N
N

N

HAL

open science

The Holder infinite Laplacian and Holder extensions

Antonin Chambolle, Erik Lindgren, Régis Monneau

» To cite this version:

Antonin Chambolle, Erik Lindgren, Régis Monneau. The Holder infinite Laplacian and Holder exten-

sions. 2010. hal-00488915v1

HAL Id: hal-00488915
https://hal.science/hal-00488915v1

Preprint submitted on 4 Jun 2010 (v1), last revised 7 Jul 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00488915v1
https://hal.archives-ouvertes.fr

The Holder infinite Laplacian
and Holder extensions
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Abstract
In this paper we study the limit as p — oo of minimizers of the fractional W*P-norms. In particular, we prove that
the limit satisfies a non-local and non-linear equation. We also prove the existence and uniqueness of solutions of the
equation. Furthermore, we prove the existence of solutions in general for the corresponding inhomogeneous equation.
By making strong use of the barriers in this construction, we obtain some regularity results.

AMS Classification: 35D40, 35J60, 35J65.
Keywords: Lipschitz extensions, Holder extensions, infinite Laplacian, non-local and non-linear equations, viscosity
solutions.

1 Introduction and main result

1.1 Setting of the problem

Let © be a bounded open set in RY. Under suitable conditions, it is well-known that if u, minimizes the

integral
[ vl
Q

then u, — u as p — oo where u solves the equation

Ajou = E ujjuiu; =0 on
i,j=1,....N

with u; = g—; and u;; = %{%j, which is usually referred to as the infinite laplace equation. See for instance
[2] and [5] for discussions concerning this passage to the limit. Moreover, u is known to be a local minimizer
of the Lipschitz norm, i.e., a Lipschitz extension. A lot of the known results concerning infinite harmonic
functions and Lipschitz extensions can be found in [3]. Some explicit Lipschitz extensions can be found in
[12] and [19], and these are in general not infinite harmonic functions. Lipschitz extensions have been given
a lot of attention recently, and as possible applications one has suggested for instance image interpolation
(cf [7]) and brain warping (cf [13]).
In the present paper, we address the following question:

What happens if we replace the space W!?(Q) by W*?(Q) with s € (0,1)?

We study minimizers of the functional

|u(z) —u(y)P
(1) /an |z — y|oP ey

*antonin.chambolle@cmap.polytechnique.fr, CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex, France

T Corresponding author, lindgree@cermics.enpe.fr, Université Paris-Est, Cermics, Ecole des Ponts ParisTech, 6-8 avenue
Blaise Pascal, 77455 Marne la Vallée Cedex 2, France, Phone: +46-70-5892942, Fax: +33-(0)164153586

fmonneau@cermics.enpe.fr, Université Paris-Est, Cermics, Ecole des Ponts ParisTech, 6-8 avenue Blaise Pascal, 77455 Marne
la Vallée Cedex 2, France



for a € (0, 1]. We see that this is the W*P-norm for s = a— N/p, and the form of the functional suggests that
in the limit we should obtain a local minimizer of the a-Holder semi-norm. The Euler-Lagrange equation of
this functional is

(1.2) /Q

Formally, one can see that, as p — oo, this should converge to the equation

u(x) —u(y)|"”

|z — y[>

" sgn(u(e) — uly))

y = 0.
|z —yl*

(1.3) Lu=0 in Q
with the operator

(L)) = sup W ZU@) g uly) —ul@)

_ for ze€Q
yeQ, y#x ly — x| yeQ, y£o Y —T|® '

that we call the Holder infinite laplacian.

In this paper we show that this is indeed the case whenever the integrals are well defined. Moreover, we
also prove that the limit function will be an optimal a-Hoélder extension. Then we consider this equation in
a more general setting and introduce a notion of viscosity solutions. Subsequently we prove the existence
of solutions and regularity results even for the non-homogeneous equation. In addition, in the homogeneous
case, we are able to prove the uniqueness.

At a first glance one might believe that for o = 1, the Holder infinite laplace equation is equivalent to
the infinite laplace equation. However, this is not the case in general. Indeed, using ii) in Theorem 1.5 one
can quite easily see that the infinite harmonic function

4 a
u(z) = |z1]® — |waf3,
found by Aronsson, is not a solution for a = 1 and

O={-2<2<2-1<y<1}

1.2 Main results

In all that follows, for o € (0, 1], we will denote the a-Holder semi-norm of a function f defined on A ¢ RY

by
flaa= sp L@ =76
z,yEA,xty |z — y

We also recall the notation

CO(A) = {f € C(A), [ fll=(a) + [flaca < o0},

where C(A) is the set of continuous function on A.
The first main result in this paper states that what we expect actually happens when we pass to the
limit p — o0, as long as the integrals make sense.

Theorem 1.1 (Limit equation as p — o0)

Let a € (0,1] and if a = 1 assume N > 2. Consider a bounded Lipschitz domain Q in RY, and boundary
data g € C%*(0Q). For any p > 2N/a, there exists a unique minimizer u, of (1.1) satisfying u = g on 9.
Moreover, as p — oo, we have u, — U uniformly in Q and us € C**(Q) is a viscosity solution of (1.5).

Remark 1.2 The reason why we haven’t treated the case « = N = 1 is simply that the Fuler-Lagrange
equation (1.2) is not well defined in a pointwise sense in this case.

Remark 1.3 If a = o, — ax < 1, the proof can easily be adapted to obtain a result similar to Theorem
1.1.

Remark 1.4 The reader might wonder why the assumption that 2 is a Lipschitz domain is necessary. The
reason is that we at some point need to apply a fractional version of the Sobolev embedding, which, to the
authors knowledge, is known only in the case when §2 is a bounded Lipschitz domain.



More generally we can consider the inhomogeneous Dirichlet problem

(1.4) {Luf in Q,

u=g¢g on Of. ’
for which the notion of viscosity solutions is given in Definition 4.1. Then, when f = 0, there exists a
representation formula for .

Theorem 1.5 (Existence for general f, partial uniqueness)

Let o € (0,1], Q be a bounded open set, g € C(IQ) and f € C(2) N L>(Q).

i) (Existence) Then there exists a viscosity solution u € C(Q) of (1.4).

ii) (Partial uniqueness) Assume f = 0. Then the viscosity solution u € C(Q) of (1.4) is unique and is
defined implicitly by the following:

g(x) if x€ N
(1.5) u(x) = ,
a with fy(a)=0 if zef
where
ga: (Cl) = sup g(y) - g(y) —a

Remark 1.6 The solution defined by (1.5) is the same as the Lipschitz extension introduced by A. Oberman
in [16] for the distance d(x,y) = |z — y|®.

Remark 1.7 [t is not clear whether the uniqueness holds for general functions f or not. For the inhomo-
geneous infinite laplace equation, the uniqueness is only known to hold if f does not change sign, see [11].
In this paper there is even a counter example to uniqueness for f changing sign.

Finally we are also able to obtain the following regularity results, where we use the notation
diam Q = sup{|z — y|,z,y € Q}.

Theorem 1.8 (Regularity) B
Let o € (0,1], Q be a bounded open set, g € C(9Q), f € C(Q)NL>¥(Q) and u € C(Q) a viscosity solution of

(1.4).
1) For any K CCQ and any 0 < B < «

[uls.x < Cla, B, [|fllz=(9): 9]lL= (), diam €, dist(K, 09)).
i) If g € COP(0R) for 0 < B < a then

[ulgo < Cla, B, || fll L (0), [9] 3,00, diam ).

1) Assume that f = 0. Then for each ball B CC Q
[ul1,B < C(a,||g||L=(a0), diam Q,dist(B, 92)).

w) If f =0 and g € C%*(09Q) then
[Ula,e = [gla.00-
Remark 1.9 Part iv) in Theorem 1.8 shows in particular that when f = 0, the solution is an optimal Holder

extension of g on Q. This is also the limit solution given by Theorem 1.1.

Remark 1.10 The uniqueness and the optimal C%®-reqularity of the solution remain open for general func-
tions f.

Remark 1.11 Parts of Theorem 1.5 remain true when the distance |z — y|* is replaced by a more general
distance of the type d(x — y), see Section 12.



