Hanifa Boucheneb
email: hanifa.boucheneb@polymtl.ca

Guillaume Gardey

Olivier H Roux
email: olivier-h.roux@irccyn.ec-nantes.fr

TCTL model-checking of Time Petri Nets

Keywords: Time Petri Net, Model-checking, TCTL, zone based state space abstraction

We consider Time Petri Nets (TPN) for which a firing time interval is associated with each transition. State space abstractions for TPN preserving various classes of properties (LTL, CTL, CTL *) can be computed, in terms of so called state classes. Some methods were proposed to check quantitative timed properties but are not suitable for effective verification of properties of real-life systems.

In this paper, we consider subscript TCTL for TPN (TPN-TCTL) for which temporal operators are extended with a time interval, specifying a time constraint on the firing sequences. We prove the decidability of TPN-TCTL on bounded TPN and give its theoretical complexity.

We propose a zone based state space abstraction that preserves marking reachability and traces of the TPN. As for Timed Automata (TA), the abstraction may use an over-approximation operator on zones to enforce the termination. A coarser (and efficient) abstraction is then provided and proved exact w.r.t. marking reachability and traces (LTL properties).

Finally, we consider a subset of TPN-TCTL properties (TPN-TCTL S) for which it is possible to propose efficient on-the-fly model-checking algorithms. Our approach consists in computing and exploring the zone based state space abstraction. On a practical point of view, the method is integrated in ROMEO [24], a tool for Time Petri Nets edition and analysis. In addition to the old features it is now possible to effectively verify a subset of TCTL directly on Time Petri Nets.

I. INTRODUCTION

Framework

Verification of concurrent systems is a complex task that requires powerful models and efficient analysis techniques. Model checking is one of the most popular verification techniques of concurrent systems. In this framework, the behavior of a system is represented by a finite (or infinite) transition system, and the properties to be verified are expressed in either a standard temporal logic (LTL, CTL, CTL *), or in its time extension (MITL, TCTL). Properties are checked by exploring the transition system.

This paper aims to apply the TCTL model checking techniques to Time Petri Nets. The two main time extensions of Petri Nets are Time Petri Nets (TPN) [START_REF] Merlin | A study of the recoverability of computing systems[END_REF] and Timed Petri Nets [START_REF] Ramchandani | Analysis of asynchronous concurrent systems by timed Petri nets[END_REF]. While a transition can be fired within a given interval for TPN, in Timed Petri Nets, transitions are fired as soon as possible. There are also numerous ways of representing time. TPN are mainly divided in P-TPN, A-TPN and T-TPN where a time interval is relative to places (P-TPN), arcs (A-TPN) or transitions (T-TPN). Concerning the timing analysis of these three models ((T,P,A)-TPN), few studies have been realized about model-checking.

The class T-TPN is the most commonly-used subclass of TPN and in this paper we focus on this subclass that will be henceforth referred to as TPN. For classical TPN, boundedness and reachability are undecidable, and works on this model report undecidability results, or decidability under the assumption that the TPN is bounded (e.g. reachability in [START_REF] Popova | On time petri nets[END_REF]).

Another common formalism to model timed systems is the one of Timed Automaton (TA). TA consists in a time extension of finite state automaton with clocks. Clocks constraints can be associated with transitions (guards) or with states (invariants) and are interpreted as firing constraints of the transition or as a delay constraint for idling in a state. The model-checking of TCTL properties was proven decidable [START_REF] Alur | A theory of timed automata[END_REF] and some efficient tools were developed to model-check both qualitative and quantitative time properties (i.e.: UPPAAL [START_REF] Larsen | UPPAAL in a nutshell[END_REF], KRONOS [START_REF] Yovine | Kronos: A verification tool for real-time systems[END_REF], HYTECH [START_REF] Henzinger | A user guide to HYTECH[END_REF]).

Related Work

State space abstractions for TPN: We can find in the literature several state space abstractions for the TPN model. The well known are: the State Class Graph (SCG) [START_REF] Berthomieu | Modeling and verification of time dependent systems using time Petri nets[END_REF], the Geometric Region Graph (GRG) [START_REF] Yoneda | CTL model checking of time Petri nets using geometric regions[END_REF], the Strong State Class Graph (SSCG) [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF], the Zone Based Graph (ZBG) [START_REF] Gardey | Using zone graph method for computing the state space of a time Petri net[END_REF] and the Atomic State Class Graphs ASCGs [START_REF] Yoneda | CTL model checking of time Petri nets using geometric regions[END_REF], [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF], [START_REF] Boucheneb | Towards optimal CTL* model checking of time Petri nets[END_REF]. These abstractions may differ from the class of properties they preserve. State Class Graphs provide finite representations for the state space of bounded TPN preserving either the LTL properties [START_REF] Berthomieu | Modeling and verification of time dependent systems using time Petri nets[END_REF] or CTL * properties [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF], [START_REF] Yoneda | CTL model checking of time Petri nets using geometric regions[END_REF], [START_REF] Boucheneb | Towards optimal CTL* model checking of time Petri nets[END_REF] of the state space. The Geometric Region Graph [START_REF] Yoneda | CTL model checking of time Petri nets using geometric regions[END_REF] preserves LTL properties and the region based algorithm in [START_REF] Okawa | Symbolic CTL model checking of Time Petri nets[END_REF] preserves CTL properties on safe T-TPN without ∞ as latest firing time. The Zone Based Graph marking preserves reachability or LTL properties according to the convergence criterion selected to compute the state graph.

TCTL model checking of TPN: Given these abstractions, some methods were proposed to check quantitative timed properties but are not suitable for effective verification of properties on real-life systems. The first approach to verify quantitative properties was the translation of the TPN into a timed bisimilar TA. [START_REF] Cassez | Structural translation from time Petri nets to timed automata[END_REF], [START_REF] Cassez | Structural translation from Time Petri Nets to Timed Automata -Model-Checking Time Petri Nets via Timed Automata[END_REF] proposes a structural approach: each transition is translated into a TA using the same pattern. In [START_REF] Lime | State class timed automaton of a time Petri net[END_REF], [START_REF] Lime | Model checking of time Petri nets using the state class timed automaton[END_REF], the authors propose a method for building the State Class Graph of a bounded TPN as a TA. Such translations show that TCTL and CTL are decidable for bounded TPN and that developed algorithms on TA may be extended to TPN. Recently, Virbitskaite and Pokozy in [START_REF] Virbitskaite | A partial order method for the verification of time petri nets[END_REF] proposed a method to model-check TCTL properties on TPN. The method is based on the region graph and is similar to the one proposed by Alur and Dill [START_REF] Alur | Model-checking in dense real-time[END_REF] extended by Yovine and Tripakis [START_REF] Tripakis | Analysis of timed systems using time-abstracting bisimulations[END_REF], and Penczeck [START_REF] Penczek | Specification and model checking of temporal properties in time petri nets and timed automata[END_REF] for TA. The TCTL formula is translated into a CTL formula and then model-checked using classical CTL algorithms on a modified TA. However, the region graph is known to be a theoretical method which is not applicable in practice because of its lack of efficiency. In [START_REF] Hadjidj | On-the-fly tctl model checking of time Petri net using state class graphs[END_REF], authors proposed, using the observer and the state class graph methods, an on-the-fly model checking for a subclass of TCTL properties. However, the state class graph method is known [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF] to be not suitable for the classical CTL model checking such as fix point technique.

Our contribution

We define a TCTL for TPN (TPN-TCTL) based on Generalized Mutual Exclusion Constraints (GMEC) [START_REF] Giua | Generalized mutual exclusion constraints on nets with uncontrollable transitions[END_REF]. A direct proof of the decidability of the model-checking of TPN-TCTL on bounded TPN is given as well as its complexity.

We propose a zone based state space abstraction that preserves marking reachability and traces of the TPN. As for Timed Automata (TA), the abstraction may use an over-approximation operator on zones to enforce the termination. A coarser (and efficient) abstraction is then provided and proved exact w.r.t. marking reachability and traces.

We finally consider a subset of TPN-TCTL properties (TPN-TCTL S) for which it is possible to propose efficient "on-the-fly" model-checking algorithms, that is, model-checking the property while the state space is computed. Thus, it allows to stop the construction as soon as the truth-hood of the property is known. The method, based on the zone based state space abstraction, is implemented and integrated in the tool ROMEO [START_REF] Gardey | Romeo: a tool for analyzing time petri nets[END_REF].

Outline of the paper

We first recall the definitions and semantics of TPN in section II. Section III is dedicated to TPN-TCTL, its decidability and its complexity. In section IV, we present a zone based forward method to compute the state space of a bounded TPN and in section V, some coarser approximations to reduce the effective cost of its computation. Finally, we consider in section VI the on-the-fly model-checking of a subset of TPN-TCTL (TPN-TCTL S) and provide algorithms based on the Zone Based Graph method. Practical examples are then considered in section VII. Finally, we conclude with our ongoing works and perspectives in Section VIII.

