬∃♦I¬ϕ.
4) Model Checking∃�Iϕ: By definition∃�Iϕ = ¬∀♦I¬ϕ. Since the model-checking of∀♦I needs to converge

by equality, and thatϕ is a state formula in our subset ofTPN-TCTLS , we use a specific algorithm to check∃�I .
It uses a convergence by inclusion, which ensures a faster computation time if the property holds.

Algorithm 4 CheckEG(s, ϕ, ψ, I)

V isited← ∅
s0 =

−−→
Post (M0, 0̄)

return checkEGaux(s, ϕ, ψ, I)

Algorithm 5 CheckEGaux(s, ϕ, I)

(M,Z)← s

// First stopping criterion:
// ϕ doesn’t hold.
if M 6|= ϕ then

return False
else
V isited← V isisted ∪ {s}
// Second stopping criterion:
// ϕ is true for all valuations
if I ⊆ Z ∩ I then

return True
else

// Iterate through successors
for all t ∈ firable(s′) do
s′ =

−−→
Postt (s)

if s′ 6⊆ V isited then
if checkEGaux(s′, ϕ, I) then

return True
end if

end if
end for
// no successors verify the property
return False

end if
end if

5) Model Checking∀♦Iϕ: By definition ∀♦Iϕ = ∀TrueUIϕ = ¬∃�I¬ϕ. So we can use the algorithm
checkEG(s,¬ϕ, I) to decide the truth value of the property.

6) Model Checkingϕ ≤c ψ: We consider here the bounded response. It consists in verifying that every time
ϕ becomes true,ψ always holds in less thanc time units. Using an additional boolean propertyb that stores the
requirement forψ to hold within c time units, the property can be transformed into∀�[0,∞[ (b⇒ z ≤ t) (see PhD
thesis of P. Petterson). This reduced to check∃♦[0,∞[ (¬b ∧ z > t) or also∃♦[0,∞[ (b ∧ z > t). This result in a
slightly modified∃♦I algorithm, that is: (1) we add an additional clockz to store the time requirement forψ; (2)
each time a state for whichϕ starts to hold is encountered,b is set to true andz is reset; (3) each timeψ is true
the value ofb is set to false. The algorithm stops if it encounters a state such thatb is true andz > t.
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Algorithm 6 CheckBoundedResponse(s0, ϕ, ψ, c)

V isited← ∅
s0 = (M0, 0̄)
return ¬checkBoundedResponse aux(s0, ϕ, ψ, c)

Algorithm 7 CheckBoundedResponse aux(s, ϕ, ψ, c)

(M,Z, b) ← s

if Z ∩ (b,∞) 6= ∅ then
// Stopping criterion:
// ψ doesn’t hold within the timing constraintz ≤ t
return True

end if
if s |= ψ then

// ψ is true, stop the need to verifyψ for successors
b← false

else if¬b ∧ s |= ϕ then
// ϕ starts to hold
b← true

Z ← Z[z ← 0]
end if
// Compute time successors
Z ←

−−→
Post (Z)

V isited← V isited ∪ {(M,Z, b)}
for all t ∈ firable(s) do
s′ ← Postt (M,Z)
if s 6⊆ V isited then

if checkBoundedResponse aux(s′, ϕ, ψ, c) then
return True

end if
end if

end for
return False

7) Model Checking∀ϕUIψ: Let (M,Z) a symbolic state for which we want to check∀ϕUIψ. Informally, we
can decide its truth value for this state using the followingsteps:

• If there are some valuations ofz greater thanImax then the property is false.
• If M |= ψ and all the valuations for the global clockz of Z are inI then the property is true for this state.
• If M 6|= ϕ (ie ϕ ∨ ψ) then the property is false.
• We compute the time successors of(M,Z).
• We remove all the states such thatψ is true andz ∈ I and note(M,Z ′) this new symbolic state. Actually,

these states removed belong to paths that verifies the property. We only need to verify states for whichψ is
true andz < Imin, that is every runs starting from them will eventually lead to a state such thatψ ∧ z ∈ I is
true.

• For each firable transition we compute the discrete successors.

Concerning the convergence criterion, let us first suppose that the TPN is non-zenoi.e. there are no loops in
null time. If we consider convergence by inclusion, since the TPN is non-zeno, it is guaranted that the global time
progresses. Consequently, if we reach a state(M,Z) such thatZ is included in someZ ′ of a state(M,Z ′) already
visited, we are sure this can’t be a loop in null time. Then, ifthe property is true for(M,Z ′) it is also true for
(M,Z) and reciprocally if the property is false for(M,Z ′).
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The problem is then to handle zeno runs for zeno TPN. Actuallyif the algorithm converges by inclusion, it isn’t
able to detect null time loops which may invalidate the property. Thus, to detect loops, we record the prefix (i.e.
the trace of symbolic states) of the symbolic state being checked.

Algorithm 8 CheckAU(s, ϕ, ψ, I)

V isited← ∅
Prefix← ∅
s0 = (M0, 0̄)
return checkAUaux(s, ϕ, ψ, I)
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Algorithm 9 CheckAUaux(s, ϕ, ψ, I)

Z ′ ← Z

(M,Z)← s

Z = Z(0,Imin) ∪ Z(Imin,Imax) ∪ Z(Imax,inf)

if M |= ψ then
// First stopping criterion:ψ ∧ I doesn’t hold for all states
if Z(Imax,inf) 6= ∅ then

return False
end if
// We select only states for whichψ ∧ I doesn’t hold.
Z ′ ← Z ∩ (0, Imin)
// Sopping criterion:ϕ doesn’t hold

else ifM 6|= ϕ then
return False

else
// We compute time successors
Z ′ ← timeNext(Z)
// Iterate through successors to test if all path are valid
V isited← V isited ∪ {s}
for all t ∈ firable(M,Z ′) do
Prefix← Prefix ∪ s
s′ ← discreteNext(M,Z ′, t)
// Test if it is a loop state
if s′ ∈ Prefix then

return False
end if
// If it is already visited and not in prefix the property still holds.
if s′ 6∈ V isited then

if not checkAUaux(s′, ϕ, ψ, I) then
return False

end if
end if
Prefix← Prefix \ s

end for
// All successors verify the property
return True

end if


