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Extremal Extensions for m-jets from R to R
n.

E. Le Gruyer∗†‡

June 3, 2010

Abstract

We characterize the Lipschitz constant for the m-fields (m ∈ N) from R to R
n.

This work completes the results of J. Favard [10] and G. Glaeser [20] (see also [24]).
Let us consider a m-field U . Our problem is to solve

inf{Lip(g(m)) : g is an m-Lipschitz extension of U},

where Lip is the Lipschitz constant, and to characterize the extremal extension f ,
according to Favard’s terminology [10], for which the above infimum is attained.
The expression of the extremal extension contains the antiderivative of a rational
function where the numerator is a polynomial and the denominator is the Euclidean
norm of this polynomial. We further study the stability of this solution.

1 Introduction

We are interested in the problem initiated by H. Whitney [30], [31] concern-
ing the extension of Taylorian fields. In this paper we consider the m-fields
(m ∈ N) from R to R

n. The main result of this paper generalized a result
of G. Glaeser [21] which deals with the problem of extremal extension, ac-
cording to Favard’s terminology [10], for m-Taylorian fields from R to R.

Denote Rn[X] the space of polynomials from R to R
n. For any m,n ∈ N

∗,
consider a m-field U

U : a ∈ dom(U) → Ua ∈ Pm,n
∗Institut National des Sciences Appliquées & IRMAR,20 Avenue des Buttes de coësmes, 35043 Rennes
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Extremal Extensions for Vector Valued m-Jets 2

where dom(U) is a subset of R and Pm,n (or P for short) is the subspace
of Rn[X] consisting of polynomials with real coefficients and degree at most
m.
In the theory of fields, the first problem studied by Whitney [30], [31] and
Glaeser [21] (also see [24]) is to find a necessary and sufficient condition for
a field of polynomials of degree at most m, defined on a closed non empty
subset of R

d, to extend to (the field of the Taylorian m-expansions of) a m
times continuously differentiable total function f on R

d. We can therefore
say that f is an extension of U or even that U is a m-Taylorian field.

Whitney’s condition is given by the following theorem.

Theorem 1.1. (Whitney, Glaeser) A necessary and sufficient condition for
a m-field to extend to a m times continuously differentiable total function
f is that there exists a modulus of continuity ω such that
for any a, b ∈ dom(U), for any k ∈ {0, · · · ,m}

‖U (m−k)
b (b) − U

(m−k)
a (b)‖

|b− a|k ≤ ω(|b− a|). (1.1)

When ω(h) = Ch, where C is a positive constant, then there are ex-
tensions f with f (m) m-Lipschitzian. In that case, we say that f is a m-
Lipchitzian extension of U .

Define L(U) by

L(U) := inf{Lip(g(m)) : g is an m-Lipschitz extension of U}.

We say that an extension f of U is a minimal Lipschitz extension if

Lip(f (m)) = L(U). (1.2)

In its weakest form, this problem can be stated as follows:
Does there exist a total differentiable function which is a minimal Lipschitz
extension of U ? Restricting to a compact of R, this problem has a positive
solution which follows from Glaeser’s extension theorem [20] and an Ascoli’s
type theorem for fields of jets [24]. In its strong form the problem which
we study in this article is, on the one hand to characterize L(U) uniquely
in function of the values of U , and on the other hand to have an explicit
expression of an extension f which satisfies (1.2). In general there is not
uniqueness of the minimal Lipschitz extension except then U is a biponctual
m-field (see Theorem 3.4). This consideration allows us to define an extremal
Lipschitz extension.
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For the multivariate continuous minimal Lipschitz extension problem and
for n = 1, the earliest result in this direction is the result of Mac Shane [27]
and Whitney [[30], footnote p. 63] see also [2], [26] and [25], and for any n
the result of M.D. Kirszbraun [23], see also the textbook [[11], p. 199] and
the generalization [29], [9].

In [21], Glaeser characterized the value of L(U) for univariate m-fields
and for n = 1, and proved that the solution to the problem is a perfect
spline, that is to say a piecewise polynomial function of degree at most
m+ 1 with R as their natural domain of definition.

In [24], for fields defined in a Hilbert space and for n = 1 we have
characterized the best Lipschitz constant.

In this article we also answer this question for the univariate fields and
for any m and n. In this case the characterization of L(U) is similar to that
introduced in [21] and the mathematical techniques used for the proof of the
result are close to those used in the cited article. We show the uniqueness
of the solution of biponctual fields. Contrarily to the case solved in [21], the
solution is not always a piecewise polynomial function but its expression
may contain the antiderivative of a rational function where the numerator
is a polynomial in P and the denominator is the Euclidean norm of this
polynomial.

In our opinion, the mathematical techniques used here cannot be general-
ized to the Whitney’s extension problem for multivariable Cm-functions see
[6],[7],[[12],. . . , [19]],[28], and [32] as, in that case, we do not have unique-
ness of a minimal extension for a biponctual field see [24], which holds true
for univariate fields and which is fundamental in the proof.

This paper is organized as follows. In the first section, we introduce the
notations and definitions. We also provide some elementary properties.
The second section is devoted to the study of bipunctual m-fields. The main
theorem 3.4 proves the existence and uniqueness of an m-Lipschitzian ex-
tension satisfying (1.2). We characterize L(U) and give the expression of
the solution. The geometrical Lemma 3.1, used in the proof of theorem 3.4,
proves the uniqueness of a supporting hyperplane containing a point of the
unit ball.
In the third section we study the extremal extension for any m-field. We
characterize the Lipschitz constant for a m-field (see theorem 3.7). A Whit-
ney type theorem (see 3.9) is established as well as the stability properties
of the solution (see 3.10).
The last section is an annex containing the different Lemmas used in this
paper see 4.1, 4.2, and 4.3.



