
HAL Id: hal-00488957
https://hal.science/hal-00488957v1

Submitted on 3 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model checking of Time Petri Nets using the State Class
Timed Automaton

Didier Lime, Olivier Henri Roux

To cite this version:
Didier Lime, Olivier Henri Roux. Model checking of Time Petri Nets using the State Class Timed
Automaton. Discrete Event Dynamic Systems, 2006, 16 (2), pp.179-205. �10.1007/s10626-006-8133-9�.
�hal-00488957�

https://hal.science/hal-00488957v1
https://hal.archives-ouvertes.fr

Model checking of Time Petri Nets using the State Class

Timed Automaton∗

Didier Lime and Olivier (H.) Roux

Abstract. In this paper, we propose a method for building the state class graph of a

bounded time Petri net (TPN) as a timed automaton (TA), which we call the state class

timed automaton. We consider bounded TPN, whose underlying net is not necessarily

bounded. We prove that our translation preserves the behavioural semantics of the TPN

(the initial TPN and the obtained TA are proved timed-bisimilar). It allows us to check real-

time properties on TPN by using the state class TA. This can be done efficiently thanks to

a reduction of the number of clocks. We have implemented the method, and give some ex-

perimental results illustrating the efficiency of the translation algorithm in terms of number

of clocks. Using the state class TA, we also give a framework for expressing and efficiently

verifying TCTL properties on the initial TPN.

1 Introduction

Currently, the use of real-time systems is quickly increasing and, at the same time, correctness

proofs on these systems must be provided. In the class of timed discrete event systems, timed

extensions of Petri nets (see (Bowden 1996) for a survey) and timed automata (TA) (Henzinger

et al. 1994) are widely used to model and analyze such concurrent systems.

The two main timed extensions of Petri Nets are Time Petri Nets (TPN) (Merlin 1974) and

Timed Petri Nets (Ramchandani 1974). While a transition can be fired within a given interval

for TPN, in Timed Petri Nets, temporisation represents the minimal duration between the firing

of transitions (or the exact duration with an “as soon as possible” firing rule). There are also

numerous way of representing time. It may be relative to places, transitions, arcs or tokens. The

classes of Timed Petri Nets (time relative to place, transition. . .) are included in the corresponding

classes of Time Petri Nets (Pezze and Toung 1999). TPN are mainly divided in P-TPN (Khansa et

al. 1996), A-TPN (de Frutos Escrig et al. 2000, Abdulla and Nylén 2001) and T-TPN (Berthomieu

and Diaz 1991) where a time interval is relative respectively to places, arcs and transitions. Finally,

Time Stream Petri Nets (Diaz and Senac 1994) were introduced to model multimedia applications

and are related to A-TPN.

Recently, some papers consider A-TPN with a “lazy” (non-urgent) semantics (de Frutos Escrig

et al. 2000, Abdulla and Nylén 2001). This means that the firing of transitions may be delayed,

even if that implies that some transitions are disabled because their input tokens become too old.

The advantage is that boundedness and coverability are decidable. However, urgency, which is

required for the modeling of critical real-time systems, is lost.

For the modeling of urgency together with concurrency and dense-time constraints, transition-

time Petri nets (TPN) with strong semantics as defined in (Merlin 1974, Berthomieu and Diaz

1991) are more adapted and widely used (Vicario 2001, Berthomieu and Vernadat 2003, Penczek

and Polrola 2004). In this model, time constraints are expressed as time intervals on the transitions

of the net. This is the model that we consider in this paper.

The act of verification consists of proving that a formal system description satisfies certain

desirable properties formalized as a logical formula. This generally implies the investigation of

all or a part of the state-space. However, for dense-time models such as time Petri nets or timed

automata, the state-space is infinite because of the real-valued clocks; but it is possible to represent

the infinite state-space by a finite partitioning in the state class graph or the region graph.

In a region graph, each region essentially consists of the set of concrete states that are equiv-

alent, in the sense that they will evolve to the same regions in the future. Subsequently, tech-

niques have been sought to develop algorithms that use compact abstract representations of the

state-space. Moreover, it has been shown that model-checking for Timed Computation Tree Logic

(TCTL) properties is decidable for TA (Alur et al. 1993). Consequently, there exists several ef-

ficient tools like Uppaal (Larsen et al. 1997) and Kronos (Yovine 1997) for model-checking

TA.

Unlike TA, the number of discrete states of the TPN (markings) is not necessarily bounded.

For the model we consider, classical transition-time Petri nets, boundedness is undecidable, and

works on this model report undecidability results, or decidability under the assumption that the

TPN is bounded (as for reachability decidability (Popova 1991)). Boundedness and other results

are obtained by computing the state-space.

State class graph

The mainstream approach to compute the state-space of TPN is the state class graph (Menasche

1982, Berthomieu and Diaz 1991). The nodes of the state class graph are sets of states (a state is

a pair consisting of a marking and a firing constraint) of the TPN and the edges are labeled with

the names of the transitions. If L is the language accepted by the state class graph and L′ is the

untimed language accepted by the TPN, then L = L′. Some algorithms have been developed in

order to explore the state class graph for the verification of specific temporal properties (Toussaint

et al. 1997, Delfieu et al. 2000). But mainly, the state class graph (without the use of observers

(Toussaint et al. 1997) that specify a property as a TPN) is used to check untimed reachability

properties. An alternative approach has been proposed by Yoneda (Yoneda and Ryuba 1998)

in the form of an extension of equivalence classes which allows Computation Tree Logic (CTL)

model-checking. Lilius (Lilius 1999) refined this approach so that it becomes possible to apply

partial order reduction techniques that have been developed for untimed systems. Berthomieu

and Vernadat (Berthomieu and Vernadat 2003) propose an alternative construction of the graph

of atomic classes of Yoneda applicable to a larger class of nets.

Our approach for the verification of TPN consists in translating a TPN into a TA, in order to

use the efficient algorithms and tools available for that model.

Related work

The relationship between TPN and TA is investigated in (Bornot et al. 1998, Sifakis and Yovine

1996, Sava 2001). In (Sifakis and Yovine 1996), Sifakis and Yovine are interested in a subclass

of 1-safe time stream Petri nets (STPN). For a STPN, given a transition T , an interval [l, u] is

associated with each input arc (P, T) of T . A token entering the input place P must wait for a time

t (t ∈ [l, u]) before becoming available for the transition T . They propose a translation of STPN

into timed automata: A clock is associated with each place; each time the place receives a token,

the clock is reset. Time intervals on arcs are represented by timing constraints on these clocks.

Then, they show that the usual notion of composition used for TA is not suitable to describe this

type of Petri nets as the composition of TA. Consequently, they introduce timed automata with

deadlines and a flexible notion of composition. While it might permit a lower number of clocks, it

is not obvious that the composition result on the considered subclass of 1-safe time stream Petri

nets is applicable to TPN. Moreover, translating a given TPN into a TA using these results (which

is not the main concern of that paper) would require a decomposition of the TPN, which seems

quite difficult except for simple structures.

In (Bornot et al. 1998), the authors consider Petri nets with deadlines (PND) that are 1-safe

Petri nets extended with clocks. A PND is a timed automaton with deadlines (TAD) where the

discrete transition structure is the corresponding marking graph. The transitions of the marking

graph are subject to the same timing constraints as the transitions of the PND. The PND and the

TAD have the same number of clocks. They propose a translation of safe TPN into PND with a

clock for each input arc of the initial TPN. It defines (by transitivity) a translation of TPN into

TAD (that can be considered as standard timed automata). The number of clocks of the TA is

greater than (or equal to) the number of transitions of the initial TPN.

Sava (Sava 2001) considers bounded TPN where the associated underlying Petri net is not

necessarily safe and proposes an algorithm to compute the region graph of a TPN. The result is

a timed automaton with a clock for each transition of the original TPN. This automaton is then

restricted so that forbidden markings become unreachable. However, they do not give any result

to stop the automaton computation when the TPN is not bounded (which one does not know a

priori).

The first two approaches are limited to Petri nets whose underlying net is 1-safe. Moreover,

in those three approaches, the high number of clocks makes it difficult to efficiently analyze the

obtained TA.

Our contribution

Our approach consists in building the state class graph as a timed automaton thus keeping the

temporal information of the TPN in additional clocks. That makes it possible to preserve all the

properties of the state class graph construction: Sufficient conditions of boundedness that can be

tested before the computation and on-the-fly necessary conditions of unboundedness allowing to

stop the computation if we assume that the net is unbounded. The initial TPN and the obtained

TA are timed-bisimilar. Obtaining a TA instead of a graph is a great improvement (e.g. TCTL

model-checking can be applied directly) for a low additional cost. Moreover, the number of clocks

of the obtained TA is low (in practice, often much lower than the number of transitions of the

initial TPN). We also show how to express and efficiently verify TCTL properties on a TPN by

using its associated state class TA. Since the two are bisimilar it also allows us to say that TCTL

model-checking is decidable on bounded TPN, which has never been proved to our knowledge.

