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This paper is devoted to the analysis of some uniqueness properties of a classical reaction-diffusion equation of Fisher-KPP type, coming from population dynamics in heterogeneous environments. We work in a one-dimensional interval (a, b) and we assume a nonlinear term of the form u (µ(x)γu) where µ belongs to a fixed subset of C 0 ([a, b]). We prove that the knowledge of u at t = 0 and of u, u x at a single point x 0 and for small times t ∈ (0, ε) is sufficient to completely determine the couple (u(t, x), µ(x)) provided γ is known. Additionally, if u xx (t, x 0 ) is also measured for t ∈ (0, ε), the triplet (u(t, x), µ(x), γ) is also completely determined. Those analytical results are completed with numerical simulations which show that, in practice, measurements of u and u x at a single point x 0 (and for t ∈ (0, ε)) are sufficient to obtain a good approximation of the coefficient µ(x). These numerical simulations also show that the measurement of the derivative u x is essential in order to accurately determine µ(x).

Introduction and ecological background

Reaction-diffusion models (hereafter RD models), although they sometimes bear on simplistic assumptions such as infinite velocity assumption and completely random motion of animals [START_REF] Holmes | Are diffusion models too simple? A comparison with telegraph models of invasion[END_REF], are not in disagreement with certain dispersal properties of populations observed in natural as well as experimental ecological systems, at least qualitatively [START_REF] Shigesada | Biological invasions: theory and practice[END_REF][START_REF] Turchin | Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants[END_REF][START_REF] Murray | Mathematical Biology[END_REF][START_REF] Okubo | Diffusion and ecological problems -modern perspectives[END_REF]. In fact, since the work of Skellam [START_REF] Skellam | Random dispersal in theoretical populations[END_REF], RD theory has been the main analytical framework to study spatial spread of biological organisms, partly because it benefits from a well-developed mathematical theory.

The idea of modeling population dynamics with such models has emerged at the beginning of the 20 th century, with random walk theories of organisms, introduced by Pearson and Blakeman [START_REF] Pearson | Mathematical contributions of the theory of evolution. A mathematical theory of random migration[END_REF]. Then, Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] and Kolmogorov, Petrovsky, Piskunov [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] independently used a reaction-diffusion equation as a model for population genetics. The corresponding equation is

∂u ∂t -D ∂ 2 u ∂x 2 = u (µ -γu), t > 0, x ∈ (a, b) ⊂ R, (1.1) 
where u = u(t, x) is the population density at time t and space position x, D is the diffusion coefficient, and µ and γ respectively correspond to the constant intrinsic growth rate and intraspecific competition coefficients. In the 80's, this model has been extended to heterogeneous environments by Shigesada et al. [START_REF] Shigesada | Traveling periodicwaves in heterogeneous environments[END_REF]. The corresponding model is of the type:

∂u ∂t - ∂ ∂x D(x) ∂u ∂x = u (µ(x) -γ(x)u), t > 0, x ∈ (a, b). (1.2) 
The coefficients µ(x) and γ(x) now depend on the space variable x and can therefore include some effects of environmental heterogeneity. More recently, this model revealed that the heterogeneous character of the environment played an essential role on species persistence and spreading, in the sense that for different spatial configurations of the environment, a population can survive or become extinct and spread at different speeds, depending on the habitat spatial structure ( [START_REF] Shigesada | Biological invasions: theory and practice[END_REF], [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I -Species persistence[END_REF], [START_REF] Cantrell | Spatial ecology via reaction-diffusion equations[END_REF], [START_REF] El Smaily | Homogenization and influence of fragmentation in a biological invasion model[END_REF], [START_REF] Hamel | Spreading speeds in slowly oscillating environments[END_REF] , [START_REF] Roques | Mathematical analysis of the optimal habitat configurations for species persistence[END_REF], [START_REF] Roques | Species persistence decreases with habitat fragmentation: an analysis in periodic stochastic environments[END_REF]). Thus, determining the coefficients in model (1.2) is an important question, even for areas other than ecology (see [START_REF] Xin | Front propagation in heterogeneous media[END_REF] and references therein).