II. DEFINITIONS

A. Notations

We denote A X the set of mappings from X to A. If X is finite and |X| = n, an element of A X is also a vector in A n . The usual operators +, -, < and = are used on vectors of A n with A = N, Q, R and are the point-wise extensions of their counterparts in A. For a valuation ν ∈ A X , d ∈ A, ν +d denotes the vector (ν +d)(x) = ν(x)+d, and for X ′ ⊆ X, ν[X ′ ← 0] denotes the valuation ν ′ with ν ′ (x) = 0 for x ∈ X ′ and ν ′ (x) = ν(x) otherwise. Finally, we denote Q ≥0 (respectively IR ≥0) the set of positive (or null) rational (respectively real) numbers.

B. Timed Transition Systems

Definition 1 (Timed Transition Systems): A timed transition system (TTS) over the set of actions Σ is a tuple

S = (Q, Q 0 , Σ, -→) where Q is a set of states, Q 0 ⊆ Q is the set of initial states, Σ is a finite set of actions disjoint from IR ≥0 , -→⊆ Q × (Σ ∪ IR ≥0) × Q is a set of edges.
We also write q e --→ q ′ for (q, e, q ′) ∈-→.

In the case of q d --→ q ′ with d ∈ IR ≥0 , d denotes a delay and not an absolute time (q ′ is also denoted q + d). We assume that in any TTS there is a transition q 0 --→ q ′ and in this case q = q ′ . Let q i ∈ Q be a state of S. A run ρ of q i is a maximal (finite or infinite) sequence of alternating time and discrete transitions of the form:

ρ = q i di --→ q i + d i ai --→ q i+1 di+1 ----→ q i+1 + d i+1 ai+1 ----→ • • •
The total elapsed time of ρ, denoted time(ρ), is the sum l k=0 d i+k , l being the number of time transitions in ρ (l = ∞ if ρ is an infinite run). In case ρ is infinite, it is said to be zeno iff time(ρ) < ∞. The trace of ρ is the sequence

w untimed (ρ) = (a i)(a i+1) • • • and the timed trace of ρ is the sequence w timed (ρ) = (d i , a i)(d i+1 , a i+1) • • • . ρ is a run of S iff q i ∈ Q 0 .
The set of runs of q i is denoted π(q i). The set of runs of S is the union of runs of its initial states (q0∈Q0 π(q 0)). Similarly, the set of traces (resp. timed traces) of S is the union of traces (resp. timed traces) of its initial states.

C. Time Petri Nets

Time Petri Nets (TPN) are a time extension of classical Petri nets. Informally, with each transition of the net is associated an implicit clock and an explicit time interval. The clock measures the time since the transition has been enabled and the time interval is interpreted as a firing condition: the transition may fire if the value of its clock belongs to the time interval.

Formally: Definition 2 (TPN):

A Time Petri Net is a tuple (P, T, • (.), (.) • , α, β, M 0) defined by: As a shorthand, we note α i and β i for α(t i) and β(t i). A Petri net marking M is an element of IN P such that for all p ∈ P , M (p) is the number of tokens in the place p.

• P = {p 1 , p 2 , . . . , p m } is a non-empty set of places, • T = {t 1 , t 2 , . . . , t n } is a non-empty set of transitions, • • (.) : T → IN P is the backward incidence function, • (.) • : T → IN P is the forward incidence function, • M 0 ∈ IN P is the initial marking of the Petri Net, • α : T → Q ≥0 is
Let M be a marking of a TPN. M enables a transition t if M ≥ • t i . The set of transitions enabled by a marking M is noted enabled (M).

A transition t k is said to be newly enabled by the firing of a transition t i if M -• t i + t • i enables t k and M -• t i does not enable t k . If t i remains enabled after its firing then t i is considered newly enabled. The set of transitions newly enabled by the firing of a transition t i for a marking M is noted ↑ enabled (M, t i).

We note x i the clock associated with a transition t i ∈ T of the TPN. v ∈ (IR ≥0) T is a valuation of the system. For any t i ∈ T , v(t i) (also noted v i), is the time elapsed since the transition t i has been newly enabled i.e. the valuation of the clock x i . 0 is the initial valuation with ∀i ∈ [1..n], 0i = 0.

The semantics of a TPN is defined as a Timed Transition System (TTS). A state of the TTS is a couple q = (M, v) where M is a marking of the TPN and v a valuation of the system.

Definition 3 (Semantics of a TPN):

The semantics of a TPN N = (P, T, • (.), (.) • , α, β, M 0) is defined by the Timed Transition System S N = (Q, {q 0 }, Σ, →):

• Q = IN P × (IR ≥0) T • q 0 = (M 0 , 0) • Σ = T • →∈ Q × (T ∪ IR ≥0) × Q is the
transition relation including a discrete transition and a continuous transition.

• The continuous transition is defined ∀d ∈ IR ≥0 by:

(M, v) d -→ (M, v ′) iff v ′ = v + d ∀k ∈ [1..n], M ≥ • t k ⇒ v ′ k ≤ β k
• The discrete transition is defined ∀t i ∈ T by:

(M, v) ti -→ (M ′ , v ′) iff                M ≥ • t i M ′ = M -• t i + t • i α i ≤ v i ≤ β i ∀k ∈ [1, n], v ′ k = 0 if t k ∈ ↑ enabled (M, t i) v k otherwise
The Time Petri Net runs are those of its Timed Transition System. A TPN model is said to be zeno if at least one of its runs is zeno. The set of reachable markings of N is denoted Reach(N). If the set Reach(N) is finite we say that N is bounded. As a shorthand, we write (M, v)

(d,t) ---→ (M ′ , v ′) for a sequence of time elapsing and discrete steps like (M, v) d -→ (M, v + d) t -→ (M ′ , v ′).

III. TCTL FOR TIME PETRI NETS

In this section, we will introduce a TCTL for the TPN (TPN-TCTL) and prove that the model-checking of a TPN-TCTL formula on any bounded TPN is decidable and is a PSPACE-complete problem.

A. TCTL for Time Petri Nets

We propose a definition of TCTL [START_REF] Alur | Model-checking in dense real-time[END_REF], for the TPN, based on Generalized Mutual Exclusion Constraints (GMEC) [START_REF] Giua | Generalized mutual exclusion constraints on nets with uncontrollable transitions[END_REF]. A definition without GMEC was already introduced in [START_REF] Cassez | Structural translation from Time Petri Nets to Timed Automata -Model-Checking Time Petri Nets via Timed Automata[END_REF] and translated into a standard TCTL for Timed Automata; the TCTL property is then checked on a structural translation of the TPN into TA.

The following definition extends the Generalized Mutual Exclusion Constraints (GMEC) introduced in [START_REF] Giua | Generalized mutual exclusion constraints on nets with uncontrollable transitions[END_REF].

Definition 4 (GMEC): Assume a TPN with m places P = {p 1 , p 2 , • • • , p m }. A Generalized Mutual Exclusion Constraint (GMEC) is inductively defined by:

GMEC ::= m i=1 a i * M(p i) ⊲⊳ c | ϕ ∨ ψ | ϕ ∧ ψ | ϕ ⇒ ψ
where a i ∈ Z, M is a keyword representing a marking, p i ∈ P , ⊲⊳ ∈ {<, ≤, =, >, ≥}, c ∈ N and ϕ, ψ ∈ GMEC. Operators ∨,∧ and ⇒ are defined as usual.

Intuitively, M(p i) ⊲⊳ c means that the current marking of the place p i is in relation ⊲⊳ with c.