2 Organization of the paper

The structure of the paper is as follows: In Section 3 we try to make ourselves familiar with the operator
L and study some continuity properties of L which later, in Section 4, motivates the introduction of the
notion of viscosity solutions. In Section 5 we give a representation formula of the solution in the case f = 0.
In Section 6 we prove Theorem 1.1. In Section 7 we prove a stability result, showing that certain limits of
viscosity subsolutions are again viscosity subsolutions. In Section 8 we construct barriers, that we use later
in Section 9, where we prove the existence of continuous solutions via Perron’s method. In Section 10 we
prove several regularity results of the solutions. In the end we also give the proof of Theorem 1.8. In Section
11 we prove a comparison principle in the case f = 0. Using this we can conclude the proof of Theorem 1.5.
In Section 12 we mention some possible generalizations of the problem and also some open questions that
can be of general interest.

3 Basic properties of L

Here we present some properties of the operator L, which is clearly not well defined for all functions. Define

Tu)(z) = su M “w)(x) = in M
(L7 u)(z) yeml;x P (L7 u)(x) yeﬁjm T

Lemma 3.1 (Half relaxed limits for L™ and L~) B
Consider a function u: Q — R and also a sequence of functions (u.). with u. : @ — R such that

[ue = ulpecimy — 0 as €—0.
1) If u is upper semicontinuous, then

(3.6) liminf ,(LTu.) > LTu  on Q.

e—0
it) If u is lower semicontinuous, then

(3.7 limsup*(L u.) < L u on Q.

e—0
Proof of Lemma 3.1
We give the proof of (3.6). The proof of (3.7) is similar. For any 2o € Q and r > 0, let us set
(L) = sp W)
ye@\B, (z) ¥ ~ Tl

where by definition, we have

(LT u)(wo) = lim (L u)(xo) = sup (L) (o).

Let us now consider a sequence (x.). of points of € such that . — z(. For e small enough, we have

|ze — 20| < r/2, and then

(Lus)(ee) = (L jpue)(we) = sup uely) —uelwe) o Ue(y) —uelze)

YENB, ja(ze) Y T el Ve B (zo) 1Y~ el

Using that —u is lower semicontinuous, we see that for any y € Q\B,(x¢), we have
lim inf (LT u.)(z.) > uly) = u(@o)
e=0 ly — wol*

This implies

liminf(L u.)(z:) > sup M
=0 yEMNB, (o) Y~ ol



Passing to the limit » — 0, we deduce

lminf(Ltu)(z) > sup AT
=0 yeﬁ, YF#x0 |y - 370‘

for any sequence of points x. converging to xo. This shows (3.6).
This ends the proof of the lemma.
We then deduce immediately the following result.

Definition 3.2 (Semicontinuous envelopes)
Consider a function v :  — R. Define
v*(z) = limsupv(y)
Yy—x
and
vy (x) = liminf v(y).
y—u
The functions v* and v, are called the upper and lower semicontinuous envelopes of v.

Definition 3.3 (Semicontinuity)
We say that v : Q — R is upper semicontinuous (respectively lower semicontinuous) if v* = v (resp. vi =v).

Corollary 3.4 (Semicontinuity for L* and L)
Consider a function u : 1 — R.
1) If u is upper semicontinuous, then

(3.8) (L*u), = LTu on €.
1) If u is lower semicontinuous, then
(3.9 (L"u)*=L"u on €.
The following lemma motivates our choice of test functions when we later will define viscosity solutions.

Lemma 3.5 (Continuity of L* )
Let p € C1(Q). Then L¥p € C(Q).

Proof of Lemma 3.5

We only do the proof for LT, the result for L™ following from the equality L™¢ = —LT(—p). Take
o € .

Case i): a € (0,1)

Then for ¢ small there exists a constant C' > 0 such that

lo(y) — (@) < Cly — x| forall =,y € Bs(xo) C Q.

We recall the definition for > 0 of the operator for x € Bs /(o)

Lro)e)= sp LW ZP@)
yeQ\ B, () ly — x|

On one hand, by the continuity of ¢, we see that L} ¢ is continuous on Q. On the other hand, we have for
r<§/2
Ply) — e —a
(@) - Gl s sy PO g
yeQNB,.(z0), y#£z |y - (E‘

which shows that the family L ¢ of functions converges uniformly to Ly as r — 0 on Bg/s(xo). This implies
that LT is continuous.
Case ii): a=1
Fix 6 > 0 such that Bs(xg) C . Then there exists a modulus of continuity w such that

IVe(y) — Ve(a)| < w(ly —=[) forall z,y € Bs(xo).



Using simply the formula for all z,y € Bs(xo)

1
¢@yf¢urzﬂ(ﬁv@@+¢@—z»wy—m,

we see that if furthermore y # x, then

(3.10) ‘w(w—w(x) R

X
- < w(ly — ).
P ‘ |

ly — |
In particular if = € Bj/o(20), and r € (0,0/2), then B,.(x) C Bs(xo) C 2 and

0< sup o(y) — p(x)

— V()| < w(r).
yEQNB,(x), y#z ly — |

Remark that
(3.11) (L+o)(@) = max [ (LF o) (@), sp P =@
yEQNB.(z), y#x ly — |

Now we have

(L) (@) = (L) (wo)| < (LT @)(x) — (LT @) (xo)| + [[Ve(@)| — V(o) + 2w(r).
From the continuity of L}f¢ and V¢, we deduce that

limsup |(L*¢)(2) — (L+e) (o) < 20(r).

r—xo

Choosing r — 0, we deduce that

limsup [(L¢)(2) — (LFp)(z0)| <0,

Tr—T0

and then LTy is continuous at all points xo € Q.

This ends the proof of the lemma.

4 Notion of viscosity solutions

We have seen how L behaves when applied to sufficiently regular functions and we are now ready to introduce
the notion of viscosity solutions. This notion follows the usual way of defining viscosity solutions. For a tour
on the theory of viscosity solutions see [8]. For further reading on viscosity solutions of non-local operators,
one can for instance consult [4].
Let
Lu=LTu+L u

when it is well defined, which indeed is the case for u € C*(Q). We wish to study
Lu=f in Q

(4.12)
u=g on 0N

with f € C(R2) and g € C(09).

Definition 4.1 (viscosity sub/super/solution)

Let a € (0,1] and f € C(Q).

We say that u is a subsolution (resp. supersolution) of (4.12) if w is an upper semicontinuous (resp. lower
semicontinuous) function from Q to R such that



(i) u<g (resp. u>g) on I
(ii) for any test function ¢ € C*(Q) N C(Q) satisfying
u<le on Q (resp. u>p)
and u(zg) = ¢(xo) for some zg € 1, then

(L) (o) = f(wo) (resp. (Lp)(wo) < f(w0)).

A function u : Q — R is a viscosity solution of (4.12), if and only if u* is a subsolution and u. is a
supersolution.

We will say that a function u : Q :— R is a solution (resp sub- or supersolution) of (4.12) in Q if u only
satisfies condition (ii) in Definition 4.1.

Remark 4.2 We see that this definition make sense intuitively, since if u € C1(Q) and ¢ € CH(Q) N Q
touches u from above at xg, we would indeed have

(L) (wo) = (Lu)(xo)-

5 A representation formula

In the homogeneous case, i.e., when f = 0, one can obtain an implicit representation of the solution, as
presented in the following lemma.

Lemma 5.1 (Representation formula when f =0)
Let Q2 be a bounded open set, g € C(0Y). Define for x € Q the non-increasing (in a) functions

W =8 oy = g L8 g g (0) = € (a) + £ (o)

+ — g
¢ (a’) = sup yEOQ |y_x|aa

x

Then the function u defined by
g(x) if xedd
u(z) =
a with £y(a)=0 if el
is a solution of (4.12) which is continuous on 2. Moreover, we have for all balls B CC S, the estimate
(5.13) [ul1,B < C(a,[|g|L=(a0), diam €, dist(B, 99)).

Before giving the proof of Lemma 5.1, we need the result below.

Lemma 5.2 (|- |* is a distance)
For a € (0,1], the function | -|* is a distance, i.e.,

Ja+ 0] < la]® + ],

Proof of Lemma 5.2
We observe that the function f(r) = r® for r > 0 is concave and non-decreasing. Therefore, if 0 < b < a

fla+b) < fa) + f/(a)b < fla) + f(B)D.
In addition, again due to the concavity,
0= f(0) < f(b) = bf'(b).
Combinating these two inequalities yields

fla+b) < fa) + f(b),



whenever 0 < b < a. Thus,

fla+0[) < f(la] +[b]) < f(lal) + F([b]),

which is the desired result.

Proof of Lemma 5.1
We follow the ideas in [16]. From the definition of u, we deduce that

infg <u(z)<supg forall z€Q
o0 e}
and then
L, =/(, (u(z)) <0<l (u(z)) =L} forall zeQ.