We have developed a tool for building this automaton and transcribe it in Uppaal and Kronos

input formats.

Outline of the paper

We first give a formal semantics for time Petri nets in terms of timed transition systems and we

present the state class graph and its construction in section 2. Then, in section 3, we propose an

extension of this construction that allows to build the state class graph as a timed automaton. We

prove that this timed automaton and the TPN are timed-bisimilar and we also prove a relative

minimality of the number of clocks of the obtained automaton. In section 4, we give a brief

description of the tool implementing the algorithm and some experimental results. Finally, we

provide a framework for checking TCTL properties on the TPN with our automaton, in section 5.

2 Time Petri nets and state class graph

2.1 Time Petri nets

Definition 1 (Time Petri net). A time Petri net is a 7-tuple

T = (P, T, •(.), (.)
•
, α, β,M0), where

– P = {p1, p2, . . . , pm} is a non-empty finite set of places,

– T = {t1, t2, . . . , tn} is a non-empty finite set of transitions (T ∩ P = ∅),

– •(.) ∈ (NP)T is the backward incidence function,

– (.)
• ∈ (NP)T is the forward incidence function,

– M0 ∈ NP is the initial marking of the net,

– α ∈ (Q+)T and β ∈ (Q+ ∪ {∞})T are functions giving for each transition respectively its

earliest and latest firing times (α ≤ β).

We define the semantics of time Petri nets as a Timed Transition System (TTS) (Larsen et

al. 1995). In this model, two kinds of transitions may occur: Continuous transitions when time

passes and discrete transitions when a transition of the net fires.

A marking M of the net is an element of NP such that ∀p ∈ P,M(p) is the number of tokens

in the place p.

A transition t is said to be enabled by the marking M if M ≥ •t, (i.e. if the number of tokens

in M in each input place of t is greater or equal to the valuation on the arc between this place

and the transition). We denote it by t ∈ enabled(M).

A transition tk is said to be newly enabled by the firing of the firable transition ti from the

marking M , and we denote it by ↑ enabled(tk,M, ti), if the transition tk is enabled by the new

marking M − •ti + ti
• but was not by M − •ti, where M is the marking of the net before the firing

of ti. Formally,

↑ enabled(tk,M, ti) = (•tk ≤M − •ti + ti
•) ∧ ((tk = ti) ∨ (•tk > M − •ti))

By extension, we will denote by ↑ enabled(M, ti) the set of the transitions which are newly

enabled by the firing of the transition ti from the marking M .

A valuation is a mapping ν ∈ (R+)T such that ∀t ∈ T, ν(t) is the time elapsed since t was last

enabled. Notice that ν(t) is meaningful only if t is an enabled transition. 0 is the null valuation

such that for all marking M , ∀t ∈ enabled(M), 0(t) = 0.

Definition 2 (Semantics of a TPN). The semantics of a time Petri net T is defined as a TTS

ST = (Q, q0,→) such that

– Q = NP × (R+)T

– q0 = (M0, 0)

– →∈ Q× (T ∪ R)×Q is the transition relation including a continuous transition relation and

a discrete transition relation.

• The continuous transition relation is defined ∀d ∈ R+ by:

(M, ν)
d
−→ (M, ν′) iff

ν′ = ν + d,

∀tk ∈ T,M ≥ •tk ⇒ ν′(tk) ≤ β(tk)

• The discrete transition relation is defined ∀ti ∈ T by:

(M, ν)
ti−→ (M ′, ν′) iff

M ≥ •ti,

M ′ = M − •ti + ti
•,

α(ti) ≤ ν(ti) ≤ β(ti),

∀tk, ν′(tk) =

0 if ↑ enabled(tk,M, ti),

ν(tk) otherwise

Let us consider the TPN in Figure 1. Let us assume that t1 is firable. In Figure 1a, t2 is enabled

by the marking M and by the marking M ′ = M − •t1 + t1
• but not by M − •t1. Transitions t1 and

t2 are newly enabled after the firing of t1.

Now, in Figure 1b, t2 is enabled by the marking M , by the marking M ′ = M − •t1 + t1
• and

by M − •t1. t1 is newly enabled by the firing of t1 but not t2: t2 remains enabled.

P

t1 [α1, β1]

t2 [α2, β2]

• P

t1 [α1, β1]

t2 [α2, β2]

••

(a) (b)

Fig. 1. Example of newly enabled transitions

2.2 State Class Graph

Starting from the initial state of the TPN, the state-space of the net can be computed by applying

the firing rules. However, as the model considered is a dense-time one, the state-space is infinite.

Consequently one needs to group states together in state classes. Thus, with some restrictions,

(see 3.2) a finite state class graph can be generated, in order to apply formal verification techniques.

The method used to generate the state class graph has been introduced in (Menasche 1982)

and (Berthomieu and Diaz 1991).

Definition 3 (State class). A state class C, of a time Petri net, is a pair (M,D) where M is

a marking of the net and D a set of inequations called the firing domain.

The inequations in D are of two types (Berthomieu and Diaz 1991):

ai ≤ θi ≤ bi, with ai, bi ∈ Q+ (∀i s.t. ti is enabled),

θj − θk ≤ cjk, with cjk ∈ Q+ (∀j, k s.t. j 6= k and tj , tk ∈ enabled(M))

θi is the firing time of the enabled transition ti relatively to the time when the marking of the

class occured.

Informally speaking, the class C = (M,D) contains the set of reachable states between the

firing of two transitions. All the states of a class have the same marking and the inequations define

constraints on the firing times θ of the transitions enabled by this marking.

In order to compute the state class graph, one must be able to decide whether or not two

classes are equal.

Given a set of inequations D, we denote by JDK the set of the solutions of D.

Definition 4 (Equality of two classes). Two classes C1 = (M1, D1) and C2 = (M2, D2) are

equal if M1 = M2 and JD1K = JD2K.

To check domains for equality, the inequations sets will be put in some canonical form, and

the canonical forms checked for equality. This method is much more efficient than solving the sets

of inequations and comparing the solutions.

Let D be the firing domain of a class C, the canonical form D∗ is (Menasche 1982)

a∗i ≤ θi ≤ b∗i ,

θj − θk ≤ c∗jk

where

a∗i = Inf{θi}

b∗i = Sup{θi}

c∗jk = Sup{θj − θk}

The canonical form may be computed by the Floyd-Warshall algorithm, which determines the

shortest paths in a constraint graph. Its complexity is O(n3) in time and O(n2) in space, n being

the number of variables in the set of inequations (Berthomieu 2001)

Computing the graph.

Definition 5 (firability). Let C = (M,D) be a state class. A transition ti ∈ enabled(M) is said

to be firable from C iff in D, ∀tj ∈ enabled(M)− {ti}, c∗ji ≥ 0.

Given a class C = (M,D) and a firable transition tf , the class C′ = (M ′, D′∗) obtained from

C by the firing of tf is given by

– M ′ = M − •tf + tf
•

– D′ is computed along the following steps, and denoted by next(D, tf)

1. ∀j 6= tf addition of constraints θf ≤ θj ,

2. variable substitutions ∀j, θj = θf + θ′j ,

3. elimination (using for instance the Fourier-Motzkin method (Dantzig 1963)) of all variables

relative to transitions disabled by the firing of tf ,

4. addition of inequations relative to newly enabled transitions

∀tk ∈↑ enabled(M, tf), α(tk) ≤ θ′k ≤ β(tk).

5. determination of the canonical form D′∗

We propose to write the state class graph as a transition system (C,C0,→) where

– C = NP × RT ,

– C0 = (M0, D0), where M0 is the initial marking and D0 = {α(ti) ≤ θi ≤ β(ti)| ti ∈

enabled(M0)},

– →∈ C × T × C is the transition relation defined by:

(M,D)
t
→ (M ′, D′) iff

M ′ = M − •t+ t•,

t is firable from (M,D),

D′ = next(D, t),

Limitations of the state class graph method. As we have mentioned in the introduction,

the most widely used method for checking TPN is the construction of the state class graph, which

gives the untimed language accepted by the TPN. However, as it is, the state class graph can only

be used conveniently for checking untimed reachability properties. Indeed, the state class graph

does not accept the timed language of the TPN. In Figure 2, we can see that if t1 fires at time 0

then we have the forced sequence t2 then t3 because α(t3) > β(t2), while if t1 fires at time 4 then

the forced sequence is t3 then t2. This information does not appear in class C1, even if we add the

firing domains.