Extremal Extensions for Vector Valued m-Jets 4

2 Notations and definitions

In what follows we denote by m, n two strictly positive integers, by Pm the
set of univariate polynomials of degree at most m.
We set P := (Pm)n.
For P ∈ P , we denote by (p1, · · · , pn) the coordinates of P in the standard
basis denoted by (e1, · · · , en).
For i ∈ {1, · · · , n}, t ∈ R, we denote pi(t) :=

∑m

j=0 pi,jt
j.

We set d := n(m+ 1) and A := (O; Rd) the d-dimensional affine space.

For P ∈ P , we set Λ(P ) := (pi,j)i=1,..n;j=0,..m ∈ A.
The usual inner product defined on R

n is denoted by 〈 ; 〉 and the associated
Euclidean norm by ‖ ‖ .

Definition 2.1. A m-field U is defined by

U : a ∈ dom(U) ⊂ R → Ua ∈ P .
Definition 2.2. Let U be a m-field.
We say that the function f from R to R

n is a m-Lipschitz extension of U if
and only if

• f is a m-times differentiable total function on R,

• f (m) is a Lipschitz function,

• the m-Taylorian expansion of f coincides with U in restriction to
dom(U).

Let U be a m-field. Denote by E(U) the set of m-Lipschitz extensions of
U .
For a ∈ dom(U) and x ∈ R, we denote:

Ua(x) :=
m

∑

k=0

(x− a)k

k!
U (k)
a

with U
(k)
a := (U

(k)
a,1 , · · · , U (k)

a,n).

For a, b ∈ dom(U), x ∈ R and φ ∈ E(U) we have the following Taylorian
formula:

Ub(x) − Ua(x) =

∫ b

a

(x− t)m

m!
φ(m+1)(t)dt. (2.1)

(see Annex 4.2)
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Definition 2.3. For any pair (P,Q) ∈ P × P we define:

≪ P ;Q≫:=
n

∑

i=1

m
∑

k=0

((−1)m−kp
(k)
i (b)q

(m−k)
i (b)). (2.2)

We have the following Lemma

Lemma 2.4. Let U be a biponctual m-field. Let ψ ∈ E(U).
Then for any P ∈ P we have

≪ Ub − Ua;P ≫=

∫ b

a

〈P (t);ψ(m+1)(t)〉dt. (2.3)

For the proof of this Lemma see annex 4.1.

The unit ball B that we consider here is defined as

B := {Λ(P ) ∈ A :

∫ b

a

‖P (t)‖dt = b− a}.

Let H be a hyperplane of the affine space A, and a, b ∈ R, with a < b

then from Lemma 4.1 (see annex), there exists φ ∈ L
∞([a, b]; Rn) such that

H = Hφ := {Λ(P ) :

∫ b

a

〈P (t);φ(t)〉dt = b− a}. (2.4)

In other words, H can be represented in the form (2.4).

Definition 2.5. Let Λ(P ) ∈ B. The hyperplane Hφ is a supporting hyper-
plane to the unit ball B containing Λ(L) if and only if

(a1) Λ(L) ∈ Hφ, (a2) ∀Λ(P ) ∈ Hφ,

∫ b

a

‖P (t)‖dt ≥ b− a.

For φ ∈ L
∞([a, b]; Rn), and a 6= b we denote

|φ|∞,[a,b] := sup
t∈[a,b]

‖φ(t)‖.

3 Resolution of the extremal extension problem for

biponctual m-field

In this section, n et m are fixed.
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3.1 Uniqueness of a supporting hyperplane

Lemma 3.1. Let Λ(L) ∈ B.
There exists a unique supporting hyperplane to the unit ball B containing
Λ(L). Furthermore this hyperplane can be represented in the form

H := {Λ(P ) :

∫ b

a

〈P (t);
L(t)

‖L(t)‖〉dt = b− a}.

Proof. Existence.
For the existence, it is easy to verify that H is a solution. Indeed

∫ b

a

〈L(t);
L(t)

‖L(t)‖〉dt =

∫ b

a

‖L(t)‖dt = b− a.

Thus Λ(L) ∈ H. Let Λ(P ) ∈ H, we have

b− a =

∫ b

a

〈P (t);
L(t)

‖L(t)‖〉dt ≤
∫ b

a

‖P (t)‖dt.

Therefore H satisfies the properties (a1) and (a2).

Uniqueness. Consider another supporting hyperplane to the unit ball B
containing Λ(L) which can be represented in the form

Hφ := {Λ(P ) :

∫ b

a

〈P (t);φ(t)〉dt = b− a},

where φ =
L

‖L‖ + δ, with δ ∈ L
∞([a, b]; Rn) (see Lemma 4.1).

We notice that if
∫ b

a

〈P (t); δ(t)〉dt = 0, ∀Λ(P ) ∈ Hφ, (3.1)

then Hφ ⊂ Hψ and consequently Hφ = Hψ.
Thus to prove the uniqueness it is sufficient to prove (3.1).
Since Λ(L) ∈ Hφ, we have :

∫ b

a

〈L(t); δ(t)〉dt = 0

Thus it is sufficient to prove
∫ b

a

〈Q(t); δ(t)〉dt = 0, ∀Λ(P ) = Λ(L+Q) ∈ Hφ. (3.2)
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Let Λ(P ) = Λ(L+Q) ∈ Hφ, we have:

∫ b

a

〈Q(t);
L(t)

‖L(t)‖ + δ(t)〉dt = 0. (3.3)

Since Hφ is a supporting hyperplane we have

∫ b

a

‖L(t) +Q(t)‖dt ≥ b− a =

∫ b

a

‖L(t)‖dt. (3.4)

We deduce the following inequality

∫ b

a

〈Q(t); δ(t)〉dt ≤
∫ b

a

∆(t)dt, (3.5)

where

∆(t) := ‖L(t) +Q(t)‖ − ‖L(t)‖ − 〈Q(t);
L(t)

‖L(t)‖〉.

