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Abstract : We study two limit cases λ →∞ and λ → 0 in Born-Infeld equations.
Here the parameter λ > 0 is interpreted as the maximal electric field in the elec-
tromagnetic theory and the case λ = 0 corresponds to the string theory. Formal
limits are governed by the classical Maxwell equations and pressureless magnetohy-
drodynamics system, respectively. For studying the limit λ → ∞, a new scaling is
introduced. We give the relations between these limits and Brenier high and low
field limits. Finally, using compensated compactness arguments, the limits are rig-
orously justified for global entropy solutions in L∞ in one space dimension, based
on derived uniform estimates and techniques for linear Lagrangian systems.
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1. Introduction

The Born-Infeld system is a nonlinear version of classical Maxwell equations. It was
introduced by Born and Infeld in 1930’s to describe physical phenomena of electromag-
netism [4]. Recently, the Born-Infeld system has attracted considerable attention because
of its new applications in the string theory and high energy physics. See Boillat [1],
Brenier [5, 6] and Gibbons [12].

In the electromagnetic theory, E and B stand for the electric and magnetic fields in
R3. The Born-Infeld system is defined through the Born-Infeld Lagrangian Lλ and the
Faraday law. The expression of Lλ is (see [6]) :

(1.1) Lλ(B,E) = −
√
λ2 + |B|2 − |E|2 − (B · E)2

λ2
,

where “·” stands for the inner product and | · | the Euclidean norm. The single parameter
λ > 0 can be interpreted as the maximal electric field.

Introduce the electric induction D =
∂Lλ

∂E
, the Poynting vector P and the Born-Infeld

energy density h [4, 5, 13] :

(1.2) P = D ×B, h =
√
λ2 + |B|2 + λ2|D|2 + |D ×B|2.

1
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Then

(1.3) E =
∂h(D,B)

∂D
=
λ2D +B × P

h

and the Born-Infeld equations, depending on the parameter λ > 0, read :

(1.4) ∂tD +∇×
(−B +D × P

h

)
= 0,

(1.5) ∂tB +∇×
(λ2D +B × P

h

)
= 0,

The differential constraints are :

(1.6) ∇ ·D = ∇ ·B = 0,

which are compatible with equations (1.4)-(1.5). Furthermore, h and P satisfy the addi-
tional conservation laws :

(1.7) ∂th+∇ · P = 0,

(1.8) ∂tP +∇ ·
(P ⊗ P −B ⊗B − λ2D ⊗D

h

)
−∇

(λ2

h

)
= 0.

System (1.4)-(1.6) of 6 equations is abbreviated to λ-BI system. The case λ = 1 has been
intensively investigated. In [5], Brenier enlarged the 1-BI system to an augmented Born-
Infeld system of 10 equations by considering h, D, B and P as independent variables. He
found many interesting properties of this last system, like fully linear degeneracy, Galilian
invariance and existence of a strictly convex entropy which implies the hyperbolicity of
the system in the sense of Friedrichs. Obviously, the augmentation of the λ-BI system can
be carried out for any λ > 0 in a same way. The resulting system (1.4)-(1.8) is referred
to λ-ABI system. It is a hyperbolic system which admits a strictly convex entropy

(1.9) Sλ(D,B, P, h) =
λ2 + |B|2 + λ2|D|2 + |P |2

2h
, h > 0.

Note that a different enlargement of the Born-Infeld system was proposed by Serre in [20],
in which only P is added as independent variable. Some extensions of the works [5, 20]
to more general equations derived from the variational principle were given by Boillat [2].

For smooth solutions to the 1-BI and 1-ABI systems, the reader is referred to Brenier [5]
and Serre [20] for local existence by an argument for first order symmetrizable hyperbolic
systems, to Chae-Huh [10] for global existence with small initial data, and also to [7] for
the solutions beyond singularities. Entropy solutions in one space dimension are studied
in [16, 17] by the change of variables of Euler-Lagrange type (see [22]). For general theory
of hyperbolic systems of conservation laws, we refer to [19, 11, 9, 14].

Following Brenier, (1.2) is called BI-manifold. It was shown that the BI-manifold of
the 1-ABI system is time invariant for smooth solutions (see [20, 2, 8]) and also for
entropy solutions in one space dimension (see [16, 17]). The invariance of the BI-manifold
implies the equivalence of the corresponding solutions between the 1-BI system and 1-
ABI system. As consequences, it yields the existence of local smooth solutions and global
entropy solutions in one space dimension of the 1-BI system. Similar results hold for
the λ-BI and λ-ABI systems for all λ > 0. Thus, the enlargement of the λ-BI system
provides a useful technique to study its Cauchy problem and asymptotic analysis. Indeed,
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it suffices to study the λ-ABI system and then take the initial data in the BI-manifold to
get the corresponding results for the λ-BI system.

In this work, we are concerned with two limits λ→∞ and λ→ 0 in the λ-BI system.
In classical Born-Infeld theory, λ is a large parameter which controls the electric field,
namely, |E| ≤ λ. However, in Tachyonic condensate equations of high energy physics and
the classical string theory, the corresponding value of λ is zero (see [6, 12]). Then it is
important to consider both the limits λ → ∞ and λ → 0 in the λ-BI system to recover
the link with the above physical situations.

This paper is organized as follows. In the next section, we first show that the Born-Infeld
Lagrangian Lλ is well defined for all λ > 0. Then we perform formal asymptotic analysis
in the λ-ABI system to recover the limit equations. They are governed by the classical
Maxwell equations as λ → ∞ and the pressureless magnetohydrodynamics system as
λ→ 0. We show that these equations correspond to the limit cases of the Lagrangian and
a new scaling is necessary to make the limit λ→∞ rigorously. Furthermore, we give the
relations between these limits and Brenier high and low field limits in the 1-ABI system.
From section 3, we consider the problem in one space dimension. We show the hyperbolic
structure of the λ-ABI system for all λ ≥ 0, which yields the existence of global entropy
solutions of its Cauchy problem in L∞. These results are extensions of the corresponding
results for the 1-ABI system. In particular, we give an explicit expression of the entropy
solution and its dependence on λ. This yields uniform estimates for the sequences of the
entropy solutions. The rigorous justification of the limits λ→∞ and λ→ 0 in the λ-ABI
system is completed in section 4 and section 5 by using the compensated compactness
arguments and techniques for linear Lagrangian systems. Finally, we remark that both
convergence results hold globally in time because the limit systems are linearly hyperbolic.