P1 P3

P2

t1 [0, 4] t3 [5, 6]

t2 [3, 4]

• •

C0

C1

C2 C3

C4

t1

t2 t3

t2

t3

8

>

>

>

<

>

>

>

:

0 ≤ θ1 ≤ 4

5 ≤ θ3 ≤ 6

−6 ≤ θ1 − θ3 ≤ −1
8

>

>

>

<

>

>

>

:

3 ≤ θ2 ≤ 4

1 ≤ θ3 ≤ 6

−3 ≤ θ2 − θ3 ≤ 3

.

. . .

{P1, P3}

{P2, P3}

{P3} {P2}

∅

Fig. 2. A TPN and its state class graph

In order to check real-time properties the current method adds observers to the TPN and

computes the state class graph of the system ”TPN + observer” (Toussaint et al. 1997).

However the observer approach suffers from other problems. The observer may be as big as the

net if the property to be verified involves markings, and so the number of classes may be squared.

Furthermore, each property requires a specific observer, and thus a new computation of the state

class graph.

Our method, described in the next section, overcomes all these problems: The state class timed

automaton accepts the same timed language as the TPN, the verification is non-intrusive, and the

state class TA needs to be computed only once even if several properties are to be checked.

3 State class timed automaton

3.1 Timed Automata

We denote by C(V) the set of simple constraints on the set of variables V , i.e. C(V) is the set of

boolean combinations (with the operators ∨, ∧ and ¬) of terms of type v − v′ ∼ c or v ∼ c, with

v, v′ ∈ V , ∼∈ {<,≤,=,≥, >} and c ∈ N.

Definition 6 (Timed Automaton). (Henzinger et al. 1994) A Timed Automaton is a 6-tuple

(L, l0, X,A,E, Inv) where

– L is a finite set of locations,

– l0 is the initial location,

– X is a finite set of positive real-valued clocks,

– A is a finite set of actions,

– E ⊂ L×C(X)×A×2X×2X2

×L is a finite set of edges. let us consider e = (l, δ, α,R, ρ, l′) ∈ E.

e is the edge linking the location l to the location l′, with the guard δ, the action α, the set of

clocks to be reset R and the renaming function ρ.

– Inv ∈ C(X)L maps an invariant to each location.

Let ν be a valuation. For a set of clocks R, we denote by ν[R ← 0] the valuation such that

ν[R← 0](x) = 0 if x ∈ R and ν[R← 0](x) = ν(x), otherwise. For a renaming function ρ : X → X ,

we denote by ν′ = ν[ρ] the valuation such that ∀x ∈ X , ν′(ρ(x)) = ν(x). For a constraint δ ∈ C(X),

we say that the evaluation of δ by ν, δ(ν) is true iff ∀x ∈ X, δ(ν(x)) is true.

Definition 7 (Semantics of a Timed Automaton). The semantics of a Timed Automaton H

is defined as a TTS SH = (Q,Q0,→) where Q = L × (R+)X , Q0 = (l0, 0) is the initial state and

→ defined, for a ∈ A and τ ∈ R+, by

– discrete transitions: (l, ν)
a
→ (l′, ν′) iff ∃(l, δ, a, R, ρ, l′) ∈ E such that

δ(ν) = true,

ν′ = ν[R← 0][ρ],

Inv(l′)(ν′) = true

– continuous transitions: (l, ν)
τ
→ (l, ν′) iff

ν′ = ν + τ,

∀τ ′ ∈ [0, τ], Inv(l)(ν + τ ′) = true

3.2 State class timed automaton

As we have mentioned before, timing information is lost when computing the state class graph.

Consequently, in order to verify complex timed properties, we want to keep track of the time

during which each transition has been enabled. In the semantics of TPN that we have shown in

section 2, these times correspond to the valuation ν of the net. Moreover, it is very important

to have a low number of clocks in the resulting automaton since the complexity of verification

algorithms is exponential in this number.

In order to achieve the computation of the state-space of the net as a timed automaton, we

add clocks in the generated state classes which represent the valuations of the transition as given

in the semantics of TPN.

Definition 8 (Extended state class). An extended state class is a 4-tuple (M,D,χ, trans),

where M is a marking, D is a firing domain, χ is a set of real-valued clocks and trans ∈ (2T)χ

maps clocks to sets of transitions.

For each clock x ∈ χ, trans gives the set of transitions whose valuations are represented by

x. A transition t must be associated with only one clock. Then, trans−1(t) is reduced to a single

element.

In the following paragraphs, we will define from a theoretical point of view the state class

automaton ∆(T) of a TPN T . We will show that its computation is based on that of an extended

state class graph ∆′(T). Practical details of the algorithm computing the state class TA will then

be given.

Extended state class graph. We first define an extended state class graph. This is done in very

much the same way as for the classical state class graph. Differences lie in the computation of χ

and trans.

Let disabled(M, t) = enabled(M)− enabled(M − •t) be the set of transitions disabled by the

firing of t leading to the marking M . Let C = (M,D,χ, trans) be an extended state class, t a

transition firable from C and C′ = (M ′, D′, χ′, trans′) the extended state class obtained by firing

t from C. M ′ and D′ are computed like for the classical state class graph. The computation of

trans′ and χ′ requires the following steps

1. for each clock x in χ, the disabled transitions are removed from trans(x),

2. the clocks whose image by trans is empty are removed from χ,

3. if there are newly enabled transitions by the firing of t, two cases can occur:

– there exists a clock x whose value is 0. Then, we simply add the newly enabled transitions

to trans(x),

– such a clock does not exist. Then we need to create a new clock xi associated to all newly

enabled transitions. The index, i, is chosen as the smallest available index among the clocks

of χ. We add xi to χ and trans(xi) is the set of all newly enabled transitions

Formally, the extended state class graph can be written as the following transition system:

∆′(T) = (Cext, C0,→ext) defined by:

– Cext = NP × RT × 2X × (2T)X , X being the set of all clocks,

– C0 = (M0, D0, χ0, trans0), where M0 is the initial marking, D0 = {α(ti) ≤ θi ≤ β(ti)| ti ∈

enabled(M0)}, χ0 = {x0} and trans0 = (x0, enabled(M0))

– →ext∈ Cext × T × Cext is the transition relation defined by:

(M,D,χ, trans)
t
→

ext

(M ′, D′, χ′, trans′) iff

t is firable from (M,D),

M ′ = M − •t+ t•,

D′ = next(D, t),

let DC be the set of clocks whose transitions have all been disabled,

i.e. DC = {x ∈ χ, trans(x) − disabled(M, t) = ∅},

if ↑ enabled(M, t) = ∅, then χ′ = χ−DC

and ∀x ∈ χ′, trans′(x) = trans(x) − disabled(M, t),

else

if ∃xj ∈ χ s.t. xj = 0, then χ′ = χ−DC,

∀x ∈ χ′ − {xj}, trans′(x) = trans(x) − disabled(M, t),

trans′(xj) = trans(xj)∪ ↑ enabled(M, t)− disabled(M, t),

else

i = min {k ∈ N|xk 6∈ χ−DC}, χ′ = χ−DC ∪ {xi},

∀x ∈ χ′ − {xi}, trans′(x) = trans(x) − disabled(M, t),

trans′(xi) =↑ enabled(M, t),

In order to compute the extended state class graph we define a convergence criterion as an

equivalence relation between extended state classes:

Definition 9 (Clock-similarity). Two extended state classes C = (M,D,χ, trans) and C′ =

(M ′, D′, χ′, trans′) are clock-similar, and we denote it by C ≈ C′, iff they have the same markings,

the same number of clocks and their clocks are mapped to the same transitions:

C ≈ C′ ⇔

M = M ′,

|χ| = |χ′|,

∀x ∈ χ, ∃x′ ∈ χ′, trans(x) = trans′(x′).

We can notice that a straight extension of the equivalence relation between state classes of

(Berthomieu and Diaz 1991) would have been clock-similarity and equality of the firing domains.

However, the additional information in the extended state classes makes it possible to use such a

less restrictive relation for the state class timed automaton.

State class timed automaton. Given the extended state class graph, we can now define the

state class timed automaton ∆(T):

Definition 10 (State Class Timed Automaton). The state class timed automaton ∆(T) =

(L, l0, X,A,E, Inv) is defined from the extended state class graph by:

– L the set of locations is the set of the extended state classes Cext,

– l0 is the initial state class (M0, D0, χ0, trans0),

– X =
⋃

(M,D,χ,trans)∈Cext χ

– A = T is the set of transitions

– E is the set of edges defined as follows,

∀t ∈ T, ∀Ci = (Mi, Di, χi, transi), Cj = (Mj , Dj , χj, transj) ∈ C
ext,

∃Ci
t
−→

ext

Cj ⇔ ∃(Ci, δ, t, R, ρ, Cj) s.t.

δ = (trans−1
i (t) ≥ α(t)),

R = trans−1
j (↑ enabled(Mi, t)),

∀x ∈ χi, x
′ ∈ χj ,

s.t. transi(x) = transj(x
′)

and x′ 6∈ R, ρ(x) = x′

– ∀Ci ∈ Cext, Inv(li) =
∧

x∈χi,t∈transi(x)(x ≤ β(t)).

