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Abstract. The automatic detection of the vibration signature of rotat-
ing parts of an aircraft engine is considered. This paper introduces an
algorithm that takes into account the variation over time of the level of
detection of orders, i.e. vibrations ate multiples of the rotating speed.
The detection level over time at a specific order are gathered in a so-
called trajectory. It is shown that clustering the trajectories to classify
them into detected and non-detected orders improves the robustness to
noise and other external conditions, compared to a traditional statistical
signal detection by an hypothesis test. The algorithms are illustrated in
real aircraft engine data.

1 Introduction

We tackle the issue of monitoring the behavior of an aircraft engine from the
point of view of measured vibrations. Indeed, abnormal level or odd pattern of
vibrations may be the consequence of mechanical or sensor malfunction, both of
dramatic importance for engine manufacturers and airline operators.

More precisely this work focuses on the detection of the signature of specific
parts of a turbofan engine (the fans), whose vibration levels are modelled as
vibration trajectories, i.e. as the amount of vibration of a given fan with respect
to time. The trajectories are then clustered thanks to standard clustering al-
gorithms. The obtained clusters gather all trajectories that correspond to fans
whose vibratory signature is present in the data.

Section 2 gives a more thorough introduction to the problem. In Section 4
the algorithms are presented. Results are discussed in Section 5, while conclusion
and perspectives are sketched in Section 6.

2 Problem description

A turbofan whose structure is presented by Fig. 1 is considered. Air from the
outside enters an intake, then is successively compressed by the low-pressure (LP)



and high-pressure (HP) compressors. Compressed air passes to a combustion
chamber, where it is mixed with fuel and burnt. Both compressors are powered
by turbines located at the rear of the engine, which transmit their energy to the
compressors through two contra-rotating shafts, the low-pressure (LP) shaft and
the high-pressure (HP) shaft.

Although turbofan condition monitoring can be achieved in various ways, we
take the stand to focus on vibrations monitoring in this work. Two accelerom-
eters provide vibration measurements at a constant 51 kHz frequency. Since
compressors and turbines are fan-like components made of a varying number of
blades mounted on the shafts, it is expected that their motion entails vibrations
at frequencies which are multiples of shaft speeds. Although this is a strong sim-
plification of the overall vibratory behavior of a bladed disk mounted on a rotor
[1], it allows an efficient detection of malfunction and damages, given the low
quantity of available information (two vibration sensors). Vibration patterns cor-
responding to multiples of shaft speed are known as “orders” in the engineering
field.

Fig. 1. Turbofan engine. Simplified diagram of fan, low-pressure and high-pressure
compressors and turbines attached to their respective shafts.

Moreover, vibrations signals are usually processed not in the time-domain,
but in the frequency [2] or in the time-frequency domain [3, 15.6]. When the
rotation speed of the engine is constant, vibration signals can be considered as
stationary, and the classical Fourier transform is sufficient. However when the
rotation speed is varying, signals are non-stationary and the spectrogram or
more advanced time-frequency distributions might be of some help. Examples
of a Fourier transform and a spectrogram on a vibration signal are given in Fig.
2(a,b).
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Fig. 2. Vibration analysis of accelerometric data : (a) in the frequency domain with the
Discrete Fourier Transform; (b) in the time-frequency domain with the spectrogram;
(c) idealized signature of fan-like mechanical part in accelerometer data. An unknown
signature in the spectogram and an expected signature at 36 times the frequency of
LP shaft superpose .



In addition to accelerometers, the sensors give an approximation of both shaft
velocities. Since many mechanical parts of the engine rotate at a speed multiple
of these shafts speeds (compressors and turbines for example), we can anticipate
the position of their signature in the frequency or time-frequency domain, as
illustrated in Fig. 2(c) where an unknown signature in the spectrogram and an
expected signature superpose at a particular order.

As we can notice from Fig. 2(b), the signature is embedded in noise. For spe-
cific orders, it remains clearly visible whereas for others it vanishes. Furthermore,
there is a potentially large number of orders. For both reasons, order detection
is most of the time the task of an expert. Automatic detection would hence
accelerate the process, and relieve the expert of this daunting task.

