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Abstract

The notion of e-sample, as introduced by Amenta and Bern, has proven to be a key concept
in the theory of sampled surfaces. Of particular interest is the fact that, if £ is an e-sample of
a smooth surface S for a sufficiently small ¢, then the Delaunay triangulation of E restricted
to S is a good approximation of S, both in a topological and in a geometric sense. Hence, if
one can construct an e-sample, one also gets a good approximation of the surface. Moreover,
correct reconstruction is ensured by various algorithms.

In this paper, we introduce the notion of loose e-sample. We show that the set of loose
e-samples contains and is asymptotically identical to the set of e-samples. The main advantage
of loose e-samples over e-samples is that they are easier to check and to construct. We also
present a simple algorithm that constructs provably good surface samples and meshes. Given
a smooth surface S without boundary, the algorithm generates a sparse e-sample E and at the
same time a triangulated surface Del|s(E). The triangulated surface has the same topological
type as 5, is close to S for the Hausdorff distance and can provide good approximations of
normals, areas and curvatures. A remarkable feature of the algorithm is that the surface needs
only to be known through an oracle that, given a line segment, detects whether the segment
intersects the surface and, in the affirmative, returns the intersection points. This makes the
algorithm useful in a wide variety of contexts and for a large class of surfaces.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Curve,
surface, solid, and object representations

1 Introduction

Meshing and reconstructing surfaces are two fundamental problems in geometry processing. In
surface reconstruction, a finite set of points F on a surface S is given and one wants to compute a
good approximation of S from E. This is of course only possible if F is a good sample of .S in some
sense. In surface mesh generation, the problem is somehow opposite. A surface S is known and
we want to compute a triangulated surface that suitably approximates S. Clearly, the vertices of
the triangulated surface have to sample correctly S. Hence, in both applications and also in many
others, including the new arena of point set surfaces [1, 2], the notion of good sample is crucial.

The notion of e-sample, as introduced by Amenta and Bern [3]|, has proven to be a key concept
in the theory of sampled surfaces. Roughly, an e-sample E of a surface S is a (non necessarily



uniform) point set that is sufficiently dense with respect to the distance to the medial axis of S
— see section 2. Of particular interest is the fact that if F is an e-sample of a smooth surface
S for a sufficiently small ¢, the Delaunay triangulation of F restricted to .S, Del|5(E), is a good
approximation of S, both in a topological and in a geometric sense — see section 2 for more details.
Hence, given an e-sample of a surface, it is easy to get a good approximation of the surface.

This result (and variants of it) plays a central role in the analysis of all surface reconstruction
algorithms that offer theoretical guarantees [8]. In particular, if F is an e-sample of a smooth
surface S for a sufficiently small ¢, these algorithms can reconstruct a surface that has the same
topology type as S and is close to S.

One drawback of the concept of e-sample is the fact that it is difficult to check whether a sample is
an e-sample of a given surface, and even more difficult to construct a (preferably sparse) e-sample
of a given surface. This is due to the fact that a direct application of the definition of an e-sample
leads to complicated operations like cutting the surface with balls.

In this paper, we introduce the notion of loose e-sample. The set of loose e-samples contains and
is asymptotically identical to the set of e-samples. The main advantage of loose e-samples over
e-samples is that they are easier to check and to construct. Indeed, checking that a sample is a loose
e-sample reduces to checking whether a finite number of spheres are small enough with respect to
the distance from their centers to the medial axis of the surface.

We also present a construction algorithm which derives from Chew’s surface meshing algorithm [17].
Given a smooth surface S without boundary, the algorithm generates a sparse e-sample E and at
the same time a triangulated surface Delj¢(E). The triangulated surface has the same topological
type as S, is close to S for the Hausdorff distance and can provide good approximations of normals,
areas and curvatures. A remarkable feature of the algorithm is that the surface needs only to be
known through an oracle that, given a line segment, detects whether the segment intersects the
surface and, in the affirmative, returns the intersection points. This makes the algorithm useful in
a wide variety of contexts and for a large class of surfaces.