2. Preliminary

2.1. Remarks on the definition of Lλ. In the literature there exist another expressions
for the Born-Infeld Lagrangian and energy density. They are given by (see [2]) :

(2.1) Lk(B̃, Ẽ) = −
√
k2 + k|B̃|2 − k|Ẽ|2 − (B̃ · Ẽ)2,

(2.2) h(D̃, B̃) =

√
k2 + k(|B̃|2 + |D̃|2) + (D̃ × B̃)2,

with k ≥ 0 and

Ẽ =
∂h(D̃, B̃)

∂D̃
=
kD̃ + B̃ × P̃

h
, P̃ = D̃ × B̃.

One may check that the relations between (1.1)-(1.2) and (2.1)-(2.2) are

k = λ, B̃ =
B√
k
, D̃ =

√
kD.

Moreover, both expressions Lλ and Lk are well defined for sufficiently large λ and k, for

instance, for |E| ≤ λ and |Ẽ| ≤ k, respectively. It is clear that Lk is not well defined

when k = 0 unless B̃ · Ẽ = 0. However, in the limit case λ → 0, Lλ corresponds to
the Tachyonic condensate equations of high energy physics and the classical string theory
(see [6]). Therefore, we should show that the Lagrangian Lλ(B,E) given by (1.1) is well
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defined for all λ > 0. This fact is the advantage of the expression Lλ compared to that of
Lk. A more precise result can be stated as follows.

Proposition 2.1. For all h > 0 and λ > 0, we have

(2.3) Lλ(B,E) = −1

h

(
λ2 + |B|2

)
.

Proof. Set

∆λ(B,E) = λ2 + |B|2 − |E|2 − (B · E)2

λ2
,

with

E =
λ2D +B × P

h
, P = D ×B, h =

√
λ2 + |B|2 + λ2|D|2 + |D ×B|2.

Since

B · E =
λ2(B ·D)

h
+
B · (B × P )

h
=
λ2(B ·D)

h

and

|E|2 =
|λ2D +B × P |2

h2
=

1

h2

[
λ4|D|2 + |B × P |2 + 2λ2D · (B × P )

]
,

we get

∆λ(B,E) =
1

h2

[
(λ2 + |B|2)(λ2 + |B|2 + λ2|D|2 + |D ×B|2)

−(λ4|D|2 + |B × P |2 + 2λ2D · (B × P ))− λ2(D ·B)2
]

=
1

h2

[
(λ2 + |B|2)2 + λ2(|D ×B|2 + |D|2|B|2 − (D ·B)2)

+|B|2|D ×B|2 − |B × P |2 − 2λ2D · (B × P )
]
.

Using the relation

|ξ|2|η|2 = |ξ · η|2 + (ξ × η)2, ∀ ξ, η ∈ R3,

we have

∆λ(B,E) =
1

h2

[
(λ2 + |B|2)2 + 2λ2|D ×B|2 + |B · P |2 − 2λ2D · (B × P )

]
.

But,

B · P = B · (D ×B) = 0, D · (B × P ) = (D ×B) · P = |D ×B|2.

Then

∆λ(B,E) =
1

h2

(
λ2 + |B|2

)2 ≥ 0, ∀ λ > 0.

This shows (2.3). �
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2.2. Formal asymptotic analysis. As shown in the Introduction, the value of λ is large
in the electromagnetic theory and zero in the classical string theory. Then, it is important
to study the limit cases λ→ 0 and λ→ +∞ in the λ-ABI system. The detailed derivation
of the formal asymptotic limits can be done as follows.

First, it is clear that the formal limit λ→ 0 in the λ-ABI system (1.4)-(1.8) is given by

(2.4)



∂tB +∇×
(B × P

h

)
= 0,

∂th+∇ · P = 0,

∂tP +∇ ·
(P ⊗ P −B ⊗B

h

)
= 0,

∂tD +∇×
(−B +D × P

h

)
= 0,

∇ ·B = ∇ ·D = 0.

In the limit of the λ-BI system (1.4)-(1.6), according to the definition (1.2)-(1.3), (h, P,E)
should be given by

(2.5) P = D ×B, h =
√
|B|2 + |D ×B|2, E =

B × P

h
.

Then, from (2.3), it is easy to check that the Born-Infeld Lagrangian satisfies

lim
λ→0

Lλ(B,E) = − |B|2√
|B|2 + |D ×B|2

.

A straightforward computation using (2.5) shows that

lim
λ→0

Lλ(B,E) = −
√
|B|2 − |E|2,

which was obtained in [6]. Here by (2.5), the conditions |B|2 − |E|2 ≥ 0 and B · E = 0
are always satisfied. Note that the first three equations in (2.4) for (B, h, P ), independent
of the last one for D, are called pressureless magnetohydrodynamics (PMHD) system [5].
As we will see in section 5, in one space dimension the PMHD system is hyperbolic except
some critical cases. This is different from the pressureless gas dynamics.

Now consider the limit λ→ +∞. To this end, let α ∈ [0, 1) be a constant and introduce
the scaling

(2.6) B = λαBλ, D = λα−1Dλ.

Then from (1.2), we have

P = D ×B = λ2α−1Dλ ×Bλ,

(2.7) h = λ
√

1 + ε(|Bλ|2 + |Dλ|2) + ε2|Dλ ×Bλ|2 ,

where ε = λ2(α−1) → 0. If we choose the scaling

(2.8) h = λhλ, P = λ2α−1Pλ,
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the λ-ABI system (1.4)-(1.8) becomes :

(2.9)



∂tDλ +∇×
(−Bλ + εDλ × Pλ

hλ

)
= 0,

∂tBλ +∇×
(Dλ + εBλ × Pλ

hλ

)
= 0,

∂thλ + ε∇ · Pλ = 0,

∂tPλ +∇ ·
(εPλ ⊗ Pλ −Bλ ⊗Bλ −Dλ ⊗Dλ

hλ

)
=

1

ε
∇

( 1

hλ

)
,

∇ ·Dλ = ∇ ·Bλ = 0.