In this paper, we focus on the case of constant coefficients D and γ:

∂u ∂t -D ∂ 2 u ∂x 2 = u (µ(x) -γu), t > 0, x ∈ (a, b), (1.3) 
and we address the question of the uniqueness of couples (u, µ(x)) and triples (u, µ(x), γ) satisfying (1.2), given a localized measurement of u. Uniqueness results of this type have been obtained for reaction-diffusion models, through the Lipschtiz stability of the coefficient with respect to the solution u. Lipschtiz stability is generally obtained by using the method of Carleman estimates [START_REF] Bukhgeim | Global uniqueness of a class of multidimensional inverse problems[END_REF]. Several publications starting from the paper by Isakov [START_REF] Isakov | An uniqueness in inverse problems for semilinear parabolic equations[END_REF] and including the recent overview of the method of Carleman estimates applied to inverse coefficients problems [START_REF] Klibanov | Carleman estimates for coefficient inverse problems and numerical applications[END_REF] provide results for the case of multiple measurements. The particular problem of the uniqueness of the couple (u, µ(x)) satisfying (1.3) given such multiple measurements has been investigated, together with Lipschtiz stability, in a previous work [START_REF] Cristofol | Biological invasions: Deriving the regions at risk from partial measurements[END_REF]. Placing ourselves in a bounded domain Ω of R N with Dirichlet boundary conditions, we had to use the following measurements: (i) the density u(0, x) in Ω at t = 0; (ii) the density u(t, x) for (t, x) ∈ (t 0 , t 1 ) × ω, for some times 0 < t 0 < t 1 and a subset ω ⊂⊂ Ω; (iii) the density u(θ, x) for all x ∈ Ω, at some time θ ∈ (t 0 , t 1 ).

Although the result of [START_REF] Cristofol | Biological invasions: Deriving the regions at risk from partial measurements[END_REF] allows to determine µ(x) using partial measurements of u(t, x), assumption (iii) implies that u has to be known in the whole set Ω. This last measurement (iii) is a key assumption in several other papers on uniqueness and stability of solutions to parabolic equations with respect to parameters (see Imanuvilov and Yamamoto [START_REF] O Y Immanuvilov | Lipschitz stability in inverse parabolic problems by the Carleman estimate[END_REF], Yamamoto and Zou [START_REF] Yamamoto | Simultaneous reconstruction of the initial temperature and heat radiative coefficient[END_REF], Belassoued and Yamamoto [START_REF] Belassoued | Inverse source problem for a transmission problem for a parabolic equation[END_REF] for scalar equations and Cristofol, Gaitan and Ramoul [START_REF] Cristofol | Inverse problems for a two by two reaction-diffusion system using a carleman estimate with one observation[END_REF] or Benabdallah, Cristofol, Gaitan and Yamamoto [START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF] for systems).

Here, contrarily to previous results obtained for this type of reactiondiffusion models, there are some regions in (a, b) where u is never measured: we only require to know (i') the density u(0, x) in (a, b) at t = 0 and (ii') the density u(t, x 0 ) and its spatial derivative ∂u ∂x (t, x 0 ) for t ∈ (0, ε) and some point x 0 in (a, b) (see Remark 2.5 for a particular example of hypothesis (ii')). Thus a measurement of type (iii) is no more necessary. Furthermore, we show simultaneous uniqueness of two coefficients µ(x) and γ provided that measurements of the second derivative ∂ 2 u ∂x 2 (t, x 0 ) are available. Our paper is organized as follows: in the next section, we give precise statements of our hypotheses and results; Section 3 is then dedicated to the proof of the results. Section 4 is devoted to the description of numerical examples illustrating how the coefficient µ(x) can be approached using measures of the type (i') and (ii'). Those results are further discussed in Section 5.

Hypotheses and main results

Let (a, b) be an interval in R. We consider the problem:

       ∂u ∂t -D ∂ 2 u ∂x 2 = u (µ(x) -γu), t ≥ 0, x ∈ (a, b), α 1 u(t, a) -β 1 ∂u ∂x (t, a) = 0, t > 0, α 2 u(t, b) + β 2 ∂u ∂x (t, b) = 0, t > 0, u(0, x) = u i (x), x ∈ (a, b). (P µ,γ )
Our hypotheses on the coefficients are the following. Firstly, we assume that:

µ ∈ M := {ψ ∈ C 0,η ([a, b]) such that ψ is piecewise analytic on (a, b)}, (2.4 
) for some η ∈ (0, 1]. The space C 0,η corresponds to Hölder continuous functions with exponent η (see e.g. [START_REF] Friedman | Partial differential equations of parabolic type[END_REF]). A function ψ ∈ C 0,η ([a, b]) is called piecewise analytic if it exists n > 0 and an increasing sequence (i k ) 1≤k≤n such that i 1 = a, i n = b, and

for all x ∈ (a, b), ψ(x) = n-1 j=1 χ [i j ,i j+1 ) (x)ϕ j (x),
for some analytic functions ϕ j , defined on the intervals [i j , i j+1 ], and where χ [i j ,i j+1 ) are the characteristic functions of the intervals [i j , i j+1 ) for j = 1, . . . , n -1.

We also assume that γ is a positive constant and that the boundary coefficients satisfy:

α 1 , α 2 , β 1 , β 2 ≥ 0 with α 1 + β 1 > 0 and α 2 + β 2 > 0.
(2.5)

We furthermore make the following hypotheses on the initial condition:

u i ≥ 0, u i ≡ 0 and u i ∈ C 2,η ([a, b]), (2.6) 
for some η in (0, 1), that is u i is a C 2 function such that u ′′ i is Hölder continuous. In addition to that, we assume the following compatibility conditions:

α 1 u i (a) -β 1 u ′ i (a) = 0, α 2 u i (b) + β 2 u ′ i (b) = 0, δ β 1 u ′′ i (a) = 0, δ β 2 u ′′ i (b) = 0, (2.7 
) where δ y is verifies: δ 0 = 1 and δ y = 0 if y = 0. We also need to assume that:

measure({x ∈ (a, b), u i (x) = 0}) = 0. (2.8)
Under the assumptions (2.4)-(2.7), for each µ ∈ M and γ > 0, the problem (P µ,γ ) has a unique solution u ∈ C 2,η 1,η/2 ([0, +∞) × [a, b]) (i.e. the derivatives up to order two in x and order one in t are Hölder continuous, see [START_REF] Friedman | Partial differential equations of parabolic type[END_REF][START_REF] Pao | Nonlinear Parabolic and Elliptic Equations[END_REF] for a definition of Hölder continuity). Existence, uniqueness and regularity of the solution u are classical. See e.g. [START_REF] Pao | Nonlinear Parabolic and Elliptic Equations[END_REF]Ch. 1].

Let us state our main results: Theorem 2.1. Let µ, μ ∈ M, and γ > 0, and assume that the solutions u and ũ to (P µ,γ ) and (P μ,γ ) satisfy, at some x 0 ∈ (a, b), and for some ε > 0 and all t in (0, ε):

u(t, x 0 ) = ũ(t, x 0 ), (2.9) ∂u ∂x (t, x 0 ) = ∂ ũ ∂x (t, x 0 ). ( 2 

.10)

Assume furthermore that

u i (x 0 ) = 0 or ∂ 2 u ∂x 2 (t, x 0 ) = ∂ 2 ũ ∂x 2 (t, x 0 ) for t ∈ (0, ε). (2.11) Then, we have µ ≡ μ on [a, b] and consequently u ≡ ũ in [0, +∞) × [a, b]. If β 1 > 0 (resp. β 2 > 0), this statement remains true when x 0 = a (resp. x 0 = b). Remark 2.2. This result remains valid if γ = γ(x) is a given, positive function in C 0,η ([a, b]).
However, the conclusion of Theorem 2.1 is not true in general without the assumption (2.10): 2 ) = ũ(t, a+b 2 ) for all t ≥ 0. Under an additional assumption on the initial condition u i , we are able to obtain a uniqueness result for triples (u, µ, γ): Theorem 2.4. Let µ, μ ∈ M, and γ, γ > 0. Assume that, at some x 0 ∈ (a, b), u i (x 0 ) = 0. Assume furthermore that the solutions u and ũ to (P µ,γ ) and (P μ,γ ) satisfy, for some ε > 0 and for all t in (0, ε): Remarks 2.5.

u(t, x 0 ) = ũ(t, x 0 ), (2.12) ∂u ∂x (t, x 0 ) = ∂ ũ ∂x (t, x 0 ), (2.13) ∂ 2 u ∂x 2 (t, x 0 ) = ∂ 2 ũ ∂x 2 (t, x 0 ). ( 2 
• A particular example where hypotheses (2.9-2.11) of Theorem 2.1 (resp. hypotheses (2.12-2.14) of Theorem 2.4) are fulfilled is whenever, for some subset ω of (a, b), u(t, x) = ũ(t, x) for t ∈ (0, ε) and all x ∈ ω (resp. x 0 ∈ ω and u(t, x) = ũ(t, x) in (0, ε) × ω). Note that, under this hypothesis, the previous results [START_REF] Cristofol | Biological invasions: Deriving the regions at risk from partial measurements[END_REF] did not imply uniqueness; indeed, an additional assumption of type (iii) was required (cf. the introduction section).