Several difficulties arise when considering the issue of automatic detection of
orders in vibration data. First, as already mentioned, the signal is noisy. Second,
the magnitude of vibration of the orders is a function of the excitation. The latter
is a direct function of the shafts speeds. Indeed, the fans behave as mechanical
parts that are excited and resonate for specific frequencies only. Consequently,
if we examine a sufficiently long recording, the orders will appear with varying
magnitude along time. The frequency response of rotating machines is classically
summarized in Campbell diagrams where the experimentally4 measured vibra-
tion response spectrum appear as a function of the rotation speed of the shaft.
If we suppose that the underlying shaft rotation speed follows a regular enough
time pattern, then there should be some degree of continuity in the vibration
magnitude of the orders.

Fig. 3. Idealized diagram of trajectories clustering.

Admitting that signals are split into a finite number of windows for compu-
tational reasons, we propose to consider vibration magnitude trajectories, where
to each time window corresponds a robust measure of the vibration magnitude
at a given order, for a selected shaft. This needs to be done systematically since
we ignore whether a given order k of LP or HP shaft is visible for a specific
regime. At the end, a large number of trajectories will be available, which we

4 such diagrams can be drawn from analytical models as well, if the eigenfrequencies
can be computed.



propose to cluster thanks to dedicated algorithms in order to segregate those
who correspond to orders that are present in the data from those who do not.
This is summarized by Fig.3. The expected outcome of this algorithm is thus a
cluster of trajectories that correspond to what the expert would have singled-out
as orders that are actually present in the recordings.

Related works are given a quick review in Section 3, while a detailed presen-
tation of available data is given in Section 4.1. The proposed method is discussed
in Section 4.2. Canonical signal processing detection procedures in the case of
partially unknown sine wave are evoked in Section 4.3 for benchmarking pur-
poses.

3 Related work

This work addresses the problem of feature detection, where the features are the
vibration signatures of bladed disks that compose compressors and turbines of
an aircraft engine.

It is intended to be part of a Condition Based Monitoring (CBM) framework.
CBM for industrial machines has been attracting increasing attention over the
years in both academic and industrial areas. According to [4] it consists in four
main steps: data acquisition, feature extraction, feature selection, and decision-
making. The first two steps rely on mechanical modeling or rotor dynamics [5],
noise and vibration phenomena in rotating machines [6, 4] and data analysis [7].
The latter builds on the general tools and methods developped in signal pro-
cessing [8, 3], statistical signal estimation and detection [9–11], learning theory,
change detection [12], fault detection and isolation [13].

Aircraft CBM deals with many problems such as structural health monitor-
ing. It treats engine health monitoring (EHM) as a special case [14, 15]. As a
subtopic of EHM, vibrations monitoring in engines addresses the following is-
sues: rotor/stator contact [16], rotor unbalance, blade defects [17], bearing [18]
and gearings defects [19]. Another important topic is order tracking, i.e. the pre-
cise estimation of the frequency and amplitude of a periodic signal whose leading
frequency is varying in time. This may involve data resampling in the case of
rotating machines [20, 21], non-parametric time frequency methods such as the
Gabor transform [22] or parametric methods such as the Vold-Kalman filter [23,
24], that models the vibrating machine and use estimation tools to track the
frequencies and amplitudes of orders.

When features have been extracted, decisions can be made, such as change
(or novelty) detection. The decision concerning the health of the engine is either
taken from a statistical viewpoint [25, 12], or can derive from learning techniques
such as neural networks [26, 27].

In this work the aim is not to detect an anomaly, but a normal bladed disk
signal. Up to our knowledge, there is no example of such order detection in the
litterature. The case of novelty or abrupt change detection in engine have been
covered, as well as feature extraction for many particular mechanical parts, but
not for bladed disks in turbines and compressors. The works dedicated to these



parts aim at estimating their rotation speed, amplitude and phase, but not to
detect their presence. In the following we show that classical tools such as sine
wave detection and unsupervised clustering enable us to tackle this issue.

4 Methods and data

4.1 Data

The recordings under study were provided by the Health Monitoring Department
of SNECMA5 and correspond to a dual-shaft turbofan mounted on a testbench,
that undergoes a continuous acceleration during several minutes. They include
raw vibration outputs of an accelerometer sampled at 51kHz, as well as LP and
HP shaft angular velocity computed from raw keyphasor data and sampled at
6.25 Hz. Sample time series are plotted in Fig. 4.

