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In this paper we study the Matovich-Pearson equations describing the process of glass fiber drawing. These equations may be viewed as a 1D-reduction of the incompressible Navier-Stokes equations including free boundary, valid for the drawing of a long and thin glass fiber. We * This paper was partly written during the visit of Ph.L. and A.M.

Introduction

The drawing of continuous glass fibers is a widely used procedure. Industrial glass fibers are manufactured by a bushing with more than thousand nozzles. Bushings are supplied with a molten glass from a melting furnace. Its temperature ranges from 1300K to 1800K. In order to understand the glass fiber forming process, it is important to study the drawing of a single glass fiber. This is, of course, a significant simplification because we disregard interaction between fibers and between fibers and the surrounding air. For a single glass fiber, the hot glass melt is forced by gravity to flow through a die into air. After leaving the die, the molten glass forms a free liquid jet. It is cooled and attenuated as it proceeds through the air. Finally, the cold fiber is collected on a rotating drum.

The molten glass can be considered as a Newtonian fluid and the process is described by the non-isothermal Navier-Stokes equations for a thermally dilatable but isochoric fluid. Since we deal with a free liquid jet, the problem is posed as a free boundary problem for the Navier-Stokes equations, coupled with the energy equation. We refer to [START_REF] Farina | On the equations governing the flow of mechanically incompressible, but thermally expansible, viscous fluids[END_REF] for detailed modeling and analysis of the equations describing the stationary flow inside the die. There are several models proposed to describe the various stages of the flow of a molten glass from the furnace to the winding spool: the slow flow in the die (the "first phase" of the drawing), the jet formation under rapid cooling (the "second phase"), and the terminal fiber profile (the "third phase") (see [START_REF] Fasano | Non-isothermal flow of molten glass: mathematical challenges and industrial questions[END_REF]).

Since we consider long (their length is approximately 10 m) and thin (their diameter varies from 1 mm to 10 µm) fibers, it is reasonable to apply the lubrication approximation to the model equation. This approach yields good results, at least for flows far from the die exit and in the so-called "third phase" of the fiber drawing.

A standard engineering model for the isothermal glass fiber drawing in the "third phase" is represented by the Matovich-Pearson equations. For an axially symmetric fiber with a straight central line, they read

∂ t A + ∂ x (vA) = 0; ∂ x (3µ(T )A ∂ x v) + ∂ x (σ(T ) √ A) = 0, (1) 
where A = A(t, x) is the cross-area of the fiber section, v = v(t, x) is the effective axial velocity, 3µ is Trouton's viscosity, and σ denotes the surface tension. As the coefficients µ and σ depend on the temperature, it is necessary to take into account an equation for the temperature T = T (t, x).

The original derivation of the system (1) is purely heuristic and obtained under the assumptions that: (i) the viscous forces dominate the inertial ones;

(ii) the effect of the surface tension is balanced with the normal stress at the free boundary; (iii) the heat conduction is small compared with the heat convection in the fiber; (iv) the fiber is almost straight, and all quantities are axially symmetric. We refer to the classical papers by Kase & Matsuo [START_REF] Kase | Studies of melt spinning I. Fundamental Equations on the Dynamics of Melt Spinning[END_REF][START_REF] Kase | Studies of melt spinning. II, Steady state and transient solutions of fundamental equations compared with experimental results[END_REF], and Matovich & Pearson [START_REF] Matovich | Spinning a molten threadline-steady state isothermal viscous flows[END_REF] for more details concerning the model.

Another derivation of the model based on a lubrication type asymptotic expansion can be found in the work by Schultz et al. [START_REF] Gupta | Non-isothermal flows of Newtonian slender glass fibers[END_REF][START_REF] Schultz | One-dimensional liquid fibers[END_REF], Dewynne et al. [START_REF] Dewynne | A systematic derivation of the leading-order equations for extensional flows in slender geometries[END_REF][START_REF] Dewynne | Slender viscous fibres with inertia and gravity[END_REF], and Hagen [START_REF] Hagen | On the effects of spinline cooling and surface tension in fiber spinnning[END_REF], with more emphasis on the mathematical aspects of the problem. The (formal) asymptotic expansion is developed with respect to a small parameter ε, proportional to the ratio of the characteristic thickness R E in the radial direction and the characteristic axial length of the fiber L. The fact that the viscosity changes over several orders of magnitude is surprisingly ignored in these studies. As a matter of fact, the viscosity coefficient depends effectively on the temperature, with values varying from 10 to 10 12 Pa sec, while in the above mentioned asymptotic expansions it is considered simply of order one. A correct formal derivation was given in [START_REF] Clopeau | Asymptotic equations for the terminal phase of glass fiber drawing and their analysis[END_REF], and it is in full agreement with the model announced in [START_REF] Hagen | On the effects of spinline cooling and surface tension in fiber spinnning[END_REF]. Finally, a full non-stationary model of a thermally dilatable molten glass, with density depending on the temperature, was derived in [START_REF] Fasano | Non-isothermal flow of molten glass: mathematical challenges and industrial questions[END_REF].