As ε → 0, i.e. λ → ∞, from (2.7)-(2.8), we should have formally hλ → 1. Then from
(2.9) the formal limit (B,D) = limλ→∞(Bλ, Dλ) satisfies the linear Maxwell equations :

(2.10)


∂tB +∇×D = 0,

∂tD −∇×B = 0,

∇ ·B = ∇ ·D = 0.

For the rest of the limit equations, we set h1λ = (hλ − 1)/ε. Since

1

hλ

=
1

1 + εh1λ

= 1− εh1λ +O(ε2),

then
1

ε
∇

( 1

hλ

)
= −∇h1λ +O(ε).

From hλ → 1 and Pλ = O(1), we have

∇ ·
(εPλ ⊗ Pλ

hλ

)
−→ 0, as λ→ +∞.

Thus, using the equations for hλ and Pλ in (2.9), the formal limit (h1, P ) = limλ→∞(h1λ, Pλ)
satisfies the linear hyperbolic system :

(2.11)

{
∂th1 +∇ · P = 0,

∂tP +∇h1 = ∇ · (B ⊗B +D ⊗D),

when D and B are solved by (2.10).
Concerning the convergence of the Born-Infeld Lagrangian, we use (1.3), (2.6) and (2.8)

to obtain

E =
λ2λα−1Dλ + λαλ2α−1Bλ × Pλ

λhλ

.

It follows that
(B · E)2

λ2
= λ2(2α−1)(Bλ ·Dλ)

2.

Writing

E = λα(Dλ +O(ε))
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and noting that 2(2α− 1) < 2α, from (1.1) we obtain

Lλ(B,E) + λ = λ−
√
λ2 + |B|2 − |E|2 − λ−2(B · E)2

=
|E|2 − |B|2 − λ−2(B · E)2

λ+ λ

√
1 + λ−2

(
|B|2 − |E|2

)
− λ−4(B · E)2

=
λ2α−1

(
|Dλ|2 − |Bλ|2 +O(ε)

)
1 +

√
1 + ε

(
|Bλ|2 − |Dλ|2

)
+O(ε2)

= λ2α−1
(1

2
(|Dλ|2 − |Bλ|2) +O(ε)

)
.

Thus, as λ→ +∞, we have

lim
λ→∞

λ1−2α(Lλ(B,E) + λ) =
1

2

(
|D|2 − |B|2

)
.

This shows that the classical Maxwell theory corresponds to the limit of the Lagrangian
λ1−2α(Lλ(B,E) + λ). In particular, it corresponds to the limit of Lλ(B,E) + λ when
α = 1/2 and to the limit of λ(Lλ(B,E) + λ) when α = 0. The latter case was given by
Brenier (see [6]).

2.3. Relations with Brenier high and low field limits. In [5], Brenier introduced
the high and low field limits in the 1-ABI system. The low field limit is defined by the
scaling

(2.12) B = τBτ , D = τDτ , P = τ 2Pτ , h = hτ = 1 +O(τ 2),

where (B,D, h, P ) is a solution of the 1-ABI system and τ > 0 is an artificial small
parameter. Put the expression (2.12) into the 1-ABI system and let τ → 0, he found
that the formal limit of (Bτ , Dτ ) satisfies the linear Maxwell equations (2.10). It is easy
to check that the low field limit corresponds to the limit λ → ∞ in the λ-ABI system
with the choice τ = λα−1. Indeed, with the above choice and ε = λ2(α−1), (Bτ , Dτ , hτ , Pτ )
defined by (2.12) satisfies exactly the system (2.9).

Similarly, the high field limit is defined by the following scaling in the 1-ABI system :

(2.13) B = τBτ , D = Dτ , P = τPτ , h = τhτ ,

where (B,D, h, P ) is a solution of the 1-ABI system and τ > 0 is an artificial large
parameter. Put the expression (2.13) into the 1-ABI system and let τ → ∞, then the
formal limit of (Bτ , hτ , Pτ ) satisfies the PMHD system. We may check easily that this high
field limit corresponds to the limit λ→ 0 in the λ-ABI system with the choice τ = λ−1.

The high and low field limits have been rigorously justified for smooth solutions, in
a recent paper of Brenier and Yong [8], in which the physical regimes of these limits
are explained. The convergence holds essentially locally in time for the high field limit.
Whereas it is global in time for the low field limit because its limit equations are linear
hyperbolic and admit global smooth solutions. Using the relations between the high and
low field limits and those of λ → ∞ and λ → 0 discussed above, we may apply their
results to yield the convergence of the limits λ → ∞ and λ → 0 for smooth solutions
in the λ-ABI system. On the other hand, the results of this paper justify the high and
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low field limits for global entropy solutions in one space dimension. For simplify the
presentation of the paper, we will not write these results in details.

3. Born-Infeld systems in one space dimension

3.1. Hyperbolic structure of the λ-ABI system. From now on we consider the Born-
Infeld systems in one space dimension. As in [5], we denote x = x1 and consider the
problems independent of x2 and x3. Then B1 and D1 are constants from (1.4)-(1.6). It
follows that the λ-BI system (1.4)-(1.6) and λ-ABI system (1.4)-(1.8) are reduced to

(3.1)



∂tD2 + ∂x

(B3 +D2P1 −D1P2

h

)
= 0,

∂tD3 + ∂x

(−B2 +D3P1 −D1P3

h

)
= 0,

∂tB2 + ∂x

(−λ2D3 +B2P1 −B1P2

h

)
= 0,

∂tB3 + ∂x

(λ2D2 +B3P1 −B1P3

h

)
= 0,

P = D ×B, h =
√
λ2 + |B|2 + λ2|D|2 + |D ×B|2,

(3.2)



∂th+ ∂xP1 = 0,

∂tP1 + ∂x

(P 2
1 − (λ2 +B2

1 + λ2D2
1)

h

)
= 0,

∂tD2 + ∂x

(B3 +D2P1 −D1P2

h

)
= 0,

∂tD3 + ∂x

(−B2 +D3P1 −D1P3

h

)
= 0,

∂tB2 + ∂x

(−λ2D3 +B2P1 −B1P2

h

)
= 0,

∂tB3 + ∂x

(λ2D2 +B3P1 −B1P3

h

)
= 0,

∂tP2 + ∂x

(P1P2 − λ2D1D2 −B1B2

h

)
= 0,

∂tP3 + ∂x

(P1P3 − λ2D1D3 −B1B3

h

)
= 0,

respectively. Here we have used the notations

B = (B1, B2, B3)
t, D = (D1, D2, D3)

t, P = (P1, P2, P3)
t.