Given a marking M and a GMEC γ, we denote M |= γ (respectively M |= γ) when the GMEC γ is true (respectively false) for the marking M . Operators (¬, ⇒, ∧, ∨ are defined as usual. We also use the following familiar abbreviations: true = ¬false,

∃♦ I φ = ∃true U I φ, ∀♦ I φ = ∀true U I φ, ∃ I φ = ¬∀♦ I ¬φ, ∀ I φ = ¬∃♦ I ¬φ.
The semantics of TPN-TCTL is defined on timed transition systems. Let us consider a TPN N = (P, T, • (.), (.) • , α, β, M 0) and its semantics S N = (Q, {q 0 }, T, →). The truth value of a TPN-TCTL formula for a state q = (M, v) is given in the figure 1.

q |= GMEC iff M |= GMEC q |= false q |= ¬ϕ iff q |= ϕ q |= ϕ ⇒ ψ iff q |= ϕ or q |= ψ q |= ∃ϕ U I ψ iff ∃ρ = q 1 d1 -→ q 1 + d 1 t1 -→ q 2 ... ∈ π(q), ∃i > 0, ∃δ ∈ [0, d i], s.t.      i-1 j=0 d j + δ ∈ I (with d 0 = 0) and q i + δ |= ψ (∀δ ′ ∈ [0, δ[, q i + δ ′ |= ϕ) (∀j s.t. 0 < j < i, ∀δ ′ ∈ [0, d j], q j + δ ′ |= ϕ) q |= ∀ϕ U I ψ iff ∀ρ = q 1 d1 -→ q 1 + d 1 t1 -→ q 2 ... ∈ π(q), ∃i > 0, ∃δ ∈ [0, d i], s.t.      i-1 j=0 d j + δ ∈ I (with d 0 = 0) and q i + δ |= ψ (∀δ ′ ∈ [0, δ[, q i + δ ′ |= ϕ) (∀j s.t. 0 < j < i, ∀δ ′ ∈ [0, d j], q j + δ ′ |= ϕ)

B. Decidability and complexity of TPN-TCTL

We give a short direct proof of the decidability of TPN-TCTL based on the region graph [START_REF] Alur | Model-checking in dense real-time[END_REF], [START_REF] Alur | A theory of timed automata[END_REF]. Note that the decidability was already proven in [START_REF] Cassez | Structural translation from Time Petri Nets to Timed Automata -Model-Checking Time Petri Nets via Timed Automata[END_REF], [START_REF] Lime | Model checking of time Petri nets using the state class timed automaton[END_REF] as a corollary of bisimilar translations from TPN to TA. Moreover we prove that the model-checking of a TPN-TCTL formula on a bounded TPN is a PSPACE-complete problem.

1) Decidability of TPN-TCTL:

Let N = (P, T, • (.), (.) • , α, β, M 0) be a TPN and S N = (Q, {q 0 }, T, →) its TTS.

Definition 6 (Clock equivalence -Region): Let q = (M, v) ∈ Q be a state of a TPN and C M the set of clocks associated with transitions enabled for marking M . For each clock x i ∈ C M associated with transition t i , let c i = β i if β i = ∞ else c i = α i . For a ∈ IR ≥0 we denote ⌊a⌋ the integer part of a and a its fractional part.

The equivalence relation ≃ is defined over the set of states Q. (M, v) ≃ (M ′ , v ′) iff all the following conditions hold:

1)

M = M ′ 2) For all x i ∈ C M , either ⌊v(x i)⌋ and ⌊v ′ (x i)⌋ are the same, or both v(x i) and v ′ (x i) are greater than c i . 3) For all x i , x j ∈ C M with v(x i) ≤ c i and v(x j) ≤ c j , v(x i) ≤ v(x j) iff v ′ (x i) ≤ v ′ (x j) . 4) For all x i ∈ C M with v(x i) ≤ c i , v(x i) = 0 iff v ′ (x i) = 0.
A region is an equivalence class of clock valuations induced by the relation ≃.

Intuitively, the meaning of such a definition is that the integral parts allow to determine whether or not a particular firing condition is satisfied whereas the ordering of the fractional parts is necessary to decide which clock will change its integral part first (and thus the successor region) when the time elapses.

In dimension 2 with c i = 3 and c j = 2 we obtain the partition of the figure 2. The regions are: integer points, open segment between two integer points, inside of the surfaces delimited by the segments.

For example, regions r 1 and r 2 of figure 2 can be described by : Definition 7 (TPN-Region Graph): Given a TPN N and its timed transitions system S N , the TPN-region graph is the quotient graph of S N with respect to the equivalence relation ≃.

r 1 : (2 < v(x i) < 3) ∧ (1 < v(x j) < 2) ∧ 0 < v(x j) < v(x i) and r 2 : (v(x i) > 3) ∧ (1 < v(x j) < 2) x j x i 0 1 r1 r2 2
In [START_REF] Alur | Model-checking for real-time systems[END_REF], [START_REF] Alur | Model-checking in dense real-time[END_REF], authors show that TCTL model-checking can be performed by computation of the region graph of timed graph with an additional clock x used to measure time elapsing between configurations. Let ϕ be any TCTLformula. For every subscript ∼ c appearing in a formula ϕ let there be a new proposition p ∼c . A vertex (s, γ) (where γ is an equivalence class induced by the clock equivalence relation) is labeled with p ∼c if γ |= x ∼ c, else with ¬p ∼c . Then vertexes are labelled with syntactic subformulas of ϕ, or their negation, starting from subformulas of length 1, length 2, and so on. To label the vertex (s, γ) of the region graph satisfying ∃ϕ 1 U ∼c ϕ 2 , it needs to check the formula

∃ϕ 1 U (p ∼c ∧ ϕ 2) on state (s, γ[x ← 0])
The TPN-region graph then allows to prove the following theorems for TPN (we refer the reader to [START_REF] Alur | A theory of timed automata[END_REF], [START_REF] Alur | Model-checking for real-time systems[END_REF], [START_REF] Alur | Model-checking in dense real-time[END_REF] for detailed proofs of these two theorems):

Theorem 1 (TPN-TCTL decidability): TPN-TCTL is decidable for bounded TPN.

Theorem 2: Given a k-bounded TPN N , its number of regions is bounded by:

(k + 1) |P | .|T |! • 2 |T | • ti∈T (2 • c i + 2)
Proof: For a fixed marking, the number of equivalence classes of clock valuations induced by the relation ≃ is bounded (like in [START_REF] Alur | A theory of timed automata[END_REF]) by

|T |! • 2 |T | • ti∈T (2 • c i + 2).
Moreover, the number of markings of a k-bounded TPN, is bounded by (k + 1) |P | .

2) Complexity of TPN-TCTL:

To our knowledge reachability and model-checking complexities are still open for TPN. For a state (M, ν), the value of a clock associated with a transition which is not enabled by the marking M does not matter. The region graph proposed here is then exponential in the size of the input i.e. the maximum number of transitions simultaneously enabled + the number of places of a TPN. However, the following theorem holds :

Theorem 3 (PSPACE-completeness):

The model-checking of a TPN-TCTL formula on a bounded TPN is a PSPACE-complete problem.

Proof:

• First, there exists a PSPACE algorithm based on the TPN-region graph to decide TPN-TCTL on bounded TPN: For k-bounded TPN, each marking belongs to ([0..k]) P . By encoding in binary, marking can be represented in |P |.log 2 (k + 1) bits i.e. in polynomial space. Then, a region can be represented in polynomial space too. Since the number of regions of the TPN region graph is exponential in the size of the input l (the number of transitions simultaneously enabled + the number of places of a TPN), if we construct it entirely, and label its vertices with the subformulas of a TPN-TCTL properties, the algorithm will need space exponential in l. However, we can proceed like in [START_REF] Alur | Model-checking in dense real-time[END_REF]: for formulas of the form ϕ = ∃ϕ 1 U I ϕ 2 , it is possible to check TCTL formulas by nondeterministically exploring a path, region by region. The path is labelled on-the-fly by a polynomial space procedure like in [START_REF] Alur | Model-checking in dense real-time[END_REF] (A recursive procedure label(vertex, ϕ) which returns true if vertex should be labelled with ϕ otherwise f alse). It just needs to remember the current guess and the previous guess. By Savitch's theorem, the deterministic version of the algorithm uses only polynomial space. The cases ϕ = GM EC, ϕ = f alse and ϕ = ϕ 1 ⇒ ϕ 2 are straightforward. For the case ϕ = ∀ϕ 1 U I ϕ 2 , the negation of ϕ can be written using existential path-quantifiers. • The PSPACE-hardness is a consequence that reachability in untimed 1-safe Petri net is a PSPACE-complete problem [START_REF] Cheng | Complexity results for 1-safe nets[END_REF].

IV. STATE SPACE ABSTRACTION

Since we consider a dense time semantics for our model of TPN, the set of configurations of its Timed Transitions Systems cannot generally be exhaustively enumerated. The region graph presented in the previous section abstracts finitely and in a correct way the behaviors of timed automata or bounded time Petri nets. However, such a construction does not support a natural implementation as it runs up against the state explosion problem. We will present, in this section, an abstraction of the state space of a bounded TPN based on convex union of regions. This abstraction will allow to develop a complete framework for the analysis and model-checking of reachability properties (reachability of markings), both linear (LTL) and branching (CTL) properties and quantitative branching properties (TCTL).

A. Zone based state space computation

We briefly present the method used to compute the state space of a TPN using a zone based forward algorithm. We refer the reader to [START_REF] Gardey | Using zone graph method for computing the state space of a time Petri net[END_REF], [START_REF] Gardey | State space computation and analysis of time Petri nets. Theory and Practice of Logic Programming (TPLP)[END_REF] for a detailed presentation of the algorithm. Model-checking algorithms will be adaptations of this algorithm.