For the rest, we notice that if Λ(L + Q) ∈ Hφ then Λ(L + αQ) ∈ Hφ, for
every α ∈ R.
Let t ∈ [a, b]. We have ∆(t) = ∆1(t) + ∆2(t) + ∆3(t) with :

∆1(t) =
‖Q(t)‖2

‖L(t) +Q(t)‖ + ‖L(t)‖ ,

∆2(t) = − ‖Q(t)‖2

(‖L(t) +Q(t)‖ + ‖L(t)‖)2
〈Q(t);

L(t)

‖L(t)‖〉,

∆3(t) = −2
‖L(t)‖

(‖L(t) +Q(t)‖ + ‖L(t)‖)2
(〈Q(t);

L(t)

‖L(t)‖〉)
2.

By replacing Q by αQ, for α > 0 in (3.5) and by noticing that ∆3(t) ≤ 0,
inequality (3.5) implies the following inequality:

∫ b

a

〈Q(t); δ(t)〉dt ≤ α(Θ1(α) + αΘ2(α)), (3.6)

where

Θ1(α) :=

∫ b

a

‖Q(t)‖2

‖L(t) + αQ(t)‖ + ‖L(t)‖dt,

and

Θ2(α) := −
∫ b

a

‖Q(t)‖2

(‖L(t) + αQ(t)‖ + ‖L(t)‖)2
〈Q(t);

L(t)

‖L(t)‖〉.
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We notice that if r ∈ [a, b] satisfies: ‖L(r) + αQ(r)‖ + ‖L(r)‖ = 0 then r is
a root of the polynomials li and qi for i ∈ {1, . . . , n}.
We infer that there exists L̃, Q̃ ∈ P which satisfies:

‖L̃(t) + αQ̃(t)‖ 6= 0 , ‖L̃(t)‖ 6= 0 , ∀t ∈ [a, b],

and
‖Q̃(t)‖

‖L̃(t) + αQ̃(t)‖ + ‖L̃(t)‖
=

‖Q(t)‖
‖L(t) + αQ(t)‖ + ‖L(t)‖ .

This enables us to obtain the following uniform majorations:

Θ1(α) ≤
∫ b

a

‖Q̃(t)‖‖Q(t)‖
‖L̃(t)‖

dt <∞;

and

Θ2(α) ≤
∫ b

a

‖Q̃(t)‖2‖Q(t)‖
‖L̃(t)‖2

dt <∞.

The limit when α tends to 0 in the inequality (3.6) gives

∫ b

a

〈Q(t); δ(t)〉dt ≤ 0 .

Since L−Q ∈ Hφ we also have:

∫ b

a

〈−Q(t); δ(t)〉dt ≤ 0 ,

and this allows us to obtain the required following equality

∫ b

a

〈Q(t); δ(t)〉dt = 0 .

We conclude that Hφ = H.

Remark 3.2. We still have ‖φ‖∞,[a,b] ≥ 1. If we assume that ‖φ‖∞,[a,b] = 1
then we have another nice proof of uniqueness, see annex 4.2. We have not
found the simple argument, if it exists, allowing us to state this supplemen-
tary hypothesis.

Remark 3.3. There may be several Λ(L) ∈ B representing the same sup-
porting hyperplane.
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3.2 Extremal extension for a biponctual m-field

We will characterize the unique extremal extension as well as the Lipschitz
constant of a biponctual m-field.

Let U = {Ua, Ub}, with a < b, be a biponctual m-field. Recall that

L(U) := inf{Lip(g(m); [a, b]) : g ∈ E(U)}. (3.7)

Theorem 3.4. If U = {Ua, Ub}, a < b is a biponctual m-field. Then

• (1) There exists a unique extension f ∈ E(U) by restricting to the
segment [a, b] such that

Lip(f (m); [a, b]) = L(U). (3.8)

• (2) We define

K(U) := sup
Λ(P )∈B

≪ P ;Ub − Ua ≫ . (3.9)

Then

L(U) =
K(U)

b− a
. (3.10)

• (3) Let Λ(L) ∈ B such that ≪ L;Ub − Ua ≫= K(U). Then

f(x) = Ua(x) + L(U)

∫ x

a

(x− t)m

m!

L(t)

‖L(t)‖dt. (3.11)

The equality (3.10) shows that
K(U)

b− a
is the inner expression of L(U),

and the equality (3.11) characterizes the unique extremal extension for a
biponctual m-field.

Proof. Let a, b ∈ R with a < b. Let us consider a biponctual m-jet, U :=
{Ua, Ub}.

From Lemma 2.4, we have for any g ∈ E(U) and for any P ∈ P

≪ P ;Ub − Ua ≫=

∫ b

a

〈P (t); g(m+1)(t)〉dt.
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We infer the following majoration for all g ∈ E(U), and P ∈ P

≪ P ;Ub − Ua ≫≤ ‖g(m+1)‖∞,[a,b]

∫ b

a

‖P (t)‖dt. (3.12)

We set K(U) := supΛ(P )∈B ≪ P ;Ub − Ua ≫.
By the last inequality, we obtain

∀g ∈ E(U), K(U) ≤ (b− a)‖g(m+1)‖∞,[a,b]. (3.13)

The unit ball B being compact, there exists Λ(L) ∈ B such that

≪ L;Ub − Ua ≫= K(U). (3.14)

Denote by L the polynomial which satisfies the last equality, and consider
the following hyperplane:

H := {Λ(P ) ∈ A : ≪ P ;Ub − Ua ≫= K(U)}.

Obviously Λ(L) ∈ H, and for Λ(P ) ∈ H we have:

K(U)
(b− a)

∫ b

a
‖P (t)‖dt

=
(b− a)

∫ b

a
‖P (t)‖dt

≪ P ;Ub − Ua ≫≤ K(U).

We infer that
∫ b

a
‖P (t)‖dt ≥ b− a. Therefore H is a supporting hyperplane

to the unit ball B containing Λ(L).