Algorithm. Computing the transition system ∆′(T) is done by a classical breadth-first graph

generation algorithm and its computation as well as that of ∆(T) are done simultaneously. More

precisely, each time a new extended state class C′ is computed, we check if it is clock-similar to

a previously computed one C. If not, we create a new location associated with C′, otherwise we

simply create an edge from the parent location of C′ to the location C. In the latter case, we also

need to check if C′ is included in C, according to definition 11:

Definition 11 (Inclusion between two extended state classes). An extended state class

C′ = (M ′, D′, χ′, trans′) is included in an extended state class C = (M,D,χ, trans) iff C and C′

are clock-similar and JD′K ⊂ JDK. This is denoted by C′ ⊂ C.

If C′ ⊂ C, then we do not need to compute further on that branch. If C′ 6⊂ C, the domain D of

C becomes D∪D′, D′ being the firing domain of C′, and we compute the successors corresponding

to the firable transitions in C′.

One can notice that when making a loop (i.e. inclusion or mere clock-similarity) a renaming

might be done in the automaton on the created edge. This is not accepted by all model-checkers,

but Kronos, for instance, allows it.

When the union D∪D′ is made, this does not introduce any unwanted behaviors since invari-

ants and guards are given syntactically from the net itself. Clock-similarity ensures that merged

locations are coherent with respect to this syntactical definition.

This is illustrated by the net in Figure 3a and its state class timed automaton given in Figure 3b.

When making the loop C2
t2→ C1 we do add a new potential behavior from location C1, namely

C1
t3→ C3. However, in the final automaton, starting from the initial location, the corresponding

guard will not be true until we have fired t1 and t2.

p0

p1

p2

p3

t0 [1, 1]

t1 [2, 2]t2 [2, 2]

t3 [5, 5]

C0

C1

C2

C3

C4

x0 ≥ 1,
t0,

x1 := 0

x1 ≥ 2,
t1,

x1 := 0

x1 ≥ 2, t2,
x1 := 0

x0 ≥ 5,
t3,

x0 := 0

x1 ≥ 2,
t1,

x0 := 0

x0 ≥ 2,
t2,

x1 := 0

• • x0 ≤ 1

x0 ≤ 5
∧x1 ≤ 2

x0 ≤ 5
∧x1 ≤ 2

x1 ≤ 2

x0 ≤ 2

Fig. 3. Looping with domain union

Example. Another example of a TPN and the corresponding state class TA is shown in Figure

4. For a better comprehension of this example, we also provide the TA as it would have been

obtained with one clock per transition of the TPN in figure 5.

Bisimulation. We define a bisimulation between the TPN T and its state class TA ∆(T). That

proves that the timed language accepted by T is the same as the timed language accepted by

∆(T), which allows us to check TCTL properties on T . First we give the definition of bisimulation

relations.

Definition 12 (Bisimulation). Let S1 = (S1, s
0
1,→1) and S2 = (S2, s

0
2,→2) be two transition

systems on the same alphabet A. Let R ∈ S1 × S2 be a binary relation on the sets of states of the

two systems.

R is a bisimulation iff ∀(s1, s2) ∈ S1 × S2 s.t. s1Rs2, ∀a ∈ A,

∃s′1 ∈ S1 s.t. s1
a
→1 s

′
1 ⇒ ∃s

′
2 ∈ S2 s.t. s2

a
→2 s

′
2 and s′1Rs

′
2,

∃s′2 ∈ S2 s.t. s2
a
→2 s

′
2 ⇒ ∃s

′
1 ∈ S1 s.t. s1

a
→1 s

′
1 and s′1Rs

′
2

Two transition systems S1 = (S1, s
0
1,→1) and S2 = (S2, s

0
2,→2) are said bisimilar if there

exists a bisimulation R in S1 × S2 such that s01Rs
0
2.

Theorem 1 (Bisimulation). Let QT be the set of states of the TPN T and QA the set of states

of the state class timed automaton A = (L, l0, X,A,E, Inv). Let R ⊂ QT × QA be the binary

relation such that ∀s = (MT , νT) ∈ QT , ∀a = (l, νA) ∈ QA, sRa ⇔ MT = MA if MA is the

marking associated with l and ∀t ∈ enabled(M), ∃x ∈ X, νT (t) = νA(x).

R is a bisimulation.

P1 P2

P3 P4

Psem

T1 [1, 2]

T2 [0, 1]

semV [4, 5]

semP [3, 4]

•

•

C0

C1

C2

C3

C4

x0 ≥ 4, semV, x0 := 0

x0 ≥ 1, T1, x1 := 0

x0 ≥ 3, semP,x0 := 0

x1 ≥ 4, semV,x1 := 0

x0 ≥ 0, T2, x0 := x1

x0 ≥ 0, T2, x0 := x1

C0

C1

C2

C3

C5C4

semV

T1

semP

T2

semV

semV
T2

{P1, P3}

{P2, P3, Psem}

{P1, P3, Psem}

{P1, P4}

{P1, P3}{P2, Psem, P4}

x0 ≤ 5

x0 ≤ 2

x0 ≤ 4 ∧ x1 ≤ 5

x0 ≤ 1 ∧ x1 ≤ 5

x0 ≤ 1 ∧ x1 ≤ 2

(a) (c)(b)

Fig. 4. Two cyclic tasks synchronized via a semaphore: TPN model (a), its state class graph (b) and its

state class timed automaton (c)

The proof for theorem 1 is given in Appendix A.

Finiteness of the state class timed automaton. Berthomieu and Diaz have shown that a

TPN has a finite number of state classes if and only if it is bounded, provided that the α and β

functions are rational (Berthomieu and Diaz 1991). The proof, that relies only on markings and

firing domains, is fully applicable to extended state classes and the following theorem holds:

Theorem 2. A TPN has a finite number of extended state classes if and only if it is bounded and

the earliest and latest firing times of transitions are rationals.

Boundedness of TPN is undecidable, though. Nonetheless we can check off-line the following

sufficient condition for the boundedness of the TPN (Berthomieu and Diaz 1991).

Theorem 3. A TPN is bounded if the underlying Petri net is bounded.

However, in most cases, the previous sufficient condition is too restrictive, i.e. it is not verified

while the TPN is actually bounded. That is why we perform some on-line checking of unbounded-

ness necessary conditions, in order to stop the computation if we assume that the state class TA

will not be finite. Again, theorem 4 is a straight extension of that of (Berthomieu and Diaz 1991).

C0

C1

C2

C3

C4

xsemV ≥ 4, semV,x1 := 0, xsemP := 0

x1 ≥ 1, T1, xsemV := 0

xsemP ≥ 3, semP, x2 := 0

xsemV ≥ 4, semV,x1 := 0

x2 ≥ 0, T2

x2 ≥ 0, T2, xsemP

xsemV ≤ 5

x1 ≤ 2 ∧ xsemP ≤ 4

xsemP ≤ 4 ∧ xsemV ≤ 5

x2 ≤ 1 ∧ xsemV ≤ 5

x2 ≤ 1 ∧ x1 ≤ 2

Fig. 5. TA with one clock per transition of the TPN

Theorem 4. A TPN is bounded if there does not exist a pair of extended state classes C =

(M,D,χ, trans) and C′ = (M ′, D′, χ′, trans′), reachable from the initial extended state class,

such that

1. C′ is reachable from C

2. M ′ > M

3. JD′K = JDK

4. ∀p ∈ {p ∈ P,M ′(p) > M(p)},M(p) > maxt∈T
•t(p)

With only conditions 1 and 2 we already have a necessary condition of unboundedness. With

condition 3, that necessary condition becomes stronger and as we add condition 4, the bounded

TPN with a pair of classes verifying those four conditions should be very rare. However, the cost

of computing conditions 3 and 4 is not to be neglected.

3.3 Number of clocks of the state class timed automaton

The number of clocks of a TA is an important factor for the efficiency of verification algorithms.

In the following, we will present and prove several properties on the number of clocks of the state

class TA.

In order to generate as few clocks as possible, two things are taken into account in our method.

First, when transitions are simultaneously enabled, their valuations are equal on every run through

which they remain continuously enabled: Let us consider k transitions t1, . . . , tk enabled at the

same time τ0. For all i ≤ k, we have ν(ti)(τ0) = 0. Since time passes at the same rate for all

transitions, all valuations remain equal while none of these k transition is fired. When one of

them is fired, the common value does not represent its valuation anymore but still does for the

remaining k − 1 transitions, and so on until all the transitions are fired. Therefore we need only

one of these valuations for representing those of the k simultaneously enabled transitions. More

precisely, the valuation must be the one of the transition which fires the latest. Second, the unused

clocks are reused when in need of a new clock for newly enabled transitions. The policy we have

chosen consists in choosing the first unused clock i.e. the one with the smallest index.

