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Abstract: At the border between control and verification, parametric verification can
be used to synthesize constraints on the parameters to ensure that a system verifies
given specifications. In this paper we propose a new framework for the parametric
verification of time Petri nets with stopwatches. We first introduce a parametric exten-
sion of time Petri nets with inhibitor arcs (ITPNs) with temporal parameters and we
define a symbolic representation of the parametric state-space based on the classical
state-class graph method. Then, we propose semi-algorithms for the parametric model-
checking of a subset of parametric TCTL formulae on ITPNs. These results have been
implemented in the tool Romeo and we illustrate them in a case-study based on a
scheduling problem.
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1 Introduction

In the class of timed discrete event systems, timed extensions of Petri nets (see
[Bowden, 1996] for a survey) and timed automata (TA) [Henzinger et al., 1994]
are widely used to model and analyze such concurrent systems. Time Petri nets
[Merlin, 1974] allow an easy representation of real-time systems features such
as synchronization and parallelism. State reachability is decidable for bounded
TPNs, which is sufficient for virtually all practical purposes.

However, modeling of many embedded systems requires to express suspension
and resumption of actions. This implies extending traditional clock variables by
”stopwatches”. Several extensions of TPNs address this issue by controlling stop-
watches either with priorities [Bucci et al., 2004, Roux and Déplanche, 2002] or
inhibitor arcs [Roux and Lime, 2004] or activator arcs [Berthomieu et al., 2007].
These models all belong to the class of TPNs extended with stopwatches (Sw-

PNs), for which the reachability problem is undecidable [Berthomieu et al., 2007].
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Currently, the use of real-time systems is quickly increasing and, at the same
time, correctness proofs on these systems must be provided. Formal methods
such as model-checking allow the verification of a system by exploring the state-
space of a model. The model-checking of timed models has become more and
more efficient. It nevertheless requires a complete knowledge of the system. Con-
sequently, the verification of the behavior can be performed only after the design
stage when the global system and its environment are known. On the one hand,
it increases the complexity of the conception and the verification of systems. For
too complex systems this can lead to a combinatorial explosion. Besides, if the
system is proven wrong or if the environment changes, this complex verification
process must be carried out again. On the other hand, getting a complete knowl-
edge of a system can be impossible. In many important applications, a system
is defined by parameters that are in relation with several other systems. In the
existing tools for modelling and verification, parameters are often used, however
they must be instantiated to perform analyses. The next development step of
the technology is to be able to directly analyze a parametric model.

1.1 Control vs. Verification

The verification problem for a given system S and a specification φ consists in
checking whether S satisfies φ which is often written S |= φ and referred to as
the model-checking problem. The control problem assumes the system is open
i.e. we can restrict the behavior of S: some events in S are controllable and
the others are uncontrollable, and we can sometimes disable controllable actions.
The control problem for a system S and a specification φ asks the following: Is
there a controller C s.t. S × C |= φ ? The associated control synthesis problem
asks to compute a witness controller C.

The parametric model-checking problem lies at the interface between the pre-
vious two problems. For a parametric system S and a parametric specification
φ, it consists in checking whether there exists a valuation ν of the parameters
such that S satisfies φ for this valuation, which is written �S�ν |= �φ�ν . The
associated parametric synthesis problem computes the set of valuations Γ such
that ∀ν ∈ Γ , �S�ν |= �φ�ν .

1.2 Related Works

Parametric analysis of real-time systems has been studied in [Alur et al., 1993].
They introduce Parametric Timed Automata (PTA) and prove that, in the
general case, the emptiness problem is undecidable. In [Hune et al., 2001] the
authors prove that for a particular class of PTA called L/U automata this
emptiness problem is decidable. They also give a model-checking algorithm that
uses parametric Difference Bound Matrices. Parametric model-checking can be
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used to generate a set of constraints on the parameters such that the prop-
erty is verified. In discrete time, parametric model-checking of PTA has been
studied in [Bruyère and Raskin, 2007], and some decidability results have been
found. On hybrid automata, state-space exploration algorithms have been ex-
tended to allow a parametric analysis and implemented in the tool Hytech

[Henzinger et al., 1997].
Another approach developed in [Wang, 1996] focuses on the verification of

parametric TCTL formulae on clock automata. They consider unbounded pa-
rameters that take their value among integers and the problem is proven de-
cidable. In [Virbitskaite and Pokozy, 1999], this approach is used in parametric
TPNs, but with bounded parameters. However, they consider and analyze a
region graph for each parameter valuation.

1.3 Our Contribution

This paper is an extended version of [Traonouez et al., 2008] that includes de-
tailed proofs and presents an implementation used to analyze a case-study.

We propose to study the parametric synthesis problem on stopwatch Petri
nets. The developments in this paper will consider time Petri nets with inhibitor
arcs (ITPNs) but they can be applied to the others models of stopwatch Petri
nets. ITPNs are extended with time parameters that can be used in the firing
intervals of the transitions.

We consider unbounded parameters and thus, we need a proper abstraction
of the state-space of the parametric model. In TPNs, considering that the time
is dense, the state-space of the model is infinite, but it can be represented by
a finite partition as in the state-class graph [Berthomieu and Diaz, 1991]. We
therefore extend the state-class graph construction with parameters and define
parametric state-classes that represent at the same time the temporal domain
and the parameter domain.

Although the state-class graph does not preserve timed properties, there ex-
ists methods [Hadjidj and Boucheneb, 2006] to verify a subset of TCTL with this
abstraction. We consider this subset of formulae and extend it with parameters to
define parametric TCTL formulae. Then, we propose and prove semi-algorithms
to solve the parametric synthesis problem.

1.4 Outline of the Paper

In section 2, we present our parametric extension of ITPNs (PITPNs). Then,
in section 3, we introduce some decidability and undecidability results. Section
4 defines the parametric state-class graph of PITPNs. In section 5, we study
the parametric model-checking of a subset of TCTL with parameters. In section
6, we discuss our solution to the parametric model-checking problem and we
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present its implementation in the tool Romeo. Finally, in section 7 our method
is applied to a case-study of a scheduling problem.

2 Parametric Time Petri Nets with Inhibitor Arcs

2.1 Notations

The sets N, Q+ and R+ are respectively the sets of natural, non-negative rational
and non-negative real numbers. An interval I of R+ is a Q-interval iff its left
endpoint ↑I belongs to Q+ and its right endpoint I↓ belongs to Q+ ∪ {∞}. We
denote by I(Q) the set of Q-intervals of R+.

2.2 Formal Definitions of PITPNs

We parameterize the ITPN model with a set of temporal parameters Par =
{λ1, λ2, . . . , λl} by replacing some of the temporal bounds of the transitions
by parameters. These parameters are considered as constant variables in the
semantics, and take their values among rationals.

Some initial constraints are given on the parameters. These constraints define
the domain Dp ⊆ Q+Par of the parameters which is a convex polyhedron. These
constraints must at least specify that for all parameters valuations in Dp, the
minimum bounds of the firing intervals of the transitions are inferior to the
maximum bounds. Additional linear constraints may of course be given.

A valuation of the parameters is a function ν : Par → Q+, such that
[ν(λ1) ν(λ2) . . . ν(λl)]� ∈ Dp, which is equivalent to say that ν is a point of
Dp. We will also write that ν = [λ1 λ2 . . . λl]�.

A linear constraint over the parameters is an expression γ =
∑l

i=0 ai∗λi ∼ b,
where ∀0 ≤ i ≤ l, ai, b ∈ Q and ∼∈ {=, <,>,≤,≥}. A convex polyhedron is a
conjunction of linear constraints. We write that λi ∈ γ iff ai �= 0.

A parametric time interval is a function J : Dp → I(Q+) that associates to
each parameter valuation a Q-interval. The set of parametric time intervals over
Par is denoted by J (Par). As for numerical interval, J can be split into two
functions ↑J and J↓ that are respectively the minimum bound and the maximum
bound. They can be both represented by a linear constraint over the parameters.

Definition 1. A parametric time Petri net with inhibitor arcs (PITPN) is a
tuple N = 〈P, T, Par, •(.), (.)•, ◦(.),M0, Js, Dp〉, where:

– P = {p1, p2, . . . , pm} is a non-empty finite set of places,

– T = {t1, t2, . . . , tn} is a non-empty finite set of transitions,

– Par = {λ1, λ2, . . . , λl} is a finite set of parameters,
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t1[a, 10]

t2[b, c]

t3[5, 5]

Figure 1: A parametric time Petri net with inhibitor arcs

– •(.) ∈ (NP )T is the backward incidence function,

– (.)• ∈ (NP )T is the forward incidence function,

– ◦(.) ∈ (NP )T is the inhibition function,

– M0 ∈ NP is the initial marking of the net,

– Js ∈ (J (Par))T is the function that associates a parametric firing interval
to each transition,

– Dp ⊆ Q+Par is a convex polyhedron that is the domain of the parameters.

A marking M of the net is an element of NP such that ∀p ∈ P,M(p) is the
number of tokens in the place p.

A transition t is said to be enabled by the marking M if M ≥• t, (i.e. if the
number of tokens in M in each input place of t is greater or equal to the value on
the arc between this place and the transition). We denote it by t ∈ enabled (M).

A transition t is said to be inhibited by the marking M if the place connected
to one of its inhibitor arc is marked with at least as many tokens than the weight
of the considered inhibitor arc between this place and t: 0 < ◦t ≤M . We denote
it by t ∈ inhibited (M). Practically, inhibitor arcs are used to stop the elapsing of
time for some transitions: an inhibitor arc between a place p and a transition t
means that the stopwatch associated to t is stopped as long as place p is marked
with enough tokens.

A transition t is said to be active in the marking M if it is enabled and not
inhibited by M .