• The uniqueness result of Theorem 2.4 cannot be adapted to the stationary equation associated to (P µ,γ ): -p ′′ = p (µ(x)γp) (see e.g. [START_REF] Berestycki | Analysis of the periodically fragmented environment model: I -Species persistence[END_REF] for the existence and uniqueness of the stationary state p > 0). Indeed, for any τ ∈ (0, 1), setting μ = µτ γp and γ = (1τ )γ, we obtain -p ′′ = p (μ(x)γp), whereas μ ≡ µ and γ ≡ γ. Thus, a measurement of p, even on the whole interval [a, b], does not provide a unique couple (µ, γ).

• 

Proofs

Let µ, μ ∈ M, and γ, γ > 0. Let u be the solution to (P µ,γ ) and ũ the solution to (P μ,γ ). We set

U := u -ũ and m := µ -μ.
The function U satisfies:

∂U ∂t -D ∂ 2 U ∂x 2 = μU -γU (u + ũ) + u(m -u(γ -γ)), (3.15) 
for t ≥ 0 and x ∈ (a, b), and (3.17)

α 1 U (t, a) -β 1 ∂U ∂x (t, a) = 0, α 2 U (t, b) + β 2 ∂U ∂x (t, b) = 0, t > 0, U (0, x) = 0, x ∈ (a, b). ( 3 
Step 1: We prove that m(x 0 ) = 0.

It follows from hypothesis (2.9) that, for all t ∈ [0, ε), U (t, x 0 ) = 0 and thereby, ∂U ∂t (t, x 0 ) = 0 for all t ∈ [0, ε).

If u i (x 0 ) = 0, then, since U (0, •) ≡ 0 we deduce from (3.17) applied at t = 0 and x = x 0 that u i (x 0 )m(x 0 ) = 0, and therefore m(x 0 ) = 0. If u i (x 0 ) = 0, from (2.11), we have ∂ 2 U ∂x 2 (t, x 0 ) = 0 for all t ∈ [0, ε). Applying equation (3.17) at t = ε/2 and x = x 0 , we get

u ε 2 , x 0 m(x 0 ) = 0. If x 0 ∈ (a, b
), the strong parabolic maximum principle (Corollary 5.2) applied to u implies that u(ε/2, x 0 ) > 0. As a consequence we again get m(x 0 ) = 0. Lastly, if x 0 = a and β 1 > 0 the Hopf's Lemma applied to u again implies that u(ε/2, x 0 ) > 0. Indeed, assume on the contrary that u(ε/2, x 0 ) = u(ε/2, a) = 0. The boundary condition α 1 u(t, a)β 1 ∂u ∂x (t, a) = 0 implies:

β 1 ∂u ∂x ε 2 , a = 0,
which is impossible from Hopf's Lemma (Corollary 5.2 and Theorem 5.1 (b) and (c)). Thus u(ε/2, x 0 ) > 0 and, again, m(x 0 ) = 0. A similar argument holds for x 0 = b, whenever β 2 > 0.

Under the assumptions of Theorem 2.1, we therefore always obtain m(x 0 ) = 0.

Step 2: We prove that m ≡ 0.

Let us now set

b 1 := sup{x ∈ [x 0 , b] s.t. m has a constant sign on [x 0 , x]}.
By "constant sign" we mean that either m ≥ 0 on [x 0 , x] or m ≤ 0 on [x 0 , x]. Then, four possibilities may arise: Since µ and μ belong to M , the function m also belongs to M and is therefore piecewise analytic on (a, b). Thus, the set {x ∈ (a, b) s.t. m(x) = 0} has a finite number of connected components. This contradicts (3.18) and rules out possibility (i). Now assume (ii). By continuity of m, and from hypothesis (2.8) on u i , we can assume that u i (x 1 ) > 0. Since m(x 1 ) > 0 and U (0, •) ≡ 0, it follows from (3.17) that ∂U ∂t (0, x 1 ) = u i (x 1 )m(x 1 ) > 0.