(a) (b)

Fig. 4. (a) Raw accelerometric data; (b) LP shaft angular velocity in rpm.

4.2 Clustering contrast trajectories for order detection

First we give a precise meaning to what was termed “vibration magnitude tra-
jectory” in Section 2. Conforming to current practice in the field of vibration
monitoring for rotating machine, we choose a classical time-frequency represen-
tation, the Discrete Gabor Transform (DGT) [22], which is a special kind of
Discrete Short-Time Fourier Transform [8, 28]. The representation of a given
vibratory signal is a matrix, indexed in both time and frequency.

As stated earlier, we focus on the signature of “orders”, produced by the
bladed disks that compose the compressors and turbines. Their simplified sig-
nature in the time-frequency domain has been illustrated by Fig. 2(c). We write
G(t, ν) the complex-valued time-frequency transform at discrete time t and dis-
crete frequency ν. Since we know approximately the frequency of an order from

5 http://www.snecma.fr



the choice of an integer number (the order) and the estimation of the shaft speed,
we can build a region in the time-frequency plane in which we expect the order
signature to appear, if it is present in vibratory data. This operation is called
masking and is illustrated in Fig. 5(a).

Then, having focused on a specific order, we still need to compute a measure
of magnitude for that order. Several statistical preprocessing steps (computation
of the modulus, of the logarithm, then centering and scaling of the data) are
followed by a geometric flattening of the signature as shown in Fig. 5(b). We call
G′(t, ν) the resulting quantity. Finally the flattened signature is time-average,
then the contrast function is computed.

∀ν, G̃(ν) =
1

T

t2
∑

t=t1

G′(t, ν) (1)

ck(n) = max
ν

G̃(ν) − min
ν

G̃(ν) (2)

where k and n are respectively the order and the window indices, T is the length
of the time window, and t1 and t2 are respectively the start and end of that time
window.

(a) (b)

Fig. 5. (a) Order masking takes as its inputs the vibratory signal, a specific order
integer k and the shaft rotation speed N1 or N2. The expected main frequency is
fk,N1

, and the region that surrounds ths central frequency has a fixed user-defined
width ; (b) contrast.



Secondly, we describe the trajectory clustering algorithm announced in 2.
The previous masking step returns a contrast value for each order k in a user-
defined range [k1, k2], and for each window n ≤ N that divides the full vibration
recording. Hence for each order k we get an ordered set of scalar real-valued
contrasts Tk = {ck(1), . . . , ck(N)} indexed by the order k. This set T is what
we call a trajectory. We then propose to cluster it into a fixed number C = 3 of
clusters, with the k-means algorithm. The whole procedure is illustrated in Fig.
6.

Fig. 6. Clustering algorithm.

Clustering trajectories is a way to classify them into classes, corresponding
respectively to orders that are detected, not detected, and a possible intermedi-
ate, ambiguous classes. One could argue that if an order k is effectively present
in the recordings, any contrast ck(n) belonging to Tk should be high, allowing a
detection on each time window n. However, one has to take into account the fact
that the vibratory signals are extremely noisy. Splitting into windows is thus a
way to expect an improved detection robustness in some windows. Averaging
the detection hits over the windows could then improve the detection results,
compared to a single detection (over one window or the whole signal).

Still, this average would completely lose the temporal correlation between
orders. Indeed it is naturally expected that at some engine speeds (corresponding
to some of the windows), all or most of the orders will be hardly detected (either



because a large part of the engine will be less subject to vibrations, or because
the latter will be polluted by higher noise). It is therefore of primary importance
to take into account the longitudinal aspect of the detections at various orders,
i.e. the temporal correlation. This is the justification for the original use of
trajectories in this work.

In Section 4.3 we summarize classical results relevant to our problem in the
field of statistical signal detection, in order to assess the performance of the
proposed method.