We will now give several results concerning the number of clocks of the state class timed

automaton. First, the following theorem comes straightforwardly:

Theorem 5 (Upper bound for the number of clocks). Let T be a time Petri net and let

∆(T) be its state class timed automaton. ∆(T) has a number of clocks lower or equal to the

maximum number of transitions enabled by the reachable markings of T .

For further properties we need some additional definitions.

If δ is the guard of an edge of the automaton, op(δ) ⊂ X is the set of clocks constrained by δ.

Similarly, for a location l, op(Inv(l)) ⊂ X is the set of clocks constrained by Inv(l).

Let l be a location of a TA, clk(l) denotes the set of clocks that appear either in the invariant of

l or in the guard of one of the outgoing edges of l: clk(s) = {x ∈ X |x ∈ op(Inv(l))∨∃(l, δ, α,R, l′) ∈

E, x ∈ op(δ)}.

Let us now recall the definition of activity of Daws and Yovine:

Definition 13 (Active clocks). In a location l ∈ L, the set of active clocks act(l) is given by

the least fixed point of the equation:

act(l) = clk(l)
⋃

(l,δ,α,R,ρ,l′)

ρ−1(act(l′))

According to that definition, the automaton has no inactive clocks since in each location, all

the used clocks appear in the invariant, or in a guard in a “reachable” location. Another point is

that we have no equal clocks.

Theorem 6. There is no location l of the state class timed automaton in which two clocks x, y

used in l (x, y ∈ clk(l)) are equal

This is sufficient to say that applying the method of (Daws and Yovine 1996) on the state class

timed automaton will not reduce its number of clocks.

Let us now define the notion of orthogonality of two clocks.

Definition 14 (Orthogonality of two clocks). x and y are two orthogonal clocks, denoted by

x ⊥ y iff 6 ∃l ∈ L s.t. x ∈ clk(l) ∧ y ∈ clk(l)

For our TA, it is clear that orthogonal clocks could be renamed to an unique clock name, thus

reducing the total number of clocks by one. However, the following theorem holds:

Theorem 7. There are no orthogonal clocks in the state class timed automaton.

The proofs for theorems 6 and 7 are given in Appendix A.

4 Experimental results

We have implemented the building of the state class timed automaton in a tool named Romeo

(Lime and Roux 2004) that consists of a graphical user interface written in TCL/Tk and a com-

putation module, Gpn, written in C++. The input format is a XML TPN description and the

computed timed automaton is given in Uppaal or Kronos input format.

The first table (Table 1) compares the efficiency, in terms of number of clocks, of (Bornot

et al. 1998, Sifakis and Yovine 1996, Sava 2001) and Romeo. Contrary to our method, no tool

implementing the first two methods are available to our knowledge. This is not a problem since,

for these methods, the number of clocks is given by the theory. For the method described in

(Sava 2001), Sava proposes no implementation and a few theoretical points are unclear, so we

used the solutions and the implementation of (Gardey et al. 2005).

The examples we used for testing include modeling of cyclic and periodic synchronized tasks

such as producers-consumers models, or the alternate bit protocol as modeled in (Berthomieu and

Diaz 1991). The number of places and transitions are not given since they are not really relevant

for what concerns the difficulty of analysis of TPN.

The figures given in the first column are obtained by the method of (Bornot et al. 1998).

They correspond to one clock for each input arc of each transition. The translation of (Sifakis and

Yovine 1996) gives one clock per place of the TPN. However, the model they consider is not TPN

so we had to extrapolate these figures, which are given in the second column.

These first two methods are limited to 1-safe TPN. That is why some figures are missing in

the first two colums (NA meaning “not available”); it corresponds to examples for which the

underlying Petri net is unbounded. The algorithm of (Sava 2001) has no such restriction and gives

one clock per transition (column 3).

Those three algorithms are not very efficient with regard to the number of clocks they generate.

So, we have applied the off-line clock reduction algorithms of (Daws and Yovine 1996) on the results

BST98 SY96 Sav01 Sav01 + DY96 Romeo

Example 1 NA NA 12 8 6

Example 2 13 12 10 3 3

Example 3 14 14 14 2 2

Example 4 24 24 22 2 2

Example 5 31 29 23 3 2

Example 6 10 5 10 1 1

Example 7 NA NA 20 11 7

Example 8 NA NA 21 11 7

Example 9 NA NA 15 3 3

Example 10 20 31 13 3 3

Example 11 12 20 9 4 4

Example 12 16 12 13 4 4

Example 13 20 16 17 4 4

Example 14 16 20 16 4 4

Example 15 NA NA 31 4 2

Example 16 NA NA 17 8 2

Example 17 NA NA 13 9 4

Example 18 NA NA 14 10 4

Example 19 NA NA 20 13 3

Example 20 NA NA 16 2 2
Table 1. Number of clocks

of the algorithm of Sava, as proposed in (Gardey et al. 2005). The reduction obtained is very good

(column 4). However, the average performance of our method given in the last column, is still

quite better than these results on our set of examples. Moreover, the number of clocks is always

smaller than (or equal) for all the other methods.

The second table (Table 2) shows the size reduction of the state class timed automaton com-

pared to the state class graph. The average reduction is quite important, while the additional

computing cost is fairly low (while not precisely quantified yet, we believe it to be linear in the

number of added clocks). Actually, thanks to the size reduction, the computing time of the TA is

more often than not smaller than for the graph.

Figure 6 shows a simple example, which we will use to illustrate the advantages of our method.

Note that the underlying Petri net is unbounded so (Sifakis and Yovine 1996) and (Bornot et

al. 1998) cannot be applied to it. The result of (Sava 2001) is given in Figure 7a. Figure 7b shows

the result of (Sava 2001) plus (Daws and Yovine 1996). Finally, we give our corresponding extended

state class graph and state class timed automaton in Figure 8a and Figure 8b respectively. We

can see that our method yields a TA with the same underlying structure as the with the method

of Sava. However, the number of clocks is lower, even more than what is obtained by applying the

reduction algorithms of Daws and Yovine.

p1

p2

p3

p4

t1 [10, 10] t2 [0, 0] t3 [2, 4]

• •

Fig. 6. A periodic producer and a cyclic consumer

l1

l2

l3

x1 ≥ 2, t3

x2 ≥ 10, t1,
x3 := 0

x3 ≤ 0, t2,
x1 := 0,
x2 := 0

x1 ≤ 4 ∧ x2 ≤ 10

x2 ≤ 10

x3 ≤ 0

(a)

l1

l2

l3

x1 ≥ 2, t3,
x1 := x2,

x2 := 0

x1 = 10, t1,
x1 := 0,
x2 := 0

x1 = 0, t2,
x2 := x1,

x1 := 0

x1 ≤ 4 ∧ x2 ≤ 10

x1 ≤ 10

x1 = 0

(b)

Fig. 7. Automaton produced by [Sav01] (a) plus [DY96] (b) for the net of Figure 6

C1

C2

C3

t3

t1

t2

x0 : t1, t3

x0 : t1

x0 : t2

(a)

l1

l2

l3

x0 ≥ 2, t3

x0 ≥ 10, t1,
x0 := 0

x0 ≤ 0, t2

x0 ≤ 4

x0 ≤ 10

x0 ≤ 0

(b)

Fig. 8. Extended state class graph (a) and automaton (b) produced by Romeo for the net of Figure 6

Locations (TA) Transitions (TA) Nodes (Graph) Transitions (Graph)

Example 1 123 258 355 661

Example 2 33 47 59 79

Example 3 16 16 16 16

Example 4 23 24 23 24

Example 5 48 69 159 206

Example 6 5 10 5 10

Example 7 1169 4089 14418 46079

Example 8 1294 4358 13557 41249

Example 9 58 135 252 548

Example 10 39 68 126 222

Example 11 50 123 138 330

Example 12 131 351 4256 8977

Example 13 355 878 24401 50876

Example 14 1048 3002 22016 60967

Example 15 1088 5245 1098 5260

Example 16 76 199 200 353

Example 17 735 2263 1403 3508

Example 18 1871 6322 2831 8386

Example 19 11490 50168 14086 56929

Example 20 14 20 16 22
Table 2. Number of locations and transitions

5 TCTL Model-Checking for TPN

Thanks to the state class timed automaton we can do efficient model-checking on a TPN with

Kronos or Uppaal, for instance. The properties expressed on the TPN are translated an verified

on its associated state class TA. This is possible because of the bisimulation between the TPN

and its state class timed automaton and it is efficient thanks to the low number of clocks of the

latter.

Since TCTL model-checking is decidable on TA, the bisimulation also allows us to say that

TCTL model-checking is decidable on bounded TPN.