• (i) m = 0 on [x 0 , b 1 ] and b 1 < b, • (ii) m ≥ 0 on [x 0 , b 1 ] and it exists x 1 ∈ (x 0 , b 1 ) such that m(x 1 ) > 0, • (iii) m ≤ 0 on [x 0 , b 1 ] and it exists x 1 ∈ (x 0 , b 1 ) such that m(x 1 ) < 0, • ( 
Thus, for ε 1 > 0 small enough, U (t, x 1 ) > 0 for t ∈ (0, ε 1 ]. As a consequence, U satisfies:

   ∂U ∂t -D ∂ 2 U ∂x 2 -(μ -γu -γ ũ)U ≥ 0, t ∈ (0, ε 1 ], x ∈ (x 0 , x 1 ), U (t, x 0 ) = 0 and U (t, x 1 ) > 0, t ∈ (0, ε 1 ], U (0, x) = 0, x ∈ (x 0 , x 1 ). (3.19)
Moreover, Lemma 3.1. We have U (t, x) > 0 in (0, ε 1 ) × (x 0 , x 1 ).

Proof of Lemma 3.1: Set W = U e -λt , for some λ > 0 large enough such that c(t, x)

:= μ -γu -γ ũ -λ ≤ 0 in (x 0 , x 1 ). The function W satisfies ∂W ∂t -D ∂ 2 W ∂x 2 -c(t, x)W ≥ 0, t ∈ (0, ε 1 ], x ∈ (x 0 , x 1 ).
Assume that it exists a point (t * , x * ) in (0, ε 1 )×(x 0 , x 1 ) such that U (t * , x * ) < 0. Then, since W (t, x 0 ) = 0 and W (t, x 1 ) > 0 for t ∈ (0, ε 1 ), and since

W (0, x) = U (0, x) = 0, W admits a minimum m * < 0 in (0, ε 1 ] × (x 0 , x 1 ). Theorem 5.1 (a) applied to W implies that W ≡ m * < 0 on [0, ε 1 ] × [x 0 , x 1 ], which is impossible. Thus W ≥ 0 in [0, ε 1 ]×[x 0 , x 1 ]
. Theorem 5.1 (a) and (c) then implies that W > 0 and consequently U (t, x) > 0 in (0, ε 1 ) × (x 0 , x 1 ).

Since U (t, x 0 ) = 0, the Hopf's lemma (Theorem 5.1 (b) and (c)) also implies that ∂U ∂x (t, x 0 ) > 0 for all t ∈ (0, ε 1 ). This contradicts hypothesis (2.10). Possibility (ii) can therefore be ruled out.

Applying the same arguments to -U , possibility (iii) can also be rejected. Finally, only (iv) remains.

Setting 

a 1 := inf{x ∈ [a,
u(t, x 0 ) (m(x 0 ) -u(t, x 0 )(γ -γ)) = 0 for t ∈ [0, ε).
If x 0 ∈ (a, b), the strong parabolic maximum principle (Corollary 5.2) implies that u(t, x 0 ) > 0 for all t > 0. This remains true if x 0 = a (if β 1 > 0) or x 0 = b (if β 2 > 0); cf. the proof of Theorem 2.1. We therefore get: m(x 0 ) = u(t, x 0 )(γγ) for t ∈ (0, ε).

(3.20)

From the continuity of t → u(t, x 0 ) up to t = 0, we have m(x 0 ) = u i (x 0 )(γγ). Thus, u i (x 0 ) = 0 implies that m(x 0 ) = 0 which in turns implies from (3.20), and since u(t, x 0 ) > 0 for t > 0, that γ = γ. The end of the proof is therefore similar to that of Theorem 2.1.