Now let us rewrite the λ-ABI system (3.2) by introducing :

P1 = hv2, D2 = hv3, D3 = hv4, B2 = hv5, B3 = hv6, P2 = hv7, P3 = hv8.
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Then the λ-ABI system (3.2) becomes :

(3.3)



∂th+ ∂x(hv2) = 0,

∂t(hv2) + ∂x(hv
2
2 − a2h−1) = 0,

∂t(hv3) + ∂x(hv2v3 −D1v7 + v6) = 0,

∂t(hv4) + ∂x(hv2v4 −D1v8 − v5) = 0,

∂t(hv5) + ∂x(hv2v5 −B1v7 − λ2v4) = 0,

∂t(hv6) + ∂x(hv2v6 −B1v8 + λ2v3) = 0,

∂t(hv7) + ∂x(hv2v7 − λ2D1v3 −B1v5) = 0,

∂t(hv8) + ∂x(hv2v8 − λ2D1v4 −B1v6) = 0,

where the constant a, depending on λ, is defined by

a =
√
λ2 +B2

1 + λ2D2
1.

Remark that the first two equations in (3.3) form the system for Chaplygin gas dynamics
on which some results are obtained in [18, 15, 5].

Suppose h, v2 ∈ L∞(R+ × R) with h > 0. Using the first equations in (3.3), we may
introduce a change of variables (t, x) 7−→ (s, y) from R+×R to R+×R, with (see [22, 17])

s = t, dy = hdx− hv2dt.

For simplicity, denote by v(s, y) = v(t, x). Then in Lagrangian coordinates (s, y), the
system (3.3) is written as :

(3.4) ∂sv + A∂yv = 0, t > 0, y ∈ R,

where v = (h−1, v2, . . . , v8)
t and

A =



0 −1 0 0 0 0 0 0

−a2 0 0 0 0 0 0 0

0 0 0 0 0 1 −D1 0

0 0 0 0 −1 0 0 −D1

0 0 0 −λ2 0 0 −B1 0

0 0 λ2 0 0 0 0 −B1

0 0 −λ2D1 0 −B1 0 0 0

0 0 0 −λ2D1 0 −B1 0 0


.

Recall that a linear Lagrangian system is a linear system in Lagrangian coordinates
via a transformation of Euler-Lagrangian type [17]. Since A is a constant matrix, the
λ-ABI system (3.3) is a linear Lagrangian system and the results in [17] can be applied.
A straightforward computation gives the eigenvalues of A :

(3.5) µ̃1 = µ̃2 = µ̃3 = −a, µ̃4 = µ̃5 = 0, µ̃6 = µ̃7 = µ̃8 = a.

Moreover, set

β = B2
1 + λ2D2

1, φ± = aD1 ±B1, ψ± = aB1 ± λ2D1.
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For β 6= 0 (then a 6= 0) we choose the left eigenvectors liλ and right eigenvectors rjλ of A
as follows :

(3.6)



l1λ = (0, 0, λ2φ−, λ
2φ+, ψ+, ψ−, β, β),

l2λ = (0, 0, λ2φ+,−λ2φ−, ψ−,−ψ+, β,−β),

l3λ = (a, 1, 0, 0, 0, 0, 0, 0),

l4λ =
1

2a2
(0, 0, B1,−B1,−D1, D1, 1, 1),

l5λ =
1

2a2
(0, 0,−B1,−B1, D1, D1, 1,−1),

l6λ = (0, 0, λ2φ+, λ
2φ−, ψ−, ψ+,−β,−β),

l7λ = (0, 0, λ2φ−,−λ2φ+, ψ+,−ψ−,−β, β),

l8λ = (a,−1, 0, 0, 0, 0, 0, 0),

(3.7)



r1λ =
1

4a2β
(0, 0, φ−, φ+, ψ+, ψ−, β, β)t,

r2λ =
1

4a2β
(0, 0, φ+,−φ−, ψ−,−ψ+, β,−β)t,

r3λ =
1

2a
(1, a, 0, 0, 0, 0, 0, 0)t,

r4λ = (0, 0, B1,−B1,−λ2D1, λ
2D1, λ

2, λ2)t,

r5λ = (0, 0,−B1,−B1, λ
2D1, λ

2D1, λ
2,−λ2)t,

r6λ =
1

4a2β
(0, 0, φ+, φ−, ψ−, ψ+,−β,−β)t,

r7λ =
1

4a2β
(0, 0, φ−,−φ+, ψ+,−ψ−,−β, β)t,

r8λ =
1

2a
(1,−a, 0, 0, 0, 0, 0, 0)t.

We see that liλ and rjλ are defined for all λ ≥ 0 and satisfy liλrjλ = δij for all 1 ≤ i, j ≤ 8.
Hence, the matrix A is diagonalizable and the linear system (3.4) is hyperbolic. When
β = 0 and a 6= 0, i.e., B1 = D1 = 0 and λ 6= 0, we may write A = diag(A1, A2, 0), with

A1 =

(
0 −1

−a2 0

)
, A2 =


0 0 0 1

0 0 −1 0

0 −λ2 0 0

λ2 0 0 0

 .

It is easy to check that A1 and A2 are diagonalizable. So is A and then the λ-ABI system
is hyperbolic for all a 6= 0 and all λ ≥ 0.

The above computations are elementary but the expressions of liλ and rjλ are important
in the study of the limit λ→ 0. That is why we keep the subscript λ in their expressions
to see uniform estimates with respect to λ.