Example 1. In the figure 1 an example of PITPN is given that includes three
parameters a, b and c, and an inhibitor arc from place A to transition t2. The
domain of parameters is defined by:

Dp =
{

0 ≤ a ≤ 10,
0 ≤ b ≤ c.
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2.3 Semantics of Parametric Time Petri Nets with Inhibitor Arcs

The semantics of a Parametric Time Petri net with Inhibitor Arcs N is defined
for a parameter valuation ν ∈ Dp, as the non-parametric ITPN obtained when
replacing in N all the parameters by their valuation.

Definition 2 Semantics of a PITPN. Given a PITPN N = 〈P, T, Par, •(.),
(.)•, ◦(.),M0, Js, Dp〉, and a valuation ν ∈ Dp, the semantics �N �ν = 〈P, T, •(.),
(.)•, ◦(.),M0, Is〉 of N is an ITPN such that ∀t ∈ T, Is(t) = Js(t)(ν).

We now recall the semantics of an ITPN .
A transition t is said to be firable when it has been enabled and not inhibited

for at least ↑Is(t) time units.
A transition tk is said to be newly enabled by the firing of the transition ti

from the marking M , and we denote it by ↑ enabled (tk,M, ti), if the transition
is enabled by the new marking M −• ti + t•i but was not by M −• ti, where M
is the marking of the net before the firing of ti. Formally:

↑enabled (tk,M, ti) = (•tk ≤M −• ti + t•i )
∧((tk = ti) ∨ (•tk > M −• ti))

By extension, we will denote by ↑ enabled (M, ti) the set of transitions newly
enabled by firing the transition ti from the marking M .

Definition 3. A state of an ITPN is a pair q = (M, I) in which M is a marking
and I is a function called the interval function. Function I ∈ (I(Q))T associates
a temporal interval with every transition enabled at M .

The semantics of an ITPN is defined as a timed transition system (TTS)
[Larsen et al., 1995], in which two kinds of transitions may occur: time transi-
tions when time passes and discrete transitions when a transition of the net is
fired.

Definition 4 Semantics of an ITPN. The semantics of a time Petri net with
inhibitor arcs N = 〈P, T,•(.), (.)•, ◦(.),M0, Is〉 is defined as the TTS SN =
〈Q, q0,→〉 such that:

– Q = NP × (I(Q))T ,

– q0 = (M0, Is),

– →∈ Q× (T ∪ R+) ×Q is the transition relation including a time transition
relation and a discrete transition relation.
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The time transition relation is defined ∀d ∈ R+ by:

(M, I) d−→ (M, I ′) iff ∀ti ∈ T,⎧⎨
⎩ I ′(ti) =

{
I(ti) if ti ∈ enabled (M) and ti ∈ inhibited (M)
↑I ′(ti) = max(0, ↑I(ti) − d), and I ′(ti)↓ = I(ti)↓ − d otherwise,

M ≥• ti ⇒ I ′(ti)↓ ≥ 0

The discrete transition relation is defined ∀ti ∈ T by:

(M, I) ti−→ (M ′, I ′) iff

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ti ∈ enabled (M) and ti �∈ inhibited (M) ,
M ′ = M −• ti + t•i ,
↑I(ti) = 0,

∀tk ∈ T, I ′(tk) =
{
Is(tk) if ↑enabled (tk,M, ti)
I(tk) otherwise

Example 2. For the PITPN presented in the figure 1, if we consider the valuation
ν = (6, 2, 3) of the three parameters (a, b, c), then in the semantics of �N �ν :

– transition t1 is enabled but not firable (because t3 must be fired before it),

– transition t2 is inhibited by the token in place A,

– the only firable transition is t3 at date 5.

A run ρ of length n ≥ 0 in SN is a finite or infinite sequence of alternating
time and discrete transitions of the form

ρ = q0
d0−−→ q0 + d0

t0−−→ q1
d1−−→ q1 + d1

t1−−→ · · · qn dn−−−→ · · ·

We write first(ρ) the first state of a run ρ. A run is initial if first(ρ) = q0. A
run ρ of N is an initial run of SN . For a state q, the set of all the infinite runs
starting from q is denoted by π(q). The set of all the runs of N is π(q0).

For a state qi in ρ the absolute time elapsed (relative to the initial state)
is time(q) = d0 + d1 + · · · + di−1. For a run ρ the total elapsed time in ρ is
time(ρ) =

∑n
i=0 di. In this paper we restrict ourselves to non-zeno ITPN , which

means that the elapsed time is diverging (i.e. ∀ρ ∈ π(q0), time(ρ) = ∞), and by
extension to non-zeno PITPN (i.e. such that ∀ν ∈ Dp, �N �ν is non zeno).

3 Decidability of Parametric TPNs

In this section, we give some results concerning the decidability of the emptiness
and reachability problems for bounded parametric time Petri nets (without in-
hibitor arcs). The case of PITPNs is of little interest since these problems are
already known undecidable for bounded ITPNs [Berthomieu et al., 2007].
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Let us consider lower/upper bound (L/U) bounded parametric TPNs i.e.
every parameter occurring in the PTPN is either in the lower bound of some of
the parametric time intervals or in their upper bound, but there exists no pair
of parametric intervals J1, J2 and no parameter λ such that λ ∈ ↑I1 and λ ∈ I↓2 .

Theorem 5. The emptiness and reachability problems for bounded L/U para-
metric TPNs are decidable.

Proof. The structural and syntactical translation proposed in [Cassez et al., 2006]
from a TPN into a bisimilar timed automaton (TA) can straightforwardly be ex-
tended from L/U PTPNs to L/U parametric TA [Hune et al., 2001]. Therefore,
since the emptiness and reachability problems are decidable for L/U parametric
TA [Hune et al., 2001], they also are decidable for L/U PTPNs.

Theorem 6. The emptiness and reachability problems for bounded parametric
TPNs are undecidable.

Proof. The structural and syntactical translation preserving timed language ac-
ceptance proposed in [Bérard et al., 2005] from a TA into a bounded TPN can
straightforwardly be extended to parametric TA. Thus, for every parametric TA,
we can compute a parametric TPN that accepts the same timed language. Since
the emptiness problem (and then, the reachability problem) is undecidable for
parametric TA [Alur et al., 1993], it is also undecidable for parametric TPNs.

4 The Parametric State-Class Graph of a PITPN

Since the state-space of a non-parametric TPN is generally infinite in dense-time,
it is required to abstract the time by merging some states into some equivalence
classes. Consequently, symbolic representations of the state-space are used. One
of the approaches to partition the state-space in a finite set of infinite state
classes is the state-class graph [Berthomieu and Diaz, 1991]. This approach has
been extended for ITPNs in [Roux and Lime, 2004].

However, there also exists an infinite number of parameters valuations. Thus,
in the same way, we need to use symbolic representations of the parameters
domains. In time Petri nets or timed automata, the time domain of an abstract
state can be efficiently encoded by a difference bound matrix (DBM). This is why,
in the parametric timed automata proposed in [Hune et al., 2001], the authors
define parametric DBMs in which they encode both the time domains and the
parameters domains. When considering stopwatch time Petri nets, the firing
domain of a class is a general polyhedron and cannot necessarily be represented
by a DBM. Consequently, in the parametric state-classes of PITPNs we will use
polyhedra to encode both the transitions variables domains and the parameters
domains.
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4.1 Parametric State-Classes

Definition 7. A parametric state-class C of a PITPN is a pair (M,D) where
M is a marking of the net and D is a firing domain represented by a (convex)
polyhedron involving l + n variables, with n being the number of transitions
enabled by the marking of the class and l the number of parameters in the net.

A point (ν|ν′) of the firing domain is constituted by a valuation ν of the
parameters in Par and a valuation ν′ of the firing times θ of enabled transitions.
The set of those variables θ of D will be noted Θ.

We denote by D|Par the projection of a firing domain D on the set of pa-
rameters:

D|Par = {ν ∈ Q+l | ∃ν′ ∈ Rn s.t. (ν|ν′) ∈ D}
This definition can be extended to any arbitrary subset of variables of D.

4.2 Computation of the Parametric State-Class Graph

The parametric state-class graph is computed similarly to the non-parametric
case. Parameters are embedded into the firing domain of the initial class, and the
operations that compute the successor classes do not concern the parameters.
However, throughout the computation of the graph, the domain of the parame-
ters in a class will be automatically reduced to consider only the valuations that
make this class reachable.

Definition 8 Firability. Let C = (M,D) be a parametric state-class of a
PITPN . A transition ti is said to be firable from C iff there exists a solution
(ν|ν′) ∈ D, such that ∀j ∈ {1, . . . , n} − {i}, s.t. tj ∈ enabled (M) and tj /∈
inhibited (M) , ν′(θi) ≤ ν′(θj). We will write this: ti ∈ firable (C).
It means that for the valuation ν there exists a state in C in which ti is firable.

Now, given a parametric class C = (M,D) and a firable transition tf , the
parametric class C′ = (M ′, D′) obtained from C by the firing of tf , which we
write C′ = succ(C, tf ), is given by:

– M ′ = M −• tf + t•f

– D′ is computed along the following steps, and noted next(D, tf )

1. intersection with the firability constraints : ∀j s.t. tj is active, θf ≤ θj

2. variable substitutions for all enabled transitions that are active tj : θj =
θf + θ′j ,

3. elimination (using for instance the Fourier-Motzkin method) of all vari-
ables relative to transitions disabled by the firing of tf ,
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4. addition of inequations relative to newly enabled transitions

∀tk ∈↑enabled (M, tf ) , ↑Js(tk) ≤ θ′k ≤ Js(tk)↓

The variable substitutions correspond to a shift of time origin for active
transitions: the new time origin is the firing time of tf . tf is supposed to be
firable so the polyhedron constrained by the inequalities θf ≤ θj is non-empty.