We first give a definition of TCTL for TPN. The only difference with the versions of (Alur et

al. 1993, Henzinger et al. 1994) is that the atomic propositions usually associated to states are

properties of markings.

5.1 TCTL for TPN

A run in a TPN T is a path in its state-space along a sequence of firable transitions and starting

at any state q. The set of runs of T is denoted by JT K.

Definition 15 (TCTL for TPN). Let T = (P, T, •(.), (.)
•
,M0, (α, β)) be a TPN with P =

{p1, · · · , pm} and T = {t1, · · · , tn}. The temporal logics TPN-TCTL is inductively defined by:

TPN-TCTL ::= M(pi) ⊲⊳ V | ti − tj ≤ d |Mi −Mj ≤ d | false | ¬ϕ |ϕ→ ψ |ϕ∃U⊲⊳c ψ |ϕ∀U⊲⊳c ψ

where M and false are keywords, ti, tj ∈ T , Mi,Mj ∈ Np, ϕ, ψ ∈ TPN-TCTL, pi ∈ P , c, d, V ∈ N

and ⊲⊳∈ {<,≤,=, >,≥}. �

Intuitively, M(pi) ⊲⊳ V means that the current marking of the place pi is in relation ⊲⊳ with

V . ti − tj ≤ d means that from the current state, for any firing of tj there is less than d time

units since the last firing of ti. Similarly Mi −Mj ≤ d means that from the current state, when

entering marking Mj less than d time units has elapsed since we have last entered in marking Mi.

The meaning of the other operators is the usual one. We use the usual shorthands true = ¬false,

∃♦⊲⊳cφ = true ∃U⊲⊳c φ and ∀�⊲⊳c = ¬∃♦⊲⊳c¬φ.

The semantics of TPN-TCTL is defined on TTS. Let T = (P, T, •(.), (.)
•
,M0, α, β) be a TPN

and ST = (Q, q0,→) the semantics of T . The truth value of a formula ϕ of TPN-TCTL for a state

(M, ν) is given on Table 3.

(M,ν) |= M(pi) ⊲⊳ V iff M(pi) ⊲⊳ V

(M,ν) |= ti − tj ≤ d iff ∀σ = (s0, ν0)
a1, d1

−−−−−−→ (s1, ν1) · · ·
an, dn

−−−−−−−→ (sn, νn) ∈[[T]]
s.t. (s0, ν0) = (M,ν),

∀k, l ∈ [1..n], s.t.

ak = ti, al = tj , k < l,

∀m,k < m < l, am 6= ti,
Pn=l

n=k+1
dn ≤ d

(M,ν) |= Mi −Mj ≤ d iff ∀σ = (s0, ν0)
a1, d1

−−−−−−→ (s1, ν1) · · ·
an, dn

−−−−−−−→ (sn, νn) ∈[[T]]
s.t. (s0, ν0) = (M,ν),

∀k, l ∈ [1..n] s.t.

sk = Mi, sl = Mj , k < l,

∀m, k < m < l, sm 6= Mi,
Pn=l

n=k+1
dn ≤ d

(M,ν) 6|= false

(M,ν) |= ¬ϕ iff (M,ν) 6|= ϕ

(M,ν) |= ϕ → ψ iff (M,ν) |= ϕ implies (M,ν) |= ψ

(M,ν) |= ϕ ∃U⊲⊳c ψ iff ∃σ = (s0, ν0)
a1, d1

−−−−−−→ (s1, ν1) · · ·
an, dn

−−−−−−−→ (sn, νn) ∈[[T]]

s.t.

8

>

<

>

:

(s0, ν0) = (M,ν)

∀i ∈ [1..n], ∀d ∈ [0, di), (si, νi + d) |= ϕ and
`
Pn

i=1
di

´

⊲⊳ c and (sn, vn) |= ψ

(M,ν) |= ϕ ∀U⊲⊳c ψ iff ∀σ = (s0, ν0)
a1, d1

−−−−−−→ (s1, ν1) · · ·
an, dn

−−−−−−−→ (sn, νn) ∈[[T]]
s.t. (s0, ν0) = (M,ν),
∀i ∈ [1..n], ∀d ∈ [0, di), (si, νi + d) |= ϕ and

`
Pn

i=1
di

´

⊲⊳ c and (sn, vn) |= ψ

Table 3. Semantics of TPN-TCTL

The TPN T satisfies the formula ϕ of TPN-TCTL, which is denoted, T |= ϕ iff the initial state

of ST satisfies ϕ i.e. (M0, ν0) |= ϕ.

5.2 Model-Checking for TPN-TCTL

For all properties, except the second, ti − tj ≤ d, and third, Mi −Mj ≤ d, the formula on the

TPN is straightforwardly translated on the state class TA:

Let (M, ν) be a state of ST and ∆((M, ν)) the equivalent state of S∆(T).

Let ϕ be a formula to be model-checked on a TPN T . Our method consists of using the state

class timed automata ∆(T) defined in section 3.

Since T and ∆(T) are timed bisimilar, ∀ϕ ∈ TPN-TCTL−{ti−tj ≤ d,Mi−Mj ≤ d}, (M, ν) |=

ϕ⇔ ∆((M, ν)) |= ϕ.

Practically speaking, with Uppaal for instance, the marking is an array of integers M . The

automaton updates M so that M [i] is the number of tokens in the place pi of the net. For instance,

we might want to check T |= ∀�≤3(M(p1) ≥ 1∧M(p2) ≤ 2). It means that all the states reached

within the next 3 time units will have a marking such that p1 has more than one token and p2

less than 2. This is equivalent to checking ∀�≤3(M [1] ≥ 1 ∧M [2] ≤ 2) on the state class timed

automaton.

For the ti − tj ≤ d and Mi −Mj ≤ d properties, we cannot use directly the clocks of the state

class TA to keep track of the firing times of transitions, since their values may be undefined when

transitions are not enabled, and also for the sake of generality. Indeed, while the automaton is

quite small, it is possible to understand the meaning of each of its clocks, but as we model real

systems with much more clocks it becomes tedious and a potential source of errors.

Instead, we propose a method that allows us to never look at the automaton. The idea is to

synchronize the state class automaton with observer automata, on the firing of transitions, or the

occurrence of markings, which gives us access to additional clocks specific to the property.

The synchronization between the state class TA and the observers uses the classical composition

notion based on a synchronization function à la Arnold-Nivat (Arnold 1994). Let H1, . . . , Hn be

n timed automata with Hi = (Ni, li,0, Ci, A, Ei, Invi). A synchronization function f is a partial

function from (A∪{•})n →֒ A where • is a special symbol used when an automaton is not involved

in a step of the global system. Note that f is a synchronization function with renaming. We denote

by (H1| . . . |Hn)f the parallel composition of the Hi’s w.r.t. f . The configurations of (H1| . . . |Hn)f

are pairs (l, v) with l = (l1, . . . , ln) ∈ N1 × . . . × Nn and v = v1 · · · vn with vi ∈ (R≥0)
Ci being

the restriction of v to Ci (we assume that all sets Ci of clocks are disjoint). Then the semantics

of a synchronized product ot timed automata is also a timed transition system formalized by the

following definition:

Definition 16 (Semantics of a Product of Timed Automata). Let H1, . . . , Hn be n timed

automata with Hi = (Ni, li,0, Ci, A,Ei, Invi), and f a (partial) synchronization function (A ∪

{•})n →֒ A. The semantics of (H1| . . . |Hn)f is a timed transition system S = (Q, q0,→) with

Q = N1 × . . .×Nn × (R≥0)
C , q0 is the initial state ((l1,0, . . . , ln,0), 0) and → is defined by:

– (l, v)
b

−−−→ (l′, v′) iff there exists (a1, . . . , an) ∈ (A ∪ {•})n s.t. f(a1, . . . , an) = b and for any i

we have:

. If ai = •, then l′i = li and v′i = vi,

. If ai ∈ A, then (li, vi)
ai−−−−→ (l′i, v

′
i).

– (l, v)
ǫ(t)

−−−−−→ (l, v′) iff ∀ i ∈ [1..n], we have (li, vi)
ǫ(t)

−−−−−→ (li, v
′
i) �

We could equivalently define the product of n timed automata syntactically, building a new

timed automaton (Larsen et al. 1995) from the n initial ones. In the sequel we consider a product

(H1| . . . |Hn)f to be a timed automaton the semantics of which is timed bisimilar to the semantics

of the product we have given in definition 16.

Properties on transition firing times. Practically speaking, if we want to refer to transition

t in our property we will synchronize our automaton with the one in Figure 9.

s0 s1
t?, x := 0

t?, x := 0

Fig. 9. Observer automaton for transition events

The observer (Figure 9) has two locations, two transitions and one clock. The transitions are

synchronized with the firing of transition t and the clock x is reset when it is taken. If the observer

is in location s′ then the transition t has been fired at least once.