Step 1: First estimate when L} < L]

)

Let x1,29 € Q and let xgi € 0N be such that
9(23) —u(z2) = LE |25 — 22|
Then
g(x3) —u(xr) < LY |z — 1]
This implies
u(ws) —u(wr) < Lhlat — 1] — L Jof — ol

< LY (leg — aa|™ — |25 — 20])

< LY |wy — x1|*,

where we have used Lemma 5.2 and L > 0.
Step 2: Second estimate when L} < L
By the assumption on L} we have L > L . Then

g(zy ) —u(z1) = Ly, |zy — 21|
This implies
u(w2) —u(z1) = Ly [zy —a1|® — Ly, |zg — 2o|®

> L, (|3 — z1|™ — |z — 22]|?)

> L, |2 — x1]%,

where again we have used Lemma 5.2 and L;, <0. This implies that
U(xl) — u(xz) < —LI_2|.Z‘2 — .”L'1|a = L:2|$2 — 33‘1|a.

Step 3: Estimate of LTu
Adding the two steps above together, and interchanging the roles of x1 and x5 we have

u(xe) — u(z) { L} when L} <L},
|x2 — x1|’1 - Lj;l when L;rl 2 L;Z.
This implies (Ltu)(x1) = L .
Step 4: Estimate of L™ u
This can be done in a similar way as for LT u.
Step 5: pointwise solution
Finally we get
(Lu)(@1) = L, (u(z1)) = 0

which is true pointwise. In particular, this implies that u is a viscosity solution of the equation.



Step 6: local continuity estimate for u
Assume b > a and take a® and b* such that
+) _
) 9) .
o= oo

and similarly for b. Then
b—a gbT)—a gb*T)—b

< 47 (a) = £5(b).

lz—bt|e = Jz—btje  |z—bt|e = ®
Hence,
b—a
0 (a) =05 (b) > —rr.
@ - 60>
After similar reasoning for £; one can conclude (using the fact that £ (a) is non-increasing in a)
2(b—a)
5.14 lp(a) — £, —_—
(5.14) (@~ 1.0) > ik

But for z,y € B CC 2 we also have the inequality

€ (u(z)) = Lo (u(y)] < o (u(z)) = by (u(y))] + [£y (u(y)) — e (uly))|
Cla [l9llL= (o9, dist(B, 9))|z — y.

Hence, with b = max(u(z),u(y)) and a = min(u(z), u(y)) in (5.14) we obtain

(diam )*
2

u(z) —u(y) < Clev, [gll= o0, dist(B, 0Q))|x — y,

This implies (5.13).
Step 7: u e C(Q)
It remains thus to prove that u is continuous up to the boundary. Assume x, — zy € 02 and let

g 00E) ~u(w)

Tn bl
! ‘l/n — |

for yrf € 0. Since iﬁfﬂ >0,

(5.15) 9(n) < uzn) < gy,t).

We also know that
le, (u(2n)) = 0.
This implies that the limit of é;“n is finite if and only if the limit of £ is finite.
If they are both infinite then we must have |y — z,,| — 0. Using this in (5.15) together with the
continuity of g implies u(z,) — g(xo) = u(zo).
If they are both finite then for some constant C

g(zo) — u(wn)

> hmlnff > —C.
|0 — 2 |*

C > limsup @'ﬂ >
n

This implies u(x,) — u(xo). This ends the proof of the lemma.

6 The limit p — oo

As mentioned in the introduction we will work with the so called fractional Sobolev space W#?({2). This
space is equipped with the norm

_ ( )P

Since the results concerning the fractional Sobolev spaces are not so standard we recall the embedding result
below.



Proposition 6.1 (Sobolev embedding) Let u € WP (Q) for s € (0,1) and s > N/p with @ a bounded
Lipschitz domain. Then with v = s — N/p we have

HU”co,v(ﬁ) < C”UHW-W(Q)-

Sketch of proof of Proposition 6.1

Step 1:
By (2.45) in Proposition 7 in [15] we have (for bounded and Lipschitz ) that

1

1 P
1 llze @) + </Q/O (e (/V(l ) |f(z +h) —f(x)lpdh> dtdw)

is an equivalent norm for the Besov space B, (§2), where V/(x,1) is the largest starshaped (w.r.t. the origin)
set contained in By such that x + V(z,t) C Q. Then

1 1
/ s N1 / |f(x+h) — f(x)[Pdhdt < / o Nt / |f(x+h) — f(x)[Pdhdt
0 V(z,t) 0 B:N(Q—x)

! 1 h) — p
<[ [ e - i < e e dn
Bin(Q-a) J|n| sp+ N Jp,no—a) |h|sP
1 [f@+h) = f@P
“sp+ N Jo, |h|sp N '

which implies that

lullss ) < Cllullwsr)-

Step 2:
By Theorem 4.1 in [17] or Theorem 2.11 in [18] (for bounded and Lipschitz ) there is an extension of u to
R¥, still named u, such that

[[ul

B &) < C'llullss (@) < Cllullws»)-

Moreover,
s N Ny _ 0, N
lgp,p(]R ) - Bgo,oo(]R ) - C ’Y(R )a

for the injection, see (ii) on page 44 in [9] (see also [1]) and the last equality follows from (iv) after Remark
2.2 in [18].
Step 3:
We can conclude
ull con@) < llullcon@yy < Cllullwsr ).

6.1 Proof of Theorem 1.1
A key result throughout this section is the following convexity inequality.

Lemma 6.2 (Convexity inequality)
For p > 1, there holds

| min(a, ¢) — min(b, d)|” + | max(a, c) — max(b,d)|” < |a — b’ + |c — d|?.

For the sake of completeness we give a short proof below. The proof is inspired by [14].

Proof of Lemma 6.2

If a <cand b < ditis clear. If a > c and b > d as well. The issues are when a > ¢ and b < d or a < ¢ and
b > d. Consider the first case. Then we want to show with ¢(z) = |z|P that

ple=b)+dla—d) < ¢a—0b)+¢(c—d).

Now
a—b>c—b>c—d and a—b>a—-d>c—d

10



and there exists 0 such that ¢ —b = 60(a — b) + (1 — 0)(c — d), while
a—d=a—-d+c—b—0a—b)—(1—-0)(c—d)=(1—-0)(a—0b)+0(c—d)
so that, using the convexity of ¢,
¢lc—b) <bp(a—b)+ (1 -0)¢(c—d) and ¢(a—d) < (1 —0)p(a—0b)+0¢(c—d)
and summing both inequalities the thesis follows.
The lemma below justifies the existence and uniqueness of minimizers for p large enough.

Lemma 6.3 (Existence and uniqueness of a minimizer)
Let € (0,1] and assume that Q is a bounded Lipschitz domain. Consider g € C%*(9Q) and define the set

X,={ueC©Q), u=g on 0Q}.

Define the minimization problem

(6.16) I= uien)gg E,(u),
where »
E,(u) = / dzdy 711(3:) —uly)
QxQ |z — y|~

Then for any p > 2N/«, problem (6.16) has a unique minimizer u,. Moreover, for any function ¢ € C°(Q),
we have

(6.17) / dxdy
QxQ

Proof of Lemma 6.3
We first remark that there is h € X, such that E,(h) < oo which shows that I < oco. Indeed, we can take
one of the extensions from [12] and [19]

h(z) = sup (9(») = [glaple —y|*) € CO*(Q).

up(y) — up()
ly — x|

v {Sgn (up(y) — up(2))

ly — x|

} (o) — () = 0.

Let us now consider a minimizing sequence (uy,),. We claim that we can assume |u,| < ||g]| L~ (50). Indeed,
we have by Lemma 6.2

Ep(max(un, |9l = @00))) + Ep(min(un, [|g]lL=o0))) < Ep(un),

and also min(un, [|g]/z~@0)) € Xy4. In the same way we can show that the energy decreases if we cut u,
from below at —||g|| o (s0). Hence, we can assume |u,| < ||g|| £ (a0)-
In addition,

Ep(un) <[9P ([hae)” < Cla, [gla.00).

From Proposition 6.1, we deduce that
1
||Un||coyw(ﬁ) <C ((Ep(un))P —+ |QH|9HL°°(BQ)) < O(a, [gla,00, 9]l L<00))

fory =a— % > 0. Therefore, up to the extraction of a subsequence, we deduce that u,, converges to a
limit v, in C%P(Q) for < . As a consequence we have u, € Xg4. Since the integrand converges a.e. it
follows by Fatou’s lemma that w, is a minimizer. The uniqueness follows from the strict convexity of the
functional and the fact that u, satisfies the corresponding Euler-Lagrange equation follows by perturbing
with a test function in a standard way.