A mathematical analysis of generalized stationary Matovich-Pearson equations is performed in [START_REF] Clopeau | Asymptotic equations for the terminal phase of glass fiber drawing and their analysis[END_REF] (see also [START_REF] Dewynne | On a mathematical model for fibre tapering[END_REF]). The non-stationary case, without surface tension and with advection equation for the temperature, is studied by Hagen & Renardy [START_REF] Hagen | On the equations of fiber spinning in nonisothermal viscous flow[END_REF]. They prove a local-in-time existence result in the class of smooth solutions. Their approach is based on a precise analysis of the dependence of the solution of the mass conservation equation on the velocity. This method requires controlling higher order Sobolev norms in the construction of solutions by means of an iterative procedure and works only for short time intervals. Hagen et al. [START_REF] Hagen | Studies on the linear equations of melt-spinning of viscous fluids[END_REF][START_REF] Hagen | On the semigroup of linearized forced elongation[END_REF][START_REF] Hagen | Linear theory of nonisothermal forced elongation[END_REF] have also undertaken a detailed study of the linearized equations of forced elongation. Despite this considerable effort, global-in-time solvability of the Matovich-Pearson equations was left open.

The ratio σ/µ is small, and, furthermore, the inertia and gravity effects are negligible in most applications. Accordingly, we consider the Matovich-Pearson equations (1) with σ = 0, meaning, the isothermal drawing with constant positive viscosity and in the absence of surface tension. For a prescribed velocity at the fiber end points, the important parameter is the draw ratio, being the ratio between the outlet and inlet fluid velocities. It is well known that the instability known as a draw resonance occurs at draw ratios in excess of about 20.2. Linear stability analysis was rigorously undertaken by Renardy [START_REF] Renardy | Draw resonance revisited[END_REF]. Moreover, in [START_REF] Yarin | Newtonian glass fiber drawing: Chaotic variation of the cross-sectional radius[END_REF], it was established that the cross section, given by the Matovich-Pearson equations with σ = 0, may vary chaotically at a draw ratio higher than 30, under the condition of periodic variations of the input cross section. There are also numerous articles devoted to numerical simulations confirming such a conclusion. Fairly complete simulations can be found in the papers by Gregory Forest & Zhou [START_REF] Forest | Unsteady analyses of thermal glass fibre drawing processes[END_REF][START_REF] Zhou | A numerical study of unsteady, thermal, glass fiber drawing processes[END_REF]. Their simulations predict various aspects of the physical process, like a linearized stability principle, bounds on the domain of convergence for linearly stable solutions, and transition to instability. Their analysis completes that of [START_REF] Geyling | Extensional instabilities of the glass fiber drawing process[END_REF].

The above mentioned simplification of system (1) is briefly discussed in [START_REF] Hagen | Advances in fiber and film flow[END_REF], however, without any rigorous proofs. Our idea is to use the particular structure of the system with σ = 0, and to prove short-time existence of smooth solutions satisfying good uniform estimates. Then, performing a qualitative analysis of the solutions and constructing appropriate barrier functions, we show that the cross-section area remains bounded below away from zero. This observation allows us to deduce existence as well as uniqueness of global-in-time solutions.

Isothermal fiber drawing without surface tension

We study the system of equations

∂ t A + ∂ x (vA) = 0 in Q T = (0, T ) × (0, L), (2) 
∂ x (3µA ∂ x v) = 0 in Q T = (0, T ) × (0, L), (3) 
supplemented with the boundary and initial conditions

A(t, 0) = S 0 (t) in (0, T ), A(0, x) = S 1 (x) in (0, L), (4) v(t, 0) = v in (t) in (0, T ), v(t, L) = v L (t) in (0, T ). ( 5 
)
Here v is the axial velocity and A denotes the cross section, L, T are given positive numbers, and 3µ > 0 denotes Trouton's viscosity assumed to be constant.

The data satisfy

   0 < v m ≤ v in (t) < v L (t) ≤ V M for any t ∈ (0, T ), 0 < S m ≤ S 0 (t), S 1 (x) ≤ S M for all (t, x) ∈ Q T , S 0 (0) = S 1 (0). (6) 
Moreover, the functions v in , v L , S 0 , S 1 belong to certain regularity classes specified below.

A priori bounds

Our construction of global-in-time solutions is based on certain a priori estimates that hold, formally, for any smooth solution of problem ( 2) -( 5), with the cross-section area A > 0. The crucial observation is that, as a direct consequence of (3),

A(t, x) ∂ x v(t, x) = χ(t) for any t ∈ (0, T ), ( 7 
)
where χ is a function of the time variable only. Moreover, as A is positive and the axial velocity satisfies the boundary conditions ( 6), we deduce that

χ(t) > 0 for any t ∈ (0, T ), (8) 
which in turn implies

∂ x v(t, x) > 0 for all (t, x) ∈ Q T . (9) 
Accordingly,

v in (t) < v(t, x) < v L (t) for all (t, x) ∈ Q T .
Next, we rewrite equation ( 2) in the form

∂ t A + v∂ x A = -χ ≤ 0 yielding A(t, x) ≤ S M for all (t, x) ∈ Q T . (10) 
Integrating ( 7) over (0, L) and using ( 5) and [START_REF] Hagen | On the equations of fiber spinning in nonisothermal viscous flow[END_REF] give rise to the uniform bound

0 < χ(t) < v L (t) -v in (t) L S M for all t ∈ (0, T ). (11) 
In order to deduce a lower bound for the cross section area A, we first observer that A and ∂ x A satisfy the same transport equation, namely,