The property ti−tj ≤ d of the TPN T is then verified by adding two observer automata Oi and

Oj providing respectively clocks xi and xj and then verifying the property si
1 ∧ s

j
1 ⇒ xi − xj ≤ d

on the product (∆(T)|Oi|Oj)f , with the synchronization function f with 3 parameters defined by:

– f(ti, ti?, •) = ti

– f(tj , •, tj?) = tj

Properties on marking occurrence times. Similarly, if we want to refer to the occurrence

of a marking M , we will synchronize with the automaton in Figure 10. Indeed, while firing of

transitions and occurrence of markings are strongly linked, it is far more convenient to refer to

the marking directly, than to the transitions whose firings have given that marking.

In order to synchronize on changes of markings, we also need a supervisor S (Figure 11). The

latter synchronizes with all the transitions of the TPN, thus detecting any potential change of

marking. It is then in a committed location which must be left before letting the time pass again.

As a consequence, the exit transition is taken, with a synchronization vector on all the marking

observers (Figure 10), actually forcing them to evaluate whether the current marking is matching

the one they look for or not. Those marking observers have the same structure as the transition

observers.

N0 N1

eval?,M = M ′, x := 0

eval?,M = M ′, x := 0

eval?,M 6= M ′eval?,M 6= M ′

Fig. 10. Observer automaton for marking events

s0 s1(C)

fire?

eval!

Fig. 11. Supervisor automaton for marking observers

However, synchronization vectors are not allowed in Uppaal, for instance, so we may need to

use a counter to synchronize with all the marking observers successively. As a consequence, strictly

speaking, synchronization does not occur simultaneously for all the marking observers, but with the

elapsing of zero time unit between each of them. That is why TCTL formulas involving markings

are required to be evaluated in states when the supervisor is in its initial location, which means

that all synchronizations have occurred.

The property Mi−Mj ≤ d of the TPN T is then verified by adding two observer automata Oi

and Oj providing respectively the clocks xi and xj and then verifying the property s0∧N i
1∧N

j
1 ⇒

xi − xj ≤ d on the product (∆(T)|S|Oi|Oj)f , with the synchronization function f with the

synchronization function f with 4 parameters defined by:

– ∀k ∈ [1..n], f(tk, f ire?, •, •) = tk

– f(•, eval!, eval?, eval?) = eval!

Property observers. For properties involving up to three clocks it may be interesting to use

one observer for each ti − tj ≤ d element of the property instead of one observer per transition

(or marking) involved. This observer has one location l0, one clock x and two loops on l0 reseting

x. One of the loop synchronizes on ti and the other on tj . This has the advantage of using only

one clock for this property element instead of two. However, if we want to check a property like

ti− tj ≤ d1 ∨ tj − tk ≤ d2 ∨ ti− tk ≤ d3 ∧ tk − ti ≤ d4 then this approach would require four clocks

and the “one observer per transition” approach only three.

5.3 Example

We consider the TPN T in Figure 4, section 3. Let us suppose that we want to check if the maximum

time during which the consumer task is blocked on the semaphore is less than 3 time units. That

is the maximum time between the firings of T2 and TsemP . The property may be expressed as

”T2 − TsemP ≤ 3” and thus we need the two observers O2 and OsemP in Figure 12, which give

us two new clocks x2 and xsemP . The TCTL property on the product (∆(T)|O2|OsemP)f to be

verified is then x2 − xsemP ≤ 3.

s20 s21
T2?, x2 := 0

T2?, x2 := 0

ssP
0 ssP

1

TsemP ?, xsemP := 0

TsemP ?, xsemP := 0

Fig. 12. Observers O2 and OsemP for transitions T2 and TsemP

We now propose some figures concerning the verification of a TCTL property on the state class

timed automaton with Kronos using a forward analysis. The property we verified has the form

propA ⇒ ∀♦≤30propB where propA and propB are propositions associated to locations and which

can be markings. Table 4 gives the results. The first column gives the number of locations of the

state class timed TA. Column 2 gives its number of transitions and column 3 its number of clocks.

We give the computation time for obtaining the state class timed automaton in the fourth column

and the time for verifying the property with Kronos in the last column. These tests have been

performed on a computer with an Intel Pentium II 400MHz processor and 320 Mo of RAM.

Locations (TA) Transitions (TA) Clocks Romeo time Kronos time

Example 4 23 24 2 0.08 ≤0.01

Example 5 48 69 2 0.11 0.04

Example 9 58 135 3 0.17 0.03

Example 12 131 351 4 0.76 0.96

Example 13 355 878 4 2.88 5.79

Example 14 1048 3002 4 6.72 12.05

Example 19 11490 50168 3 86.6 47.7
Table 4. Verifcation of a TCTL property

Of course, little can be generalized from these figures since the results are highly dependent on

the automaton and on the property that we check on it. However, they give an idea of the time

required for the verification.

6 Conclusion

In this paper, we have given a method for building the state class graph of a TPN as a timed

automaton. We have proved that the initial TPN and the TA obtained are timed-bisimilar. Fur-

thermore, the number of clocks of the automaton is lower or equal (in practice much lower) to the

number of transitions of the initial TPN and a fortiori much lower than other available methods.

The computation of the state class timed automaton preserves the properties of the state class

graph construction: Off-line sufficient condition of boundedness and on the fly necessary conditions

of unboundedness. The additional cost of our algorithm compared to the state class graph com-

putation is quite low, and the obtained TA is generally smaller (most of the time much smaller)

than the corresponding state class graph, so the TA is often faster to compute than the graph.

We have implemented the building of the state class timed automaton in a tool: Romeo.

The bisimulation between the TPN and its state class timed automaton allows us to say

that TCTL model-checking is decidable for bounded TPN. We have also shown a method for

verifying TCTL properties on the TPN, using the state class TA, thus properties are verified with

very efficient tools like Uppaal or Kronos. The low number of clocks allows to efficiently check

complex real-time properties. In addition, verification may still be performed in the same way as

for the state class graph, by adding observers to the net in order to monitor a transition firing

or the occurrence of a given marking. Since the TA is quite smaller than the corresponding state

class graph, this approach becomes more efficient.

Further work includes extension to multi-enabledness of transitions as defined by Berthomieu

(Berthomieu 2001), and tuning of the method to an extension of TPN, Scheduling-TPN (Roux

and Déplanche 2002), allowing the modeling of preemptive scheduling of real-time processes. The

method may also allow us to specify a real-time system as a mixed model of TPN and TA, and

then obtain a TA modeling the behavior of the whole system.

Acknowledgement. The authors want to thank Raymond Devillers for his useful comments

which have led to this updated version.

References

Abdulla, P. A. and A. Nylén (2001). Timed petri nets and bqos. In: 22nd International Conference on
Application and Theory of Petri Nets (ICATPN’01). Vol. 2075 of Lecture Notes in Computer Science.
Springer-Verlag. Newcastle upon Tyne, United Kingdom. pp. 53–72.

Alur, R., C. Courcoubetis and D. L. Dill (1993). Model-checking in dense real-time. Information and
Computation 104(1), 2–34.

Arnold, A. (1994). Finite Transition System. Prentice Hall.
Berthomieu, B. (2001). La méthode des classes d’états pour l’analyse des réseaux temporels. In: 3e congrès

Modlisation des Systèmes Réactifs (MSR’2001). Hermes. Toulouse, France. pp. 275–290.
Berthomieu, B. and F. Vernadat (2003). State class constructions for branching analysis of time Petri

nets. In: 9th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’2003). Springer–Verlag. pp. 442–457.

Berthomieu, B. and M. Diaz (1991). Modeling and verification of time dependent systems using time petri
nets. IEEE transactions on software engineering 17(3), 259–273.

Bornot, S., J. Sifakis and S. Tripakis (1998). Modeling urgency in timed systems. Lecture Notes in Com-
puter Science 1536, 103–129.

Bowden, F. D. J. (1996). Modelling time in petri nets. In: 2nd Australia-Japan Workshop on Stochastic
Models in Engineering, Technology and Management. Gold Coast, Australia.

Dantzig, G. B. (1963). Linear programming and extensions. IEICE Transactions on Information and
Systems.

Daws, C. and S. Yovine (1996). Reducing the number of clock variables of timed automata. In: 1996 IEEE
Real-Time Systems Symposium (RTSS’96). IEEE Computer Society Press. Washington, DC, USA.
pp. 73–81.

de Frutos Escrig, D., V. Valero Ruiz and O. Marroqúın Alonso (2000). Decidability of properties of
timed-arc petri nets. In: 21st International Conference on Application and Theory of Petri Nets
(ICATPN’00). Vol. 1825 of Lecture Notes in Computer Science. Springer-Verlag. Aarhus, Denmark.
pp. 187–206.