Case of a point:

Let C = (M,D) be a parametric state-class of a PITPN , x = [λ1 . . . λl θ1 . . . θn]�

be a point of D and tf be a transition firable from (M, {x}). We can formally
define the successor of {x} by the firing tf from marking M by:

next({x}, tf ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
∀i ∈ [1..n]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

...
λl

θ′1
...
θ′n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣

θ′i ∈ Js(ti)(ν) if ↑enabled (ti,M, tf )
θ′i = θi if ti ∈ enabled (M)
and ti ∈ inhibited (M)
and not ↑enabled (ti,M, tf)
θ′i = θi − θf otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The next operator straightforwardly extends to finite or infinite unions of points
which allows to define formally next(D, tf ).

Parametric state-class graph:

The parametric state-class graph is generated by iteratively applying the func-
tion that computes the successors of a state-class:

Definition 9. Given a PITPN N , the parametric state-class graph of N is the
transition system G(N ) = 〈C,�, C0〉 such that:

– C0 = (M0, D0) is the initial class such that D0 = Dp ∧ {θk ∈ Js(tk) | tk ∈
enabled (M0)}

– C
t� C′ iff t ∈ firable (C) and C′ = succ(C, t),

– C = {C|C0 �∗ C}, where �∗ is the reflexive and transitive closure of �.

Example 3. In the PITPN of the figure 1, we can exhibit the two following
classes:

C0 = (M0,D0) :
M0 = (A,B)

D0 =

⎧⎨
⎩

0 ≤ a ≤ θ1 ≤ 10,
0 ≤ b ≤ θ2 ≤ c,

θ3 = 5.

t1−−−−−→

C1 = (M1,D1) :
M1 = (B,C)

D1 =

⎧⎨
⎩

0 ≤ b ≤ θ2 ≤ c,

0 ≤ θ3 ≤ 5 − a,

0 ≤ a.
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C0 is the initial class in which transition t1 is firable. After the firing of t1 the
class C1 is reached. We now notice that to reach C1 in the domain D1 the
parameter a must be lower than 5, which was not the case in the example 2 for
the valuation (6, 2, 3).

4.3 Valuation of the Parametric State-Class Graph

From the parametric state-class graph of a PITPN it is possible to choose a val-
uation of the parameters and to replace in the graph all the parameters by their
value. Then, we obtain a non-parametric graph. However, some firing domains
of the classes may become empty, which means that the class is not reachable for
this valuation. Those classes must be removed from the non-parametric graph.
The graph finally obtained corresponds to the state-class graph of the ITPN

obtained for this valuation.

Definition 10 Valuation of a Parametric State-Class. LetC = (M,D) be
a parametric state-class of a PITPN N and let ν ∈ Dp be a valuation of the
parameters of N . The valuation of C by ν is a non-parametric class �C�ν =
(M, �D�ν) where:

�D�ν = {ν′ ∈ Rn | (ν|ν′) ∈ D}

The valuation of the parametric state-class graph is obtained by valuating
the classes of the graph, starting from the initial class and stopping if the firing
domains become empty.

Definition 11 Valuation of the Parametric State-Class Graph. Given a
PITPN N and a valuation ν ∈ Dp, �G(N )�ν = (Cν ,�, �C0�ν) where:

– �C0�ν is the valuation of the initial class C0 of G(N ),

– �C�ν
t� �C′�ν iff C = (M,D), C′ = (M ′, D′) ∈ G(N )

and C
t� C′ and �D′�ν �= ∅

– Cν = {�C�ν | �C0�ν �∗ �C�ν}, where �∗ is the reflexive and transitive
closure of �.

The theorem 12 establishes that the valuation of the parametric state-class
graph of a PITPN matches the non-parametric state-class graph of the ITPN

obtained for the same parameters valuation.

Theorem 12. Given a PITPN N and a valuation ν ∈ Dp, then

�G(N )�ν = G(�N �ν )

where G(�N �ν ) is the non-parametric state-class graph of �N �ν .
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Proof. By definition �G(N )�ν = (Cν ,�, �C0�ν).
The construction of G(�N �ν ) corresponds to the one of �G(N )�ν when there is
no parameters. We note G(�N �ν ) = (C∗,�, C∗

0 ).

1. First we show that �C0�ν = C∗
0 :

On the one hand, �C0�ν = (M0, �D0�ν) where D0 = Dp ∧ {θk ∈ Js(tk) | tk ∈
enabled (M0)} And since ν ∈ Dp we get that �D0�ν = {θk ∈ Js(tk)(ν) | tk ∈
enabled (M0)}.
On the other hand, by definition C∗

0 = (M0, D
∗
0) where

D∗
0 = {θk ∈ Js(tk)(ν) | tk ∈ enabled (M0)}.

2. Let be �C�ν ∈ �G(N )�ν and C∗ ∈ G(�N �ν ). If we assume that �C�ν =
C∗ (we now confound M and M∗ and only use M), we can induce that

∀t ∈ enabled (M), (∃C′ s.t. �C�ν
t� �C′�ν ⇐⇒ ∃C∗∗ s.t. C∗ t� C∗∗) and

�C′�ν = C∗∗:

(a) If �C�ν
t�ν �C′�ν then

⎧⎪⎨
⎪⎩
C = (M,D), C′ = (M ′, D′) ∈ G(N )

C
t� C′

�D′�ν �= ∅
Since �D′�ν �= ∅ and C

t� C′, it means that t is firable in C for ν, i.e.
∃ν′, s.t. (ν|ν′) ∈ D and ∀j ∈ {1, . . . , n} − {i}, s.t. tj is active, ν′(θi) ≤
ν′(θj). Thus, we deduce that ν′ ∈ �D�ν = D∗, and naturally that t ∈
firable (C∗). So there exists C∗∗ such that C∗ t� C∗∗.

(b) Conversely, if C∗ t� C∗∗ then t ∈ firable (C∗) and so ∃ν′ ∈ D∗ such that
∀j ∈ {1, . . . , n} − {i}, s.t. tj is active, ν′(θi) ≤ ν′(θj). Since ν′ ∈ D∗ =
�D�ν it follows that (ν|ν′) ∈ D and consequently we immediately deduce

that t ∈ firable (C). Thus, there exists C′ such that C
t� C′ and since

t ∈ firable (C) for the point (ν|ν′) it means that �D′�ν �= ∅.
Finally, we have to prove that C∗∗ = �C′�ν . Immediately, we get that M∗∗ =
M ′. Concerning the two firing domains, we have D′ =

⋃
x∈D next({x}, t).

On the one hand, �D′�ν =
⋃

x=[λ1 . . . λl︸ ︷︷ ︸
ν

θ1...θn]∈D next({x}, t). On the other

hand, D∗∗ =
⋃

x=[θ1...θn]∈D∗ next({x}, t). And if x = [θ1 . . . θn] ∈ D∗ since
D∗ = �D�ν it means that [λ1 . . . λl θ1 . . . θn] ∈ D (and reciprocally). Con-
sequently, since the next operator used is the same in the parametric and
non-parametric case (it does not modify the parameters) the two firing do-
mains are equals. ��

Finally, the theorem 13 and the lemma 14 allow to directly compute the
reachability of a class for a valuation of the parameters by checking the accessi-
bility condition of the parametric state-class.
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Theorem 13. Given a PITPN N and a valuation ν ∈ Dp, let C = (M,D) be a
parametric state-class in G(N ). Then

�C�ν ∈ �G(N )�ν iff ν ∈ D|Par

D|Par is called the accessibility condition of C.

This theorem relies on the fact that the accessibility condition of a mother
class always entails the accessibility conditions of its successors, which is ex-
pressed by the lemma 14.

Lemma14. Given a PITPN N , let C = (M,D) and C′ = (M ′, D′) be two

parametric state-classes in G(N ). If C
t� C′ then D′

|Par ⊆ D|Par.

Proof of Lemma 14. Let be ν ∈ D′
|Par. Then by definition of the projection

∃ν′ ∈ Rn′
(where n′ is the number of enabled transitions in C′) such that

(ν|ν′) ∈ D′. Because C′ = succ(C, t), this implies that D′ = next(D, t). And
now (ν|ν′) ∈ D′ implies that ∃ν′′ ∈ Rn (where n is the number of enabled
transitions in C) such that (ν|ν′′) ∈ D and next({(ν|ν′′)}, t) = {(ν|ν′)}, because
the parameters are not modified by the next operator. Again, by definition of
the projection, this implies that ν ∈ D|Par which proves the lemma. ��

Proof of Theorem 13. We directly deduce that if �C�ν ∈ �G(N )�ν then �D�ν �=
∅ ⇒ ∃ν′ ∈ Rn s.t. (ν|ν′) ∈ D ⇒ ν′ ∈ D′

|Par.
Conversely, since C ∈ G(N ) there exists {C1, . . . , Ck − 1} ∈ G(N ) such that
C0 � C1 � · · ·� Ck−1 � Ck = C. Then, thanks to the lemma 14 we have the
following inclusions: D|Par = Dk|Par ⊆ Dk−1|Par ⊆ · · · ⊆ D1|Par ⊆ D0|Par. If
ν ∈ D|Par, then ∀0 ≤ i ≤ k, ν ∈ Di|Par, which implies that �Di�ν �= ∅. With
these last conditions, starting from C0, we can recursively prove that �Ci�ν ∈
�G(N )�ν , especially for i = k �C�ν ∈ �G(N )�ν . ��

5 Parametric Model-Checking

The model-checking problem consists in checking that a model N satisfies a
property φ expressed in a given logic, which is more formally written N |= φ.
The answer to this problem is either true or false.