∂ t A + ∂ x (vA) = 0, ( 12 
) ∂ t (∂ x A) + ∂ x (v (∂ x A)) = 0. ( 13 
)
In particular,

∂ t (∂ x log(A)) + v∂ x (∂ x log(A)) = 0. ( 14 
)
Evaluating the boundary values of ∂ x log(A) with ( 4), namely,

∂ x log(A)(t, 0) = ∂ x A(t, 0) S 0 (t) , ∂ x log(A)(0, x) = ∂ x S 1 (x) S 1 (x) ,
where, in accordance with ( 2), ( 4), ( 5), [START_REF] Geyling | Extensional instabilities of the glass fiber drawing process[END_REF], and ( 11)

∂ x A(t, 0) = - 1 v in (t) χ(t) + dS 0 dt (t) ≥ - 1 v in (t) v L (t) -v in (t) L S M + dS 0 dt (t) .
We deduce easily the desired lower bound on A

A(t, x) ≥ A m > 0 for all (t, x) ∈ Q T , (15) 
where the constant A m is determined solely in terms of v m , V M , S m , S M , and the first derivatives of S 0 , S 1 .

The a priori bounds derived in ( 7) -( 15) form a suitable platform for the existence theory developed in the remaining part of this paper.

Short time existence of regularized strong solutions

In addition to (6), we shall assume that

S 0 ∈ W 2,∞ (0, T ), S 1 ∈ H 2 (0, L), v in , v L ∈ W 1,∞ (0, T ), (16) 
where the symbol W k,p denotes the standard Sobolev space of functions having k-derivatives L p -integrable, and H 2 ≡ W 2,2 . For further use, we introduce the notation

Q 0,0 = - dS 0 dt (0) -v in (0) dS 1 dx (0). ( 17 
)
Let us begin with a list of definitions:

Definition 1. Let t 0 be a positive number. A pair (A, v), defined on Q t 0 = (0, t 0 ) × (0, L)
, is a strong solution of ( 2)-( 5) if

A ∈ W 1,∞ ((0, t 0 ) × (0, L)), (18) 
v, ∂ t v, ∂ x v, ∂ 2 tx v, ∂ 2 x v ∈ L ∞ ((0, t 0 ) × (0, L)), (19) 
(A, v) satisfy equations (2) -(3) a. e. in (0, t 0 ) × (0, L), ( 20 
) A > 0 on Q t 0 and A satisfies (4) pointwise , ( 21 
) v satisfies (5) pointwise. ( 22 
) Definition 2. Let t 0 be a constant, 0 < t 0 ≤ T . For h ∈ L ∞ (0, t 0 ; H 1 (0, L)) with ∂ x h ∈ L ∞ (0, L; L 2 (0, t 0 )),
we define the energy functional E as

E(h) 2 = ess sup 0<t<t 0 ||h(t, •)|| 2 H 1 (0,L) + v m ess sup 0<x<L ||∂ x h(•, x)|| 2 L 2 (0,t 0 ) . ( 23 
)
Similarly, the radius R is defined by

1 8 R 2 = L 0 S 2 1 + dS 1 dx 2 (x) dx + T 0 v in (t) S 2 0 + 2 v 2 in dS 0 dt 2 (t) dt. (24) 
Definition 3. For R given by [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] and 0 < t 0 ≤ T , we denote by S(t 0 , R) the convex set of nonnegative functions h defined on

Q t 0 such that h ∈ W 1,∞ (0, t 0 ; L 2 (0, L)) ∩ L ∞ (0, t 0 ; H 1 (0, L))∩ ∩W 1,∞ (0, L; L 2 (0, t 0 )) ∩ L ∞ (0, L; H 1 (0, t 0 )), (25) 
E(h) ≤ R, and

ess sup 0<t<t 0 ||∂ t h(t, •)|| L 2 (0,L) + sup x∈[0,L] ||∂ t h(•, x)|| L 2 (0,t 0 ) ≤ RV M 2 + 1 L + √ T L 3/2 + |Q 0,0 | √ T + √ L (26) h(0, x) = S 1 (x) and h(t, 0) = S 0 (t). ( 27 
)
Definition 4. For R given by [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF],

α = 4 v m |Q 0,0 | 2 + 4S M L|Q 0,0 |, β = 4V 2 M R 2 v m L 3 + 4S 2 M V M + 4S M V M R √ L ,
we denote t * ∈ (0, T ] a positive time satisfying

t * ≤ S m L 3/2 4RV M and t * ≤ R 2 8(α + β) . ( 28 
)
In this section, for δ > 0 small enough, we construct a family of approximate solutions (A δ , v δ ) solving the following initial-boundary value problem:

∂ t A δ + ∂ x (v δ A δ ) = 0 in Q δ t 0 = (δ, t 0 ) × (0, L), (29) 
∂ t A δ + v δ ∂ x A δ + Q 0,0 1 - t δ + v L (δ) -v in (δ) L 0 dξ A δ (δ, ξ) t δ = 0 in (0, δ] × (0, L), (30) 
∂ x (3µA δ ∂ x v δ ) = 0 in Q t 0 = (0, t 0 ) × (0, L), (31) 
A δ (t, 0) = S 0 (t) in (0, T ), A δ (0, x) = S 1 (x) in (0, L), (32) 
v δ (t, 0) = v in (t) in (0, T ), v δ (t, L) = v L (t) in (0, T ). ( 33 
)
Specifically, we prove the following result.