Remark 3.2. Extension of the arguments used in the previous proof to higher dimensions is not straightforward. Indeed, placing ourselves in a bounded domain Ω of R N , with N ≥ 2, we may consider the largest region Ω 1 in Ω, containing x 0 and such that m has a constant sign in Ω 1 . Consider in the above proof the possibility (ii) N (instead of (ii)): m ≥ 0 on Ω 1 and it exists x 1 ∈ Ω such that m(x 1 ) > 0. Then it exists a subset ω 1 of Ω 1 , such that x 0 ∈ ∂ω 1 and u(t, x) > 0 on a portion of ∂ω 1 . However, we cannot assert that U (t, x) ≥ 0 on ∂ω 1 , and (ii) N can therefore not be ruled out as we did for (ii).

Proof of Proposition 2.3: Under the assumptions of Proposition 2.3, we observe that ũ(t, b -(xa)) is a solution of (P µ,γ ). In particular, by uniqueness, we have

u(t, x) = ũ(t, b -(x -a)), for all t ≥ 0 and x ∈ [a, b].

It follows that u(t, a+b

2 ) = ũ(t, a+b 2 ) for all t ≥ 0.

Numerical computations

The purpose of this section is to verify numerically that the measurements (2.9-2.10) of Theorem 2.1 allow to obtain a good approximation of the coefficient µ(x), when γ is known.

Assuming that µ belongs to a finite-dimensional subspace E ⊂ M and measuring the distance between the measurements of the solutions of (P µ,γ ) and (P μ,γ ) through the function

G µ (μ) = u(•, x 0 ) -ũ(•, x 0 ) L 2 (0,ε) + ∂u ∂x (•, x 0 ) - ∂ ũ ∂x (•, x 0 ) L 2 (0,ε) ,
we look for the coefficient µ(x) as a minimizer of the function G µ . Indeed, G µ (µ) = 0 and, from Theorem 2.1, this is the unique global minimum of G µ in M . Solving (P µ,γ ) by a numerical method (see Appendix B) gives an approximate solution u h . In our numerical tests, we therefore replace G µ by the discretized functional

G µ (μ) := u h (•, x 0 ) -ũh (•, x 0 ) L 2 (0,ε) + ∂u h ∂x (•, x 0 ) - ∂ ũh ∂x (•, x 0 ) L 2 (0,ε) .
Remark 4.1. Since (P µ,γ ) and (P μ,γ ) are solved with the same (deterministic) numerical method, we have G µ (µ) = 0. Thus µ is a global minimizer of G µ . However, this minimizer might not be unique.

State space E

We fix (a, b) = (0, 1) and we assume that the function µ belongs to a subspace E ⊂ M defined by:

E := μ ∈ C 0,η ([0, 1]) | ∃ (h i ) 0≤i≤n ∈ R n+1 , μ(x) = n i=0 h i • j ((n -2) (x -c i )) on [0, 1] ,
with c i = i-1 n-2 and j(x) = exp 4x 2 x 2 -4 , if x ∈ (-2, 2), 0 otherwise.

Minimization of G µ in E

For the numerical computations, we fixed D = 0.1, γ = 1, α 1 = α 2 = 0 and β 1 = β 2 = 1 (Neumann boundary conditions). Besides, we assumed that u i ≡ 0.2, ε = 0.3 and x 0 = 2/3. The integer n was set to 10 in the definition of E.

Numerical computations were carried out for 100 functions µ k in E :

µ k = n i=0 h k i • j [(n -2) (x -c i )] , k = 1 . . . 100,
whose components h k i were randomly drawn from a uniform distribution in (-5, 5).

Minimizations of the functions G µ k were performed using MATLAB's fminunc solver1 . This led to 100 functions µ * k in E, each one corresponding to a computed approximation for a minimizer of the function G µ k . In our numerical tests, we obtained values of G µ k (µ * k ) in (5 • 10 -7 , 10 -5 ), with an average of 5 • 10 -6 and a standard deviation of 2 • 10 -6 .

The values

µ k -µ * k L 2 ([0,1]) / µ k L 2 ([0,1]
) , for k = 1 . . . 100, are comprised between 5 • 10 -3 and 0.16, with an average value of 0.04 and a standard deviation of 0.03.

Fig. 1 (a) depicts an example of function µ in E, together with a function µ * which was obtained by minimizing G µ .

Test of another criterion H µ

In this section, we illustrate that measurement (2.9) alone cannot be used for reconstructing µ. Replacing G µ by:

H µ (μ) = u(•, x 0 ) -ũ(•, x 0 ) L 2 (0,ε) ,
and setting H µ (μ) := u h (•, x 0 )ũh (•, x 0 ) L 2 (0,ε) , we performed the same analysis as above, with the same samples µ k ∈ E and the same parameters.