Given a parametric model N and a property φ, which may also be parameter-
ized, we address the parametric synthesis problem i.e. we want to determine the
set of parameters valuations Γ (N , φ) such that ∀ν ∈ Γ (N , φ) the non-parametric
model �N �ν obtained for the valuation ν satisfies the non-parametric property
�φ�ν obtained for the same valuation, which is formally written �N �ν |= �φ�ν .
This set will be represented by a set of constraints on the parameters of the
problem.
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5.1 Parametric TCTL Formulae

Like ITPN , we parameterize TCTL formulae by allowing that the bounds of the
temporal intervals of the formulae are parameters. The parameters used in the
formulae are added to the set of parameters of the PITPN in study. Besides, we
consider only a subset of TCTL formulae for which ”on-the-fly” model-checking
algorithms have already been proposed for TPNs [Hadjidj and Boucheneb, 2006].
This subset is sufficient to verify many interesting problems (reachability, safety,
bounded liveness. . . ).

First, we recall the syntax and semantics of TCTL formulae in the context
of TPNs (or ITPNs).

Definition 15 TCTL for TPN. The grammar of TCTL formulae is:

TCTL ::= P | ¬ϕ | ϕ⇒ ψ | ∃ϕUIψ | ∀ϕUIψ

where ϕ, ψ ∈ TCTL, I ∈ I(Q+), P ∈ PR, and PR = {P | P : M →
{true, false}} is the set of propositions on the markings of the net.

We use the following abbreviations ∃♦Iϕ = ∃trueUIϕ, ∀♦Iϕ = ∀trueUIϕ,
∃�Iϕ = ¬∀♦I¬ϕ and ∀�Iϕ = ¬∃♦I¬ϕ.

We define the bounded time response by ϕ�I ψ = ∀�(ϕ⇒ ∀♦Iψ).

TCTL formulae are interpreted on the states of a model M = (SN ,V),
where SN is the state space of the TPN and V : SN → 2PR is a function that
evaluates the marking of a state, such that V(q) = {P ∈ PR | P(M) = true}.
Now, let q ∈ SN be a state and ρ ∈ π(q) a run starting from q, such that
ρ = q0

d0−−→ q0 + d0
t0−−→ q1

d1−−→ q1 + d1
t1−−→ · · · . We define ρ∗ : R+ → SN by

ρ∗(r) = qi + δ if r =
∑i−1

j=0 dj + δ, with i ≥ 0 and 0 ≤ δ < di.

Definition 16 Semantics of TCTL. Given a TPN N and its model M =
(SN ,V), the truth value of a TCTL formula for a state q ∈ SN is:

– q |= P iff P ∈ V(q),

– q |= ¬ϕ iff q �|= ϕ,

– q |= ϕ⇒ ψ iff q �|= ϕ ∨ q |= ψ,

– q |= ∃ϕUIψ iff ∃ρ ∈ π(q), ∃r ∈ I s.t. ρ∗(r) |= ψ and ∀r′ < r, ρ∗(r′) |= ϕ

– q |= ∀ϕUIψ iff ∀ρ ∈ π(q), ∃r ∈ I, s.t. ρ∗(r) |= ψ and ∀r′ < r, ρ∗(r′) |= ϕ

Given a model M = (SN ,V), for a markings proposition P ∈ PR and a state
q = (M, I) ∈ SN , we use the notation M |= P if P ∈ V(q) and M �|= P if
P /∈ V(q).

Finally, a TPN N satisfies a TCTL formula φ if and only if q0 |= φ.
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We present now the syntax and semantics of Parametric TCTL (PTCTL)
formulae for PITPN .

Definition 17 PTCTL for PITPN. The grammar of PTCTL formulae is:

PTCTL ::= ∃ϕUJψ | ∀ϕUJψ | ∃♦Jϕ | ∀♦Jϕ | ∃�Jϕ | ∀�Jϕ | ϕ�Jr ψ

where ϕ, ψ ∈ PR, J, Jr ∈ J (Par) are parametric time intervals, with the re-
striction that Jr = [0, b] with b ∈ Q+ ∪ Par, or Jr = [0,∞[.

The semantics of PTCTL formulae are defined similarly to the semantics of
PITPNs. Given a valuation, the parameters in the formulae are replaced by their
value to obtain a TCTL formula, which is interpreted on the ITPN obtained for
this valuation.

Definition 18 Semantics of PTCTL. Let N be a PITPN and φ be a PTCTL
formulae and ν ∈ Dp be a valuation of the parameters of N (which are shared
with φ). �φ�ν is the TCTL formula obtained when replacing in φ the parametric
time interval J (or Jr) by the Q-interval J(ν) (or Jr(ν)).
Then N satisfy φ for the valuation ν if and only if �N �ν |= �φ�ν .

5.2 Extending the Parametric State-Class Graph with a Global
Clock

In the state-class graph, the firing domain of a class gives the firing dates of
the transitions with the entrance in the class as a time origin. Timed properties
are difficult to verify in this context. In order to easily check timed properties
with the state-class graph abstraction, it is necessary to be able to evaluate the
time that has elapsed between classes. For this purpose, we propose to extend
the parametric state-classes with an additional variable noted θc. This variable
is initialized to zero in the initial class, and then decreases when time flows, like
a transition variable 1 . However, the variable will not constrain the transitions
variables when determining the firability constraints. Then, for all classes, the
time elapsed from the initialization of θc to the entrance in the class is: τc = −θc.

Definition 19. An extended parametric state-class C of a PITPN is a class
whose firing domain D is extended with an additional variable θc ∈ Θ.

The definition of the firability of an extended class is not modified. The
firability constraints indeed only involve the variables θi where ∀i ∈ {1, . . . , n},
ti ∈ T . The next operator is redefined for an extended class such that for a point
x = [λ1 . . . λl θ1 . . . θn θc]� of D, in next(({x}, tf ) we have θ′c = θc − θf .

1 The value of this variable will always be non-positive. But this is not a problem in
the computation of the state-classes. The alternative would be to initialize it, not to
zero, but to a sufficiently large value, but this value is hard to determine.
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The extended parametric state-class graph Gc(N ) is then computed itera-
tively in a similar way, starting from the initial class C0 = (M0, D0) where

D0 = Dp ∧ {θk ∈ J(tk) | tk ∈ enabled (M0)} ∧ {θc = 0}

Finally, given an extended parametric state-class C = (M,D), we are able
to determine:

– τmin(C), the absolute minimum time elapsed when entering the class. This
is a function of the parameters Par of the net τmin(C) : Dp → Q+, such
that τmin(C)(ν) = minx=(ν|ν′)∈D(τc). It can be expressed as the maximum
between the minimum values of τc and it is necessarily positive and finite.

– τmax(C), the absolute maximum time elapsed when entering the class. This is
a function on the parameters Par of the net τmax(C) : Dp → Q+∪{∞}, such
that τmax(C)(ν) = maxx=(ν|ν′)∈D(τc). It can be expressed as the minimum
between the maximum values of τc and it is necessarily positive but may be
infinite if there is no maximum time.

If �C�ν ∈ �Gc(N )�ν , let q ∈ �C�ν be a state. Then the elapsed time of the
state is such that τmin(C)(ν) ≤ time(q) ≤ τmax(C)(ν).

Example 4. If we consider the two classes previously presented in the example 3
for the PITPN of the figure 1, the corresponding extended classes are:

C0 = (M0,D0) :
M0 = (A,B)

D0 =

⎧⎨
⎩

0 ≤ a ≤ θ1 ≤ 10,
0 ≤ b ≤ θ2 ≤ c,

θ3 = 5, θc = 0.

t1−−−−−→

C1 = (M1,D1) :
M1 = (B,C)

D1 =

⎧⎪⎪⎨
⎪⎪⎩
θ3 − θc = 5,
0 ≤ b ≤ θ2 ≤ c,

−5 ≤ θc ≤ −a,
0 ≤ a.

Thus, the elapsed time after the firing of t1 is such that τmin(C1) = a and
τmax(C1) = 5. We notice that since t2 was inhibited in class C0 its clock value
has not changed unlike the one of t3.

5.3 Principles of Parametric Model-Checking with the State-Class
Graph

Given a PITPN N and a PTCTL property φ, we want to characterize the set
Γ (N , φ) of all the parameters valuations that solve the problem, which is defined
by:

Γ (N , φ) = {ν ∈ Dp | �N �ν |= �φ�ν}
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To achieve this we are going to recursively compute, on each extended class
C = (M,D), a logical predicate on the parameters that corresponds to the ver-
ification of the property on the current class and its successors. This predicate
represents the set: Fφ(C) = {ν ∈ D|Par | �C�ν |= �φ�ν}.

We begin by giving an interpretation of the verification of a PTCTL formula
φ on an extended parametric state class C, which we write �C�ν |= �φ�ν .

For formulae φ = ∃ϕUJψ or φ = ∀ϕUJψ:

For a valuation ν ∈ D|Par and a state q ∈ �C�ν , we define �φ[J − time(q)]�ν as
the TCTL formula obtained after replacing in φ the parametric time interval J
by J(ν) − time(q).

Then, according to the form of the PTCTL formula φ we define that:

– if φ = ∃ϕUJψ, then �C�ν |= �φ�ν iff ∃q ∈ �C�ν , q |= �φ[J − time(q)]�ν

– if φ = ∀ϕUJψ, then �C�ν |= �φ�ν iff ∀q ∈ �C�ν , q |= �φ[J − time(q)]�ν

For formulae φ = ϕ�Jr ψ:

We extend the PITPN N with an additional place named PLT that will be
marked iff we are looking for ψ. We denote by NLT the resulting PITPN . In this
model, the successor C′ = (M ′, D′) = succLT (C, t) of an extended parametric
state-class C = (M,D) ∈ Gc(NLT ) by a transition tf ∈ firable (C), is given by:

– M ′ = M −• tf + t•f and

⎧⎨
⎩

if (M ′ |= ϕ and M ′ �|= ψ) then M ′(PLT ) = 1,
else if (M |= ψ) then M ′(PLT ) = 0,
else M ′(PLT ) = M(PLT )

– D′ = next(D, tf ) and
if (M(PLT ) = 0 or M |= ψ) then the clock variable θc is reset to zero.