1) Definitions:

We first give some classical definitions. Definition 8 (Zone): Let X be a finite set of clocks. A zone over X is a convex set of clock valuations representing a conjunction of atomic constraints of the form

x i -x j ≺ c ij , x i ≺ c i0 , -x j ≺ c 0j where x i , x j ∈ X, c ij , c i0 , c 0j ∈ Q ∪ {-∞, ∞} and ≺∈ {≤, <, =, ≥, >}.
Let x 0 be a clock zero 1 and Z a zone over set of clocks X. All atomic constraints of Z can be rewritten as constraints on clock differences x ix j ≺ z ij , with x i , x j ∈ X ∪ {x 0 }, z ij ∈ Q ∪ {∞} and ≺∈ {≤, <}, i.e.:

Z = xi,xj∈X∪{x0} (x i -x j ≺ z ij)
A zone is a particular form of polyhedra that can be efficiently encoded using DBM (Difference Bounded Matrices [START_REF] Berthomieu | An enumerative approach for analyzing time Petri nets[END_REF], [START_REF] Dill | Timing assumptions and verification of finite-state concurrent systems[END_REF]). This data structure allows easier representation and lower complexity algorithms (at most cubic in the number of clocks of the DBM) than general polyhedra.

Though a set of clocks valuations may be expressed by different conjunctions of constraints, there exists a unique form, called canonical form, that allows to compare zones together. A canonical form of a zone Z is the representation with tightest bounds on all clock differences. Its computation is based on the shortest path Floyd-Warshall's algorithm and is considered as the most costly operation (cubic in the number of clocks of the zone).

A zone Z is then in canonical form iff ∀x i , x j ∈ (X ∪ {x 0 }), z ij = Sup Z (x i -x j)
, where Sup Z (x ix j) is the supremum (i.e. the least upper bound) of x i -x j in Z. In all the following, we will only consider the canonical form of a zone, that is any zone Z will stand for its canonical form. Therefore, the set of clocks of Z contains the clock x 0 .

Let Z be a zone over a set of clocks X and X ′ ⊆ X a subset of clocks of X. The restriction of Z to X ′ denoted Z |X ′ is the zone Z ′ obtained by putting Z in canonical form and then eliminating all variables of X -X ′ .

The future of Z, denoted -→ Z , is the zone obtained by putting Z in canonical form and then replacing each constraint of the form x ix 0 ≺ z i0 , where x i = x 0 , by x ix 0 < ∞.

Definition 9 (Symbolic state):

A symbolic state of a TPN is a couple (M, Z) where M is a marking and Z is a zone whose clocks are those associated with transitions enabled by the marking M .

Informally, the symbolic state (M, Z) represents the set of clock valuations (Z) for which the marking M is reachable according with the TPN semantics.

Definition 10 (Discrete Successors): Let s = (M, Z) be a symbolic state and t i a transition of enabled(M). Transition t i is firable from s iff the zone Z ∩ {x i ≥ α i } is non-empty. If t i is firable from s, then the set of discrete successors of s by the firing of transition t i is:

P ost ti (s) = M ′ , Z ′ with    M ′ = M -• t i + t • i Z ′ = (Z ∩ {x i ≥ α i }) |O ∩ xj∈N {x j = 0}
Z ∩ {x i ≥ α i } represents the set of valuations for which the transition t i is firable. O is the set of clocks of transitions which are enabled in M ′ but not newly enabled. N is the set of clocks newly enabled by the firing of transition t i in the marking M (i.e. the clocks associated with transitions of ↑ enabled (M, t i)).

P ost tk (s) represents all states that are reachable from s by the firing of the discrete transition t k .

Definition 11 (Time Successors): Let s = (M, Z) be a symbolic state and X the clock set of Z. The set of time successors of s is the symbolic state:

-

-→ P ost (s) = (M, Z ′) with Z ′ = -→ Z ∩ xi∈X-{x0} {x i ≤ β i } --→ P ost (s)
is the set of states that are reachable from s by elapsing time in the marking M . Time can grow until a clock reaches its latest firing time.

In addition we note :

--→ P ost ti (s) = --→ P ost (P ost ti (s))

2) State Space Computation Algorithm: The aim of the algorithm is to iteratively compute from a symbolic state the set of reachable symbolic states. Starting from the initial symbolic state --→ P ost ((M 0 , Z 0)) (where M 0 is the initial marking and clocks of Z 0 are all equal to 0) of a TPN, successor symbolic states are iteratively computed as follows: Let s = (M, Z) be a reachable symbolic state. For each transition t k firable in the symbolic state s:

1) Compute the discrete successor s ′ = P ost tk (s), that is the symbolic state resulting by firing transition t k .

2) Compute the time successor s" = --→ P ost (s ′), that is all states (including those of s') reachable by time elapsing from those of s ′ . The construction of the ZBG is given in Algorithm 1, where W aiting is a list to store the symbolic states to be analyzed and P assed symbolic states that were analyzed. According to the criterion of convergence selected (equality of symbolic states or inclusion i.e. how s ∈ P assed is coded), one can compute the marking graph of the TPN or a graph preserving markings and traces of the TPN (LTL properties).

3) k-approximation: If the net contains some transitions with ∞ as latest firing time, a last step consisting in applying an approximation operator is needed to ensure the convergence, else the algorithm exactly computes the state space of the TPN. Actually, if we consider the TPN of figure 3, the infinite firing sequence (t 2 , t 3) * generates the infinite sequences of zones

Z i = {2i ≤ x 1 ≤ 2i + 1 ∧ x 1 -x 2 = 2i},
• • p 1 p 2 p 3 t 1 [0, ∞[t 2 [1, 1] t 3 [1, 1]
Fig. 3. Bounded TPN with an unbounded number of zones

V. APPROXIMATIONS OF ZONES

A. Introduction

Approximation of zones is needed, for TPN with unbounded transitions to ensure the finiteness for clock based abstractions (region as well as zone based). This operation takes into account the constants with which clocks are compared and consists of extending domains of clocks whilst preserving reachable markings and traces of the model (i.e. each state added by an approximation can be simulated by a state within the originate zone).

Moreover, the coarser we may choose the abstraction, the more efficient the method will be.

Related work:

The classical abstraction method for timed automata, known under the names normalization, extrapolation or k-approximation, takes into account the maximum constants to which the various clocks are compared. [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF] describes this method and a number of additional abstraction techniques including active clock reduction and the over-approximating convex hull abstraction. In [START_REF] Behrmann | Static guard analysis in timed automata verification[END_REF], the maximum constants used in the abstraction do not only depend on the clocks but also on the particular locations of the timed automata. In [START_REF] Behrmann | Lower and upper bounds in zone based abstractions of timed automata[END_REF], [START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF], authors show that, by distinguishing maximal lower and upper bounds, significant coarser abstractions can be obtained.

Most of the above zone based abstractions require that guards are restricted to conjunctions of simple lower or upper bounds on individual clocks. We refer the reader to [START_REF] Bouyer | Unteamable timed automata![END_REF] to learn more about zone based abstractions in the presence of difference constraints, and to [START_REF] Behrmann | Static guard analysis in timed automata verification[END_REF] for a solution based on zone splitting.

Specificities of TPN: Contrary to TA, in TPN, a transition cannot be disabled by elapsing time [START_REF] Bérard | Comparison of the expressiveness of timed automata and time Petri nets[END_REF]. It means that if a transition is enabled in a particular state q, for all runs starting from q, either this transition is fired or is disabled by the firing of another transition. A consequence is that the notion of active clocks can obviously be used by considering in a zone only the enabled transitions. Moreover, we can search improvement of k-approximation by focussing our attention on the following case : a valuation of a clock cannot exceed its maximal bound.

In this section, we apply the k-approximation to TPN (as in [START_REF] Gardey | Using zone graph method for computing the state space of a time Petri net[END_REF], [START_REF] Gardey | State space computation and analysis of time Petri nets. Theory and Practice of Logic Programming (TPLP)[END_REF]) and we propose • an adaptation of the well known improvement on TA [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF], [START_REF] Bengtsson | Timed automata: Semantics, algorithms and tools[END_REF] based on a different value of k for each unbounded transition.

• an improvement of the method leading to an abstraction that we show coarser than that of [START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF]. Moreover, we prove that these abstractions are exact w.r.t. reachable markings and traces.