Now applying the results in [17], we have

Proposition 3.1. Let B1, D1 ∈ R and h > 0. Assume a 6= 0. Then the λ-ABI system
(3.3) is a linear Lagrangian one and hyperbolic for all λ ≥ 0. It admits a complete set
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of classical Riemann invariants wi = liλv (1 ≤ i ≤ 8). The eigenvalues µi = µi(v)
(1 ≤ i ≤ 8) of the system (3.3) are :

µ1 = µ2 = µ3 = v2 − ah−1, µ4 = µ5 = v2, µ6 = µ7 = µ8 = v2 + ah−1.

Moreover, all entropy-entropy flux pairs (E,F ) of the system are expressed as

(3.8) (E(v), F (v)) = h
8∑

i=1

(1, µi(v))gi(liλv),

with arbitrary continuous functions gi (1 ≤ i ≤ 8).

Remark 3.1. When a = 0, the system for Chaplygin gas dynamics becomes the pres-
sureless gas dynamics which is not hyperbolic. This means that a 6= 0 is also a necessary
condition to keep the hyperbolicity of the λ-ABI system.

3.2. Entropy solutions of the Born-Infeld systems. Consider the Cauchy problem
to the λ-ABI system (3.3) associated to the initial conditions :

(3.9) t = 0 : h = h0(x), vi = v0
i (x) (2 ≤ i ≤ 8), x ∈ R.

Following [15], in order to guarantee the strict hyperbolicity of the system for Chaplygin
gas for all time t ≥ 0 we need to assume that

(3.10) h0, v0
i ∈ L∞(R) (2 ≤ i ≤ 8), inf

x∈R

(
v0

2(x) +
a

h0(x)

)
> sup

x∈R

(
v0

2(x)−
a

h0(x)

)
,

which imply that h(t, x) > 0 for almost all (t, x) ∈ R+ × R. Note that conditions (3.10)
appeared first time in [18] in the study of BV weak solutions and their oscillations.

The Cauchy problems to the 1-ABI system and 1-BI system have been studied in [16, 17]
through an Euler-Lagrange change of variables. It was shown that the Cauchy problems
to these two systems admit each a unique entropy solution with an explicit expression.
Since the λ-ABI system is hyperbolic linear Lagrange system, the mentioned results can
be extended easily to the λ-ABI and λ-BI systems.

Recall that by entropy solution of the λ-ABI system we mean weak solution satisfying
the entropy equality ∂tE(v)+∂xF (v) = 0 for all entropy-entropy flux pairs given in (3.8).
Now let us define

(3.11) Y 0(x) =

∫ x

0

h0(ξ)dξ,

(3.12) X(t, y) =
1

2

∫ y+t

0

(
v0

2 +
a

h0

)
(X0(ξ))d ξ − 1

2

∫ y−t

0

(
v0

2 −
a

h0

)
(X0(ξ))d ξ.

It was shown that Y 0 and y 7−→ X(t, y) are Lipschitzian and bijective for all t ≥ 0. We
denote their inverse functions by

(3.13) X0 = (Y 0)−1, Y (t, ·) = X−1(t, ·).

The results of the existence of entropy solutions to the λ-ABI system can be stated as
follows. Their proofs will be omitted since they are similar to the cases for 1-ABI system
[17].
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Proposition 3.2. Let the assumption (3.10) hold and a 6= 0. Then the Cauchy problem
(3.3) and (3.9) for the λ-ABI system admits a unique entropy solution h, v ∈ L∞(R+×R).
The solution satisfies the maximum principle :

(3.14) inf
ξ∈R

(
v0

2(ξ) +
a

h0(ξ)

)
≤ v2(t, x) +

a

h(t, x)
≤ sup

ξ∈R

(
v0

2(ξ) +
a

h0(ξ)

)
,

(3.15) inf
ξ∈R

(
v0

2(ξ)−
a

h0(ξ)

)
≤ v2(t, x)−

a

h(t, x)
≤ sup

ξ∈R

(
v0

2(ξ)−
a

h0(ξ)

)
,

and has an explicit expression :

(3.16) v(t, x) =
8∑

i=1

(liλv
0)(X0(Y (t, x)− µ̃it))riλ,

where v0 = ((h0)−1, v0
2, · · · , v0

8)
t, µ̃i, liλ and riλ are defined in (3.5)-(3.7), respectively.

Remark that the estimates (3.14)-(3.15) depend only on the system of Chaplygin gas
dynamics and independent of the rest equations in the λ-ABI system. They are conse-
quences of the fact that the system of Chaplygin gas dynamics is fully linearly degenerate.
Applying Proposition 3.2 together with the time invariance of the BI-manifold proved in
[17] yields a result of the existence and uniqueness of entropy solutions to the λ-BI system.

Proposition 3.3. Let (B0
2 , B

0
3 , D

0
2, D

0
3) ∈ L∞(R) and (h0, P 0) be defined by the BI-

manifold (1.2) satisfying the second condition in (3.10). Assume a 6= 0. Then there
exists a unique entropy solution (B2, B3, D2, D3) ∈ L∞(R+ ×R) to the λ-BI system (3.1)
with the initial data (B0

2 , B
0
3 , D

0
2, D

0
3).

4. Limit toward linear Maxwell equations in one dimension

4.1. Uniform estimates of the entropy solutions. In this section, we study the as-
ymptotic limit λ → ∞ in the λ-ABI system. We want to prove the convergence of the
system (2.9) to the system (2.10)-(2.11) in one space dimension. First, in one space
dimension the system (2.9) reads :

(4.1)



∂thλ + ∂x(εP1λ) = 0,

∂t(εP1λ) + ∂x

(ε2P 2
1λ − ρ2

λ

hλ

)
= 0,

∂tD2λ + ∂x

(B3λ + ε(D2λP1λ −D1P2λ)

hλ

)
= 0,

∂tD3λ + ∂x

(−B2λ + ε(D3λP1λ −D1P3λ)

hλ

)
= 0,

∂tB2λ + ∂x

(−D3λ + ε(B2λP1λ −B1P2λ)

hλ

)
= 0,

∂tB3λ + ∂x

(D2λ + ε(B3λP1λ −B1P3λ)

hλ

)
= 0,

∂tP2λ + ∂x

(εP1λP2λ −D1D2λ −B1B2λ

hλ

)
= 0,

∂tP3λ + ∂x

(εP1λP3λ −D1D3λ −B1B3λ

hλ

)
= 0,
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where
ε = λ2(α−1), α ∈ [0, 1), ρλ =

√
1 + εσ, σ = B2

1 +D2
1,

with B1, D1 being two real constants. A more general case for which (B1λ)λ and (D1λ)λ

are bounded sequences in R (then admitting convergent subsequences) can be dealt with
in a similar way.