From the geometric Lemma 3.1, there exists a unique supporting hyper-
plane containing Λ(L), and furthermore it can be represented in the form

H := {Λ(P ) ∈ A:

∫ b

a

〈P (t);
L(t)

‖L(t)‖〉dt = b− a}.

We infer the following equality:

∀Λ(P ) ∈ H, ≪ P ;Ub − Ua ≫=
K(U)

b− a

∫ b

a

〈P (t);
L(t)

‖L(t)‖〉dt. (3.15)

Now we will check that this equality remains true for all Q ∈ P .
Let Q ∈ P . Write Q as Q = P + αL with

α = −1 +
1

b− a

∫ b

a

〈Q(t);
L(t)

‖L(t)‖〉dt.
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By noting that if α = 0 then Λ(Q) ∈ H, we assume that α 6= 0.
An elementary calculation shows that Λ(P ) belongs to H.

Therefore the polynomial Q− αL satisfies the equality

≪ Q− αL;Ub − Ua ≫=
K(U)

b− a

∫ b

a

〈Q(t) − αL(t);
L(t)

‖L(t)‖〉dt.

Thus

≪ L;Ub − Ua ≫=
K(U)

b− a

∫ b

a

‖L(t)‖dt.

We infer that Q satisfies the equality (3.15). We can also note that this
equality is satisfied for any Q due to the fact that the hyperplane H does
not contain the origin of the affine space A.
Hence

∀Λ(P ) ∈ A, ≪ P ;Ub − Ua ≫=
K(U)

b− a

∫ b

a

〈P (t);
L(t)

‖L(t)‖〉dt. (3.16)

Here is now the solution to the problem.
We define the function f : [a, b] → R

n by setting for x ∈ [a, b]

f(x) = Ua(x) +
K(U)

b− a

∫ x

a

(x− t)m

m!

L(t)

‖L(t)‖dt. (3.17)

By using (3.16) we will verify that f ∈ E(U) on restriction to [a, b].

If k ∈ {1, · · · , n}, we have

f (k)(x) = U (k)
a (x) +

K(U)

b− a

∫ x

a

(x− t)m−k

(m− k)!

L(t)

‖L(t)‖dt.

• If x = a we have f (k)(a) = U
(k)
a (a). Therefore the m-Taylorian expan-

sion of f at the point a coincides with Ua.

• If x = b we have

f (k)(b) = U (k)
a (b) +

K(U)

b− a

∫ b

a

(b− t)m−k

(m− k)!

L(t)

‖L(t)‖dt. (3.18)
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For i ∈ {1, · · · , n}, we use the equality (3.16) for P (t) = q(t)ei with

q(t) :=
(b− t)m−k

(m− k)!
.

From the definition 2.2 from ≪ .; .≫, we have :

≪ P ;Ub − Ua ≫ =
∑n

j=1

∑m

l=0(−1)lp
(l)
j (b)(U

(m−l)
b,j (b) − U

(m−l)
a,j (b))

=
∑m

l=0(−1)lp
(l)
i (b)(U

(m−l)
b,i (b) − U

(m−l)
a,i (a))

= (−1)m−k(−1)m−k(Uk
b,i(b) − Uk

a,i(b))
= Uk

b,i(b) − Uk
a,i(b).

The equality (3.16) applied to P gives

Uk
b,i(b) − Uk

a,i(b) =
K(U)

b− a

∫ b

a

(b− t)m−k

(m− k)!

Li(t)

‖L(t)‖dt.

Using (3.18) we have :

f
(k)
i (b) = U

(k)
a,i (b) + Uk

b,i(b) − Uk
a,i(b) = Uk

b,i(b).

Therefore the m-Taylorian expansion of f at the point b coincides with
Ub.

• If k = m+ 1, we obtain

f (m+1)(x) =
K(U)

b− a

L(x)

‖L(x)‖ .

We infer the equality

‖f (m+1)‖∞,[a,b] =
K(U)

b− a
.

In conclusion, we obtain, on the one hand, that f ∈ E(U) and on the other
hand, from (3.13) that

∀g ∈ E(U) : Lip(f (m); [a, b]) ≤ Lip(g(m); [a, b])

The function f is therefore the unique extremal extension of m-field U and
K(U)

b− a
is an inner expression of L(U), as desired.

Remark 3.5. The uniqueness of f comes from the fact that there is unique-
ness of the supporting hyperplane H.
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3.3 Extremal extensions for the m-fields

As in [24] we will define the Lipschitz constant of a m-Lipschitz field.

Definition 3.6. Let U be a m-field. For any a, b ∈ dom(U), a 6= b, we set

γa,b(U) :=
Ka,b

|b− a| := sup
P∈P\{0}

≪ P ;Ub − Ua ≫
∫ b

a
‖P (t)‖dt

,

and
Γ(U) := sup

a 6=b∈dom(U)

γa,b(U).

Theorem 3.7. Γ: U 7−→ Γ(U) is the unique operator which satisfies

• (P0) For all m-fields U and V such that dom(U) ⊂ dom(V ), and V

extends U we have
Γ(U) ≤ Γ(V ).

• (P1) For every total function f in Cm(R; Rn), such that Lip(f (m)) <∞
we have

Γ(F ) = Lip(f (m)).

where F is a m-Taylorian expansion of f .

• (P2) Let F be a total m-field such that Γ(F ) < ∞. Let us consider
f(x) := Fx(x) for every x ∈ R. Then f ∈ Cm(R; Rn), Lip(f (m)) = Γ(F )
and the m-Taylorian expansion of f coincides with F .

• (P3) For any m-field U , with Γ(U) <∞, there exists a total m-field F
such that

Γ(F ) = Γ(U).

In other words, let U be a m-field, with L(U) < ∞. Denote by A the
domain of U . We have

Γ(U) = L(U).