Theorem 1. Let v L , v in , S 0 and S 1 satisfy [START_REF] Kase | Studies of melt spinning I. Fundamental Equations on the Dynamics of Melt Spinning[END_REF]. Consider t * > 0 given by (28), t 0 ∈ (0, t * ), and let δ ∈ (0, min {1, t 0 }) be a small number satisfying

S m 12 -δ|Q 0,0 | > 0. ( 34 
)
Then the initial-boundary value problem ( 29) -( 33) possesses a unique solution (A δ , v δ ) in the class

A δ ∈ C 1 ([0, t 0 ]; H 1 (0, L)) ∩ C([0, t 0 ]; H 2 (0, L)), (35) 
v δ ∈ C 1 ([0, t 0 ]; H 2 (0, L)) ∩ C([0, t 0 ]; H 3 (0, L)). (36) 
Note that for a strictly positive h ∈ S(t 0 , R), the corresponding velocity field v solving ∂ x (h∂ x v) = 0 with boundary conditions (5) reads

v(t, x) = v in (t) + v L (t) -v in (t) L 0 dξ h(t, ξ) x 0 dξ h(t, ξ) , (37) 
∂ x v(t, x) = v L (t) -v in (t) L 0 dξ h(t, ξ) 1 h(t, x) . ( 38 
)
Remark 1. Under the compatibility condition

Q 0,0 = - dS 0 dt (0) -v in (0) dS 1 dx (0) = v L (0) -v in (0) L 0 dx S 1 (x) , ( 39 
)
we could set δ = 0. However, imposing (39) is not physically justified. Note that this condition is systematically used in [START_REF] Hagen | On the equations of fiber spinning in nonisothermal viscous flow[END_REF] as well as [START_REF] Hagen | Advances in fiber and film flow[END_REF].

The rest of this section is devoted to the proof of Theorem 1. The basic and rather standard idea is to construct a sequence approaching a fixed point of a suitable nonlinear mapping. The proof is carried over by means of several steps. We fix t 0 ∈ (0, t * ) and δ ∈ (0, min {1, t 0 }) such that (34) is satisfied.

STEP 1

We take an arbitrary A 0 ∈ S(t 0 , R). Then we substitute h = A 0 into (37) and calculate v 0 = v. We note that A 0 ∈ S(t 0 , R) implies

v 0 ∈ W 1,∞ ([0, t 0 ]; H 1 (0, L)) ∩ L ∞ ([0, t 0 ]; H 2 (0, L)), (40) 
t → ∂ x v 0 (t, 0) = v L (t) -v in (t) L 0 dξ A 0 (t, ξ) 1 S 0 (t) ∈ H 1 (0, t 0 ), (41) 
∂ x v 0 (t, x) > 0 and v in (t) ≤ v 0 (t, x) ≤ v L (t) in [0, t 0 ] × [0, L]. (42) 
Next, we introduce functions Q 0 and Q 0,δ defined on [0, t 0 ] by

Q 0 (t) = v L (t) -v in (t) L 0 dξ A 0 (t, ξ) (43) Q 0,δ (t) =      Q 0 (t), for δ ≤ t ≤ t 0 , Q 0,0 + (Q 0 (δ) -Q 0,0 ) t δ , for 0 ≤ t < δ. (44) 
Obviously, Q 0,δ ∈ W 1,∞ (0, t 0 ), and, using Jensen's inequality and (6), we get

0 ≤ Q 0 (t) ≤ v L (t) L 0 dx A 0 (t, x) ≤ v L (t) L 2 L 0 A 0 (t, x) dx ≤ V M L 3/2 ||A 0 (t, •)|| L 2 (0,L) ≤ V M R L 3/2 , ( 45 
)
since A 0 ∈ S(t 0 , R), as well as

Q 0,δ (t) ≤ |Q 0,0 | 1 - t δ + + V M R L 3/2 (46) 
Now we are in a position to define the solution operator: For A 0 ∈ S(t 0 , R) and v 0 given by (37) with A 0 instead of h, we solve the initial-boundary value problem

∂ t u(t, x) = -v 0 (t, x)∂ x u(t, x) -Q 0,δ (t), (t, x) ∈ Q t 0 , (47) u 
(0, x) = S 1 (x), x ∈ (0, L), u(t, 0) = S 0 (t), t ∈ (0, t 0 ). (48) 
Because of ( 40)-( 42) and regularity and compatibility of the data, we may apply a result of Hagen & Renardy [START_REF] Hagen | On the equations of fiber spinning in nonisothermal viscous flow[END_REF] (see Theorem 4 in Appendix) to problem (47)-( 48) to obtain a unique solution u ∈ C 1 ([0, t 0 ]; H 1 (0, L)) ∩ C([0, t 0 ]; H 2 (0, L)). We set

A 1 (t, x) = u(t, x), (t, x) ∈ Q t 0 . (49) 
Relation (49) defines a nonlinear operator, assigning to a given A 0 ∈ S(t 0 , R)

the unique function A 1 in the class C 1 ([0, t 0 ]; H 1 (0, L))∩ C([0, t 0 ]; H 2 (0, L)). By (47), ∂ 2 t u+∂ t Q 0,δ ∈ L ∞ (Q t 0 )
. Using a compactness lemma of Aubin type (see e.g. [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]) we conclude that our nonlinear operator, defined on S(t 0 , R), is compact.