Let us recall the definition :

(4.2)

{
P1λ = hλv2λ, D2λ = hλv3λ, D3λ = hλv4λ, B2λ = hλv5λ,

B3λ = hλv6λ, P2λ = hλv7λ, P3 = hλv8λ.

According to the scaling (2.7)-(2.8), we associate to (4.1) the following initial conditions :

(4.3) t = 0 : hλ = h0
λ(x)

def
= 1 + εh0

1λ(x), viλ = v0
iλ(x) (2 ≤ i ≤ 8), x ∈ R.

Observe that the first two equations in (4.1) are decoupled with the rest. Then uni-
form estimates for the variables (hλ, P1λ) and (D2λ, D3λ, B2λ, B3λ, P2λ, P3λ) can be treated
separately.

Lemma 4.1. Assume that the sequences of the initial data (h0
1λ)λ, (v0

iλ)λ (2 ≤ i ≤ 8) are
bounded in L∞(R). Then the Cauchy problem (4.1)-(4.3) has a unique entropy solution
(hλ, P1λ, D2λ, D3λ, B2λ, B3λ, P2λ, P3λ), and for sufficiently large λ > 0, we have

(4.4) ‖hλ − 1‖L∞(R+×R) ≤ Cε, ‖P1λ‖L∞(R+×R) ≤ C,

where C > 0 is a constant independent of λ.

Proof. Let us notice that under the assumption of Lemma 4.1, Proposition 3.2 can be
applied to the Cauchy problem (4.1) and (4.3). Indeed, the hyperbolicity of the system
is invariant under the change of variables (2.6) and (2.8). Moreover, for sufficiently large
λ, we have

ρλ = 1 +O(ε), hλ(0, x) = 1 + εh0
1λ(x),

which yield ρλ > 0,

wλ
def
= inf

ξ∈R

(
εv0

2λ(ξ) +
ρλ

1 + εh0
1λ(ξ)

)
= 1 +O(ε),

and

zλ
def
= sup

ξ∈R

(
εv0

2λ(ξ)−
ρλ

1 + εh0
1λ(ξ)

)
= −1 +O(ε).

Thus, the condition (3.10) is trivially fulfilled and there is a unique entropy solution to
the Cauchy problem (4.1) and (4.3).

Similarly,

wλ
def
= sup

ξ∈R

(
εv0

2λ(ξ) +
ρλ

1 + εh0
1λ(ξ)

)
= 1 +O(ε),

zλ
def
= inf

ξ∈R

(
εv0

2λ(ξ)−
ρλ

1 + εh0
1λ(ξ)

)
= −1 +O(ε).

Applying the maximum principle (3.14)-(3.15) to the solution, we obtain

wλ ≤ εv2λ(t, x) +
ρλ

hλ(t, x)
≤ wλ,

zλ ≤ εv2λ(t, x)−
ρλ

hλ(t, x)
≤ zλ.
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It follows that hλ(t, x) = 1 + O(ε) and the sequence (v2λ)λ is bounded in L∞(R+ × R),
which implies that the sequence (P1λ)λ is bounded in L∞(R+ × R). �

Lemma 4.2. Under the assumptions of Lemma 4.1, the sequence (D2λ, D3λ, B2λ, B3λ, P2λ, P3λ)λ

is bounded in L∞(R+ × R).

Proof. Since hλ > 0 for all λ > 0 large, by the first equation in (4.1), we may make the
change of variables : (t, x) 7−→ (s, y) with

s = t, dy = hλdx− εP1λdt.

Then in Lagrangian coordinates (s, y), ṽλ(s, y) = (v3λ, · · · , v8λ)
t(t, x) satisfies an equiva-

lent system

∂sṽλ + Ãλ∂yṽλ = 0,

where

Ãλ =



0 0 0 1 −εD1 0

0 0 −1 0 0 −εD1

0 −1 0 0 −εB1 0

1 0 0 0 0 −εB1

−D1 0 −B1 0 0 0

0 −D1 0 −B1 0 0


.

A straightforward computation shows that

ν1 = ν2 = −ρλ, ν3 = ν4 = 0, ν5 = ν6 = ρλ

are the eigenvalues of Ãλ. For σ 6= 0, i.e., B2
1 +D2

1 6= 0, we choose the corresponding left

eigenvectors l̃iλ and right eigenvectors r̃iλ of Ãλ as follows :

l̃1λ =
1

2
(ρλD1 −B1, ρλD1 +B1, ρλB1 +D1, ρλB1 −D1, εσ, εσ),

l̃2λ =
1

2
(ρλD1 +B1,−ρλD1 +B1, ρλB1 −D1,−(ρλB1 +D1), εσ,−εσ),

l̃3λ =
1

2ρ2
λ

(B1,−B1,−D1, D1, 1, 1),

l̃4λ =
1

2ρ2
λ

(−B1,−B1, D1, D1, 1,−1),

l̃5λ =
1

2
(ρλD1 +B1, ρλD1 −B1, ρλB1 −D1, ρλB1 +D1,−εσ,−εσ),

l̃6λ =
1

2
(ρλD1 −B1,−(ρλD1 +B1), ρλB1 +D1,−ρλB1 +D1,−εσ, εσ),
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r̃1λ =
1

2ρ2
λσ

(ρλD1 −B1, ρλD1 +B1, ρλB1 +D1, ρλB1 −D1, σ, σ)t,

r̃2λ =
1

2ρ2
λσ

(ρλD1 +B1,−ρλD1 +B1, ρλB1 −D1,−(ρλB1 +D1), σ,−σ)t,

r̃3λ = (εB1,−εB1,−εD1, εD1, 1, 1)t,

r̃4λ = (−εB1,−εB1, εD1, εD1, 1,−1)t,

r̃5λ =
1

2ρ2
λσ

(ρλD1 +B1, ρλD1 −B1, ρλB1 −D1, ρλB1 +D1,−σ,−σ)t,

r̃6λ =
1

2ρ2
λσ

(ρλD1 −B1,−(ρλD1 +B1), ρλB1 +D1,−ρλB1 +D1,−σ, σ)t.