Thus Γ(U) is the inner expression of L(U).
In addition, for any pair (a, b) ∈ A × A such that a < b, ]a, b[∩A = ∅, and
x ∈ [a, b] we denote by f the unique extremal extension of the biponctual
m-field {Ua, Ub}. Recall that f is defined by the formula

f(x) := Ua(x) +
Ka,b

b− a

∫ x

a

(x− t)m

m!

La,b(t)

‖La,b(t)‖
dt,
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where Ka,b and La,b are obtained by formulas (3.9) and (3.11) see Theorem
3.4. Let us consider the following function

f̃(x) :=

{

Ux(x) if x ∈ A

f(x) if x 6∈ A.

Then f̃ is the unique extremal extension of U .

Remark 3.8. The property (P3) is crucial as it means that Γ(U) is the inner
expression of L(U).

Proof. The property (P0) is easy to verify. Let us prove (P1). Let f be a
total function in Cm with Lip(f (m)) < ∞. Denote by F the m-Taylorian
expansion of f .
Let us consider P ∈ P \ {0}, and a, b ∈ R. Since f is an extension of the
biponctual m-field {Fa, Fb} we have the equality

≪ P ;Fb − Fa ≫= 〈P (b); f (m)(b)〉 − 〈P (a); f (m)(a)〉 −
∫ b

a

〈P ′(t); f (m)(t)〉dt.

Since the function f (m) is Lipschitzian, we have the equality

〈P (b); f (m)(b)〉−〈P (a); f (m)(a)〉−
∫ b

a

〈P (t); f (m)(t)〉dt =

∫ b

a

〈P (t); f (m+1)(t)〉dt

and the majoration
∫ b

a

〈P (t); f (m+1)(t)〉dt ≤ supess‖f (m+1)‖
∫ b

a

‖P (t)‖dt ≤ Lip(f (m))

∫ b

a

‖P (t)‖dt.

Therefore
Γ(F ) ≤ Lip(f (m)).

Let us consider

Q :=
n

∑

i=1

(F
(m)
b,i (b) − F

(m)
a,i (a))ei.

Since
≪ Q;Fb − Fa ≫= ‖F (m)

b − F (m)
a ‖2,

and
∫ b

a

‖P (t)‖dt = |b− a|‖F (m)
b − F (m)

a ‖,

we obtian the equality

≪ Q;Ub − Ua ≫
∫ b

a
‖Q(t)‖dt

=
‖F (m)

b − F
(m)
a ‖

|b− a| ≤ Γ(F ).
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Therefore
Lip(f (m)) ≤ Γ(F ),

and (P1) is proved.

Let us prove (P2). Let U be a total m-field with Γ(U) <∞.
Setting u(x) := Ux(x) for every x ∈ R, and

for k ∈ {0, · · · ,m}

Qk :=
n

∑

i=1

(U
(m−k)
b,i (b) − U

(m−k)
a,i (b))

(b− t)k

k!
ei.

We have
≪ Qk;Ub − Ua ≫= ‖U (m−k)

b − U (m−k)
a ‖2,

and
∫ b

a

‖Qk(t)‖dt =
|b− a|k+1

(k + 1)!
‖U (m−k)

b − U (m−k)
a ‖. (3.19)

These equalities imply

‖U (m−k)
b (b) − U

(m−k)
a (b)‖

|b− a|k ≤ |b− a|
(k + 1)!

Γ(U).

Therefore the m-field U satisfies Whitney’s condition (1.1) for ω(h) =
hΓ(U). Thus the function u is in Cm, and this m-Taylorian expansion co-
incides with U on the total domain. The inequality (3.19) for k = 0 shows
that

Lip(u(m)) ≤ Γ(U).

Applying now the property (P1) at u, we obtain the inverse inequality,
therefore

Lip(u(m)) = Γ(U),

and (P2) is proved.

Let us prove the last property (P3). Let U be a m-Taylorian field such
that Γ(U) <∞. Setting A := dom(U).
If A is not a closed set, since U satisfies Whitney’s condition (3.9), by
theorem [[24] p. 242] we can extend the field U to the closure of A with the
same modulus of continuity. Therefore we consider now a closed set A.
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For any pair (a, b) ∈ R × R such that a < b, ]a, b[∩A = ∅, and x ∈ [a, b],
let us set

f(x) := Ua(x) +
Ka,b

b− a

∫ x

a

(x− t)m

m!

La,b(t)

‖La,b(t)‖
dt,

where Ka,b and La,b are obtained by formulas (3.9) and (3.11) see Theo-
rem 3.4 for the biponctual m-field {Ua, Ub}.

Let us consider the m-field F which is the m-Taylorian expansion of f
at x if x ∈ K \ A, and Fx := Ux if x ∈ A.
To prove (P3) it is sufficient to prove that for every x, y ∈ K, x 6= y

Kx,y

|y − x| := sup
P∈P\{0}

≪ P ;Fy − Fx ≫
∫ y

x
‖P (t)‖dt ≤ Γ(U).

We consider two cases.

First case. There exist a, b ∈ A such that a ≤ x < y ≤ b, and ]a, b[∩A =
∅.
Since f is an extension of {Fx, Fy} we can apply inequality (3.16). We have
for every P ∈ P

≪ P ;Fy − Fx ≫≤ Ka,b

b− a

∫ y

x

〈P (t);
La,b(t)

‖La,b(t)‖
〉dt.

Therefore
Kx,y

|y − x| ≤
Ka,b

|b− a| .

Using theorem 3.4, we have uniqueness of the minimal extension of the
m-field {Ua, Ub} on [a, b] thus

Kx,y

|y − x| =
Ka,b

|b− a| ≤ Γ(U).

Second case. There exist a, b, c, d ∈ A such that a ≤ x < b ≤ c ≤ y ≤ d,
whith ]a, b[∩A = ∅, and ]c, d[∩A = ∅.