B. k-approximation

The first approximation proposed for timed automata [START_REF] Daws | Model checking of real-time reachability properties using abstractions[END_REF] consists of selecting an integer k equal to the maximum finite constant appearing in the time constraints of the model. This approximation is based on the fact that once the clock has over passed the value k, its precise value does not matter anymore. In the context of time Petri nets, k is equal to the maximum finite constant appearing in the firing time intervals of the TPN. Each symbolic state (M, Z) is then approximated in (M, Z ′) using the following k-approx function:

Definition 12 (k-approx): Let Z be a zone (in canonical form) over a set of clocks X. k-approx (Z) = Z ′ is defined by:

∀x i , x j ∈ X, z ′ ij =      ∞ if z ij > k -k if z ij < -k z ij otherwise.
The algorithm then computes at each iteration:

--→ P ost k ti (s) = k-approx --→ P ost ti (s)
Recent works on Timed Automaton [START_REF] Bouyer | Timed automata may cause some troubles[END_REF], [START_REF] Bouyer | Unteamable timed automata![END_REF] proved that this operation generally leads to an over-approximation of the reachable localities of TA. For TPN, [START_REF] Gardey | Using zone graph method for computing the state space of a time Petri net[END_REF], [START_REF] Gardey | State space computation and analysis of time Petri nets. Theory and Practice of Logic Programming (TPLP)[END_REF] prove the correctness of the zone based abstraction with k-approximation w.r.t. the set of reachable markings and traces of the TPN.

C. k x -approximation

The first improvement of k-approximation is to consider a distinct value k xi for each clock x i . k xi is equal to the maximum finite constant appearing in time constraints on clock x i . The underlying idea is: if a clock x i grows beyond the value k xi , its precise value does not matter and the resulting zone has exactly the same behavior than its originate symbolic state (M, Z) w.r.t. traces.

Definition 13 (k x -approx):

Let Z be a zone (in canonical form) over a set of clocks X. k x -approx(Z) = Z ′ is defined by:

∀x i , x j ∈ X, z ′ ij =      ∞ if z ij > k xi -k xj if z ij < -k xj z ij otherwise.
For time Petri nets, clocks are associated with transitions and compared with bounds of static firing intervals of their transitions. Therefore, for a clock x i of a transition t i , its k xi is defined by:

k xi = α i if β i = ∞ β i otherwise.
In addition, for any bounded transition t i (i.e. β i = ∞), its clock cannot overpass β i . Note that, in this case, k xi = β i . Then, the following relations hold: ∀t i , t j ∈ enabled(M), [START_REF] Alur | Model-checking in dense real-time[END_REF]

β i = ∞ ⇒ z ij ≤ z i0 ≤ β i = k xi (2) β j = ∞ ⇒ -k xj = -β j ≤ z 0j ≤ z ij
Using the above relations, we can rewrite the k x -approx for time Petri nets as follows:

∀x i , x j ∈ X, z ′ ij =      ∞ if z ij ≥ α i ∧ β i = ∞ -α j if z ij ≤ -α j ∧ β j = ∞ z ij otherwise.
By convention we suppose that α 0 = β 0 = 0. Note that since intervals of time Petri nets are closed by the left, we have replaced the strict relation (<) between z ij , k xi and k xj by a larger one (≤).

By applying the forward algorithm using k x -approx instead of k-approx, we then build a coarser abstraction (and consequently less symbolic states to explore) but still exact with respect to reachable markings and traces. We refer the reader to section V-F for the proof of its exactness.

D. Lower and Upper bounds based approximations

In [START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF], authors have proposed two other approximations for timed automata, referred in the sequel by LU x -Approx and LU *

x -Approx. In these approximations, authors distinguish between lower and upper bounds of clocks. They define, for each clock x i , two maximal bounds denoted respectively L(x i) and U (x i). L(x i) and U (x i) are respectively the maximal lower bound and the maximal upper bound of clock x i in the time constraints of the model. More precisely, L(x i) (resp. U (x i)) is the maximal constant k such that there exists, in the model, a constraint

x i ≥ c or x i > c (resp. x i ≤ c or x i < c). If such a constant does not exist, L(x i) (resp. U (x i)) is set to -∞.
Definition 14 (LU x -Approx): Let Z be a zone (in canonical form) over a set of clocks X. LU x -Approx(Z) = Z ′ is defined by:

∀x i , x j ∈ X, z ′ ij =      ∞ if z ij > L(x i) -U (x j) if -z ij > U (x j) z ij otherwise.
Definition 15 (LU * x -Approx): Let Z be a zone (in canonical form) over a set of clocks X. LU *

x -Approx(Z) = Z ′ is defined by:

∀x i , x j ∈ X, z ′ ij =                ∞ if z ij > L(x i) ∞ if -z 0i > L(x i) ∞ if -z 0j > U (x j), i = 0 -U (x j) if -z 0j > U (x j), i = 0 z ij otherwise.
In the context of time Petri nets, for each clock x j , L(x j) = α j , U (x j) = β j if β j = ∞, U (x j) = -β j otherwise. Moreover, x j cannot neither be negative nor overpass β j , it follows that ∀t i , t j ∈ enabled(M),

(3) -β j ≤ z 0j ≤ z ij ≤ z i0
Then, the following relations always holds:

∀t i , t j ∈ enabled(M), U (x j) = β j ≤ z 0j ≤ z ij , if β j = ∞, U (x j) = -β j ≤ z 0j ≤ z ij otherwise.
Using the above relations, LU x -Approx(Z) = Z ′ can be simplified (by eliminating relations which never hold) and rewritten for time Petri nets as follows:

∀x i , x j ∈ X, z ′ ij =      ∞ if z ij > α i ∞ if (β j = ∞) z ij otherwise.
LU * x -Approx(Z) = Z ′ can be simplified and rewritten for time Petri nets as follows:

∀x i , x j ∈ X, z ′ ij =            ∞ if z ij > α i ∞ if -z 0i > α i ∞ if (β j = ∞) z ij otherwise.

E. Our approximation

We propose to use another approximation operation which is exact and leads to much compact graphs. We refer the reader to the section V-F, lemma 2 and theorem 4 for the proof of its exactness.

Definition 16 (k ′

x -approx): Let (M, Z) be a symbolic state in canonical form and X the clock set of Z. Our approximation of Z, denoted k ′

x -approx(Z), is the canonical form of the DBM Z ′ defined as follows:

∀x i , x j ∈ X, z ′ ij =      ∞ if β j = ∞ ∞ if z ij -α i ≥ z 0j z ij otherwise. x j -x i = z ji x j = z j0 x i = z i0 x i -x j = z ij z ij x j = -z 0j x i = -z 0i α i z i0
x j

x i Fig. 4. a DBM (light gray area) and its k ′ x -approx (light + dark gray area)

The comparison between [START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF] is depicted in figure 4. This figure shows that with our approximation the clock domain of x i is extended earlier (z ijz 0j ≥ α i) than with approximations proposed in [START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF] (z ij ≥ α i). Indeed, for the DBM (light gray area) of the figure 4, we have z ij ≥ α i and the approximation of [START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF] can not be applied whereas z ijz 0j ≥ α i leading with our approximation to add the dark gray area. Such a situation can be obtained, for example, with the TPN of figure 5 after firing of the sequence t 1 , t 2 , t 3 . The following lemma establishes that our approximation leads to coarser graphs than those obtained using LU *

• • • P 1 P 2 P 3 P 4 P 5 t 1 [0, 3] t 2 [4, 4] t 3 [1, 3] t 4 [3, 3] t 5 [3, 5]
x -Approx. Indeed, our approximation produces larger zones than those obtained by LU * x -Approx(Z) and then leads to coarser abstractions.

Lemma 1: For every Z, it holds that LU * x -Approx(Z) ⊆ k ′ x -Approx(Z). Proof: It suffices to show that ∀x i , x j ∈ En(M), if z ij > α i ∨ -z 0i > α i then z ij -α i ≥ z 0j . 1) If z ij > α i then z ij -α i > 0. Since z 0j ≤ 0, it follows that z ij -α i ≥ z 0j . 2) If -z 0i > α i then relation z 0i + z ij ≥ z 0j implies that -z 0j + z ij ≥ -z 0i > α i . Then z ij -α i ≥ z 0j . Moreover, since α i ≥ 0, relation -z 0i > α i implies that i = 0.

F. Correctness of our zone based forward method

We now prove that the Zone Based Graph (ZBG) computed with k x -approximation or k ′ x -approximation is exact i.e. both sound2 and complete. 3We have then to show that a symbolic state (M, Z) and its approximation (as proposed in section V-E) have exactly the same traces. To achieve this goal, we prove, in lemma 2, that a zone Z and its approximation have the same firing domain. More precisely, a symbolic state and its approximation map to the same Berthomieu's state class [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF]. We first show, in proposition 1, how to compute the firing domain of a zone. The idea of this proposition is borrowed from [START_REF] Boucheneb | Toward a simplified building of time Petri nets reachability graph[END_REF] and adapted to zones. In [START_REF] Boucheneb | Toward a simplified building of time Petri nets reachability graph[END_REF], authors have shown how to compute the firing domain of their state classes. Their state classes are based on past firing instants while Berthomieu's state classes are based on future firing instants.