At this stage we follow the ideas of [START_REF] Hagen | On the equations of fiber spinning in nonisothermal viscous flow[END_REF] and [START_REF] Hagen | Advances in fiber and film flow[END_REF] to show that this nonlinear operator has a fixed point for all t 0 < t * . They study the nonisothermal fiber spinning and their system of equations is different. Hence we are obliged to give an independent proof of short time existence, but the result remains close to their considerations.

The natural approach is to apply Schauder's fixed point theorem. To use it we have to prove that S(t 0 , R) is a relatively compact convex set invariant under our nonlinear mapping. Finally, we should establish the continuity of the mapping (49).

STEP 2

We establish uniform L ∞bounds for the function u. We have Lemma 1. Let R be given by Definition 3 and let t 0 ≤ t * . Then the solution u of problem ( 47)-( 48) satisfies the estimate

S m 4 ≤ u(t, x) ≤ S M + 2S m 3 ≤ 2S M in [0, t 0 ] × [0, L]. ( 50 
)
Proof. Let s m ∈ W 2,∞ (0, t 0 ) be the solution to the Cauchy problem

ds m (t) dt = -Q 0,δ (t) in (0, t 0 ), s m (0) = 2S m 3 . (51) 
Then s m clearly solves (47) and it follows from ( 6) and (48) that

u(0, x) = S 1 (x) ≥ S m ≥ s m (0), x ∈ (0, L),
while ( 6), (34), the nonnegativity of Q 0 , (48), and (51) ensure that

s m (t) = 2S m 3 - t 0 Q 0,δ (s)ds ≤ 2S m 3 - min {δ,t} 0 Q 0,δ (s)ds ≤ 2S m 3 - min {δ,t} 0 Q 0,0 1 - s δ ds ≤ 2S m 3 + |Q 0,0 | δ 2 ≤ S m ≤ S 0 (t) = u(t, 0).
The comparison principle then entails that u(t, x) ≥ s m (t) for (t, x) ∈ Q t 0 , whence, by (28), (34), and (46),

u(t, x) ≥ s m (t) ≥ 2S m 3 - t 0 |Q 0,δ (s)|ds ≥ 2S m 3 -|Q 0,0 | δ 2 - V M R L 3/2 t * ≥ S m 4 .
This proves the lower bound. Proving the upper bound is analogous. The comparison function is now given by the solution to the Cauchy problem

ds M (t) dt = -Q 0,δ (t) in (0, t 0 ), s M (0) = S M + S m 2 . ( 52 
)
Indeed, s M clearly solves (47) with s M (0) ≥ S M ≥ S 1 (x) = u(0, x) for x ∈ (0, L) and it follows from ( 6), ( 28), ( 34), ( 46), (48), and (52) that

s M (t) ≥ s M (0) -|Q 0,0 | δ 2 - V M R L 3/2 t * ≥ S M ≥ u(t, 0).
Applying again the comparison principle gives u(t, x) ≤ s M (t) for (t, x) ∈ Q t 0 , which completes the proof since (34) guarantees that

s M (t) ≤ S M + S m 2 + |Q 0,0 | δ 2 ≤ S M + 2S m 3 .
This proves the Lemma.

Now we use equation (47) to calculate

G(t) = ∂ x u(t, 0) ∈ C([0, t 0 ]) getting: G(t) = ∂ x u(t, 0) = - 1 v in (t) dS 0 (t) dt + Q 0,δ (t) . ( 53 
)
Due to the assumptions on the data, G ∈ W 1,∞ (0, t 0 ) and we have

|G(t)| ≤ 1 v in (t) | dS 0 (t) dt | + |Q 0,δ (t)| . ( 54 
)
Next, we take the derivative of equation ( 47) with respect to the x variable. This yields that S = ∂ x u solves

∂ t S = -v 0 ∂ x S -∂ x v 0 S, (t, x) ∈ Q t 0 , (55) 
S(0, x) = dS 1 dx (x), x ∈ (0, L); S(t, 0) = G(t), t ∈ (0, t 0 ), (56) 
the function v 0 being still given by (37) with A 0 instead of h.

Multiplying equation (47) by u, equation (55) by S, integrating both equations on (0, t) × (0, x), (t, x) ∈ Q t 0 , and adding the obtained identities, we deduce:

1 2 x 0 u 2 + S 2 (t, ξ) dξ + 1 2 t 0 v 0 (τ, x) u 2 + S 2 (τ, x) dτ + 1 2 t 0 x 0 ∂ x v 0 (τ, ξ) S 2 -u 2 (τ, ξ) dξdτ + t 0 x 0 Q 0,δ (τ )u(τ, ξ) dξdτ = 1 2 x 0 S 2 1 + dS 1 dx 2 (ξ) dξ + 1 2 t 0 v in (τ ) S 2 0 + G 2 (τ ) dτ. ( 57 
)
Now we use ( 6), ( 46) with (54) to get

t 0 v in (τ )G 2 (τ ) dτ ≤ t 0 2 v in (τ ) dS 0 dτ 2 + |Q 0,δ (τ )| 2 dτ ≤ t 0 2 v in (τ ) dS 0 dτ 2 dτ + 4 min{t, δ} v m |Q 0,0 | 2 + 4V 2 M R 2 v m L 3 t. ( 58 
)
The third term on the left hand side of (57) is estimated with the help of ( 42) and (50) as

t 0 x 0 ∂ x v 0 (τ, ξ)(u 2 -S 2 )(τ, ξ) dξdτ ≤ t 0 x 0 Q 0 (τ ) A 0 (τ, ξ) u 2 (τ, ξ) dξdτ ≤ 4S 2 M t 0 Q 0 (τ ) x 0 dξ A 0 (τ, ξ) dτ ≤ 4S 2 M t 0 v 0 (τ, x) -v in (τ ) dτ ≤ 4S 2 M V M t, (59) 
while the fourth term obeys

t 0 x 0 Q 0,δ (τ )u(τ, ξ) dξdτ ≤ 2S M L t 0 |Q 0,δ (τ )| dτ ≤ 2S M L |Q 0,0 | + V M R L 3/2 t, (60) 
thanks to ( 46) and ( 50). Now, setting

y(t) = sup x∈[0,L] x 0 u 2 + S 2 (t, ξ) dξ + t 0 v 0 (τ, x) u 2 + S 2 (τ, x) dτ ,
we may insert ( 58)-( 60) into (57) and use ( 24) and ( 28) to get the following estimate:

y(t) ≤ L 0 S 2 1 + dS 1 dξ 2 (ξ) dξ + t 0 v in (τ ) S 2 0 + 2 v 2 in (τ ) dS 0 dτ 2 (τ ) dτ + (α + β)t ≤ R 2 8 + R 2 8 t t * ≤ R 2 4 .
Recalling ( 6) and (42), we thus conclude that

E(u) < R. (61) 
Next, we use equation (47) and estimate (61

) to control ∂ t u, obtaining sup t∈[0,t 0 ] ||∂ t u(t)|| L 2 (0,L) + sup x∈[0,L] ||∂ t u(•, x)|| L 2 (0,t 0 ) < RV M 2 + 1 L + √ T L 3/2 + |Q 0,0 |( √ T + √ L). (62) 
Therefore the image of a nonnegative function from S(t 0 , R) remains in S(t 0 , R) and satisfies the L ∞bound (50). Therefore our nonlinear map (49) maps the convex set

S 0 (t 0 , R) = {f ∈ S(t 0 , R) | f satisfies (50) a.e.} (63) 
into itself.

STEP 3

Let X be the intersection of the Banach spaces

W 1,∞ ([0, t 0 ]; L 2 (0, L)), L ∞ ([0, t 0 ]; H 1 (0, L)), W 1,∞ (0, L; L 2 (0, t 0 )
) and L ∞ (0, L; H 1 (0, t 0 )). Clearly, S 0 (t 0 , R) is a convex, bounded and closed subset of the Banach space X. We apply the Schauder fixed point theorem to prove that the mapping (49) admits a fixed point in S 0 (t 0 , R). After Step 2, it remains only to prove the sequential continuity of the map (49). Hence let {A k } k∈N , be a sequence converging in S 0 (t 0 , R) to A. Then we have 65)

A k → A strongly in C([0, t 0 ]; L 2 (0, L)) ∩ L 2 (0, t 0 ; C([0, L])), (64) 
Q 0 k = v L -v in L 0 dx A k (t, x) → Q 0 = v L -v in L 0 dx A(t, x) uniformly in C([0, t 0 ]), (
v k = v in + Q 0 k x 0 dξ A k (t, ξ) → v = v in + Q 0 x 0 dξ A(t, ξ) strongly in C([0, t 0 ]; H 1 (0, L)). (66) 
Let u k be the solution to (47)-(48), corresponding to A k and u the solution corresponding to A. Then by analogous calculations to those performed in Step 2, we get

u k → u in C([0, t 0 ]; H 1 (0, L)) ∩ L 2 (0, t 0 ; C 1 ([0, L])).
Using the equation (47), we find out that one also has

∂ t u k → ∂ t u in C([0, t 0 ]; L 2 (0, L)) ∩ L 2 (0, t 0 ; C([0, L]))
. Therefore the mapping (49) is continuous and compact and by Schauder's fixed point theorem there is at least one fixed point A δ ∈ S 0 (t 0 , R).

Denoting the corresponding velocity field by v δ , we have

v δ ∈ W 1,∞ (0, t 0 ; H 1 (0, L)) ∩ L ∞ (0, t 0 ; H 2 (0, L))
and since t → ∂ x v δ (t, 0) ∈ W 1,∞ (0, t 0 ), we may apply Theorem 4 in Appendix to conclude that, in fact,

A δ ∈ C 1 ([0, t 0 ]; H 1 (0, L)) ∩ C([0, t 0 ]; H 2 (0, L)).
It remains to prove uniqueness.

STEP 4

With the obtained smoothness, uniqueness is easy to establish. It suffices to notice that L 2 (0, t 0 ; H 1 (0, L)) perturbation of v δ is controlled by the L 2perturbation of A δ in x and t. Then we use this observation, regularity of A δ , and Gronwall's lemma to obtain uniqueness.