Now we will prove that minimizers are actually viscosity solutions, without knowing any regularity of
the minimizer except continuity. For an example where a similar result is proved see [6].
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Proposition 6.4 (Minimizers are viscosity solutions)
Let p > 2a/N and if « =1 let N > 2. Then the minimizer of E, is a viscosity solution of the equation

Lyu(z) = /Q

Proof of Proposition 6.4
Take u to be a minimizer of E,. By Proposition 6.1, and the same arguments as in the proof of Lemma
6.3 we have u € C(Q2). Now we need to prove that u satisfies the viscosity inequality. We prove that u is a
subsolution.

Take ¢ € C1(Q2) N C(Q) touching u from above at x¢ € . Then we want to show that L,¢(z¢) > 0. Let

7 sgn(u(y) — u(@))

ly — x|

u(y) — u(x)
ly — x|

dy = 0.

©° = max(u,p — )

and
Y = min(u, o — ).

Up to replacing () by ¢(z) + |z — 2¢|?, we see that for ¢ small, we have . = u and ¢° = ¢ — & on 9.
Therefore E,(¢.) > E,(u). Moreover, by Lemma 6.2

Ep(¢°) + Ep(pe) < Ep(u) + Ep(p —€) = Ep(u) + Ep(p).
Consequently, E,(¢°) < E,(¢). The convexity of E, then implies
Ep((1=t)p +1¢%) < (1 =) Ep(p) + tEp(¢°) < Ep(p)-

Consider the convex function
f(t) = Ep(p + (" — ).

Then we have

f(t) = f(0)

0>
/...
=2 [ (¢ o+ (/Q

2 /Q (¢° — 9 + ) (2)(~ L) (x)dz.

> f'(0)

: an(@x(x_) e Qm) (6" — ¢ +9)(@) — (" — 0 +)(v) dyde

p-1 (Sgn(¢(x) - @(y))> dy> d

t
e(r) —»(y)
lz —yl*

o) — p(y)
|z —yl|~

|z —yl|*

Now we argue by contradiction. If L,p(xg) < 0, then by continuity, which holds under our assumptions,
because of Lebesgue’s dominated convergence theorem, there is a small ball B, (z¢) such that L,p < 0 in
B, (). Moreover, when ¢ is small then supp(p® — ¢ +¢) C B,(zg). We also observe that ¢° > ¢ — ¢ and in
particular (¢° — ¢ +¢)(xo) = €. Hence, from the continuity of u, we see that there is a ball Bs(zo) C By (z0)
such that ¢ — ¢ +¢e > 0in Bs(xg). Therefore,

0> /Q(wa — ¢ +e)(@)(—Lpp)(z)dr = /B (" =@ +e)(x)(=Lpp)(x)de

(o)

> [ @t @)L >0,
Bs(x0)

which is a contradiction.
In the same way it can be proved that w is a viscosity supersolution.

To prove Theorem 1.1 we need the following technical result, whose proof is given in Section 6.2.

Lemma 6.5 (Convergence of the LP-norms)
For p € C1(Q) let



and

) = o(y) — e(xo)

ly — @o|®
where ©, — x9 € £ as p — oo. If a =1 assume in addition N > 2. Then
i Iy (y) e
e o =|f HLOO(Q)’
|y — Ip| P Lr(Q)

where fi = max(+f,,0). The same also holds for f, .

Now we are ready to pass to the limit in the equation.
Proof of Theorem 1.1
Since
Ep(up) < [QP[R]7 g
we have with ¢ = 2N/a + ¢ for § > 0 that

2(p—q)

q
Ey(up) < Eg Q™7 <[] [0

By the same arguments as in the proof of Lemma 6.3 we can prove that |u,| < ||g[/ze(q). Therefore, by
Proposition 6.1, u; is uniformly bounded in C%7(Q) with v = a — 2N/q > 0. Hence, for a subsequence,
again labelled w,, we have u, — u in C(12).

Consider a test function ¢ € C*(£2) N C(Q) such that

u < @,
u(xg) = p(x) for some xg € Q.
and assume towards a contradiction that

(6.18) (Lp)(zo) < 0.

Up to replacing ¢ by ¢ + 6|z — x| for § small enough, we can furthermore assume that x¢ is a point of
strict maximum of u — ¢. Then

sup (up — @) = (up — @) (xp) = M,
Q

with
Ty — xo, M, — 0.
This shows that
up < p = M, + ¢,

up(Tp) = @p(Tp).

By Proposition 6.4, u, is a viscosity solution, therefore

0< (chpp)(xp) = (LPSD)(xP)'

We recall that

_ e(y) — p(zp) [”
0 < (Lye)(ay) =2 [ ay |22

- {Sgn (e(y) — olp)) }

|y*xp|a

Written in another way we have

+ —
( p(y) = p(zp) ) - ( ply) — (@) )
T = TR
|y — | i ly — | e

Lemma 6.5 now implies that we can pass to the limit in this inequality. Hence, we obtain
sup (max (MOD +inf (min (so(y)—so(xo)())) > 0.
yeQ ly — xol™ yeQ ly — @ol™
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Since ¢ is O at zq it is clear that +(L*p)(x¢) > 0. Combined with the last inequality this implies,

(L) (o) = 0,

which contradicts (6.18). In the same way it can be proved that u is a supersolution.
By (ii) in Theorem 1.5 the solution u is unique, so the whole sequence converges to the solution. Moreover,
by (iv) in Theorem 1.8 we have

[u}a,ﬁ = [g]a,(‘)ﬂ-

This ends the proof of the theorem.

6.2 Proof of Lemma 6.5

In order to prove Lemma 6.5 we first need the following result.

Lemma 6.6 For ¢ € C1(Q) let
ply) — ()
) = ——3—
? ly — xp|*
" (4) ~ plxo)
y) — p(x
fly) = EL=TE0
ly — o
where x, — xg € ) as p — oco. In addition, let
£ = max(£f,,0)

and assume
sup ft > 0.
Q

Then for any .
O<t<supf
Q

there is a pg < oo and ¢ > 0 such that

|{f; > t}| > ¢,
for all p > po. The same also holds for f, .
Proof of Lemma 6.6

For a < 1 this is obvious since f, will be uniformly continuous and then also f; . Therefore we treat only
the case & = 1. By arguments identical to those in the proof of Lemma 3.5 one can prove that

(6.19) sup f;‘ —sup fT.
Q Q

Since t < supg, f, there is a sequence z, such that f;(zp) > t + ¢ for € small enough. We split the proof
into two cases.

Case 1: z, — 2o.

By Taylor expansion we have ¢t + &/2 < |V(xq)| for p large enough. We also have for all y

Yy—x

fo(y) = V(o) - = 0y, | (1) = 0z, ) (1)

ly — x|
Therefore, if we choose p large enough and y such that oj,_, |(1) + 0}, s, (1) < £/4 and

Y= > |Vp(xo)| — £/4

VSD(IO) |y—x | =
p

then f,(y) > t. Clearly, this set of y:s has positive measure, independently of p, as long as p is large enough.
Case 2: z, — 2z # xo.

In this case, for p large enough, there is a § such that f; is uniformly continuous in Bs(z,), uniformly also
in p. Consequently there is ¢’, independent of p, such that f;‘ >t in By (zp).

14



Proof of Lemma 6.5
Case 1: supg, fT > 0.
Take
0<t<supfh
Q

and let
A(t,p) = {fy >t}
By Lemma 6.6, for p > po, |A(t,p)| > ¢ > 0 with ¢ independent of p. Therefore

+\p
/ (fp) Z tp/ 1 Z : C tp,
o ly —pl® Atp) [y —xp|* — (diam (€2))*

i

o

ly — xp|?

This implies

1
P

2 (@ @r)

L (Q)

For the other side of the inequality we have

[ comigy [ < ooy
aly—xpl® = o P Joly—mple T o Y
Thus
[ 1
(6.20) —r < C¥sup f,f —sup 7,
‘y—l'p‘l’ Lr(Q) Q Q

where we have used (6.19) for the convergence. All together we have

£ +
t < liminf P < limsup LA <sup fT,
b0 |y - xp| P Lr(Q) p—0o |y - xpl P LP(Q)

for all
0<t<supfr.
Q

This implies the desired result.
Case 2: supg [T =0.
Then (6.20) implies the result.