Definition 17:

The firing domain of a symbolic state [START_REF] Boucheneb | Toward a simplified building of time Petri nets reachability graph[END_REF], [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF]. Let (M, Z) be a symbolic state (Z is in canonical form) and q = (M, v) one of its states. The firing domain

I v of q = (M, v) is defined by I q : enabled (M) → Q ≥0 × (Q ≥0 ∪ {∞}), I q (t i) = [max(0, α i -v i), β i -v i].
The firing domain of (M, Z) is the union of the firing domains of all its states, i.e.: {I q | q ∈ (M, Z)} Proposition 1: Let (M, Z) be a symbolic state (Z is in canonical form) and X the set of clocks of Z. The canonical form of its firing domain D is:

∀x i , x j ∈ X, d ij = β i + min(z 0i , z ji -α j) if i = j 0 otherwise.
Proof: First we have to show that the firing domain D of (M, Z) is characterizable by a set of atomic constraints. The following steps show how to do it:

Let Y = {y i | x i ∈ X} and Y ′ = {y ′ i | x i ∈ X} be two disjoint sets of new variables (Y ∩ X = Y ′ ∩ X = Y ∩ Y ′ = ∅). We suppose that x 0 = y 0 = y ′ 0 = 0. 1) Initialize D with Z ∩ xi∈X-{x0} {0 ≤ y i ∧ α i -x i ≤ y i ≤ β i -x i } (1)
Note that variables of Y represent delays. 2) Replace in D each y i of Y by -y ′ i . We can then rewrite it to obtain:

Z ∩ xi∈X-{x0} y ′ i ≤ 0 ∧ y ′ i -x i ≤ -α i ∧ x i -y ′ i ≤ β i (2)
3) Put D in canonical form, rename x 0 in y 0 and eliminate all variables x i . 4) Replace in D each y ′ i by -y i . The resulting D is a set of atomic constraints. Therefore, D is convex and has a unique canonical form defined by: ∀y i , y j ∈ Y, d ij = Sup D (y iy j). The rest of the proof is based on the constraint graphs. Let F be a set of atomic constraints. The constraint graph of F is a weighted directed graph, where nodes represent variables of F, with one extra node representing the value 0. An arc connecting a node u i to a node u j with weight (≺, c), where ≺ is either < or ≤, represents any atomic constraint equivalent to u iu j ≺ c. We have the two following known results:

• F has, at least, one solution (one tuple of values that satisfies, at once, all constraints in F) if and only if, the constraint graph of F has no negative cycle, • If the constraint graph of F has no negative cycle, the weight of the shortest path, in the graph, going from a node u i to a node u j , is equal to the supremum of (u iu j) in F (Sup F (u iu j)). Consider now the set of atomic constraints (2) above obtained at step 2. Its constraint graph is shown in figure 6, where solid arrows represent constraints of Z and dashed ones are constraints to be added to obtain the constraint graph of the firing domain D of Z. Recall that x 0 and y 0 are respectively "zero" nodes of constraint graphs of Z and D. Since Z is not empty, (2) is consistent and then its constraint graph has no negative cycle. In addition, since for all x i ∈ X, y ′ i = -y i and x 0 = y 0 = y ′ 0 = 0, it follows that the weight of the shortest path, in the constraint graph of formula (2), connecting a node y ′ i to a node y ′ j is equal to d ji . By assumption, Z is in canonical form. The weight of the shortest path connecting a node x i to a node x j , in the constraint graph of Z, is then z ij . Knowing that for all x i ∈ X, 0 ≤ x i ≤ β i , it follows that: for all

x i , x j ∈ X, 0 ≤ z i0 ≤ β i , z 0i ≤ 0 and z ij ≤ z i0 + z 0j ≤ β i + z 0j .
Then, the added nodes and edges, to obtain the constraint graph of formula (2), do not affect weights of the shortest paths connecting nodes of X. It follows that:

d ji = min(0 + z 0j + β j , -α i + z ij + β j) x 0 , y ′ 0 y ′ i x i x j y ′ j z 0i z i0 z 0j z j0 z ij z ji 0 0 β i -α i β j -α j Fig. 6. Constraint graph of Z ∩ T x i ∈X-{x 0 } {y ′ i ≤ 0 ∧ y ′ i -xi ≤ -αi ∧ xi -y ′ i ≤ βi}
Lemma 2: Let (M, Z) be a symbolic state in canonical form, X its set of clocks, (M, Z ′) and (M, Z ′′) be respectively its k x -approximation and k ′

x -approximation. Then: (M, Z ′), (M, Z ′) and (M, Z ′′) have the same firing domain.

Proof: Let D, D ′ and D ′′ be respectively the firing domains of (M, Z), (M, Z ′) and (M, Z ′′). We have to show that D = D ′ = D ′′ . Note that we give only here the proof of D = D ′′ . The proof of D = D ′ is very similar. Recall the canonical forms of D, D ′′ and Z ′′ : ∀x i , x j ∈ X,

d ji = β j + min(z 0j , z ij -α i) if i = j 0 otherwise. d ′′ ji = β j + min(z ′′ 0j , z ′′ ij -α i) if i = j 0 otherwise
Z ′′ is the canonical form of the zone B defined by: ∀x

i , x j ∈ X, b ij =      ∞ if β j = ∞ ∞ if z ij -α i ≥ z 0j z ij otherwise Note that Z ⊆ Z ′′ and then ∀x i , x j ∈ X, z ij ≤ z ′′ ij ≤ b ij . Consequently, if b ij = z ij , for some i and j, then z ′′ ij = z ij . Let us now show that ∀x i , x j ∈ X, d ji = d ′′ ji : • In case (i = j): we have d ji = d ′′ ji = 0. • In case i = j:
1 If β j = ∞ then:

d ji = β j + min(z 0j , z ij -α i) = ∞ = β j + min(z ′′ 0j , z ′′ ij -α i) = d ′′ ji 2 If β j < ∞ and z ij -α i ≥ z 0j , we have: z ′′ ij ≥ z ij , b 0j = z 0j = z ′′ 0j .
It follows that:

d ji = β j + min(z 0j , z ij -α i) = β j + z 0j = β j + z ′′ 0j = β j + min(z ′′ 0j , z ′′ ij -α i) = d ′′ ji 3 If β j < ∞ and z ij -α i < z 0j , we have b ij = z ij = z ′′ ij and b 0j = z 0j = z ′′ 0j . Then: d ′′ ji = β j + min(z ′′ 0j , z ′′ ij -α i) = β j + min(z 0j , z ij -α i) = d ji . Consequently, D = D ′′
Theorem 4: Let N be a TPN and S N its semantics. The zone-based abstraction (computed with k x -approximation or k ′

x -approximation) of the state space of N preserves reachable markings and traces of S N .

Proof: On a TPN N , the zone-based forward algorithm (without k-approximation) 4 computes exactly all states and traces of the semantics S N [START_REF] Gardey | Using zone graph method for computing the state space of a time Petri net[END_REF]. Furthermore the lemma 2 proves that a symbolic state and its k x -approx and k ′

x -approx approximations have the same firing domain. In [START_REF] Berthomieu | Modeling and verification of time dependent systems using time Petri nets[END_REF] and [START_REF] Boucheneb | Toward a simplified building of time Petri nets reachability graph[END_REF], authors have shown that all state classes sharing the same marking and firing domain share also the same traces. Therefore, our abstraction (with k x -approximation or k ′

x -approximation) is exact: These approximations add states but preserve reachable markings and traces.

G. Comparisons of the three approximations

In table I, we compare the number of symbolic states (i.e. the number of zones) needed to compute the state space of TPN preserving reachable markings (i.e. an abstraction by inclusion and reverse inclusion) when we use the k x -approximation, the LU *

x -Approx improvement of [START_REF] Behrmann | Lower and upper bounds in zone-based abstractions of timed automata[END_REF] and our k ′ x -approximation improvements. These three approximations have been implemented in the tool ROMEO. We use the classical level crossing for n trains proposed in [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF] and presented in section VII.

The gain of our approximation in both time and size is significant and grows with the size of the model. It has also to be noted that, for one example (train6.xml, i.e. the classical gate controller problem with 6 trains) it made the computation feasible while other abstraction ran out of memory.

H. Comparisons with other methods

We have implemented and tested approximations proposed here and other abstractions developed in the literature: SCGs [START_REF] Berthomieu | La méthode des classes d'états pour l'analyse des réseaux temporels[END_REF] (linear state class graphs), SSCG [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF](linear strong state class graphs) and ASCG [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF] (atomic state class graphs), ZBG k [START_REF] Gardey | Using zone graph method for computing the state space of a time Petri net[END_REF]. Table II reports the results obtained for the classical level crossing model with number of trains equal to 2, 3 or 4 trains, and for some producer/consumer model with number of producer/consumer equal 3, 4, 5, 6 or 7. The figures represent the size of the graph computed in term of states and edges, and the time needed to compute it. All tests have shown that our approximation is very appropriate since it is exact and results in a much smaller graphs.