Delfieu, D., P. Molinaro and O. H. Roux (2000). Analyzing temporal constraints with binary decision
diagrams. In: 25th IFAC Workshop on Real-Time Programming (WRTP’00). Palma, Spain. pp. 131–
136.

Diaz, M. and P. Senac (1994). Time stream Petri nets: a model for timed multimedia information. Lecture
Notes in Computer Science 815, 219–238.

Gardey, G., O.H. Roux and O.F. Roux (2005). State space computation and analysis of time Petri nets.
Theory and Practice of Logic Programming (TPLP). Special Issue on Specification Analysis and Ver-
ification of Reactive Systems. to appear.

Henzinger, T. A., X. Nicollin, J. Sifakis and S. Yovine (1994). Symbolic model checking for real-time
systems. Information and Computation 111(2), 193–244.

Khansa, W., J.-P. Denat and S. Collart-Dutilleul (1996). P-Time Petri Nets for manufacturing systems.
In: International Workshop on Discrete Event Systems, WODES’96. Edinburgh (U.K.). pp. 94–102.

Larsen, K. G., P. Pettersson and W. Yi (1995). Model-checking for real-time systems. In: Fundamentals
of Computation Theory. pp. 62–88.

Larsen, K. G., P. Pettersson and W. Yi (1997). Uppaal in a nutshell. International Journal on Software
Tools for Technology Transfer 1(1–2), 134–152.

Lilius, J. (1999). Efficient state space search for time petri nets. In: MFCS Workshop on Concurrency ’98.
Vol. 18 of ENTCS. Elsevier.

Lime, D. and O. H. Roux (2004). http://www.irccyn.ec-nantes.fr/irccyn/d/fr/equipes/TempsReel/logs/software-
2-romeo.

Menasche, M. (1982). Analyse des réseaux de Petri temporisés et application aux systèmes distribués.
PhD thesis. Université Paul Sabatier. Toulouse, France.

Merlin, P. M. (1974). A study of the recoverability of computing systems. PhD thesis. Department of
Information and Computer Science. University of California, Irvine, CA.

Penczek, W. and A. Polrola (2004). Specification and model checking of temporal properties in time Petri
nets and timed automata. In: The 25th International Conference on Application and Theory of Petri
Nets, (ICATPN 2004). Vol. 3099 of Lecture Notes in Computer Science. Springer-Verlag. Bologna,
Italy.

Pezze, M. and M. Toung (1999). Time Petri nets: A primer introduction. Tutorial presented at the Multi-
Workshop on Formal Methods in Performance Evaluation and Applications, Zaragoza, Spain.

Popova, L. (1991). On time petri nets. Journal Information Processing and Cybernetics, EIK 27(4), 227–
244.

Ramchandani, C. (1974). Analysis of asynchronous concurrent systems by timed Petri nets. PhD thesis.
Massachusetts Institute of Technology. Cambridge, MA. Project MAC Report MAC-TR-120.

Roux, O. H. and A.-M. Déplanche (2002). A t-time petri net extension for real time-task scheduling
modeling. European Journal of Automation (JESA).

Sava, A. T. (2001). Sur la synthèse de la commande des systèmes à évènements discrets temporisés. PhD
thesis. Institut National polytechnique de Grenoble. Grenoble, France.

Sifakis, J. and S. Yovine (1996). Compositional specification of timed systems (extended abstract). In: 13th
Syposium on Theoretical Aspects of Computer Science. Springer-Verlag. Grenoble, France. pp. 347–
359.

Toussaint, J., F. Simonot-Lion and Jean-Pierre Thomesse (1997). Time constraint verifications methods
based time petri nets. In: 6th Workshop on Future Trends in Distributed Computing Systems (FT-
DCS’97). Tunis, Tunisia. pp. 262–267.

Vicario, E. (2001). Static analysis and dynamic steering of time-dependent systems. IEEE transactions on
software engineering 27(8), 728–748.

Yoneda, T. and H. Ryuba (1998). CTL model checking of time petri nets using geometric regions. IEICE
Transactions on Information and Systems E99-D(3), 297–396.

Yovine, S. (1997). Kronos: A verification tool for real-time systems. International Journal of Software
Tools for Technology Transfer 1(1–2), 123–133.

A Proofs of theorems

Theorem 1 (Bisimulation). Let QT be the set of states of the TPN T and QA the set of states

of the state class timed automaton A = (L, l0, X,A,E, Inv). Let R ⊂ QT ×QA be a relation such

that ∀s = (M, νT) ∈ QT , ∀a = (l, νA) ∈ QA, sRa ⇔ MT = MA if MA is the marking associated

with l and ∀t ∈ enabled(M), ∃x ∈ X, νT (t) = νA(x).

R is a bisimulation.

Proof. Let us consider a state s = (M, νT) ∈ QT , a state a = (l, νA) ∈ QA such that sRa and a

continuous transition s
δ
→ s′.

– Continous transitions

• For any δ such that s
δ
→ s′ is possible, a

δ
→ a′ is also possible. Indeed, s

δ
→ s′ is equivalent

to ∀t ∈ enabled(M), νT (t) + δ ≤ β(t). Since sRa, this can be written as ∀t ∈ enabled(M),

if x is such that t ∈ trans(x), νA(x) + δ ≤ β(t), which is equivalent to x satisfies Inv(l),

since Inv(l) = (∧x∈X(x ≤ mint′∈trans(x) β(t′))).

Since there is no change of marking, the enabled transitions remain the same in s′ as in s

and so do the associated clocks in a′: for all t ∈ enabled(M ′), if x was the associated clock

in a it is still in a′. Moreover, if a
δ
→ a′, then ν′A = νA + δ and if s

δ
→ s′, then ν′T = νT + δ.

As a consequence, ∀t ∈ enabled(M ′), ∃x ∈ X, ν′A(x) = ν′T (t). Hence, a′Rs′.

• The reasoning is the same when starting from a
δ
→ a′, we have then a bisimulation for the

continuous transitions.

– Discrete transitions

• Let us consider a discrete transition s
t
→ s′. Since sRa, the marking of s and a is the

same and so are the enabled transitions. In addition, if t is firable in a, then a′ an s′ will

obviously have the same marking M ′.

In order for t to be firable in a, the guard of the transition of the automaton must be

satisfied. t is firable in s, so νT (t) ≥ α(t). sRa implies that ∃x ∈ X, νT (t) = νA(x). So,

∃x ∈ X, νA(x) ≥ α(t). The guard of the transition being, by construction, νA(x) ≥ α(t),

it is obviously satisfied. As before, we have actually an equivalence here: t is firable in s

⇔ t is firable in a.

Now, let us consider an enabled transition t′ of s′. Two cases can occur:

∗ t′ is not newly enabled in s′, which implies that t′ was enabled in s. Then, as sRa,

∃x ∈ X, νA(x) = νT (t′). Since there is still at least an enabled transition in trans(x)

in s′, the clock still exists in a′ and since no time has elapsed, that relation is still true

in s′: ν′A(x) = ν′T (t′).

∗ t′ is newly enabled in s′. So, by construction, a new clock x has been created in a′ and

its valuation is null. We have then νA(x) = νT (t′) = 0.

We have shown that s′ and a′ have the same marking and ∀t′ ∈ enabled(M ′), ∃x ∈

X, ν′T (t′) = ν′A(x) i.e. s′Ra′.

• It is straightforward with the same reasoning, to show that if we have a
t
→ a′, then s

t
→ s′

leads to a state s′ such that s′Ra′, hence the bisimulation for discrete transitions.

⊓⊔

Theorem 6. There are no location l of the state class timed automaton in which two clocks x, y

used in l (x, y ∈ clk(l)) are equal

Proof. This will be shown inductively on the automaton. First, the initial state has only one clock,

so there is nothing to prove there.

Then, when we generate a new state. If we have two equal clocks xi and xj , then there is some

previous state when xi, for instance, was created. In that state we had ν(xi) = 0 and the time

being the same for all clocks, ν(xj) = 0. But a new clock will not be created if there already exists

a clock equal to 0. As a consequence, this cannot happen. ⊓⊔

Theorem 7. There are no orthogonal clocks in the state class timed automaton.

Proof. Let x0, . . . , xn be the clocks of the state class timed automaton. When xn was created,

all the indexes lower than n where used since the new index is chosen as the smallest available

one. As a consequence, all of the clocks appear in the same class and none of their pairs can be

orthogonal. ⊓⊔

Notes

∗ This is an updated version of the paper originally published in Journal of Discrete Event Dynamic

Systems (jDEDS), 16(2):179-205, 2006.

Affiliation of authors: IRCCyN (Institut de Recherche en Communication et Cybernétique de Nantes)

1, rue de la Noë B.P. 92101 F-44321 NANTES cedex 3 (France).

{Didier.Lime | Olivier-h.Roux}@irccyn.ec-nantes.fr