7 Limits of viscosity solutions
In this section we prove the result that says that limits of subsolutions are again subsolutions.

Proposition 7.1 (Stability of subsolutions) B
i) Consider a family (Fr). of sets F. of subsolutions of (4.12) in  and define for any xo € Q

@)= limsup  ue(.),
e—0, z.—x0, uE€F:

which we assume to be bounded from above. Then T is a subsolution of (4.12) in Q.
ii) Moreover, in the special case where the sets F. = F are independent of €, then we have

u=17" with v(x)=supu(z) foral z€Q.
ueF

In fact, we will only be using the second statement of this proposition, but we give the full result since
it can be of general interest.
To prove the proposition, we will need the following:
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Lemma 7.2 (Perturbation by a small parabola)
Let ¢ € CH(Q) and define for some x9 € Q and § € R

B(x) = (x) + d(x — w0)*.
Then, with the notation R = diam  we have
(LP)(z) — (Le)(z)| < 4|5|R*™  for every = € Q.

Proof of Lemma 7.2
Consider points y,x € Q\ {zo}. We deduce

_ 2 _ _ 2 o
5(y IE()) 5($ 1.0) ‘ _ |5‘ ‘ Yy x . (y-l—l'— 21,0) S 2|5|R27o¢.

ly — x| ly — x[*

This implies for x € O\ {zo}
(L¥p)(2) — (L¥¢)(2)] < 2/8|R*~*

and then
[(Lp)(2) — (L) (x)] < 4|0| R*~.

This ends the proof of the lemma.

Proof of Proposition 7.1
Preliminary: u is upper semicontinuous
Consider a sequence (). such that 2. — x¢ as e — 0 and

u*(xg) = ;1_1)% u(x.).
In particular, for any § > 0, there exists a point x5 such that
u*(zg) — 0 <u(zs) and |xs— x0] <4
By the definition of @, there exist a sequence y. and a function u. € F' such that for ¢ = €5 < § we have
u(rs) =0 < ugs(ye;) and |z — yes| < 6.

Therefore
T (20) — 20 < Uey (Yey )y |Yes — 0] <20 and g5 < 0.

Since this is true for any § > 0, this shows that
u* (l‘o) < ﬂ(l‘o)

and then

gl
g

Part I: proof that u is a subsolution -
We argue by contradiction and assume that there exists ¢ € C1(Q) N C(Q) such that

u<e on Q

with T(zg) = ¢(x0) and (Le)(zo) < f(zg) for some zy € .
Step I.1: reducing the problem to a point of strict maximum

Let us set for 6 > 0

P(z) = p(2) + 8(z — w0)°

such that x( is a point of strict maximum of @ — . From Lemma 7.2 we deduce that

(7.21) (L) (o) < (Le)(wo) +46R*~* < f(o)
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if 0 is chosen small enough.
Step 1.2: Coming back to the s-problem
Let us choose a sequence € with z. and u. such that

a(xo) = gl_r}(l) Ue(2e).

Then let us set -
M, :=sup (ue — P)(x) = (ue —P)(ye) with y. € Q.
xeQ
Because zq is a point of strict maximum of @ — @, it is classical to realize that M. — 0 and y. — x¢. Let us
set

128 (:C) =M. +o.
Then we have
Ue < P,
and
(7~22) ue(ye) = D (ya)

which implies (LP)(y:) > f(y:), where we have used the fact that Ly, = L.
Therefore, by letting y. — x¢ we can conclude that (Lg)(zg) > f(x0). A contradiction to (7.21).

Part II: proof that w =7* when F. = F
Step I1.1: ©w > 7"
By definition we have

u(xg) = lim sup ue(xe)
e—0, xc—x0, ucEF

Setting x. = x(, we see in particular that w > v, and then ©w* > v*. Using the fact that w = ", we deduce
that

u>vt.
Step II.2: w <"
Let us fix zo € 2 and sequences (z.)c, (u:): such that

a(xg) = lin%) ue(ze) and x. — .
E—
In particular, for any § > 0, there exist &5 such that
u(xg) — 0 < ues(xs,) <V(xey) and  |ze;, — o) < 6.

This implies that 7" (z¢) > u(xy), i.e.

u<7v.

Step 11.3: Conclusion
We conclude that w = 7.
This ends the proof of the proposition.

8 Barriers

In order the prove the existence of solutions we need barriers, i.e., sub- and supersolutions. This section is
devoted to the construction of barriers.

Lemma 8.1 (Fundamental supersolutions)
Consider a bounded open set Q such that 0 € 9. We also choose R > 0 such that

(8.23) QC BR(O)
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Then for a € (0,1], the function
V(z) = ||

satisfies
0> —0(z) > (LY)(z) for xze€)

where when o € (0,1), we can choose

(63

pt—1

—5(£C) = —1 + W

<0 with p=R/|z|
Proof of Lemma 8.1
We simply estimate (LWU)(x) for every x € . We first remark that

- g 19— 2
8.24 L™0)(x) < liminf ©—21 = 1.
(8.24) (L7 (@) < lmipf = —

On the other hand we have with e = z /||

a a

(LTW)(z) = sup 7@' |:va|
vea, ya 1Y~ 2

_ sup [z]* =1

2€Q/|z|, z#e |Z - e‘a

IN

27— 1
sup
2ERN, 1<|2|<R/|a| |7 — €|*

r® —1
= sup
1<r<R/|z| (T - ]_)a
where we have used for the last line the fact that |z — e| > ||z| — |e]|. Now we set
r¢ —1

g(r) = W

and compute
ar® Hr — 1) — (r* — Da(r — 1)1
gy = O (= D)
(r—1)

=
~
3
I
S~—

1 a— (0%
= {re-tr=1) = (r* - 1)}
a(r — 1)0471 a—1
= (r—1)2 {1—r*"1}.
In particular for r > 1, we get ¢’(r) > 0 and moreover
(8.25) g (r)>0forr>1ifae(0,1).

This implies that
(LT0)(x) < g(R/|z])

where g(R/|z|) < g(c0) = 1 and moreover g(R/|z|) < 1if a € (0,1). Joint to (8.24), this proves the lemma.

Lemma 8.2 (Fundamental strict supersolutions for a = 1)
Let o« = 1. Consider a bounded open set 2 such that 0 € 0. For e > 0 we set

U, (x) := |z| —elz|?
Then we have

0> —¢lz| > (LY.)(z) forall x€ Q.

18



Proof of Lemma 8.2
We proceed as earlier. We have

(8.26) (L 0.)(x) < limint 2L < = (o] = lz)

= —1+¢|z|
y—0 ly — 2|

On the other hand we have with e = z /||

ly| — elyl® — (J=| — el[?)

(LTW.)(z) = sup
yeQ, y#x |y—a:|
—alz2=-(1—-¢
oy lmEP-a-9
2€Q/|z|, z#e |Z - 6|
(2l —&lzP -1 -9)"
< sup
2€RN, 1<|z| 2] — lel|

IN

—1—&(r> -1
supr g(r )

1<r r—1

=sup 1—¢&(r+1)
1<r

—1 -2,
where in the second line we have set
€ = ¢l
and where in the third line, we have used the fact that |z —e| > ||z] — |e||. Joint to (8.26), this shows that
(LTW)(z) + (L7, )(x) < —¢lz] <0

which ends the proof of the lemma.

We see that the strict sub- or supersolutions we have constructed above are not uniformly strict as we
approach the origin x = 0. However, if we demand less regularity, it is possible to construct strict sub- and
supersolutions that remain strict when approaching the origin. These sub- and supersolutions will be useful
later.

Lemma 8.3 (Less regular strict subsolutions/supersolutions)
Consider a bounded open set Q0 such that 0 € 9Q. For 0 < § < « € (0,1], the function

() = |z|?
satisfies
—0(z) > (LY)(z) for x€Q
where

§(z) = Cla, B)|z*~* > 0.

Proof of Lemma 8.3
We proceed with the same computations as in Lemma 8.1 and obtain

(L79)(2) < —[z]777,

and

f 1
LTYU)(z) < |z[P~*su 7“7.
(L) (@) < Jaf 7 sup T

Now let



Clearly, g — 0 when r — oco. So for R large enough, » > R implies g(r) < 1/2.
Case 1: a € (0,1)
When r < R we have

where we have used (8.25). Therefore,
(LTW)(z) < max(h(R),1/2)]z|?~* < |z|?~.