The corresponding values of H µ (µ * k ) are comparable to those obtained in Section 4. 

µ -µ * L 2 ([0,1]) / µ L 2 ([0,1]) = 0.47 and H µ (µ * ) = 2 • 10 -6 .
average 2•10 -6 , and standard deviation 3•10 -6 . However, the corresponding values of the distance µ ]) are far larger than those obtained in Section 4.2: these values are comprised between 0.08 and 1.64, with an average of 0.56 and a standard deviation of 0.34.

k -µ * k L 2 ([0,1]) / µ k L 2 ([0, 1 
Using the same sample µ ∈ E as in Fig. 1 (a), we present in Fig. 1 (b) the approximation µ * obtained by minimizing H µ . In this case, the distance µµ

* L 2 ([0,1]) / µ L 2 ([0,1]) is 18 times larger than µ -µ * L 2 ([0,1]) / µ L 2 ([0,1]) .

Discussion

Studying the reaction-diffusion problem (P µ,γ ) with a nonlinear term of the type u (µ(x)γu), we have proved in Section 2 that knowing u and its first spatial derivative at a single point x 0 and for small times t ∈ (0, ε) is sufficient to completely determine the couple (u(t, x), µ(x)). Additionally, if the second spatial derivative is also measured at x 0 for t ∈ (0, ε), the triplet (u(t, x), µ(x), γ) is also completely determined. These uniqueness results are mainly the consequences of Hopf's Lemma and of an hypothesis on the set M of coefficients which µ(x) belongs to. This hypothesis implies that two coefficients in M can be equal only over a set having a finite number of connected components.

The theoretical results of Section 2 suggest that the coefficients µ(x) and γ can be numerically determined using only measurements of the solution u of (P µ,γ ) and of its spatial derivatives at one point x 0 , and for t ∈ (0, ε). Indeed, the numerical computations of Section 4 show that, when γ is known, the coefficient µ(x) can be estimated by minimizing a function G µ . The function ũ being the solution of (P μ,γ ), we defined G µ (μ) as the distance between (u, ∂u/∂x)(•, x 0 ) and (ũ, ∂ ũ/∂x)(•, x 0 ), in the L 2 (0, ε) sense.

The numerical computations presented in Section 4.2 were carried out on 100 samples of functions µ k chosen in a finite-dimensional subspace of M . In each case, a good approximation µ * k of µ k was obtained. The average relative L 2 -error between µ k and µ * k is 30 times smaller than the average relative L 2 -error between µ k and the constant function µ k (x 0 ). Thus, a measurement of u and of its first spatial derivative at a point x 0 (and for t ∈ (0, ε)) indirectly gives more information on the global shape of µ than a direct measure of µ at x 0 . These good results, in spite of the computational error, indicate L 2 -stability of the coefficient µ with respect to single-point measurements of the solution u of (P µ,γ ) and of its spatial derivative.

Proposition 2.3 shows that the uniqueness result of Theorem 2.1 is not true without the assumption (2.10) on the spatial derivatives. This suggests that measurement (2.9) alone cannot be used for reconstructing µ. In Section 4.3, working with the same samples µ k as those discussed above, we obtained approximations µ * k of µ k by minimizing a new function H µ , which measures the distance between u(•, x 0 ) and ũ(•, x 0 ). The average relative L 2 -error between µ k and µ k * was 14 times larger than the average relative L 2 -error separating µ k and µ * k . This confirms the usefulness of the spatial derivative measurements for the reconstruction of µ.
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 23 Let µ ∈ M and γ > 0. Assume that α 1 = α 2 and β 1 = β 2 and that u i is symmetric with respect to x = (a+b)/2. Let μ := µ(b-(x-a)) for x ∈ [a, b]. Then, the solutions u and ũ to (P µ,γ ) and (P μ,γ ) satisfy u(t, a+b

. 14 )

 14 Then, we have µ ≡ μ on [a, b] and γ = γ. Consequently u ≡ ũ in [0, +∞) × [a, b]. If β 1 > 0 (resp. β 2 > 0), this statement remains true for x 0 = a (resp. x 0 = b).