Note that tables I and II are based on two different criteria of comparison of zones. In table I, we report results obtained, for different approximations, when we use inclusion as criterion of comparison (abstractions by inclusion). Such abstractions are known to preserve markings but do not necessarily preserve firing sequences. Table II reports results obtained, when we use equality as criterion of comparison (exact abstractions). Such abstractions preserve markings and firing sequences.

VI. ON-THE-FLY TPN-TCTL MODEL-CHECKING

An on-the-fly model-checking algorithm generates the state space of the investigated system and verifies the property of interest simultaneously. In contrast to the approach of generating the whole state space before verification, this allows the verification to be stopped as soon as the truth-hood of the property

The efficiency of such on-the-fly methods were proven for TA with tools like UPPAAL [START_REF] Larsen | UPPAAL in a nutshell[END_REF] (on TA) for instance. These tools restrict the set of TCTL properties that can be verified in order to provide efficient on-the-fly algorithms and faster convergence criteria. Though the set of properties is reduced, practical case studies show they were sufficient for most of the models studied.

We can now use our abstraction to efficiently perform on-the-fly model-checking of Time Petri Nets. In this section, we propose a subset of TPN-TCTL for which we give algorithms to decide their truth value for a bounded TPN.

A. TPN-TCTL S : a subset of TPN-TCTL for on-the-fly model-checking

We consider the subset of TPN-TCTL where formulas are not imbricated. However, in practice the most interesting property for real-time systems is the bounded response (liveness) property which is an imbricated formula.

The response (liveness) property is defined by : ϕ I ψ corresponding to ∀ (ϕ ⇒ ∀♦ I ψ). For example, the time-bounded leads-to operator ϕ [0,c] ψ expresses that whenever the state property ϕ holds then the state property ψ must hold within at most c time-units thereafter.

Thus we add it to our subset of TPN-TCTL. B. On-the-fly TPN-TCTL S model-checking TPN-TCTL S is adapted to "on-the-fly" model-checking, that is computing the state space while testing the truth value of the TPN-TCTL S formula. Compared to other classical methods based on fix-point computation (TA), it allows to only explore the relevant part of the state space relatively to the property being checked. Besides, the practical use of fix-point algorithms on TPN is discussable since, at the contrary to TA, the discrete structure of the state space (i.e. the set of reachable markings) is not known a priori.

Proposition 2: (Sketch of TPN-TCTL S Model-checking Algorithm)

• k x -approximation Since we choose to add a time interval to TPN-TCTL S operators, we need an additional clock to test if a run of the TPN verifies the timing constraint of the formula being model-checked. Classically, we add to the model an additional clock to be able to check the timing constraint. It counts the time length of firing sequences of the TPN. Adding this clock is strictly equivalent to extend the TPN model with a transition ([0, ∞[as firing interval) that is never fired. Since it is an unbounded clock, we need to choose a constant k c to perform the k x -approximation. Its value is chosen as follows:

-If the TPN-TCTL S formula has a bounded interval and c max is its upper bound, we choose k c = c max . This ensures that we will compute the exact time of TPN firing sequences. -If the TPN-TCTL S formula has an unbounded interval and C min is its lower bound, we choose k c = c min .

This allows to detect runs whose time length are greater than c min .

• k ′ x -approximation In the case of the k ′

x -approximation, the transition added has to be specially handled while approximating. Actually, the first step of the approximation, that is to replace z 0j with 0 if β j = ∞, will erase the minimal absolute time at which a marking is reachable. To avoid the problem, this clock has to be approximated in the usual way with the k x -approximation.

Theorem 5: The proposition 2 is exact for TPN-TCTL S model-checking.

Proof: Thanks to lemma 2, a zone and its approximations (k x -approximation and k x '-approximation) map to the same firing domain and then have same traces. The proof of this lemma 2 can be easily extended for any approximation values greater than the values selected for the k x '-approximation. To verify TPN-TCTL S we add an additional clock for which we apply the particular k x -approximation of the proposition 2. Consequently, the ZBG of the extended TPN preserves markings and traces. Since the added clock is used to measure the time lengths of some traces, it remains to show that these times are exact. In [START_REF] Boucheneb | Analyse des réseaux de Petri temporels: Calcul des classes en o(n) et des temps de chemin en o(m × n)[END_REF], authors have shown that the time lengths of the TPN traces, including those of its states, can be computed using markings and firing domains. It follows that the approximations proposed here do not affect time lengths of the traces.

Consequently, we can build on-the-fly the state space of the extended TPN with the forward based algorithm presented in the previous section. Note that to deal with zeno TPN, we record the current explored path in order to detect zeno runs. In order to verify TPN-TCTL S properties, we introduced three new algorithms (see Appendix) that will handle the verification of: ∃ϕU I ψ, ∃ I ϕ and ∀ϕU I ψ. The other operators can be deduced from them.

close i on i f ar i lef t i app [0, ∞[in i [3, 5] ex i [2, 4] exit [0, 0] open lowering raising closed R [1, 2] down [0, 0] L [1, 2] up [0, 0] down [0, 0] • • Fig. 8.
Train and Gate models -Level crossing example

VII. EXPERIMENTAL RESULTS

A. Implementation

A prototype of the on-the-fly model-checker was implemented in the tool ROMEO [START_REF] Gardey | Romeo: a tool for analyzing time petri nets[END_REF], a tool for edition and analysis of TPN. It currently allows to model-check TPN-TCTL S properties on a bounded TPN. According to the formula to check, a trace (counter-example or witness) may be generated for analysis purpose. The three approximations (k x -approx, LU *

x -Approx and k ′ x -approx) were also implemented to compare their efficiency.

B. Example

Let us consider the classical level crossing example. A TPN version of this example is proposed in [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF]. The net is obtained by the parallel composition of n train models (figure 8) synchronized with the gate controller model (app, exit, n instantiated) (figure 7) and a gate model (down, up) (figure 8).

C. Properties

Nonquantitative timed properties like "when no train approches, the gate eventually opens" can be checked on the Atomic State Classes Graph [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF] computed with tool TINA [START_REF] Berthomieu | TINA[END_REF]. We first compared our computation with that of [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF] in terms of number of state classes and edges of the computed graph. Figures for TINA are the size of the graph preserving CTL properties, the ones for ROMEO are the size of the graph computed on-the-fly to decide the truth-hood of the property:

f ar ¬f ar ∨ open
where f ar is the GMEC : M (f ar) = n. The results are reported in table III. They show the efficiency of the on-the-fly method compared to the method proposed in [START_REF] Berthomieu | State class constructions for branching analysis of time Petri nets[END_REF] that consists in computing the whole graph preserving CTL properties and then applying a model-checker. Besides CTL properties, the main interest of the method is that we are now able to verify quantitative properties over TPN.

For instance, the following properties can be proved true: a For TINA, the figures correspond to the number of stong atomic classes computed. For ROMEO, this is the number of symbolic states of the graph computed to verify the property.

b For TINA, the number of transitions is the number of transitions of the graph preserving CTL properties. For ROMEO, it represents the number of symbolic states effectively computed by the algorithm to decide the truth-hood of the TPN-TCTLS formula.

c Computation aborted due to lack of memory.

• Whenever a train crosses the gate, the gate is closed: [1,n] on i ⇒ closed

φ 1 = ∀ [0,∞[∨ i∈
• A train can approach whereas the gate is raising. [1,n] close i ∧ raising)

φ 2 = ∃♦ [0,∞[(∨ i∈
• In the first 1000 time units, the gate is not closed until a train approaches

φ 3 = ∀¬closed U [0,1000] coming
• If a train approaches, the gate is closed in less than 2 time units.

φ 4 = coming [0,2] closed
We give in the table IV some computation times and the number of symbolic states computed for the modelchecking of φ 1,2,3,4 . Experiments were led on a Pentium IV 3GHz with 1Gb of memory. It has to be noted that for these properties the whole state-space has to be generated to decide the truth value of the formula. It shows how efficient is the k ′

x -approx for the practical verification of TPN-TCTL S formulas in comparison to the classical k x -approximation.

We also compared our tool with UPPAAL. The gate model provided in UPPAAL distribution corresponds to n trains and 1 track with stop of train and a queue to restart the train. Though the models are not the same, we first use a modified version of the TA model for 7 trains and 7 tracks. We obtain the following results: on gate model (7 trains and 7 tracks), a computation time of 85s for φ 2 with UPPAAL against 17s with ROMEO. On the contrary, if we use the UPPAAL gate model (n trains and 1 track with stop of train and a queue to restart the train), we obtain the following results (for 7 trains) a computation time of 12.42s for the property T rain(i).Appr T rain(i).Cross with UPPAAL against 127.25s with ROMEO for the comparable property close i lef t i on the TPN model. It comes from the fact that the queue is done by an interpreted algorithm with UPPAAL whereas we model it by a TPN (with all the possible combinations) leading to a state space explosion.