Case 2: =1
We have h(r) — h(1) = 8 as r \, 1. Moreover, h(r) < 1 for r > 1. Therefore,

sup h(r)=Cp < 1.
1<r<R

This implies
(LTW)(z) < max(Co,1/2)|z|P~ < |z|P~

Hence finally, in both cases
(LW)(z) < —C(a, B)|a]"~.

Lemma 8.4 (Natural subsolutions/supersolutions with boundary conditions)
Let f € C(Q)NL>®(Q) and g € C(0Q). For € (0,a), zg € RY and a,b € R, we define

Ugoa,b(T) = a+ blx — x0|ﬂ.

Furthermore, let

Ugy.ab  JOr (zo,a,£b) € (002) x R x (0,00)
such that

FUzg,a,4b > g on 0N

:I:Luxo,a,ib < :|:f m 0

and define for all z € Q

v(zx) = uien5f+ u(z), v(x)= seugi u(x).

Then v € C(Q) is a supersolution and v € C(2) is a subsolution of (4.12).
Moreover, we have

(8-27) v<wv on Q
and
(8.28) v=g=uv on OS.

Proof of Lemma 8.4

Let us show that 7 is a continuous subsolution satisfying (8.28), the proof being similar to show that v is a
supersolution.

Step 1: v* is a subsolution

From Lemma 8.3, we first deduce that for zy € 082 if @ and b are chosen properly, then ug, o € S~. This
shows that S~ # (. On the other hand if uy, 4, € S™ then

a < g(xo) <supgy,
o0

which implies that for all v € S~ we have
u < supg.
oQ

Therefore, applying the stability result (Proposition 7.1), and setting F. = S—, we know that

(8.29) u(x) = lim sup ue(xe)

e—0, xc—x, ucES™
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is a viscosity subsolution. Moreover we have 7% = w.

Step 2: 7 > g on 002

For any z¢ € 092, and any 0 > 0, we see (using the continuity of g) that there exists b5 > 0 large enough
such that with as = g(z¢) — 0 there holds

Ugg,as,—bs < g on 0.

Therefore
U(zo) > g(x0) — 0.
Since this true for any § > 0, this implies that
T(xg) > g(xo)
and then
(8.30) T>g on 0.

Step 3: v. =70 on Q)
Let zp € © and take a sequence of functions (us)s with us € S~ such that

(zo) = %i_)r% ugs(xg).
Now consider a sequence (x.). of points z. € Q such that
Ty (20) = lim T(x,).
e—0
Then we have
() > us(xe)
which implies
Tu(z0) > us(0).

Taking now the limit § — 0, we get
Vi (J:O) > i(1‘10)

and then

<l

Vs =

Step 4: 7" =7 on - -
From (8.29), we deduce that for any xo € €2, there exist a sequence (y.). of points y. € Q such that y. — xg
and a sequence (u.). of functions u. € S~ such that

(8.31) " (z0) = gli%ue(ys)

We write
ue(z) = Uze,ae,—be (z) = ac —be|z — x5|5

with a. € R, b. € (0,00),z. € ON.
Case b, — ©
Since a. < supg g and T*(xp) < supg g we deduce that |y. — x.| — 0 which shows that

T, — 1o and xg € IN.
On the other hand we have u.(z.) < g(x.) which means
as < g(z:)

Therefore
ue(ye) < ae < g(xe).

Passing to the limit as € goes to zero, and using the continuity of g, we deduce from (8.31) that

0" (z0) < g(x0) < 0(w0)
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where we have used (8.30) for the last inequality. This shows in that case that
T* (.130) < 5(%0).

Case b, bounded
Because of (8.31), we see that a. is bounded. Then up to extraction of a subsequence, we can assume the
following:

a: — a € R,

b: — b e [0,00),

Te — Ig.

Therefore, with
Ug = uio,a,—b

we get
@*(xo) = Uo(l'()) é @(xo)

and then we conclude in every case that

Step 5: Intermediate conclusion

From the previous steps, we deduce that 7 € C(Q) is a subsolution.
Step 6: Proof of 7 < v on Q

Step 6.1: v~ <u™T

. + . + — —_ .
Let us consider u™ = Up at bt € STand u” =u —a-—b- € S~. By assumption we have

Zo
(8.32) um <g<u® on 0.

We want to show that

(8.33) u” <ut on Q.
Let us proceed by contradiction. If this is false, then we have

(8.34) 0<sup (u” —u')=(u" —ut)(yo) for some point 1y € N
z€Q
and then
V(u™ —u")(yo) =0,

ie., for x =y

) brle —af Pt + r =) bl —ay [Pt =0.

(z — g
|z — x| |z — x|

This implies that yo € [z5, 2], because b* > 0. Let us call I = (27, 2%) the connected component of
[xa,xar] N Q containing yo. In particular since 8 € (0,1), v~ — u™ is strictly convex on I and reaches it
maximum at the interior point yg € I. This gives immediately a contradiction.

Step 6.2: Conclusion

From (8.34), we deduce that for any z €

v(z) = sup u (z) <ut(z)

uTES™
and then
— : +(0) —
ve) < inf u(z)=u(z).
Therefore
(8.35) v <wvon Q.
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Step 7: Proof of 1 = g = v on 990
Similarly to (8.30), we show that

<
IN

g on Of).
Therefore from (8.35), we deduce that

g<v<u<g on 0N

and then
on Of.

S

I
Q

I
]

This ends the proof of the lemma.

9 Perron’s method

In this section we construct the solutions applying the Perron’s method.

Theorem 9.1 (Existence by Perron’s method)
Let u= € C(Q) be a subsolution (resp. u™ € C(Q) be a supersolution) of (4.12) with continuous boundary
data g, satisfying

u” <ut on Q,

u~ =g=u" on 0.

Define _
S = {u subsolution of (4.12) such that u~ <u <u" on Q}

and for all xo € Q

u(xg) = limsup  we(xe).
e—0,x:—x0, W €S

Then W is upper semicontinuous on Q and U is a viscosity solution of (4.12) in . Moreover, U satisfies
(9.36) uw<u<ut on Q.

Remark 9.2 From Lemma 8.4, we can set u~ = u and u™ = u and then Theorem 9.1 provides the existence
of a solution.

Proof of Theorem 9.1

Step 1: construction of the maximal subsolution on Q

By assumption we have S # (), because v~ € S. Applying the stability property of subsolutions (Proposition
7.1), we deduce that 7 is a subsolution on Q. Finally, by construction, we get (9.36).

Step 2: u, is a supersolution on 2

Let us proceed by contradiction and assume that %, is not a supersolution on 2. Then there exists a test
function ¢ € C1(Q) N C(Q) and a point ¢ € Q such that

U, > ¢ on £,
(9.37)
U (o) = ¢(T0)-

and 7, is not a supersolution at the point z, i.e.
(9.38) (L) (o) = 0 + f(w0) > [(x0)

Step 2.1: . (zo) < u'(z0) B
We already know that @ < u™ on €, and then

<p§m§u+ on €.

If e (z0) = ut(z0) and zg € €, then ¢ is a test function for u™ which is then in contradiction with the
supersolution property of u™ at xq. Therefore we have

(9.39) Uy (z0) < u' (z0).

23



Step 2.2: preliminary
Similarly to what was done in Step 1 of the proof of Proposition 7.1, we can set for § > 0

ps(z) = p(x) = blz — zof*.

From the result on perturbations by a small parabola (Lemma 7.2), we deduce that for § > 0 small enough,
the exists a radius p > 0 such that

(9.40) (Lgs) >0/2+ f>f on B,(zg) C .
In particular, we see that xg is a point of strict minimum of u, — ¢5. We set for n > 0

uy () = max(u(z),n + @s(x)).
Let us consider a point yo € 2 and a test function ¢ € C1(Q) N C(Q) such that

u, <9 on 0,

un(yo) = ¥(yo)-

Step 2.3: u, is a subsolution on {u, =4}

Let us assume that yo € {u,, = u}. Because u,, > @, we deduce that 1 is also a test function for @ at yo and
then w, satisfies the subsolution property at yo with the test function .

Step 2.4: u, is a subsolution on {u, >u}NQ

When n > 0, let us choose » > 0 such that

(9.41) n=or’.
This implies that -
n+ps(x) <ex) <u(z) <u(z) if z¢&B.(xg)NN

and then
{uy > T} C By (w0) C By(ao) C 2,

if we choose 7 small enough such that r given by (9.41) satisfies
(9.42) r<p.