  The subset M of C 0,η ([a, b]) made of piecewise analytic functions is much larger than the set of analytic functions on[a, b]. It indeed contains some functions whose regularity is not higher than C 0,η , and some functions which are constant on some subsets of [a, b]. Our results hold true if M is replaced by any subset M ′ of C 0,η ([a, b]) such that for any couple of elements in M ′ , the subset of[a, b] where these two elements intersect has a finite number of connected components.

. 16 )

 16 Proof of Theorem 2.1: In that case γ = γ. Equation (3.15) then reduces to ∂U ∂t -D ∂ 2 U ∂x 2 = μU -γU (u + ũ) + u m.

  iv) b 1 = b, and m = 0 on [x 0 , b]. Assume (i). Then, by definition of b 1 , there exists a decreasing sequence y k → b 1 , y k > b 1 , such that |m(y k )| > 0 for all k ≥ 0. Assume that it exists k 0 such that |m(x)| > 0 for all x ∈ (b 1 , y k 0 ). By continuity, m does not change sign in (b 1 , y k 0 ), and therefore in [x 0 , y k 0 ]. This contradicts the definition of b 1 . Thus, for all k, it exists z k ∈ (b 1 , y k ) such that m(z k ) = 0. (3.18)

  x 0 ] s.t. m has a constant sign on [x, x 0 ]}, the same argument as above shows that a 1 = a and m = 0 on [a, x 0 ]. Thus, finally, m ≡ 0 on [a, b] and this concludes the proof of Theorem 2.1. Proof of Theorem 2.4: From the assumptions (2.12) and (2.14) of Theorem 2.4, equation (3.15) at x = x 0 reduces to

Figure 1 :

 1 Figure 1: (a) An example of function µ in E, together with a function µ * which was obtained by minimizing G µ . In this case µµ * L 2 ([0,1]) / µ L 2 ([0,1]) = 0.03 and G µ (µ * ) = 2 • 10 -6 . (b) The same function µ together with the function µ * obtained by minimizing H µ . Here, µµ * L 2 ([0,1]) / µ L 2 ([0,1]) = 0.47 and H µ (µ * ) = 2 • 10 -6 .

MATLAB's fminunc medium-scale optimization algorithm uses a Quasi-Newton method with a mixed quadratic and cubic line search procedure. Our stopping criterion was based on the maximum number of evaluations of the function Gµ, which was set at
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Appendix A: maximum principle

The following version of the parabolic maximum principle can be found in [START_REF] Friedman | Partial differential equations of parabolic type[END_REF]Ch. 2] and [START_REF] Protter | Maximum Principles in Differential Equations[END_REF]Ch. 3].

(c) If u ≥ 0, the results (a) and (b) remain true without the assumption c(t, x) ≤ 0.

An immediate corollary of this theorem is:

Proof of Corollary 5.2: Assume that it exists (t * , x * ) ∈ (0, +∞)×(a, b) such that u(t * , x * ) < 0.

Set w(t, x) = u e -λt , for λ > 0 large enough such that

The function w satisfies:

Since w(0, x) = u i (x) ≥ 0 in (a, b) and w(t * , x * ) < 0, the function w admits a minimum m * < 0 in (0, t * ]×[a, b]. From Theorem 5.1 (a), and since u i ≡ 0, this minimum is attained at a boundary point: it exits t ′ ∈ (0, t * ] such that w(t ′ , a) = m * < 0 or w(t ′ , b) = m * < 0. Without loss of generality, we can assume in the sequel that w(t ′ , a) = m * < 0. From Theorem 5.1 (b), we obtain ∂w ∂x (t ′ , a) > 0. Using the boundary conditions in problem (P µ,γ ), we finally get:

Using assumption (2.5), we get a contradiction. Thus u(t, x) ≥ 0 in (0, +∞)× (a, b). The conclusion then follows from Theorem 5.1 (c).

Appendix B: numerical solutions of (P µ,γ ) and (P μ,γ )

The equations (P µ,γ ) and (P μ,γ ) were solved using Comsol Multiphysics time-dependent solver, using second order finite element method (FEM) with 960 elements. This solver uses a method of lines approach incorporating variable order variable stepsize backward differentiation formulas. Nonlinearities are treated using a Newton's method. The interested reader can get more information in Comsol Multiphysics user's guide.