The proof of Theorem 1 is now complete.

Global existence of regularized strong solutions

Now we suppose that the regularity of the solution or/and the strict positivity of A δ , stated in (50), breaks down at the time t p . Our goal is to prove that t p = T .

Theorem 2. Under the hypotheses of Theorem 1, the initial-boundary value problem (29)-(33) has a unique solution

A δ ∈ C 1 ([0, T ]; H 1 (0, L)) ∩ C([0, T ]; H 2 (0, L)), v δ ∈ C 1 ([0, T ]; H 2 (0, L)) ∩ C([0, T ]; H 3 (0, L)).
The remaining part of this section is devoted to the proof of Theorem 2.

STEP 1

First we recall that, owing to (31) and (33), v δ is given by

v δ (t, x) = v in (t) + v L (t) -v in (t) L 0 dξ A δ (t, ξ) x 0 dξ A δ (t, ξ) . (67) 
Next, by ( 6)

Q δ (t) = v L (t) -v in (t) L 0 dx A δ (t, x) > 0 in Q t 0 . ( 68 
)
and we put

Q cut,δ (t) =      Q δ (t), for δ ≤ t ≤ t 0 , Q 0,0 + (Q δ (δ) -Q 0,0 ) t δ , for 0 ≤ t < δ. (69) 
We point out that the upper bound in (50) is independent of t * . Indeed, we prove now that it is valid regardless the length of the time interval. To this end, we introduce the solution S δ M ∈ W 2,∞ (0, t 0 ) to the Cauchy problem

dS δ M (t) dt = |Q 0,0 |χ [0,δ] (t), t ∈ (0, t 0 ), S δ M (0) = S M . (70) 
Owing to the positivity (68) of Q δ , S δ M is a supersolution to (29)-( 30) with S δ M (0) = S M ≥ S 1 (x) = A δ (0, x) for x ∈ [0, L] and S δ M (t) ≥ S δ M (0) ≥ S 0 (t) = A δ (t, 0) for t ∈ (0, t 0 ). The comparison principle then implies

A δ (t, x) ≤ S δ M (t) ≤ S M + δ|Q 0,0 |. ( 71 
)
This proves the upper bound and, in addition, the estimate is independent of the length of the time interval.

Therefore, by Jensen's inequality, we may infer that

0 < Q δ (t) ≤ V M L 0 dξ A δ (t, ξ) ≤ V M L 2 L 0 A δ (t, ξ) dξ ≤ V M L (S M + δ|Q 0,0 |), (72) 
|G δ (t)| = |∂ x A δ (t, 0)| = - 1 v in (t) dS 0 (t) dt + Q cut,δ (t) ≤ 1 v m dS 0 (t) dt + |Q 0,0 | + V M L (S M + δ|Q 0,0 |) , (73) 
for any t < t p , where t p is the critical time at which A δ (t, x) attains zero for some x.

STEP 2

Having established that ∂ x A δ (t, 0) is bounded in L ∞ (0, t) independently of t, we now look for a strictly positive lower bound for A δ . Proposition 1. There are constants C 1 and C 2 , independent of the length of the time interval and of δ, such that we have

C 1 ≤ ∂ x log A δ (t, x) ≤ C 2 on Q t 0 . ( 74 
)
Proof. We notice that y = ∂ x log A δ satisfies the equation

∂ t y + v δ ∂ x y + y A δ (Q δ -Q cut,δ ) = 0 in Q tp , (75) 
and

y(0, x) = d log S 1 dx (x), x ∈ (0, L) , y(t, 0) = G δ (t) S 0 (t) , t ∈ (0, t p ). ( 76 
)
The function F (t, x) = (Q δ -Q cut,δ )(t)/A δ (t, x) vanishes for t ≥ δ and, due to (50), satisfies the following bound

t 0 ||F (τ )|| L ∞ (0,L) dτ = min {t,δ} 0 ||F (τ )|| L ∞ (0,L) dτ ≤ 8δ S m |Q 0,0 | + ||Q δ || L ∞ (0,δ) (77) 
for every t since δ ≤ t 0 . We next introduce the solution y m to the ordinary differential equation

dy m dt (t) = ||F (t)|| L ∞ (0,L) y m (t) in (0, T ), (78) 
with initial condition

y m (0) = min min [0,L] d log S 1 dx , -G M ≤ 0, (79) 
with

G M = 1 v m dS 0 dt L ∞ (0,T ) + |Q 0,0 | + V M L (S M + δ|Q 0,0 |) . (80) 
Owing to (73), (76), (78), and (79), y m is nonpositive and thus a subsolution to (75), and satisfies y m (t) ≤ y m (0) ≤ y(t, 0) for t ∈ (0, t p ) and y m (0) ≤ y(0, x) for x ∈ (0, L). The comparison principle then entails that

y(t, x) ≥ y m (t) = y m (0) exp t 0 ||F (τ )|| L ∞ (0,L) dτ .
Since y m (0) ≤ 0, we deduce from (77) that y(t, x) ≥ C 1 for some positive constant C 1 , independent of δ and t 0 . Similarly, let Y M be the solution to the ordinary differential equation

dY M dt (t) = ||F (t)|| L ∞ (0,L) Y M (t) in (0, T ), (81) 
with initial condition

Y M (0) = max max [0,L] d log S 1 dx , G M ≥ 0, (82) 
the constant G M being defined in (80). It follows from ( 73), ( 76), (81), and (82) that Y M is a supersolution to (75) which satisfies Y M (t) ≥ Y M (0) ≥ y(t, 0) for t ∈ (0, t p ) and Y M (0) ≥ y(0, x) for x ∈ (0, L). Using once more the comparison principle and (77), we conclude that

y(t, x) ≤ Y M (t) = Y M (0) exp t 0 ||F (τ )|| L ∞ (0,L) dτ ≤ C 2 ,
the constant C 2 being independent on δ and t.