In this case, the constant sequences (l̃iλ)λ and (r̃iλ)λ are bounded and l̃iλr̃jλ = δij for all
1 ≤ i, j ≤ 6. On the other hand, when σ = 0, we have B1 = D1 = 0, and the matrix

Ãλ is symmetric and independent of λ. Then we may choose arbitrarily its left and right

eigenvectors l̃i and r̃j such that l̃ir̃j = δij for all 1 ≤ i, j ≤ 6.
Using the explicit formula (3.16), we have

ṽλ(t, x) =
6∑

i=1

(l̃iλṽ
0
λ)(X

0
λ(Yλ(t, x)− νit))r̃iλ,

where
ṽ0

λ = (v0
3λ, · · · , v0

8λ)
t, X0

λ = (Y 0
λ )−1, Yλ(t, ·) = X−1

λ (t, ·),
with

Y 0
λ (x) =

∫ x

0

h0
λ(ξ)dξ,

Xλ(t, y) =
1

2

∫ y+t

0

(
v0

2λ +
ρλ

h0
λ

)
(X0

λ(ξ))d ξ − 1

2

∫ y−t

0

(
v0

2λ −
ρλ

h0
λ

)
(X0

λ(ξ))d ξ.

Since the sequence (ṽ0
λ)λ is assumed to be bounded in L∞(R), we deduce that (ṽλ)λ is

bounded in L∞(R+ × R). This proves Lemma 4.2 together with the definition (4.2) and
hλ = 1 +O(ε). �

4.2. Convergence. From Lemmas 4.1-4.2, we have

(4.5) hλ −→ 1, in L∞(R+ × R) strongly,

and up to subsequences (not relabeled),

(4.6) (D2λ, D3λ, B2λ, B3λ, P2λ, P3λ)−−⇀ (D2, D3, B2, B3, P2, P3),

in L∞(R+×R) weakly-∗. Recall ε = λ2(α−1) → 0 as λ→∞. Since the strong convergence
of hλ is involved in all its nonlinear terms, it is easy to pass to the limit in the system (4.1)
in the sense of distributions. The weak limit (D2, D3, B2, B3) satisfies the linear Maxwell
equations :

(4.7)


∂tD2 + ∂xB3 = 0,

∂tD3 − ∂xB2 = 0,

∂tB2 − ∂xD3 = 0,

∂tB3 + ∂xD2 = 0,
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and (P2, P3) satisfies

(4.8)

{
∂tP2 − ∂x(D1D2 +B1B2) = 0,

∂tP3 − ∂x(D1D3 +B1B3) = 0.

Now consider the limit of h1λ = (hλ − 1)/ε and P1λ. Using (4.1), we have

(4.9)


∂th1λ + ∂xP1λ = 0,

∂tP1λ + ∂x

( ε2P1λ − ρ2
λ

ε(1 + εh1λ)

)
= 0.

From Lemma 4.1, the sequences (h1λ)λ and (P1λ)λ are bounded in L∞(R+ × R). Then

ε2P1λ

ε(1 + εh1λ)
−→ 0 in L∞(R+ × R) strongly,

and up to subsequences,

(4.10) h1λ −−⇀ h1, P1λ −−⇀ P1, in L∞(R+ × R) weakly- ∗ .

Since

ρ2
λ = 1 + εσ,

1

1 + εh1λ

= 1− εh1λ +O(ε2),

we obtain

−∂x

( ρ2
λ

ε(1 + εh1λ)

)
= ∂xh1λ + eλ,

with limλ→∞ eλ = 0 in L∞(R+;W−1,∞(R)). Obviously, we can pass to the limit in (4.9)
in the sense of distributions to obtain the linear equations :

(4.11)

{
∂th1 + ∂xP1 = 0,

∂tP1 + ∂xh1 = 0.

On the other hand, the sequences (h0
1λ)λ and (v0

iλ)λ (2 ≤ i ≤ 8) being bounded in
L∞(R), then up to subsequences, we have

(4.12) h0
1λ −−⇀ h0

1, v0
iλ −−⇀ v0

i , in L∞(R) weakly-∗,

with (h0
1, v

0
2, · · · , v0

8) ∈ L∞(R). Together with (4.3) for the expression of h0
λ, they imply

that

(P 0
1λ, D

0
2λ, D

0
3λ, B

0
2λ, B

0
3λ, P

0
2λ, P

0
3λ)−−⇀ (v0

2, · · · , v0
8), in L∞(R) weakly- ∗ .

It is clear that the linear system (4.7)-(4.8) and (4.11) is hyperbolic. In particular, (4.7)-
(4.8) imply that

∂t(P2 +D1B3 −B1D3) = ∂t(P3 +B1D2 −D1B2) = 0,

which is in accordance with P = D × B. Then its Cauchy problem with the initial
conditions :

(4.13) t = 0 : (h1, P1, D2, D3, B2, B3, P2, P3) = (h0
1, v

0
2, · · · , v0

8)(x), x ∈ R

admits a unique solution (h1, P1, D2, D3, B2, B3, P2, P3) ∈ L∞(R+ × R). This implies the
convergence of the whole sequence.
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Theorem 4.1. Under the assumptions of Lemma 4.1, as λ → ∞, the solution of the
Cauchy problem (4.1) and (4.3) is convergent in the sense of (4.5)-(4.6), (4.10) and
(4.12), where the limit (h1, P1, D2, D3, B2, B3, P2, P3) ∈ L∞(R+×R) is the unique solution
of the problem (4.7)-(4.8), (4.11) and (4.13).

5. Limit toward PMHD equations in one dimension

In this last section, we justify the limit λ→ 0 in the λ-ABI system (3.2) with the initial
conditions :

(5.1) t = 0 : h = h0
λ(x), vi = v0

iλ(x) (2 ≤ i ≤ 8), x ∈ R.
Similarly to (3.10), we assume that the sequences of the initial data satisfy :

(H1) (h0
λ)λ and (v0

iλ)λ (2 ≤ i ≤ 8) are bounded in L∞(R),

(H2) inf
x∈R

(
v0

2λ(x) +
aλ

h0
λ(x)

)
≥ b2 > b1 ≥ sup

x∈R

(
v0

2λ(x)−
aλ

h0
λ(x)

)
,

where b1 and b2 are two constants independent of λ,

aλ =
√
λ2 +B2

1 + λ2D2
1.