4.3 Statistical signal detection method

From the point of view of classical statistical signal detection theory [9–11], the
problem formulated in Section 2 is an instance of the detection of a deterministic
sine wave in noise, with unknown parameters [9, 7.6.2]. Indeed, with the sim-
plifying hypotheses stated in Section 2, the compressor and turbine disk blades
whose signature is under study are seen as curves in the time-frequency plane,
i.e. as sine waves with slowly varying leading frequency. On time windows where
the frequency can be considered as constant, this sine wave can be parametrized
as follows:

s(i) = A cos(2πfi + φ) (3)

where A is the amplitude, i the time instant, f the frequency and φ the phase
difference. Apart from this wave the signal contains a vast amount of other deter-
ministic or random contributions which we call “noise” since they are irrelevant
to the purpose of detecting a given order of a specific shaft. The detection of the
sine wave in the noise is formalized as the following hypothesis test:

H0 : z20(i) = w(i) ∀i ∈ [0, I − 1]
H1 : z20(i) = w(i) + A cos(2πfi + φ) ∀i ∈ [0, I − 1]

where z20 is the accelerometric signal, w(i) is the noise term. It should be noted
that, while the frequency f is approximately known, the amplitude A and phase
difference φ are unknown to the observer. Under noise normality and indepen-
dence hypotheses that diserve further discussion, this hypothesis test is amenable
to analytic treatment under the Generalized Likelihood Ratio Test framework.
Since this material is standard, we merely state the corresponding results, which
are given proper development in classical textbooks (see for example [9, 7.6.2]) :

– the decision rule is written I(f0) ≷H1

H0
γ′, where the decision statistics is

I(f0), the value of the periodogram evaluated at target frequency f0 which
can be approximated by Discrete Fourier Transform. γ′ is the detection
threshold.

– the false alarm probability is α = exp
(

− γ′

σ2

)

, where σ is the standard

deviation of the noise, supposedly known. Usually α takes a fixed user-defined
value such as α = 1% so that the value of the detection threshold γ′ can be
easily derived.



– the performance of this test is quantified by the power π of the test, whose
analytic expression can be computed.

With these results, we can build a sine wave detector. Given a vibratory time
series and a few contextual parameters such as the noise variance, the detector
will accept or reject hypothesis H0 depending if the signal is composed of noise
or if an order is present in the signal. Note that several improvements over this
standard procedure should be made, because the estimated noise does not respect
exactly the white noise hypothesis. For example, the energy is not homogenous
in the frequency spectrum. Consequently we divide the frequency spectrum into
bins and perform the above detection separately in each bin. In Section 5 we
compare the results with those elicited by the clustering algorithm.

5 Results

We first illustrate the computation of the contrast function defined in Section 4.2.
The first steps depicted by Fig. 5 are the statistical and geometric preprocessing
steps. Fig.7(a) shows the resulting preprocessed time-frequency transforms for
six chosen orders of the HP shaft. Three orders (38,53,68) correspond to the
number of blades of three bladed disks belonging to the compressor, therefore
we expect the corresponding signatures to be present in vibration signals. Three
ordrers (20,90,100) were selected because no significant vibratory activity is ex-
pected. In Fig.7(a) thick lines appear clearly in the first three cases, whereas
no specific pattern except the background noise can be noticed in the last three
cases. Time averaged values of the time-frequency transforms are plotted in Fig.
7(b), as well as their peak value in Fig. 7(c). The latter clearly shows that peak
values are higher for orders 38, 53, 68 that correspond to actual mechanical
rotating parts.

Secondly we comment on the contrast trajectory clusters that are found out
by the clustering algorithm mentioned in Fig. 6. The number of clusters was set
to C = 3. Results are shown in Fig. 8(a). The first cluster gathers trajectories
with high mean value over the window range, that increases at the beginning,
decreases at the end, and experiences a sudden decrease at window index 6. In
the second one, trajectories are flat and have low mean value. The third cluster
mixes different types of trajectories that have an average intermediate value.
In first approximation, only the trajectories in cluster 1 are meaningful to the
detection task.