On this model we define that �C�ν |= �φ�ν iff ∀q ∈ �C�ν , ∀ρ ∈ π(q),

M(PLT ) = 1 ⇒
⎧⎨
⎩

∃0 ≤ r1 ≤ Jr(ν)↓ − time(q) s.t. ρ∗(r1) |= ψ and
∀r2 ≥ r1 ρ

∗(r2) |= M(PLT ) = 1 ⇒ ∃r3 ≥ r2
s.t. r3 − r2 ≤ Jr(ν)↓ and ρ∗(r3) |= ψ

M(PLT ) = 0 ⇒
{∀r2 ≥ 0 ρ∗(r2) |= M(PLT ) = 1 ⇒ ∃r3 ≥ r2

s.t. r3 − r2 ≤ Jr(ν)↓ and ρ∗(r3) |= ψ

In this model, time(q) refers to the time elapsed since the last reinitialization
of θc. We notice that when the time has been reset (then time(q) = 0) the two
definitions above are equivalent and correspond to q |= �φ�ν .

Finally, the theorem 20 states that we are able to resolve the parametric
model-checking problem if we compute the set of solutions on the initial class.
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Theorem 20. Given a PITPN N and a PTCTL formula φ, Γ (N , φ) = Fφ(C0),
where C0 is the initial class of the extended parametric state class graph of N .

Proof. According to their respective definitions we have:
On the one hand Γ (N , φ) = {ν ∈ Dp | �N �ν |= �φ�ν} and by definition:

�N �ν |= �φ�ν ⇔ q0 |= �φ�ν , where q0 is the initial state of �N �ν .
On the other hand, for C0 = (M0, D0):

– if φ = ∃ϕUJψ or φ = ∀ϕUJψ, then Fφ(C0) = {ν ∈ D0|Par | q0 |= �φ[I −
time(q0)]�ν}, because the initial class �C0�ν matches the initial state q0 =
(M0, Js(ν)). Moreover, D0|Par = Dp and time(q0) = 0.

– if φ = ϕ �Jr ψ then similarly �C0�ν matches the initial state q0 and
time(q0) = 0. Consequently, the previous definition of Fφ(C0) corresponds
to the definition of q0 |= �φ�ν .

Thus, whatever the form of φ the two sets are syntactically equal. ��

5.4 Parametric Model-Checking Semi-Algorithms

To verify PTCTL formulae we propose three semi-algorithms according to the
form of the formulae. These algorithms recursively characterize for each class
C the set Fφ(C). This set is represented by conjunctions or disjunctions of
linear constraints on the parameters. We use a disjunctive normal form (i.e. a
disjunction of convex polyhedra).

The proofs of the correctness and the completeness of these semi-algorithms
can be found in the appendix A.

5.4.1 Algorithm EU:

This semi-algorithm is designed for formulae whose form is φ = ∃ϕUJψ, where
J ∈ J (Par). Let be C = (M,D) ∈ Gc(N ), we compute:

Fφ
EU(C) =D|Par ∧ {τmin(C) ≤ J↓} ∧

 „
M |= ψ ∧ {τmax(C) ≥ ↑J}

«

∨
„
M |= ϕ ∧ M |= ψ ∧

“
firable (C) = ∅ ∨

` _
t∈firable(C)

C′=(M′,D′)=succ(C,t)

({τmax(C′) ≥ ↑J} ∧ D′
|Par)

´”«

∨
„
M |= ϕ ∧ firable (C) �= ∅ ∧

“ _
t∈firable(C)

C′=succ(C,t)

Fφ
EU (C′)

”«!
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The first two conditions D|Par ∧ {τmin(C) ≤ J↓} ensure that the class is
accessible and that the maximum time of the formula φ is not overpassed. Then,
three conditions in disjunction allow to prove the formula φ:

– The first disjunction is used when C verifies ψ but not φ. Thus, the elapsed
time must be entailed in the interval J as soon as it gets into the class.

– The second case is used when both φ and ψ are verified. Comparing to the
first one, it is less restrictive since it allows to wait in the class.

– The third disjunction is used whenever φ is verified. In this case the succes-
sors of C are computed.

Example 5. In the net of the figure 1 we check the formula:
φ1 = ∃♦[0,inf [(M(D) = 1). The result is Fφ1

EU (C0) = {a+ b <= 5}.

5.4.2 Algorithm AU:

This semi-algorithm is designed for formulae whose form is φ = ∀ϕUJψ, where
J ∈ J (Par). Let be C = (M,D) ∈ Gc(N ), we compute:

Fφ
AU (C) = D|Par ∧

j
τmax(C) ≤ J↓

τmax(C) �= ∞
ff

∧
 „

M |= ψ ∧ {τmin(C) ≥ ↑J}
«

∨
„
M |= ϕ ∧ M |= ψ ∧

“
firable (C) = ∅ ∨

` ^
t∈firable(C)

C′=(M′,D′)=succ(C,t)

D′′=D′∧{θc>−↑J}

(Fφ
AU (M ′,D′′) ∨ ¬D′′

|Par)
´”«

∨
„
M |= ϕ ∧ firable (C) �= ∅ ∧

“ ^
t∈firable(C)

C′=(M′,D′)=succ(C,t)

`
Fφ

AU (C′) ∨ ¬D′
|Par

´”«!

It uses similar but stricter conditions than the previous algorithm. For instance,
after the accessibility condition, to check that the maximum time of φ is not
overpassed the maximum elapsed time is now used (and respectively, to check if
the minimum time of φ is reached, the minimum elapsed time is used). Then, a
disjunction between three conditions must be verified. Unlike previously, in the
second one some successors must computed, but only for the points of the class
for which the property has not been verified yet. When iterating the algorithm
on successors, either the formula is verified on the successor, or the condition
¬D′

|Par (or ¬D′′
|Par ) forbid the accessibility of this successor.

Example 6. In the net of the figure 1 we check the formula:
φ2 = ∀♦[0,inf ](M(E) = 1). The result is Fφ2

AU (C0) = {a+ b > 5}.
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5.4.3 Algorithm LT:

This semi-algorithm is designed for formulae whose form is φ = ϕ�Jr ψ, where
Jr ∈ J (Par) such that Jr = [0, b] with b ∈ Q+ ∪ Par, or Jr = [0,∞[. Let be
C = (M,D) ∈ Gc(NLT ), we compute:

Fφ
LT (C) =D|Par ∧

„
M(PLT ) = 0 ∨

j
τmax(C) ≤ J↓

r

τmax(C) �= ∞
ff«

∧
„“

firable (C) = ∅ ∧ `M(PLT ) = 0 ∨M |= ψ
´”∨

“
firable (C) �= ∅ ∧ ` ^

t∈firable(C)

C′=(M′,D′)=succLT (C,t)

(Fφ
LT (C′) ∨ ¬D′

|Par)
´”«

This algorithm is similar to FAU when ↑J = 0. However, the analysis can only
stop if no successor is found.

6 Discussion and implementation

The semi-algorithms presented in this paper have been implemented in Romeo

[Lime et al., 2009], a software tool for time Petri nets analysis. Romeo provides a
graphical user interface for editing and simulating time Petri nets and Petri nets
with stopwatches (with or without parameters), and a computation module that
performs TCTL model-checking and state-space computation. Although we have
focused our presentation on ITPNs, Romeo allows the modelling of stopwatches
either with inhibitor arcs or with priorities and the algorithms presented in this
paper can be applied to both models.

For time Petri nets, efficient model-checking is performed, using the Up-
paal DBM Library [Larsen et al., 1997]. For Petri nets with stopwatches and
parametric time Petri nets, polyhedra manipulation are necessary. The Parma
Polyhedra Library [Bagnara et al., 2006] is used to represent the firing domains
of the parametric state-classes and the logical formulae computed by the para-
metric model-checking algorithms. These formulae are represented as powersets
of convex polyhedra, that is to say a finite disjunction of polyhedra.

As mentioned before, the parametric model-checking problem is undecidable.
Indeed the parametric state-class graph of a PITPN may be infinite. Addition-
ally, to determine the whole set of parameters valuations that satisfy a formula,
it would be in general necessary to analyze every parametric state-class. Never-
theless, some methods can help with the termination (and are necessary to the
termination). In this way, if a parametric state-class C = (M,D) is included in
another class C′ = (M ′, D′) (i.e. M = M ′ and D ⊆ D′), it can be shown that
Fφ

EU (C) ⊆ Fφ
EU (C′), and on the contrary that Fφ

AU (C′) ⊆ Fφ
AU (C)∨¬D|Par and

Fφ
LT (C′) ⊆ Fφ

LT (C) ∨ ¬D|Par. As a result, in our “on-the-fly” model-checking
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approach it will not be necessary to analyze the whole state-class graph, but we
will be able to stop the analysis of successors when finding included parametric
state-classes.

7 Case study

We illustrate our method in a scheduling problem taken from [Bucci et al., 2004],
that we parameterized by replacing some temporal constraints by parameters.
We consider a system of three tasks: task1 and task3 are periodic, task2 is
sporadic. The periods are expressed in function of a time parameter a and are
respectively a, 2.a and 3.a for the tasks 1, 2 and 3. The system has fixed priorities
between the tasks: task1 has the greatest priority, then task2 and then task3.