Let P ∈ P we have

≪ P ;Fy − Fx ≫=≪ P ;Fy − Uc ≫ + ≪ P ;Uc − Ub ≫ + ≪ P ;Ub − Fx ≫ .

Setting ∆ =
∫ y

x
‖P (t)‖dt, ∆1 =

∫ y

c
‖P (t)‖dt, ∆2 =

∫ c

b
‖P (t)‖dt, and

∆3 =
∫ b

x
‖P (t)‖dt.
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Since ≪ P ;Fy − Uc ≫
∆1

≤ Kc,y

y − c
=

Kc,d

d− c
,

≪ P ;Ub − Uc ≫
∆1

≤ Kb,c

c− b
,

≪ P ;Uc − Fx ≫
∆1

≤ Kx,b

b− x
=

Ka,b

b− a
,

we obtain the majoration

≪ P ;Fy − Fx ≫
∆

≤ ∆1

∆

Kc,d

d− c
+

∆2

∆

Kb,c

c− b
+

∆3

∆

Ka,b

b− a
.

for every P ∈ P \ {0}. Thus

Kx,y

y − x
≤ ∆1

∆

Kc,d

d− c
+

∆2

∆

Kb,c

c− b
+

∆3

∆

Ka,b

b− a
≤ Γ(U).

In conclusion
Γ(F ) = Γ(U),

and property (P3) is proved.

The following theorem gives a condition of Whitney’s type.

Theorem 3.9. Let U be a m-jet. The m-field U can be extended if and only
if there exists a concave modulus of continuity ω such that

∀a 6= b ∈ dom(U), Ka,b ≤ ω(|b− a|), (3.20)

with
Ka,b

|b− a| = sup
P∈P\{0}

≪ P ;Ub − Ua ≫
∫ b

a
‖P (t)‖dt

.

Proof. Let us consider a m-field U .

First suppose that there exists a concave modulus of continuity ω which
satisfies (3.20). Then for any a 6= b ∈ dom(U), for k ∈ {0, · · · ,m}, and

Qk :=
n

∑

i=1

(U
(m−k)
b,i (b) − U

(m−k)
a,i (b))

(b− t)k

k!
ei.
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we have

‖U (m−k)
b (b) − U

(m−k)
a (b)‖

|b− a|k+1
≤ ≪ Qk;Ub − Ua ≫

∫ b

a
‖Qk(t)‖dt

≤ Ka,b

|b− a| ≤
ω(|b− a|)
|b− a| .

Thus U satisfies Whitney’s condition (1.1) and it can be extended, as de-
sired.

To prove the reverse implication, suppose that U satisfies Whitney’s con-
dition (1.1), and denote by ω the associated concave modulus of continuity.

Let P = (p1, · · · , pm) ∈ P \ {0}. Let us set

∆i :=
m

∑

k=0

(−1)kp
(k)
i (b)(U

(m−k)
b,i (b) − U

(m−k)
a,i (b)).

Recall the following result of Glaeser (see Lemma 1 [[21], p. 257])

∀p ∈ Pm : |p|∞,[a,b] ≤
(m+ 1)2

|b− a|

∫ b

a

|p(t)|dt. (3.21)

Using (3.21) for p = p
(k)
i , and for k ∈ {1, . . . ,m} we have

|p(k)
i |∞,[a,b] ≤

(m+ 1 − k)2

|b− a|

∫ b

a

|p(k)
i (t)|dt. (3.22)

Since the polynomial p
(k)
i has at most (m − k) sign changes in [a, b] we

obtain

∫ b

a

|p(k)
i (t)|dt ≤ 2(m+ 1 − k)|p(k−1)

i |∞,[a,b]. (3.23)

Using (3.22), and (3.23) we obtain

|p(k)
i |∞,[a,b] ≤ 2

(m+ 1 − k)3

|b− a| |p(k)
i |∞,[a,b]. (3.24)

By induction on k, we have

|p(k)
i |∞,[a,b] ≤ 2k

(m(m− 1) · · · (m+ 1 − k))3

|b− a|k |pi|∞,[a,b]. (3.25)

Let us set Cm := 2m(m!)3(m+ 1)2. The last inequality and (3.21) imply

|p(k)
i |∞,[a,b] ≤

Cm

|b− a|k+1

∫ b

a

|pi(t)|dt.
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Thus

∆i ≤ Cm

∫ b

a

|pi(t)|dt
m

∑

k=0

|U (m−k)
b,i (b) − U

(m−k)
a,i (b)|

|b− a|k+1
.

Now Whitney’s condition (1.1) implies

∆i ≤
Cm

|b− a|ω(|b− a|)
∫ b

a

|pi(t)|dt.

Therefore

≪ P ;Ub − Ua ≫ ≤ Cm

|b− a|ω(|b− a|)
∫ b

a

∑n

i=1 |pi(t)|dt

≤
√
nCm

|b− a|ω(|b− a|)
∫ b

a
‖P (t)‖dt,

and
Ka,b ≤

√
nCmω(|b− a|),

as desired.

Now we will prove the stability properties of the extremal extension.

Proposition 3.10. Let U be a m-jet. Suppose that there exists a concave
modulus of continuity denoted by ω such that

∀a 6= b ∈ dom(U), Ka,b ≤ ω(|b− a|). (3.26)

Then the extremal extension u of U satisfies

∀x, y ∈ K, ‖u(m)(x) − u(m)(y)‖ ≤ 3 ω(
|y − x|

3
). (3.27)

In other words, the associated extension scheme is Ω-stable. Furthermore
the uniqueness of the extremal extension implies that this scheme is a self-
reproducing scheme.

For the definitions of Ω-stability, and self-reproducing of this scheme see
[24].