In order to assess the significance of results, we use prior mechanical infor-
mation. Indeed, the number of blades that compose the compressor and turbine
mounted on HP shaft is known. Because of many mechanical factors it is not
certain whether or not each bladed disk will have a noticeable vibratory activity,
but this information can be helpful for comparison purposes. In Fig. 8(b), we
plot the composition of the clusters obtained above (indices 1 and 3), and com-
pare it with the cluster built with prior information which is given cluster label
0. Lastly, clusters found by the statistical detection algorithm from Section 4.3
are labelled as cluster D. We see that between orders 35 to 80 many orders are



(a) (b)

(c)

Fig. 7. Contrasts of orders 38,53,68,20,90,100 of HP-shaft N2: (a) DGT after prepro-
cessing; (b) mean DGT along time axis; (c) contrasts.

shared by clusters 0 and 1. This is true also for clusters 0 and D. However, clus-
ters 2 and 3 show little similarity with cluster 0. This is coherent with our initial
expectation, stated at the end of Section 2. In addition we remark that many
low orders are detected in cluster D. This could be explained by the fact that
low frequencies bear more energy that higher ones, as evidenced in Fig. 2(b).
The clustering method is less prone to overweigthing such orders because of the
higher energy content in the low orders area. Lastly the fact that orders not
expected from mechanical knowledge appear both in clusters 1 and D suggest
that interesting information not provided by naive mechanical data was actually
discovered.

Lastly we confirm quantitatively these observations. Mutual information [29]
is used here to measure the similarity between clusters. Setting cluster 0 as
the default one, we compute the mutual information between the corresponding
column of the composition matrix displayed in Fig. 8(b) and the other columns.
What we expect is that self-information (i.e. the information between column 0
and itself) is high, while information between unrelated clusters such as 0 and 2
should be low. Moreover, mutual information between cluster pairs 0/1 and 0/D
should be between the self-information value, and the unrelated clusters value.
Indeed this is what we observe from Fig. 9, where the highest value corresponds
to cluster pairs 0/0, while cluster pair 0/1 and 0/D have high mutual information.
The negative value, which is theoretically meaningless, is a known limitation of
the estimation algorithm. Lastly, the mutual information for cluster pair 0/D is
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Fig. 8. Comparison of clustering and classical detection results for z20 vibratory data:
(a) contrast vectors clustered by k-means with C = 3 clusters; (b) composition matrix
for each cluster. Dark line with matrix coordinate i, j means that order i belongs to
cluster j. Column 0 represents orders for which fan signature is expected from mechan-
ical knowledge. Columns 1 to 3 are produced by the clustering algorithm. Column D
is output by the statistical signal detection algorithm.



lower than for cluster pair 0/1, which seems to indicate a higher performance of
the proposed algoritm.

Fig. 9. Mutual information between pairs of clusters.

The good results obtained by unsupervised clustering over signal-processing
algorithms are suprising at first mainly because additional knowledge is embed-
ded in the latter. Indeed, one needs to model the signal and the noise components
before deriving a decision algorithm. We suggest that the results of the signal
detection algorithm could be explained first by poor agreement between real
data and noise hypotheses. This should be examined in further experiments.

Nevertheless, it remains that in the clustering approach we take into account
the continuity of contrast values in time, which is a consequence of the continuity
of shafts rotation speeds as a function of time. This continuity remains unex-
ploited by the classical signal-detection algorithm, which iterates the decision
process over successive windows without relating them.

6 Conclusion and perspectives

In this work we have tackled the issue of order detection, i.e. the discovery
of vibration patterns in noisy aircraft engine vibration signals. We proposed a
contrast measure whose aim is to single out significant vibration patterns that
correspond to compressor and turbines mounted on the engine shafts. Then
a clustering algorithm is built, and compared to a statistical signal detection
procedure. We show with real data that the clustering method performs well,
and give quantitative measure of this performance. Future works will aim at :

– increasing the statistical significance by enlarging the database to several en-
gines, in both acceleration and deceleration situations. Theoretical properties
of the estimators of contrast, and of mutual information could be studied as
well.



– improving the signal detection algorithm, for example by considering exten-
sion to colored noise situation. In addition the continuity from one window
to the following could be used.

– merging the decisions from both methods.
– refining the clustering, mainly the interpretation of the intermediate cluster.
– assessing the continuity hypothesis and using it as prior for clustering, from

the knowledge of theoretical Campbell diagrams.
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