We design a PITPN model of this system in the tool Romeo and obtain the
model presented in Figure 2. The inhibitors arcs, drawn with a circle end, are
used to modelize the priorities between the tasks. Besides, we can restrict the
domain of the parameter, so that Dp = {30 ≤ a ≤ 70}.

Figure 2: PITPN model in Romeo

3293Traonouez L.-M., Lime D., Roux O.H.: Parametric Model-Checking ...



The interesting model-checking problems on this system first concern the
schedulability of the three tasks, which is expressed by the property that the
PITPN model is safe (i.e. 1−bounded). The semi-algorithms presented in this
paper and implemented in Romeo allow to verify this property by checking the
TCTL formula:

∀Pi, ∀�[0,∞[(M(Pi) ≤ 1)

The result of the parametric model-checking is a > 48.
This new constraint can be added to the domain Dp of the parameters, which

assures that the parametric system is now schedulable for every values of a. New
properties can then be checked. For instance, we can compute the worst case
response time (WCRT) of task3 with the parametric TCTL formulae:

M(P31) > 0�[0,b] M(P32) > 0

This formula uses a new parameter b that is a maximum bound for the WCRT.
The result of the parametric model-checking for this formula is b ≥ 96 and thus
96 is the WCRT of task3. This is in accordance with [Bucci et al., 2004] in which
a = 50. We remark that this result is proven on the parametric model and so
applies for all the values of a in the domain Dp, although it does not depend on
it.

8 Conclusion

In this paper, we have introduced a parametric extension of time Petri nets with
stopwatches where the temporal bounds of the firing intervals are replaced by
temporal parameters. We have proposed a symbolic representation of the state-
space of these parametric models which is based on a parametric extension of
the state-class graph. Upon this abstraction we have developed semi-algorithms
for the parametric model-checking of parametric TCTL formulae.

In our future works we want to integrate this parametric approach in the
development cycle of real-time systems through the functional decomposition of
the systems. On concrete examples, a parametric decomposition combined with
a projection of the formulae to verify can be useful in the development process.
We hope to succeed in the elaboration of a formal framework for this method so
that the process could be automated.
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A Appendix

We present in this appendix the proofs of the semi-algorithms introduced in the
paper. For two states q0, q1, we use the following abbreviations time(q0) = τ0
and time(q1) = τ1.

A.1 Algorithm EU

Theorem 21. Let N be a PITPN and φ = ∃ϕUJψ a PTCTL formula, where
J ∈ J (Par). Given an extended parametric state-class C = (M,D) of Gc(N ),
the correctness and completeness of the semi-algorithm EU are expressed by:

Fφ(C) = Fφ
EU (C)

Proof of Theorem 21 (correctness). We consider a valuation that belongs to the
computed logical formula: ν ∈ Fφ

EU (C). We prove that this valuation is correct,
which means that: ν ∈ Fφ(C) = {ν ∈ D|Par | ∃q0 ∈ �C�ν , q

0 |= �φ[I − τ0]�ν}.
We directly deduce that ν ∈ D|Par, and it implies that �C�ν �= ∅. We also

note that ν ∈ {τmin(C) ≤ J↓}. Then, there exists 3 ways to verify the disjunctive
formula:

1. if ν verifies the first member of the disjunction (i.e. M |= ψ ∧ {τmax(C) ≥
J↑}).
We choose q0 s.t. J(ν)↑ ≤ τ0 ≤ J(ν)↓, which is possible since ν ∈ ({τmin(C) ≤
J↓} ∧ {τmax(C) ≥ J↑}), thus [τmin(C)(ν), τmax(C)(ν)] ∩ [J(ν)↑, J(ν)↓] �= ∅.
Then, let be ρ ∈ π(q0), for r = 0, we have ρ∗(r) |= ψ and r ∈ J(ν) − τ0.
Consequently q0 |= �φ[J − τ0]�ν , which proves that ν ∈ Fφ(C).

2. if ν verifies the second member of the disjunction, we choose q0 s.t. τ0 ≤
J(ν)↓ which is possible since ν ∈ {τmin(C) ≤ J↓}.
– Now, if τ0 ≥ J(ν)↑, as we did previously, we consider r = 0 and prove

the result.

– Otherwise τ0 < J(ν)↑ and then

• if firable (C) = ∅, then ∃ρ ∈ π(q0), ρ = q0
d0−→ q0 + d0 with d0 =

∞. Consequently, for r = J(ν)↑ − τ0 > 0, ρ∗(r) |= ψ and ∀r′ <
r, ρ∗(r′) |= ϕ because we remain in the same class C, and r ∈
J(ν) − τ0, thus ν ∈ Fφ(C).

• otherwise, ∃t ∈ firable (C) s.t. C′ = (M ′, D′) = succ(C, t) and more-
over, according to the formula, ν ∈ {τmax(C′) ≥ J↑} ∧D′

|Par.
Since ν ∈ D′

|Par, the class �C′�ν is reachable, and so there exists:

ρ ∈ π(q0) and q1 ∈ �C′�ν s.t. ρ = q0
d0−→ q0 + d0

t→ q1 → . . . .
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We choose q1 such that τ1 = τmax(C′)(ν), then τ1 ≥ J(ν)↑ and
d0 = τ1 − τ0.
We consider now r = min(d0, J(ν)↓ − τ0). We have ρ∗(r) |= ψ and
∀r′ < r, ρ∗(r′) |= ϕ because we are still in the class C. And naturally
by construction r ∈ J(ν) − τ0. So, finally ν ∈ Fφ(C).

3. in the last case ν verifies the third member of the disjunction, then there
exists t ∈ firable (()C) s.t. ν ∈ Fφ

EU (succ(C, t)). We assume here that the
computed formula for the successor is correct, i.e. ∃q1 ∈ �C′�ν , ∃ρ′ ∈ π(q1),
∃r1 ∈ J(ν) − τ1, s.t. ρ′∗(r1) |= ψ and ∀r′1 < r1 ρ

′∗(r′1) |= ϕ.
In that case there exists q0 ∈ �C�ν and ρ ∈ π(q0) such that ρ = q0

d0=τ1−τ0−−−−−−→
q0 + d0

t→ q1 → ρ′. Then, for r = d0 + r1 we have ρ∗(r) |= ψ and ∀r′ < r,
ρ∗(r′) |= ϕ. Besides, r ≤ τ1 − τ0 + J(ν)↓ − τ1 = J(ν)↓ − τ0 and r ≥ τ1 − τ0 +
J(ν)↑ − τ1 = J(ν)↑ − τ0, thus r ∈ J(ν) − τ0. So finally ν ∈ Fφ(C).

We have proven that when ν verifies the computed formula, in all cases this
valuation is correct, and as a result the correctness of the algorithm EU is proven.

��

Proof of Theorem 21 (completeness). We consider now a solution of the theo-
retical problem: ν ∈ Fφ(C). We prove that this solution belongs to the set of
solutions computed, i.e. ν ∈ Fφ

EU (C).
We prove this result by induction on the number i of transitions that must be
fired to prove the formula φ. The induction hypothesis is
Hi: Let be C = (M,D) ∈ Gc(N ) and ν ∈ D|Par. If ∃q0 ∈ �C�ν , q

0 |= �φ[J−τ0]�ν ,

i.e. ∃ρ ∈ π(q0) s.t. ρ = q0
d0−−→ q0 + d0

t0−−→ q1
d1−−→ q1 + d1

t1−−→ · · · and
∃r ∈ J(ν)− τ0 s.t. ρ∗(r) |= ψ and ∀r′ < r, M, ρ∗(r′) |= ϕ, with r =

∑i−1
j=0 dj + δ

and δ < d0, then ν ∈ Fφ
EU (C).

H0 : we will prove the result for i = 0

– Either: M |= ψ and M �|= ϕ. Then, necessarily r = 0, and so 0 ∈ [J(ν)↑ −
τ0, J(ν)↓ − τ0]. Besides, τ0 ≥ τmin(C)(ν), which proves that τmin(C)(ν) ≤
J(ν)↓ and thus that ν ∈ {τmin(C) ≤ J↓}. Similarly τ0 ≤ τmax(C)(ν), and
so ν ∈ {τmax(C) ≥ J↑}. Then, we have proven that ν belongs to the first
member of the disjunctive formula of Fφ

EU (C).

– Otherwise: M |= ψ and M |= ϕ, and there exists ρ = q0
d0−→ q0 + d0→ . . . ,

and 0 ≤ r < d0 s.t. ρ∗(r) |= ψ. In that case:

• if θ0 = ∞, either firable (C) = ∅ and since τmin(C)(ν) ≤ τ0 ≤ r +
τ0 ≤ J(ν)↓, we directly prove that ν ∈ Fφ

EU (C). Or it means that
∀t ∈ firable (C) , Js(t)↓ = ∞. Then, necessarily ∃t ∈ firable (C) s.t. C′ =
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(M ′, D′) = succ(C, t) and ν ∈ D′
|Par. Consequently, τmax(C′) = ∞, and

so ν ∈ Fφ
EU (C).

• Otherwise, ∃t s.t. ρ = q0
d0−−→ q0 + d0

t−−→ q1 → · · · , and thus t ∈
firable (C), and for C′ = succ(C, t) we have ν ∈ D′

|Par. In that case
τmax(C′)(ν) ≥ τ1 and τ1 = τ0 + d0. As a result τmax(C′)(ν) ≥ τ0 + d0 >

τ0 + r. Finally, since r ∈ J(ν)− τ0 we get that τmax(C′)(ν) ≥ J(ν)↑ and
consequently that ν ∈ Fφ

EU (C).

We have proven the induction hypothesis for i = 0. We now prove the induction.