Proof. Denote by A the domain of U . Let u the extremal extension of U .
Let x, y ∈ R with x < y. We consider two cases.
Case 1. There exist a, b ∈ A such that a ≤ x < y ≤ b, ]a, b[∩A = ∅.
Using the definition of u in restriction to [a, b] we have
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u(m)(y) − u(m)(x) =
Ka,b

b− a

∫ y

x

La,b(t)

‖La,b(t)‖
dt.

It follows that

‖u(m)(y) − u(m)(x)‖ ≤ y − x

b− a
Ka,b ≤

y − x

b− a
ω(b− a).

Since ω is concave we have

‖u(m)(y) − u(m)(x)‖ ≤ ω(y − x).

Case 2. There exist a, b, c, d ∈ A such that a ≤ x < b ≤ c ≤ y ≤ d,
with ]a, b[∩A = ∅, and ]c, d[∩A = ∅.

Using the definitions of u in restriction to [a, b], [b, c], and [c, d] we have

u(m)(y) − u(m)(x) =
Kc,d

c− d

∫ y

c

Lc,d(t)

‖Lc,d(t)‖
dt+

Kb,c

c− b

∫ c

b

Lb,c(t)

‖Lb,c(t)‖
dt

+
Ka,b

b− a

∫ b

x

La,b(t)

‖La,b(t)‖
dt.

We obtain the following inequalities

‖u(m)(y) − u(m)(x)‖ ≤ y − c

d− c
Kc,d +

c− b

c− b
Kc,b +

b− x

b− a
Ka,b.

Since ω is concave we have

‖u(m)(y) − u(m)(x)‖ ≤ 3 ω(
y − x

3
).

4 Annex

Recall that A is a d-dimensional affine space, with d := (m+ 1)n.

Lemma 4.1. Let us consider the hyperplane

H := {Λ(P ) ∈ P : 〈OΛ(P );V 〉 = α},

with V ∈ Rd \ {0}, and α ∈ R.
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Let a, b ∈ R with a 6= b. Then there exists a function φ ∈ L∞([a, b],Rd)
such that

H := {Λ(P ) :

∫ b

a

〈P (t);φ(t)〉dt = α, P ∈ P}.

In other words, the hyperplane H can be represented in the last form.

Proof. Denote by (vi,k)i=1,...n,k=0,...,m the coordinates of V .
For j ∈ {0, . . . ,m}, we set Wj := Span({1, t, . . . , tj−1, tj+1, . . . , tm}. There
exists ψj ∈ Pm such that

{

∫ b

a
ψj(t)h(t)dt = 0, ∀h ∈ Wj
∫ b

a
ψj(t)t

jdt = 1.

Denote be ψj the polynomial which satisfies the last equalities.
Let us set φ := (φ1, . . . , φn) with φi :=

∑m

k=0 vi,kψk.
It is easy to verify that φ is a good candidate. Let P ∈ P we have

∫ b

a
〈P (t);φ(t)〉dt =

∫ b

a

∑n

i=1 pi(t)φi(t)dt

=
∑n

i=1

∫ b

a
pi(t)φi(t)dt

=
∑n

i=1

∫ b

a
(
∑m

k=0 pi,kt
k)(

∑m

j=0 vi,jφj(t))dt

=
∑n

i=1

∑m

j=0

∑m

k=0(pi,kvi,j
∫ b

a
(tkφj(t))dt

=
∑n

i=1

∑m

j=0 pi,jvi,j
= 〈OΛ(P );V 〉.

Let us recall a Taylorian formula associated to biponctual m-fields.

Lemma 4.2. Let a 6= b ∈ R. Let φ ∈ Cm+1
∞ ([a, b]; Rn). Denote by Ua,m (resp.

Ub,m ) the m-Taylorian expansion of φ at a (resp. b).

Ua,m(x) :=
m

∑

k=0

(x− a)k

k!
φ(k)(a).

Then we have the following Taylorian formula

Ub,m(x) − Ua,m(x) =

∫ b

a

(x− t)m

m!
φ(m+1)(t)dt. (4.1)

Proof. By induction on m, and by integration by parts over [a, b] it is easy
to prove this Lemma. For m = 0 we have

Ub,0(x) − Ua,0(x) = φ(b) − φ(a) =

∫ b

a

φ(1)(t)dt.
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Suppose that (4.1) is true for m− 1 then

∫ b

a

(x− t)m

m!
φ(m+1)(t)dt =

(x− b)m

(m)!
φ(m)(b) − (x− a)m

(m)!
φ(m)(a)

+
∫ b

a

(x− t)m−1

(m− 1)!
φ(m)(t)dt

=
(x− b)m

(m)!
φ(m)(b) − (x− a)m

(m)!
φ(m)(a)

+Ub,m−1(x) − Ua,m−1(x)
= Ub,m(x) − Ua,m(x).

Noting that more generally, for k ∈ {0, . . . ,m} we have the following
formula

U
(k)
b,m(x) − U (k)

a,m(x) =

∫ b

a

(x− t)m−k

(m− k)!
φ(m+1)(t)dt. (4.2)

4.1 Basic properties of ≪ ; ≫

Let P,Q ∈ P . Recall that (p1, . . . , pn) (resp. (q1, . . . , pn)) are the coordinates
of P , and Q, and that ≪ .; .≫ is defined by the following formula

≪ Q;P ≫:=
n

∑

i=1

m
∑

k=0

((−1)m−kq
(k)
i (b)p

(m−k)
i (b)).

For any P ∈ P, the map ≪ .;P ≫ : Q ∈ P −→≪ Q;P ≫∈ R is a linear
function defined on P .
Let us consider the map Ψ that sends P to ≪ .;P ≫. Then Φ is linear and
invertible.

Let P ∈ null Φ. For i ∈ {1, . . . , n}, and for j ∈ {0, . . . ,m} let us consider
the following polynomials Qi,j := tjei We have

≪ Qi,j;P ≫=
m

∑

k=0

((−1)m−k(tj)(k)(b)p
(m−k)
i (b)) = (−1)m−jj!p

(m−j)
i (b) = 0.