By Proposition 3.1, to guarantee the hyperbolicity of the λ-ABI system for all λ ≥ 0, we
require aλ 6= 0. Therefore, we assume here B1 6= 0.

Applying Proposition 3.2 to the Cauchy problem (3.2) and (5.1), we obtain a unique
entropy solution vλ = (h−1

λ , v2λ, · · · , v8λ)
t ∈ L∞(R+ × R). This solution satisfies the

maximum principle (3.14)-(3.15). Together with the assumption (H2), we deduce that for
sufficiently small λ > 0,

(5.2) 0 < h ≤ hλ(t, x) ≤ h, a.e. (t, x) ∈ R+ × R,
where h and h are two constants independent of λ. From (3.16), vλ can be expressed as :

(5.3) vλ(t, x) =
8∑

i=1

(liλv
0
λ)(X

0
λ(Yλ(t, x)− µ̃it))riλ,

where µ̃i, liλ and riλ are defined in (3.5)-(3.7), respectively, X0
λ and Yλ are given by the

formulas (3.11)-(3.13) in which (h0, v0
2) are replaced by (h0

λ, v
0
2λ).

Since aλ = |B1| + O(λ2) and β = B2
1 + λ2D2

1, from (3.6)-(3.7), it is easy to see that
(liλ)λ and (riλ)λ are bounded sequences. We conclude from (5.2)-(5.3) that the sequence
Uλ = (hλ, P1λ, D2λ, D3λ, B2λ, B3λ, P2λ, P3λ) is bounded in L∞(R+ × R). Then, up to
subsequences, we have

Uλ −−⇀ (h, P1, D2, D3, B2, B3, P2, P3), in L∞(R+ × R) weakly- ∗ .
In order to pass to the limit in the nonlinear terms of (3.2), we proceed as in [17] using

compensated compactness arguments. For instance, let

Vλ = (hλ, P1λ)
t, Wλ =

(P 2
1λ − a2

λ

hλ

,−P1λ

)t

.

Then (Vλ)λ and (Wλ)λ are two bounded sequences in L∞(R+ ×R) then in L2
loc(R+ ×R).

Moreover, they satisfy
divt,xVλ = 0, rott,xWλ = 0.
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Hence, by Tartar equation [21] and up to subsequences, we have, in the sense of distribu-
tions

lim
λ→0

Vλ ·Wλ = lim
λ→0

Vλ · lim
λ→0

Wλ,

i.e.

− lim
λ→0

a2
λ = hχ− P 2

1 ,

where χ is the weak limit of the sequence ((P 2
1λ − a2

λ)/hλ)λ. Since limλ→0 a
2
λ = −B2

1 , we
obtain

χ =
P 2

1 −B2
1

h
.

Thus, (h, P1) is a solution of the system :

(5.4)


∂th+ ∂xP1 = 0,

∂tP1 + ∂x

(P 2
1 −B2

1

h

)
= 0.

Similarly, using the first and the rest equations in the λ-ABI system (3.2) and the compen-
sated compactness arguments, we can pass to the limit in (3.2) in the sense of distributions
to obtain :

(5.5)



∂tD2 + ∂x

(B3 +D2P1 −D1P2

h

)
= 0,

∂tD3 + ∂x

(−B2 +D3P1 −D1P3

h

)
= 0,

∂tB2 + ∂x

(B2P1 −B1P2

h

)
= 0,

∂tB3 + ∂x

(B3P1 −B1P3

h

)
= 0,

∂tP2 + ∂x

(P1P2 −B1B2

h

)
= 0,

∂tP3 + ∂x

(P1P3 −B1B3

h

)
= 0.

Furthermore, as λ→ 0, we have obviously (up to subsequences),

(h0
λ, P

0
1λ, D

0
2λ, D

0
3λ, B

0
2λ, B

0
3λ, P

0
2λ, P

0
3λ)−−⇀ (h0, P 0

1 , D
0
2, D

0
3, B

0
2 , B

0
3 , P

0
2 , P

0
3 ),

in L∞(R) weakly-∗, with (h0, P 0
1 , D

0
2, D

0
3, B

0
2 , B

0
3 , P

0
2 , P

0
3 ) ∈ L∞(R). From Proposition

3.1 with B1 6= 0, we know that the system (5.4)-(5.5) is a linear Lagrangian one and
hyperbolic. Then its Cauchy problem with the initial conditions :

(5.6) t = 0 : (h, P1, D2, D3, B2, B3, P2, P3) = (h0, P 0
1 , D

0
2, D

0
3, B

0
2 , B

0
3 , P

0
2 , P

0
3 )(x), x ∈ R

admits a unique entropy solution (h, P1, D2, D3, B2, B3, P2, P3) ∈ L∞(R+ × R). This
implies the convergence of the whole sequence.

Theorem 5.1. Let the assumptions (H1)-(H2) hold and B1 6= 0. Then, as λ → 0, the
solution of the Cauchy problem (3.2) and (5.1) is convergent in the sense of L∞(R+×R)
weakly-∗, and the limit (h, P1, D2, D3, B2, B3, P2, P3) ∈ L∞(R+×R) is the unique entropy
solution of the Cauchy problem (5.4)-(5.5) and (5.6).
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[18] D. Serre, Un système hyperbolique non linéaire avec des données oscillantes, C.R. Acad. Sci. Paris,

Série I, t. 302, no 3 (1986), 115-118.
[19] D. Serre, Systèmes de Lois de Conservation, Diderot, Paris, 1996.
[20] D. Serre, Hyperbolicity of the nonlinear models of Maxwell’s equations, Arch. Rat. Mech. Anal. 172

(2004), 309-331.
[21] L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear

analysis and mechanics : Heriot-Watt symposium, Vol. IV, 136-212, Research Notes in Math., 39,
Pitman, 1979.

[22] D. Wagner, Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions,
J. Diff. Eqns. 68 (1987), 118-136.