Hi ⇒ Hi+1: we start with the assumptions of Hi+1, i.e. ∃q0 ∈ �C�ν , ∃ρ ∈ π(q0),
∃r ∈ J − τ0 s.t. ρ∗(r) |= ψ and ∀r′ < r, ρ∗(r′) |= ϕ, with r =

∑i
j=0 dj + δ.

Since i + 1 > 0, ∃t ∈ firable (C) s.t. ρ = q0
d0→ q0 + d0

t→ q1 → . . . . Let be
C′ = (M ′, D′) = succ(C, t). ν ∈ D′

|Par since then the class is reachable. We have
q1 ∈ �C′�ν and τ1 = τ0 + d0.
We now consider the sub-sequence of ρ starting from q1 : ρ′ = q1 → . . . . Let be
r1 = r − d0 =

∑i
j=1 dj + δ. Since r ∈ J(ν) − τ0, it follows that r1 ∈ J(ν) − τ1.

Moreover, ρ′∗(r1) = ρ∗(r), and so ρ′∗(r1) |= ψ. Similarly ∀r′1 < r1 ρ
′∗(r′1) |= ϕ.

We have just verified all the assumptions for Hi, and by induction we deduce
that ν ∈ Fφ

EU (C′).
Then we can deduce that ν verifies the last member of the disjunction in Fφ

EU (C).
This proves the induction and the completeness of the algorithm. ��

A.2 Algorithm AU

Theorem 22. Let N be a PITPN and φ = ∀ϕUJψ a PTCTL formula, where
J ∈ J (Par). Given an extended parametric state class C = (M,D) of Gc(N ),
the correctness and completeness of the semi-algorithm AU are expressed by:

Fφ(C) = Fφ
AU (C)

Proof of Theorem 22 (correctness). We consider a valuation that belongs to the
computed logical formula: ν ∈ Fφ

AU (C). We prove that this valuation is correct,
which means that: ν ∈ Fφ(C) = {ν ∈ D|Par | ∀q0 ∈ �C�ν , q

0 |= �φ[J − τ0]�ν}.
We directly deduce that ν ∈ D|Par, it implies that �C�ν �= ∅. And we note

that ν ∈ {τmax(C) ≤ J↓}. Then, there is 3 ways to verify the disjunctive formula:

1. If ν verifies the first member of the disjunction (i.e. M |= ψ ∧ {τmin(C) ≥
J↑}).
Then, ∀q0 ∈ �C�ν , τ0 ∈ J(ν), because, on the one hand τ0 ≥ τmin(C)(ν) ≥
J(ν)↑, and on the other hand τ0 ≤ τmax(C)(ν) ≤ J(ν)↓. Consequently ∀ρ ∈
π(q0), for r = 0, ρ∗(r) |= ψ and r ∈ J(ν) − τ0. As a result ν ∈ Fφ(C).
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2. If ν verifies the second member of the disjunction, ∀q0 ∈ �C�ν , like previously
τ0 ≤ J(ν)↓. Then, either τ0 ≥ J(ν)↑, in which case the previous proof applies,
or J(ν)↑ − τ0 > 0 and next:

– if firable (C) = ∅ then ∀ρ ∈ π(q0), ρ = q0
d0−→ q0 +d0 with d0 = ∞. Thus,

for r = J(ν)↑ − τ0 > 0, we prove the result.

– Otherwise, ∀ρ ∈ π(q0). If ρ = q0
d0−→ q0 + d0 with d0 = ∞, as before, we

consider r = J(ν)↑ − τ0. Else, ∃t ∈ firable (C) s.t. ρ = q0
d0−→ q0 + d0

t→
q1 → . . . and d0 = τ1 − τ0. Let be C′ = (M ′, D′) = succ(C, t), and
D′′ = D′∧{θc > −J↑} and C′′ = (M ′, D′′). From the logical formula we
deduce that ν ∈ (Fφ

AU (C′′) ∨ ¬D′′
|Par) and ν ∈ D′

|Par since in that case
the class �C′�ν is reachable.

• If τ1 ≥ J(ν)↑, then for r = min(d0, J(ν)↓ − τ0), ρ∗(r) |= ψ, ∀r′ <
r, ρ∗(r′) |= φ since we remain in the class C. Besides r ∈ J(ν) − τ0
since either r = J(ν)↓ − τ0, or r = d0 and then r ≤ J(ν)↓ − τ0 and
r = τ1 − τ0 ≥ J(ν)↑ − τ0.

• Otherwise, the last case is when τ1 < J(ν)↑. Then ∃ν′ s.t. (ν|ν′) ∈
(D′ ∧ {τc < J↑}), which means that (ν|ν′) ∈ D′′ or also that ν ∈
D′′

|Par. Consequently, we can deduce by elimination from the formula

that ν ∈ Fφ
AU (C′′). By assuming that this result is correct, we get

that ∀q′1 ∈ �C′′�ν , ∀ρ′ ∈ π(q′1), ∃r1 ∈ J(ν) − τ ′1 s.t. ρ′∗(r1) |= ψ,
∀r′1 < r1 ρ

′∗(r′1) |= ϕ. This is true in particular for q1 ∈ �C′′�ν . Now,
for r = d0 + r1 we prove the result for ρ.

3. Finally, the last case is when ν verifies the third member of the disjunctive
formula. Then ∀q0 ∈ �C�ν , ∀ρ ∈ π(q0)

– If ρ = q0
d0−→ q0 + d0 with d0 = ∞. As firable (C) �= ∅, it means that ∀t ∈

firable (C) , Js(t)↓ = ∞. Then, let be t ∈ firable (C) and C′ = succ(C, t).
Since in that case the successors are necessary reachable ν ∈ D′

|Par, and

so we should have ν ∈ Fφ
AU (C′). Or this is impossible since τmax(C′) =

∞.

– Consequently, ∃t ∈ firable (C) s.t. ρ = q0
d0−→ q0 + d0

t→ q1 → . . . . It
means that the class �C′�ν is reachable, and thus that ν ∈ D′

|Par. Then,

by deduction we get that ν ∈ Fφ
AU (C′). As already done, by assuming

the result correct we show that there exists r1 such that for r = d0 + r1
we prove finally that ν ∈ Fφ(C).

We have here proven that in all cases the algorithm is correct. ��
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Proof of Theorem 22 (completeness). We consider now a solution of the theo-
retical problem: ν ∈ Fφ(C). We prove that this solution belongs to the set of
solutions computed, i.e. ν ∈ Fφ

AU (C).
We prove this result by induction on the maximum number n of transitions that
are fired to prove the formula φ. The induction hypothesis is
Hn: Let C = (M,D) ∈ Gc(N ) and ν ∈ D|Par. If ∀q0 ∈ �C�ν , q

0 |= �φ[J − τ0]�ν ,

i.e. ∀ρ ∈ π(q0) s.t. ρ = q0
d0−−→ q0 + d0

t0−−→ q1
d1−−→ q1 + d1

t1−−→ · · · ,
∃r ∈ J(ν)− τ0 s.t. ρ∗(r) |= ψ and ∀r′ < r, ρ∗(r′) |= ϕ, with r =

∑i−1
j=0 dj + δ and

δ < d0, and the number of fired transitions i is such that i ≤ n, then ν ∈ Fφ
AU (C).

H0 : we will prove the hypothesis for n = 0 Since we have ν ∈ Fφ(C) and no
transitions are fired it implies that M |= ψ. Then

– if M �|= ϕ we have inevitably r = 0, and since r ∈ J(ν) − τ0 it implies that
J(ν)↑ ≤ τ0 ≤ J(ν)↓. This is valid ∀q0 ∈ �C�ν . Particularly for q0 ∈ �C�ν such
that τ0 = τmin(C)(ν). Thus we prove that ν ∈ {τmin(C) ≥ J↑}. Similarly,
for q0 ∈ �C�ν such that τ0 = τmax(C)(ν) we prove ν ∈ {τmax(C) ≤ J↓}. As
result ν belongs to the first member of the disjunctive formula in Fφ

AU (C).

– otherwise M |= ϕ

• if firable (C) = ∅, then as previously for q0 ∈ �C�ν such that τ0 =
τmax(C)(ν), we have 0 ≤ r ≤ J(ν)↓ − τ0 ⇒ τ0 ≤ J(ν)↓. And so we
prove that ν ∈ {τmax(C) ≤ J(ν)↓}. This is enough to verify the second
member of the disjunctive formula.

• otherwise, ∀q0 ∈ �C�ν , ∀t ∈ firable (C) and ∀ρ ∈ π(q0) s.t. ρ = q0
d0=τ1−τ0−−−−−−→

q0 + d0
t→ q1 → . . . , ∃r < d0 that proves ψ. Let be C′ = succ(C, t) and

D′′ = D′ ∧ {τc < J↑}. ∀q1 ∈ �C′�ν , since J(ν) − τ0 ≤ r < τ1 − τ0 we
get that J(ν)↑ < τ1 and consequently that �D′′�ν = ∅, which means
that ν ∈ ¬D′′

|Par. In that case also ν verifies the second disjunction of

Fφ
AU (C).

Then, we have proven the induction hypothesis for n = 0. We now prove the
induction.

Hn ⇒ Hn+1: We assume the hypothesis of Hn+1 i.e. ∀q0 ∈ �C�ν , ∀ρ ∈ π(q0),
∃r ∈ J − τ0 s.t. ρ∗(r) |= ψ and ∀r′ < r, ρ∗(r′) |= ϕ, with r =

∑i−1
j=0 dj + δ and

i ≤ n+ 1.
Inevitably, 0 ≤ r ≤ J(ν)↓ − τ0 ⇒ τ0 ≤ J(ν)↓ and so for τ0 = τmax(C)(ν) we
prove that ν ∈ {τmax(C) ≤ J↓}. Then

– if M �|= ψ then i > 0, and so firable (C) �= ∅. ∀t ∈ firable (C), let be C′ =
succ(C, t).
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• if ν /∈ D′
|Par then ν ∈ ¬D′

|Par.