These comparisons are not very significative as models are different but it shows the efficiency of our method and tool. Moreover, some implementation improvements (such as the use of Clock Difference Diagrams) are not yet integrated in ROMEO. Finally, the use of subscript TCTL in ROMEO eases the expression of quantitative properties: for instance the TA model must be modified (with an observer) to model-check T rain(i).Appr [0,2] T rain(i).Cross with UPPAAL while it is not necessary for ROMEO.

VIII. CONCLUSION

We have considered TCTL model-checking of Time Petri Nets. From a theoretical point of view, we have proved using region graphs the decidability of the model-checking of TPN-TCTL on bounded TPN as well as its PSPACE complexity. However, in practice, region graphs are not useful as they run up against the state explosion problem. To overcome this limitation, we have considered a subset of TPN-TCTL properties (TPN-TCTL S) for which we have proposed efficient on-the-fly forward model-checking algorithms using zone based abstractions. As for Timed Automata, an over-approximation operator on zones is used to enforce the termination of the algorithms. In order to speed up the convergence of these algorithms, we have defined a finer approximation operator over zones which leads to a much compact abstraction. We have shown that our abstraction is exact and allows the effective verification of TPN-TCTL S properties. The method was implemented and integrated in the tool ROMEO [START_REF] Gardey | Romeo: a tool for analyzing time petri nets[END_REF]. It is then possible to check efficiently real-time properties with this tool, and to benefit from all the advantages of it: counter example generation when a property is false, simulation environment.

From a theoretical point of view, the complexity of model-checking should be explored for general TPN or subclasses of TPN as well as combining reduction methods (structural or partial order methods) to decrease the practical cost of the model-checking of TPN.

The problem is then to handle zeno runs for zeno TPN. Actually if the algorithm converges by inclusion, it isn't able to detect null time loops which may invalidate the property. Thus, to detect loops, we record the prefix (i.e. the trace of symbolic states) of the symbolic state being checked.

Algorithm 8 CheckAU (s, ϕ, ψ, I)

V isited ← ∅ P ref ix ← ∅ s 0 = (M 0 , 0) return checkAU aux (s, ϕ, ψ, I)

 the function giving the earliest firing times of transitions,• β : T → Q ≥0 ∪ {∞} is the function giving the latest firing times of transitions.

Definition 5 (

 5 TCTL for TPN): The temporal logic TPN-TCTL is inductively defined by: TPN-TCTL ::=GMEC | false | ¬ϕ | ϕ ⇒ ψ | ∃ϕ U I ψ | ∀ϕ U I ψ where false is a keyword, ϕ, ψ ∈ TPN-TCTL, I ∈ {[a, b], [a, b), (a, b], (a, b)} with a ∈ N and b ∈ N ∪ {∞}.

Fig. 1 .

 1 Fig. 1. Semantics of TPN-TCTL

3 1 2 Fig. 2 .

 22 Fig. 2. Partition for 2 clocks xi and xj with ci = 3 and cj = 2

Fig. 5 .

 5 Fig. 5. Time Petri Net leading to the DBM of figure 4.

Definition 18 (

 18 TPN-TCTL S): TPN-TCTL S is the sub-class of the temporal logic TPN-TCTL defined by:TPN-TCTL S ::= ∃ϕ U I ψ | ∀ϕ U I ψ | ∃♦ I ϕ | ∀♦ I ϕ | ∃ I ϕ | ∀ I ϕ | ϕ Il ψ where ϕ, ψ ∈ GMEC, (ϕ Il ψ) = ∀ (ϕ ⇒ ∀♦ Il ψ), I ∈ {[a, b], [a, b),(a, b], (a, b)} with a ∈ N and b ∈ N ∪ {∞}, and I l ∈ {[0, c], [0, c)} with c ∈ N.

Fig. 7 .

 7 Fig. 7. Gate Controller model -Level crossing example

 even if the model is bounded (i.e. has a finite number of reachable markings).

	Algorithm 1 Zone Based Graph Algorithm
	s 0 = (M 0 , Z 0) W aiting ← { --→ P ost (s 0)}
	P assed ← ∅
	while W aiting = ∅ do
	s = pop(W aiting)
	if s ∈ P assed then
	for all t ∈ enabled (s) do s ′ = --→ P ost (P ost t (s)) W aiting ← W aiting ∪ {s ′ }
	end for
	P assed ← P assed ∪ {s}
	end if
	end while

TABLE II SIZE

 II COMPARISONS OF GRAPHS COMPUTED BY ABSTRACTIONS PRESERVING LINEAR OR BRANCHING PROPERTIES a Number of symbolic states of the graph computed b Number of edges of the graph computed

TABLE IV COMPUTATION

 IV TIME TO MODEL-CHECK TPN-TCTLS FORMULAS. Computation aborted -Ran out of memory

a

The value of this clock is always 0.

Any trace in the model state space is also possible in the ZBG.

Any trace in the ZBG is also possible in the model state space.

with no guaranty of termination

ACKNOWLEDGMENTS :

The authors are grateful to Franc ¸ois Laroussinie, Didier Lime and Agata Pólrola for their comments on the original draft paper.

APPENDIX

This appendix details the model-checking algorithms for TPN-TCTL S . Versions presented are depth-first-search algorithms, however non-recursive implementations are also available in ROMEO.

A. Model-checking algorithms for TPN-TCTL S

1) Model Checking ∃ϕU I ψ: The aim of the algorithm is to look for a path (s 0 , v 0) → • • • → (s n , v n) such that for all states (s i , v i) |= ϕ and (s n , v n) |= ψ in the time constraint window I. Finding such a path is possible by enumerating the reachable states of the TPN and looking for a state verifying ψ in the time interval I. The algorithm converges by inclusion: if we reach a state s = (M, Z) ⊆ V isisted,i.e. there exists (M, Z ′) ∈ V isited such that Z ⊂ Z ′ , the successors of s are not computed since they will generate runs that are already covered by Z ′ . Consequently, if the property is false for (M, Z ′) then it is also false for (M, Z); reciprocally, if the property is true for (M, Z) then it is true for (M, Z ′).

2) Model Checking ∃♦ I ϕ: By definition ∃♦ I ϕ == ∃T rueU I ϕ.

3) Model Checking ∀ I ϕ: By definition ∀ I ϕ = ¬∃♦ I ¬ϕ. 4) Model Checking ∃ I ϕ: By definition ∃ I ϕ = ¬∀♦ I ¬ϕ. Since the model-checking of ∀♦ I needs to converge by equality, and that ϕ is a state formula in our subset of TPN-TCTL S , we use a specific algorithm to check ∃ I . It uses a convergence by inclusion, which ensures a faster computation time if the property holds. 6) Model Checking ϕ ≤c ψ: We consider here the bounded response. It consists in verifying that every time ϕ becomes true, ψ always holds in less than c time units. Using an additional boolean property b that stores the requirement for ψ to hold within c time units, the property can be transformed into

This result in a slightly modified ∃♦ I algorithm, that is: (1) we add an additional clock z to store the time requirement for ψ; (2) each time a state for which ϕ starts to hold is encountered, b is set to true and z is reset; (3) each time ψ is true the value of b is set to false. The algorithm stops if it encounters a state such that b is true and z > t.

Algorithm 6 CheckBoundedResponse(s 0 , ϕ, ψ, c)

V isited ← ∅ s 0 = (M 0 , 0) return ¬checkBoundedResponse aux(s 0 , ϕ, ψ, c)

) then return True end if end if end for return False 7) Model Checking ∀ϕU I ψ: Let (M, Z) a symbolic state for which we want to check ∀ϕU I ψ. Informally, we can decide its truth value for this state using the following steps:

• If there are some valuations of z greater than I max then the property is false.

• If M |= ψ and all the valuations for the global clock z of Z are in I then the property is true for this state.

• If M |= ϕ (ie ϕ ∨ ψ) then the property is false.

• We compute the time successors of (M, Z).

• We remove all the states such that ψ is true and z ∈ I and note (M, Z ′) this new symbolic state. Actually, these states removed belong to paths that verifies the property. We only need to verify states for which ψ is true and z < I min , that is every runs starting from them will eventually lead to a state such that ψ ∧ z ∈ I is true.

• For each firable transition we compute the discrete successors. Concerning the convergence criterion, let us first suppose that the TPN is non-zeno i.e. there are no loops in null time. If we consider convergence by inclusion, since the TPN is non-zeno, it is guaranted that the global time progresses. Consequently, if we reach a state (M, Z) such that Z is included in some Z ′ of a state (M, Z ′) already visited, we are sure this can't be a loop in null time. Then, if the property is true for (M, Z ′) it is also true for (M, Z) and reciprocally if the property is false for (M, Z ′). Algorithm 9 CheckAU aux (s, ϕ, ψ, I)