Assume that yo € {u,, > u}. Because u,, > 1+ ps, we deduce that 1 is also a test function for n + s at yo
and then

(L) (yo) = (L(n + ¢5))(yo) = (Les)(yo)-
From (9.40) and for the choice (9.42), we see that

(Les)(yo) > 0/2+ f(yo) > f(yo)

This shows that u, is a subsolution at yq.
Step 2.5: Conclusion -
Therefore u,, is a subsolution on 2. On one hand we deduce from (9.39) that

n+es <ut on Q

for 7 > 0 small enough, and then

u_gun§u+ on .

This shows that u, € S for n > 0 small enough, and then u,, < %. On the other hand, by definition of .
there is a sequence of points z. — x( such that

Ui (w0) = lima(z:) > lim uy(ae) 2 limn + p(z:) = n + ¢(0) = 1+ W(20),

which is a contradiction. We finally conclude that w, is a supersolution on €2, and then w is a viscosity
solution on €.
This ends the proof of the theorem.
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10 Regularity properties
10.1 Continuity of subsolutions
First out is the result that all subsolutions are actually continuous.

Proposition 10.1 (Viscosity subsolutions are continuous)
Let f € C(QQ)NL>(Q). If u is a subsolution of (4.12) then u € C(§2).

Proof of Proposition 10.1
The proof is divided into several steps.
Step 1: discontinuity at zg
We proceed by contradiction and assume that there exists a point zp € Q and a sequence (z.). such that
for some d > 0
u(ze) <wu(rg) —35 and x. — xo.

Because u is upper semicontinuous, for each point x., there exists r. > 0 such that
(10.43) u<u(z:)+d <ulxg)—2 on B, (x.).

Step 2: construction of a first test function ¢
Because u is upper semicontinuous, for any n > 0, there exists p, € (0,1) such that

u <u(zo)+mn on By, (x9) C Q.
Consider a test function ¢ € C1(2) satisfying
¢ =u(xg)+n on B, (x9) CCQ,

p>u on .

Step 3: the first perturbed test function
Let us now consider a function 1 satisfying

¥ € CY(R),
0<4(-2) =v(z) <2,
=0 on R\[-1,1],
P(1/2) =1,

' <0 on (0,1),

(0) =2.

Put
U(z) =¢(|z]) and M = sup |VU(z)],

z€RN

and define for A > 0
Uy =U((z—a.)/N).

Choosing the sequence 7. such that r. — 0 as € — 0, we know that for £ small enough we have
(10.44) By (ze) C By, /a(wo).

We then define
u = u(xo) +n—n¥;,
and we set
Ae =sup A, with A, := {)\ >0, w<u) on Bpn(aco)}.

€

25



From (10.43), we deduce that if A € (0,7.], then A € A, if n < §. Moreover for

Ae = 2|z — 0]
we have ule(zo) = u(zo) and therefore \. ¢ A.. Moreover we have B5_ (%) C B3z, —a|(T0) C Bs,, /a(0)
because of (10.44). Therefore for any 0 < A\ < )., we have

(10.45) u? = u(zo) +7 in a neighborhood of 0B, (o).
Thus, there exists A; € (7, 5\5] and y. such that
u<ud on B, (z0),

(10.46)
u=u at y.€ By (z.) CC B, (zo),
and due to (10.43) we can see that y. & B,_(x.). We now define
ude > u(zg) — if e B,,(vo),
pe(z) = _
® if x e Q\B,, (20).

This can also be written as
pe = —n¥:.
Because of (10.45), we see that . € C1(Q) and satisfies
V| < Mn/A. on By (x:) CC B,, (20)

and in particular we have with A\. < \. = 2|z, — x| < 1/2 for ¢ small enough

(LToe)(ye) < max sup Mwi%), sup M
yeQNBx, (z2), Yy#Ye [y — yel yeT\ B, (z.) ly — yel
< U (y) + nP2: (ye) o) — o(y2) + N (y2)
< max sup - 7 sup !
yEQNB_ (z2), y#£Ye ly — ye| yEQ\ B, (a2) ly — ye|

Mn 3 (ye)
< max ((AE)O” (LF¢)(y:) + W)

SmaX<(2/\EM)Za (L*0)(ye) + 277)

2 _
< sup (LTo)(x)+ with M = max(M,1).

T€B,, (z0) ()\E)

Step 4: the second perturbed test function
Define (with § > n)

o, = Pe — (6 - 77)\11;2 < @
which by (10.43) and (10.46) satisfies

P (ye) = ulye) = ¢ (ye),
u< o,.

Therefore i
2
(L*02)(0e) < (L* ) (06) < sup (L) + 0

Bl(IQ) (
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Figure 1: One possible situation of the chosen test functions.

Step 5: Estimate of L™,

We have Bo(r.) — Do(u)
_ e(Te) — Pelle
L™®)(ye) < ————-
( )(ye) PR
Using the fact that ®.(z.) = u(zo) + 1 — 20, Po(y:) = we(ye) > u(xo) —n and (10.46), we get
- 200 —n
(L7®:)(ye) < —<()\)a)~

Step 6: Conclusion
For the choice n < ¢/(M + 1) and using the fact that A\. — 0 as ¢ — 0, we see that

(L) (ye) = (L™ Pc)(ye) + (L+(I>s)(y6) < f(ye)

for € small enough. This is in contradiction with the fact that u is a subsolution.
This ends the proof of the proposition.

As a consequence we obtain the continuity of the solutions constructed by Perron’s method.
Corollary 10.2 The solutions constructed in Theorem 9.1 are continuous on €.

Proof of Corollary 10.2
By the previous proposition, any subsolution and thus any solution is continuous inside 2. By construction,
since the solutions is trapped between «~ and u™, the solution is then also continuous up the boundary.

10.2 Uniform regularity
First we present a comparison result for certain sub- and supersolutions in “domains minus a point”.

Lemma 10.3 (Comparison) Let o € Q and assume that u is upper semicontinuous and that in the
viscosity sense there holds

Lu>f inQ,
Lo < f inQ\{xo},

with the boundary condition
u<wvondQU{zg}.

If v € CHQ\ {z0}) NC(Q), then u < v in Q.
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Proof of Lemma 10.3

We argue by contradiction. If the assertion does not hold, then there is a point y € Q\ {z¢} so that u — v
attains a positive maximum at y. If v € C(Q), v will essentially be a test function for u which gives a
contradiction. If we assume only v € C1(2\ {x(}) the result can be obtained by approximation.

We remark that due to this result combined with Lemma 8.3, we can compare solutions to “Hoélder cones”
of the type C|z|? for 3 < a < 1. Furthermore, if we are dealing with the homogeneous equations, we can
take 8 = o due to Lemma 8.1 (and for a = 1 we had the special construction in Lemma 8.2).

Proposition 10.4 (Bound in L) Let f € C(Q) NL>(Q), g € C(ON) and u be a viscosity solution of
(4.12). Then there is C(a, ||g|| o a0y, | fll Lo (), diam Q) such that

l|lull oo ) < C.

Proof of Proposition 10.4
Fix 8 € (0,a) and z( € 01}, and let
v(z) = a+ble — o),

where
a > ||gll e (09)

and b is chosen so that
Lo < = fllze(o)-

This is possible if 3 < « due to Lemma 8.3, choosing b such that
—bC(a, B)(diam Q)7 <~ ] L=(0)-

Then we are in the situation of Lemma 10.3 which implies ©* < v in . Similarly we can obtain a bound
from below.

Proposition 10.5 (Partial regularity of solutions to the inhomogeneous equations) Let f € C'(2)N
L>(Q) and u be a continuous viscosity solution of (4.12). Then for all 0 < 8 < «, for all compact sets
K CC Q and with d = dist(K, 02) we have

2lull @) 1fllpe (o (diam ©)*—F
<
[l 5 < max < P Cla, 3) 7

where C(a, 3) is defined in Lemma 8.3. If moreover, g € C%P(9Q). Then

[u]g.0 < max | ||g]lco.s a0 | £l Lo (o) (diam €2)>—F
o T e )

Proof of Proposition 10.5
For the first part, take rq € K and

C||UHL°° Q
T()‘x —x0|5

with C' > 2 and so that Lv < f in Q\ {xo}. This C' can be chosen uniformly with respect to the point
xo € K. It is sufficient to assume

v(z) = u(zg) +

C||U||Loc(9)

(o, B)(diam )7 > | 1~

Then for x € 092 we have

Cllullz

C - oo
~ Cllull= (o) L @)y ol <0,

a8 | —xo]” < 2[|ull Lo (o) —

u(z) —v(z) = u(z) - u(zo)

Hence, by Lemma 10.3, u < v everywhere. Similarly we can obtain a bound from below of u(z) — u(x).
This concludes the first part.
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For the second part, let zg € 99 and
v(x) = u(zg) — Clz — zo|°.