Thus p
(k)
i (b) = 0 for every k ∈ {0, . . . ,m} hence pi = 0 .

In other words, null Φ = {0} and we can identify any linear function of the
dual of P to the map ≪ .;P ≫, with P ∈ P .
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Lemma 4.3. Let U = {Ua, Ub} be a biponctual m-jet. Let g ∈ E(U). Then

≪ Q,Ua,b ≫=

∫ b

a

〈Q(t); g(m+1)(t)〉dt, ∀Q ∈ P. (4.3)

Proof. Let us set Ua,b = Ub − Ua. Let Q ∈ P. Using the Taylorian formula
(4.2) we have

U
(r)
a,b (x) =

∫ b

a

(x− t)m−r

(m− r)!
g(m+1)(t)dt, x ∈ R, r ∈ {0..m}. (4.4)

For k ∈ {1, . . . , n}, let us consider ∆k :=
∑m

j=0(−1)jq
(j)
k (b)U

(m−j)
a,b,k (b).

Using (4.4) for r = m− j and x = b, we have

∆k =
m

∑

j=0

(−1)jq
(j)
k (b)

∫ b

a

(x− t)j

(j)!
g(m+1)(t)dt

=

∫ b

a

m
∑

j=0

(b− t)j

j!
q
(j)
k (b)g(m+1)(t)dt.

(4.5)

The classical m-Taylorian expansion is exact for polynomials of degree at
most m therefore

qk(t) =
m

∑

j=0

(−1)j
(b− t)j

(m− k)!
q
(j)
k (b).

Thus

∆k =

∫ b

a

qk(t)g
(m+1)
k (t)dt ,

hence

≪ Q,Ua,b ≫ =
n

∑

k=1

∆k =

∫ b

a

〈Q(t); g(m+1)(t)〉dt,

and the equality (4.3) is proved.

4.2 Uniqueness of supporting hyperplane with one more supple-

mentary hypothesis

Under the following additional hypothesis

‖φ(t)‖ = 1, ∀t ∈ [a, b], (4.6)
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we give a new proof of the uniqueness of the supporting hyperplane contain-
ing Λ(L). We will use the same notations as in Lemma 3.1. We will develop
this proof for its neatness.

Suppose (4.6), and let us consider the following sets

I+ := {t ∈ [a, b] : 〈L(t); δ(t)〉 > 0}, I− := {t ∈ [a, b] : 〈L(t); δ(t)〉 < 0},
and

I0 := {t ∈ [a, b] : 〈L(t); δ(t)〉 = 0}.
We will prove that I+ and I− are null set. Since Λ(L) ∈ Hφ∩B we have the
two following equalities

∫ b

a

〈L(t); δ(t)〉dt = 0, (4.7)

and
∫ b

a

〈L(t);φ(t)〉dt =

∫ b

a

‖L(t)‖dt = b− a.

The second equality implies
∫

t∈I+

‖L(t)‖‖φ(t)‖dt+

∫

t∈I−

〈L(t);φ(t)〉dt ≥
∫ b

a

‖L(t)‖dt,

and by using (4.6) we have
∫

t∈I+

‖L(t)‖dt+

∫

t∈I−

〈L(t);φ(t)〉dt ≥
∫ b

a

‖L(t)‖dt.

Since φ =
L

‖L‖ + δ we obtain :

∫

t∈I−

〈L(t); δ(t)〉dt ≥ 0.

Thus I− is a null set. By (4.7,) this result implies that I+ is also a null set.
Hence

∫ b

a

〈 L(t)

‖L(t)‖ ; δ(t)〉dt = 0. (4.8)

Squaring and integrating over [a, b] the relation (4.6), we obtain
∫ b

a

‖ L(t)

‖L(t)‖ + δ(t)‖2dt ≤ b− a. (4.9)
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By (4.8), and the expansion of the last equality we have

∫ b

a

‖δ(t)‖2dt ≤ 0.

Therefore δ is a null function.
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[23] M.D. Kirszbraun, Über die zusammenziehenden und Lipschitzschen Transforma-

tionen, Fund. Math. vol. 22 (1934), 77-108.

[24] E. Le Gruyer, Minimal Lipschitz extensions to differentiable functions defined on

a Hilbert space, Geom. Funct. Anal. 19 (2009), 1101-1118.

[25] E. Le Gruyer and J.C. Archer, Stability and convergence of extension schemes

to continuous functions in general metric spaces, SIAM J. Math. Anal. 27 (1996),
no. 1, 274–285.

[26] E. Le Gruyer and J.C. Archer, Harmonious extensions, SIAM J. Math. Anal.
29 (1998), no. 1, 279–292.

[27] E.J. Mac Shane, Extension of range of functions, Bull. Amer. Math. Soc., 40

(1934), 837-842.

[28] P. Shvartsman, The Whitney extension problem and Lipschitz selections of set-

valued mappings in jet-spaces, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5529–
5550.

[29] F.A. Valentine, A Lipschitz condition preserving extension for a vector function,
Amer. J. Math., 67 (1945), 83-93.

[30] H. Whitney, Analytic extensions of differentiable functions defined in closed sets,
Trans. Amer. Math. Soc. 36 (1934), no. 1, 63-89.

[31] H. Whitney, Differentiable functions defined in closed sets. I, Trans. Amer. Math.
Soc. 36 (1934), 369-387.



Extremal Extensions for Vector Valued m-Jets 27

[20] H. Whitney, Functions differentiable on the boundaries of regions, Ann. Math. 35

(1934), 482-485.

[21] H. Whitney, On the extension of differentiable functions, Bull. Amer. Math. Soc.
50-2, (1934) 76-81.

[32] P. Wingren, Sequence spaces of spline functions on subsets and l∞-spaces, J. Ap-
prox. Theory 124 (2003), no. 2, 181–193.