• else ∀q1 ∈ �C′�ν , ∀ρ′ ∈ π(q1), ∃ρ ∈ π(q0) s.t. ρ = q0
d0−→ q0 + d0

t→
q1 → . . . , and from the initial assumptions ∃r =

∑i−1
j=0 dj +δ that proves

ψ. At that point, let be r1 = r − d0, r1 =
∑i−1

j=1 dj + δ. r1 ≥ 0 since
r ≥ d0. Moreover r1 = r − d0 ≤ J(ν)↓ − τ0 − d0 = J(ν)↓ − τ1 and
r1 ≥ J(ν)↑ − τ0 − d0 = J(ν)↑ − τ1, which proves that r1 ∈ J(ν) − τ1.
Naturally, ρ′∗(r1) |= ψ and ∀r′1 < r1, ρ

′∗(r′1) |= ϕ. Finally, the number
of fired transitions is i− 1 ≤ n. We have checked all the hypothesis for
Hn and consequently by induction we get that ν ∈ Fφ

AU (C′).

In summary, for each firable transition, ν verifies the last member of the
disjunctive formula in Fφ

AU (C).

– otherwise M |= ψ. If firable (C) = ∅ we directly get that ν ∈ Fφ
AU (C). Else

∀t ∈ firable (C), let be C′ = succ(C, t), and D′′ = D′ ∧ {θc > −J↑} and
C′′ = (M ′, D′′).

• if ν /∈ D′′
|Par then ν ∈ ¬D′′

|Par.

• else ν ∈ D′′
|Par and then ∀q1 ∈ �C′′�ν , ∀ρ′ ∈ π(q1), ∃ρ ∈ π(q0) s.t.

ρ = q0
d0−→ q0 + d0

t→ q1 → . . . , and so ∃r =
∑i−1

j=0 dj + δ to prove ψ.
As previously, let be r1 = r − d0 =

∑i−1
j=1 dj + δ. Since r ∈ J(ν) − τ0,

r1 ∈ J(ν)−τ1 and moreover, since q1 ∈ �C′′�ν it means that J(ν)↑−τ1 >
0, and so that r1 > 0. Then as previously the hypothesis of Hn can be
verified and thus by induction we prove that ν ∈ Fφ

AU (C′′).

In that other case, ν verifies the second disjunctive formula of Fφ
AU (C).

As a result, in all cases ν ∈ Fφ
AU (C) which proves Hn ⇒ Hn+1, and then by

induction the completeness of the algorithm. ��

A.3 Algorithm LT

Theorem 23. Let N be a PITPN and φ = ϕ�Jr ψ a PTCTL formula, where
Jr ∈ J (Par) such that Jr = [0, b] with b ∈ Q+ ∪ Par, or Jr = [0,∞[. Given
an extended parametric state class C = (M,D) of Gc(NLT ), the correctness and
completeness of the semi-algorithm LT are expressed by:

Fφ(C) = Fφ
LT (C)

Proof of Theorem 23 (correctness). Correction: We consider a valuation that
belongs to the computed logical formula: ν ∈ Fφ

LT (C). We prove that this valu-
ation is correct, which means that: ν ∈ Fφ(C).
∀q0 ∈ �C�ν , ∀ρ ∈ π(q0)
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1. IfM(PLT ) = 0. Then if firable (C) = ∅ or if ρ = q0
d0−→ q0+d0 with d0 = ∞ we

directly prove the result since from this point we always have M(PLT ) = 0.
Else, ∃t ∈ firable (C) s.t. ρ = q0

d0−→ q0 + d0
t→ q1 → . . . . In that case,

∀0 ≤ r2 ≤ d0 we prove the result since M(PLT ) = 0. For the others, we
have ν ∈ Fφ

LT (C′) and besides since M(PLT ) = 0 the time has been reset
in the class C′ (and so the two definitions of Fφ(C′) are equivalent). So we
can induce that ∀ρ′ ∈ π(q1), ∀r′2 ≥ 0, ρ′∗(r′2) |= M(PLT ) = 1 ⇒ ∃r′3 ≥
r′2, s.t. r′3 − r′2 ≤ Jr(ν)↓ and ρ′∗(r′3) |= ψ. Thus, now ∀r2 > d0 we can take
r′2 = r2 − d0 and prove the result since then ρ∗(r2) = ρ′∗(r′2).

2. Otherwise M(PLT ) = 1. ρ = q0
d0−→ q0 + d0 → . . .

– If M |= ψ ∧ τmax(C)(ν) ≤ Jr(ν)↓ then we consider r1 = 0 and we have
0 ≤ Jr(ν)↓ − τmax(C)(ν) ≤ Jr(ν)↓ − τ0 and naturally ρ∗(r1) |= ψ. Next,
either firable (C) = ∅ and so d0 = ∞. In that case ∀r2 ≥ r1 we consider
r3 = r2 and we prove the result for the last states. Or ν ∈ Fφ

LT (C′) and as
previously we can induce that the result is also true ∀r2 > d0 (in that case
we only consider the second definition becauseM |= ψ ⇒M ′(PLT ) = 0).

– Otherwise, M �|= ψ and thus firable (C) �= ∅. The case ρ = q0
d0−→ q0 + d0

with d0 = ∞ can be eliminated similarly to the algorithm AU since then
for all successors we still have M ′(PLT ) = 1 and with the restriction
τmax(C′) �= ∞ we get a contradiction.

– Finally, M �|= ψ and ∃t ∈ firable (C) s.t. ρ = q0
d0=τ1−τ0−−−−−−→ q0 + d0

t→
q1 → . . . . We have ν ∈ Fφ

LT (C′) and q1 ∈ �C′�ν and since ψ has not
been found in C we have M ′(PLT ) = 1.
By assuming the result of Fφ

LT (C′) correct, ∀ρ′ ∈ π(q1)

• we first get that ∃r′1 ≥ 0 s.t. r′1 ≤ Jr(ν) − τ1 and ρ′∗(r′1) |= ψ. Then
for r1 = r′1+d0 we have r1 ≤ Jr(ν)−τ1+τ1−τ0 and so r1 ≤ Jr(ν)−τ0
and ρ∗(r1) = ρ′∗(r′1). So we have found psi.

• for the other states i.e. ∀r2 ≥ r1, we induce that ∀r′2 ≥ r′1, ρ
′∗(r′2) |=

M(PLT ) = 1 ⇒ ∃r′3 ≥ r′2, s.t. r′3 − r′2 ≤ Jr(ν)↓ and ρ∗(r′3) |= ψ.
We consider now r′2 = r2 − d0. We have r′2 ≥ r′1 and thus ∃r′3. So we
now consider r3 = r′3 + d0 and we finally prove the result.

We have proven that in both cases the algorithm is correct. ��

Proof of Theorem 23 (completeness). We consider now a solution of the theo-
retical problem: ν ∈ Fφ(C). We prove that this solution belongs to the set of
solutions computed, i.e. ν ∈ Fφ

LT (C).
Let consider the two following cases:
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1. If M(PLT ) = 0 then ν ∈ Fφ
LT (C) implies that ∀q0 ∈ �C�ν , ∀ρ ∈ π(q0),

∀r2 ≥ 0 we prove the formula for all states.
If firable (C) = ∅ the result is directly proven. Else, ∀t ∈ firable (C), let
be C′ = succ(C, t). Either D′

|Par = ∅ or ∀q1 ∈ �C′�ν , there exists ρ =

q0
d0−→ q0 + d0

t→ q1 → . . . . Now ∀ρ′ ∈ π(q1) and ∀r′2 ≥ 0, we get that
ρ′∗(r′2) = ρ∗(r2). Thus we have verified the second definition for Fφ(C′)
which is the only one when M(PLT ) = 0 and consequently we can induce
that ν ∈ Fφ

LT (C′). So we prove that ν ∈ Fφ
LT (C).

2. Otherwise M(PLT ) = 1. Then ∃r1 ≥ 0 such that we have ρ∗(r1) |= ψ

and r1 ≤ Jr(ν)↓ − τ0. This is valid for all q0 in particular for q0 s.t. τ0 =
τmax(C)(ν), which proves that ν ∈ {τmax(C) ≤ J↓

r }.
Then, if firable (C) = ∅ necessarily M |= ψ (since then ρ∗(r1) ∈ C), which
proves ν ∈ Fφ

LT (C).
Otherwise, ∀t ∈ firable (C), let be C′ = succ(C, t). Either D′

|Par = ∅ or

∀q1 ∈ �C′�ν , there exists ρ = q0
d0−→ q0 + d0

t→ q1 → . . . . Now ∀ρ′ ∈ π(q1)

– if r1 ≤ d0, then M |= ψ and as we did for M(PLT ) = 0 we can induce
that ν ∈ Fφ

LT (C′) by verifying the second definition.

– otherwise r1 > d0. So ∃r′1 = r1−d0 such that r′1 ≤ Jr(ν)−τ0−(τ1−τ0) ≤
Jr(ν)−τ1 and naturally ρ′∗(r′1) |= ψ. Next, from the definition of Fφ(C),
∀r′2 ≥ r′1 we can take r2 = r′2 + d0 such that ρ∗(r2) = ρ′∗(r′2). Again this
proves ν ∈ Fφ(C′) and by induction that ν ∈ Fφ

LT (C′).

So we prove that ν ∈ Fφ
LT (C).

This two cases prove the completeness of the semi-algorithm. ��
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