Clearly, v(z) < u(z) for any x € 99 and Lv > f when C is large enough (since g € C%® and due to Lemma
8.3). Indeed, choose C such that

(10.47) > [glpon and CC(a,f)(diam )7 > | 1~ (0.

Thus, Lemma 10.3 implies v(z) < u(z) for all € Q. Written differently, we have for any xzy € 9 and
x € Q,
u(z0) < u(z) + Clz — x0|? = w(xo).

Thus, Lemma 10.3 applied with w implies (becase of (10.47))
u(y) < ul(z) + Cle —y|”,

for any z,y € Q. Applying the same arguments to —u, implies a similar bound from below of u(y) — u(z),
and thus the proof is finished.

Proof of Theorem 1.8
Part i) follows from Lemma 5.1, part ii)] follows from Proposition 10.5 and part iii) follows from Proposition
10.5.

For part iv), the result follows from the exact same arguments as in the proof of Proposition 10.5 with
8 = a and C = [g]a,60, using Lemma 8.1 and Lemma 8.2. The reason why we can do this for the a-barriers
is simply that we do not need to compare with solutions having big or small operators L, since we are dealing
with the homogeneous case.

Alternatively, one can apply the estimate in Proposition 10.5, taking f = 0 and letting 8 — a.

11 Uniqueness

Finally we prove a uniqueness result under the same assumptions as in Lemma 5.1. The idea is to compare
sub- and supersolutions to the solution given by the representation formula in Lemma 5.1, which then yields
in the uniqueness.

Lemma 11.1 (Convolution and Lipschitz with respect to the distance |-|)
For o € (0,1] assume that

W <L foral y,x € B.(0).
y—x

In addition, let p. be a mollifier ([ p. =1 and p. > 0) with support in B.(0). Then u. = p. * u satisfies
when € <1
ue(y) — uc(x)

= 2] <L foral y,ze B,_.(0)

Proof of Lemma 11.1
For all z,y € B,_.(0), we have with y =z + h

Uel@+h) —ue() = (pexu)(w +h) — (o u)(@)
= [ dzpe() {ule + h— 2) — u(z — 2)}
< [ dzp.(z) LR
= L|hl*.

This shows exactly the expected result.

Proposition 11.2 (Comparison when f = 0)
Under the hypotheses of Lemma 5.1, take u to be the therein implicitly defined solution and v a subsolution
(resp. a supersolution) of (4.12). Then u > v (resp. u <v).
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Proof of Proposition 11.2

We give the proof for the case when v is a subsolution, the proof being similar when v is a supersolution.
Step 1: preliminaries

We first observe that we can apply steps 1-4 of the proof of Lemma 5.1 to obtain

(11.48) (LEu)(z) = £ (u(z)).

Assume that
M =sup (v—u)>0

Q

and consider the set -
Ko={z€Q, v(z) —u(z)=M}.

Because u € C(Q) and v is upper semi continuous, we see that the compact set Ky satisfies
Ko ccC Q.
For some fixed § > 0 small enough, let us consider a compact d-neighborhood K;' of Ky satisfying
Ko CC Kj ccQ

and a d-neighborhood Qg of 2. We first extend u on 5 by a continuous function still denoted by u. Since
u is continuous on €2 this can be done thanks to a theorem of Lebesgue, found in [10]. In fact there is also
an explicit extension
Uext(z) = Inf (w(z —y) +u(y)),

yeN
if w, the modulus of continuity of v on Q, is assumed to be continuous. If w is a distance, then uey is
C“-continuous, otherwise it might have a slighty worse modulus of continuity.

Then consider a mollifier p.(x) and set
Ue = Pe * U

and
M. =sup (v—u:)>M/2>0
Q

where the bound from below holds for £ small enough. Moreover we also have
K. :={2z€Q, v(z) —u.(z) =M.} CCK] cCQ
for £ small enough. We then deduce that

v < M, 4+ u. =: @,
v=¢, on K.

On the other hand, by the upper semi continuity of v, there exists a neighborhood V' of 9Q in Q such that
for € small enough -
v<u.+M/8 on VCO\K;.

Let ¢ € C°°(RY) such that
=1 on 09,
=0 on OQ\V,

0<p<1 on Q.
Then set
5 M
Pe = Pe — Zz/}

which satisfies



Therefore for any z. € K., ¢, is a test function for v at x., and then
0 < (Lpe)(we).

Step 2: limit for L~
Up to extraction of a subsequence, we have x. — xg € ). Moreover u. converges to u uniformly on 2, and

M
then M. — M. From Lemma 3.1 ii), we deduce with 99 = M + u — Zw that

limsup,_o (L™@:)(z:) < (L™ o) (xo)

< (L7 (u= ) (w0)
T yeon ‘y _ $0|O‘
< (L u)(xp) — 6o with dp = M

4supyeoq [y — Tol*

Step 3: limit for L™

We have
(11.50) (LJFSEE)(ms) < (L+cp5)(x5) = (LJrus)(xs)'
For any = € Q let us set

I+ = sup g(y) - u($>

yeon |y —z|*

From the continuity of u, we deduce that the map x — L is continuous on €. In particular for any n > 0,
there exists r > 0 such that

L —Lf|<n forall z€ B.(xy) CCQ.
We also recall that due to (11.48), for all x € Q we have

u(y) —u(x) < Ly —x|* forall yeQ
and then for all € B,.(x¢)

u(y) —u(z) < (LE +n)ly—|* forall yeQ.
Up to choosing ¢ small enough, we can always assume that the extension u on {25 satisfies for all = € B,.(xq)
u(y) —u(z) <aly—xz|* forall yeQs with a= (L] +2n).

Lemma 11.1 implies for € small enough that

we(y) — ue(z) < aly— 2% on By(eo).
Now, choose ¢ small enough such that |z. — x| < /4. Then we have

(LM ug)(z.) < max (a, sup uE(y)_UE(%)> .
yENB, s Y el
Therefore we deduce from the uniform convergence of u. towards u that
limsup(LTu.)(z.) < max (a, sup u(y)—u(gco)> =a=L} +2n.
e—0 YyEQ\ B, 4(w0) |y — @ol ’

Since this is true for any n > 0, we obtain

(11.51) limsup(L* @) () < limsup(Ltu.)(z.) < L = (LT u)(xo).

e—0 e—0
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Step 4: conclusion
From (11.49)-(11.51), we deduce that

limsup(L@.)(ze) < (Lu)(xg) — 0o =0 — g with o > 0.

e—0

This is in contradiction with the property Lu = 0 satisfied by u pointwisely.
This ends the proof.

Remark 11.3 In the proof above, the essential key is the fact that the supremum and the infimum in L*u
are attained on OS) for the solution given by the representation formula in Lemma 5.1.

Proof of Theorem 1.5
Part i)] follows from Theorem 9.1, Remark 9.2 and Corollary 10.2, while part ii) is an immediate conse-
quence of Proposition 11.2.

12 More general moduli of continuity and open questions

12.1 More general moduli of continuity

Many of the results in this paper can be generalized when we replace |« — y|* with some other modulus of
continuity.
Consider a function w : RY — [0, 00) such that

w(z) >0=w(0) forall zeRN\{0},
{ w(x+y) <w()+w(y) foral =z,yeRVN.

Define for x €

(Lou)(x) = sup M+ i M

yeQ, y#x W(y - LC) yeQ, y#x w(y - $)

For this case, in [16] a representation formula (Lemma 5.1) is found when f = 0, and also the analogue of
(iv) in Theorem 1.8 for the solution given by the representation formula, with the C%®-regularity replaced
by C“-regularity.

It seems plausible that one can, following the ideas of the present paper, extend the following results to
hold for the operators L,:

— The existence via Perron’s method (Theorem 9.1), when f has compact support.

— The comparison (Proposition 11.2), again under the assumption in Lemma 5.1.

12.2 Open questions

Some questions that remain unanswered in this paper that could be interesting to study in the future are
listed below.

— The uniqueness for general functions f.
— Is the C%*regularity valid for general f, disprove or prove?

— What happens if we instead consider higher order operators of the form

_ o ) —u@) = Vu@) (@ —y) L uly) —u(@) - V(@) - (¢ —y)
fale) = ﬁ\{g} |z —y|He " 5\{2} |z —y[t+e

)

with a € [0,1]. Will this yield in C1:“-extensions?
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