Since log A δ (t, 0) = log S 0 (t) ≥ log S m > -∞ by ( 6) and

log A δ (t, x) = log S 0 (t) + x 0 ∂ ξ log A δ (t, ξ) dξ,
we infer from (74) that

|| log A δ || L ∞ (0,t 0 ;W 1,∞ (0,L)) ≤ C. (83) 
Therefore A δ is strictly positive on Q t for all t ≤ t p , and bounded from below and from above by a constant which is independent of both t and δ.

STEP 3

Having established (83) we easily obtain the following estimates:

||∂ t A δ || L ∞ (Qt) + ||∂ x A δ || L ∞ (Qt) ≤ C, (84) 
||v δ || L ∞ (Qt) + ||∂ x v δ || L ∞ (Qt) + ||∂ 2 x v δ || L ∞ (Qt) + ||∂ 2 xt v δ || L ∞ (Qt) ≤ C, ( 85 
) where C is again independent of t and δ.

The estimate (85) guarantees that the coefficients in equations ( 29)-(30) remain regular, whence Theorem 4 is applicable. Consequently, A δ remains bounded in C 1 ([0, t]; H 1 (0, L)) ∩ C([0, t]; H 2 (0, L)).

We conclude that, for all t, A δ is bounded from below by a positive constant, independent of t, and the norm of A δ in C 1 ([0, t]; H 1 (0, L)) ∩ C([0, t]; H 2 (0, L)) remains bounded by a constant, also independent of t, that may, however, depend on δ. The maximal solution therefore extends to [0, T ], and, in fact, we have established the existence of a unique strictly positive solution A δ on (0, T )×(0, L). The corresponding velocity v δ is given by (37), with h = A δ . This completes the proof of Theorem 2 .

Existence of a unique strong solution

At this stage, we are ready to establish the main result of the paper. Theorem 3. Under the hypotheses ( 6), [START_REF] Kase | Studies of melt spinning I. Fundamental Equations on the Dynamics of Melt Spinning[END_REF], the initial-boundary value problem ( 2)-( 5) possesses a unique (strong) solution A, v on QT , belonging to the class A, ∂ t A, ∂ x A ∈ L ∞ ((0, L) × (0, T )), v, ∂ t v, ∂ 2 t,x v, ∂ 2 x,x v ∈ L ∞ ((0, L) × (0, T )).

Proof. We just recall the estimates obtained in the proof of Theorem 2, valid independently of δ:

0 < C 1 ≤ A δ (t, x) ≤ C in Q T , (86) 
||∂ x A δ || L ∞ (Q T ) + ||∂ t A δ || L ∞ (Q T ) ≤ C. ( 87 
)
Since L ∞ (Q T ) is the dual space of the separable Banach space L 1 (Q T ), Alaoglu's weak * compactness theorem gives weak * sequential compactness. Therefore there exist A and v such that uniformly in Q T , as δ → 0.

A δ → A uniformly in Q T , as δ → 0, (88) 
∂ x A δ ⇀ ∂ x A weakly * in L ∞ (Q T ), as δ → 0, (89) 
∂ t A δ ⇀ ∂ t A weakly * in L ∞ (Q T ), as δ → 0, ( 90 
)
v δ → v = v in (t) + v L (t) -v in (t)
(91)

∂ x v δ → ∂ x v = v L (t) -v in (t) L 0 dξ A(t, ξ) 1 A(t, x)
uniformly in Q T , as δ → 0, (92) at least for suitable subsequences. Obviously, (A, v) solves the system (2)- [START_REF] Farina | On the equations governing the flow of mechanically incompressible, but thermally expansible, viscous fluids[END_REF]. Moreover, by virtue of the interior regularity, the equations ( 2)-( 3) are satisfied pointwise. Finally, according to the smoothness of A and v, the proof of uniqueness is straightforward.

Remark 2. The standard way of proving uniqueness relies on Gronwall's inequality. For any bounded time interval, small L 2 -perturbations of the data v L , v in , S 0 in the L 2 -norm result in the corresponding variation

Hagen and Renardy suppose ∂xp(•, b), ∂xf (•, b) ∈ H 1 (0, t0) as well. This does not seem to be necessary.
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of the solution in the same norm, that may depend exponentially on the length of the time interval. Better estimates would require refined analytical arguments.

Appendix

Here we recall the result from [START_REF] Hagen | On the equations of fiber spinning in nonisothermal viscous flow[END_REF], which is used in this paper: Theorem 4. Let f and p be given continuous functions defined on [0,

(94)

Then the boundary-initial value problem

has a solution

which is unique in W 1,∞ (0, t 0 ; L 2 (0, b)) ∩ L ∞ (0, t 0 ; H 1 (0, b)).