The paper is organized as follows. In section 2, we recall useful concepts and introduce the notion
of loose e-sample. In section 3, we present some local properties of loose e-samples that are used
in section 4 to establish our main results. We prove that, for sufficiently small e, Del|4(E) is a 2-
manifold without boundary that is ambient isotopic to S and whose Hausdorff distance to S is O(£?).
We also prove that S is covered by the so-called surface Delaunay balls, and that loose e-samples
are (1 + 8.5 ¢)-samples. In section 5, we bound the size of loose e-samples. As an application of
our results, we present in section 6 our surface mesh generator. We describe the algorithm and its
theoretical guarantees, we detail our implementation and we give some experimental results.

2 Definitions and preliminary observations

In the paper, S denotes a compact, orientable, twice-differentiable surface without boundary. S
will be called a smooth closed surface for short. By 7 (p) we denote the surface normal at point
p € S, and by T(p) the plane tangent to S at p.

Our analysis uses the fact that locally a smooth surface is the graph of a function. More precisely,
given an orthonormal frame (O, z,y, z) of R?, a subset of R? is said to be xy-monotone if it is the



graph of a function of the two variables x and y. A terrain is a surface that is xy-monotone in
some frame (O, x,y, z) of R®. Similarly, given an orthonormal frame (O, z,y) of R?, a subset of R?
is said to be x-monotone if it is the graph of a function of variable z.

2.1 Restricted Delaunay triangulation

In the paper, E denotes a finite point sample of S and Del(E) the 3-dimensional Delaunay trian-
gulation of E. By V(E) we denote the set of all edges of the Voronoi diagram of E.

We call Delaunay triangulation of E restricted to S, and we note Del g(E), the sub-complex of
Del(E) that consists of the facets of Del(F) whose dual Voronoi edges intersect S. An edge or
vertex of Del(E) belongs to Del g(E) if it is incident to at least one facet of Del g(E). Notice that
we depart from the usual definition [17, 21] and do not consider vertices and edges with no incident
facet of Del|g(E). See figure 1 for an illustration.

A facet (resp. edge, vertex) of Del ¢(E) is called a restricted Delaunay facet (vesp. restricted
Delaunay edge, restricted Delaunay vertex). For a restricted Delaunay facet f, we call surface
Delaunay ball of f any ball circumscribing f centered at some point of S N f*, where f* is the
Voronoi edge dual to f. We call surface Delaunay patch the intersection of a surface Delaunay ball
with S. Notice that the centers of the surface Delaunay balls are precisely the intersection points
of S and V(E).

2.2 e-samples and loose s-samples

The medial azis of S, denoted by M, is the topological closure of the set of points of R? that have
more than one nearest neighbour in S.

For a point x € R3, we call distance to the medial azis at x, and write djs(x), the Euclidean distance
from x to the medial axis of S.

As noticed by Amenta and Bern [3], dps is 1-Lipschitz, i.e. |dy(z) — dp(y)| < ||z — y])-

We define diif = inf {dy(z), = € S} and d},” = sup{dm(z), z € S}. Since S is a smooth closed
surface, both diff and dy;" are finite and positive constants.

We borrow from Amenta and Bern [3] the notion of e-sample, defined below. In the whole paper,
B(e,r) denotes the ball of center ¢ and radius 7.

Definition 2.1 E is an e-sample of S if Ve € S, EN B(z,e dy(x)) # 0.

For sufficiently small values of ¢, e-samples enjoy many beautiful properties. We recall the most
important ones in our context.

— Normals: the angle between the normal to a facet f of Del|g(E) and the normal to S at the
vertices of f is O(e) [3].

— Area: the area of Del g(E) approximates the area of S [26].



— Curvatures: the curvature tensor of S can be estimated from Delg(E) [18].
~ Homeomorphism: Del g(E) is homeomorphic to S [3].

— Hausdorff distance: the Hausdorff distance between S and Delg(F) is O(e) [10]. In this
paper, we give an O(¢?) bound (theorem 4.7).

— Reconstruction: several algorithms can reconstruct from E a surface that is homeomorphic
[3, 4, 8, 19] or even ambient isotopic [5] to S.

We will show that these properties hold for loose e-samples as well.

Definition 2.2 E is a loose e-sample of S if the two following conditions are verified:
1.V € SNV(E), ENB(x,e dpy(x)) # 0
2. Del 5(E) has vertices on all the connected components of S

Since the centers of the surface Delaunay balls are precisely the intersection points of S with the
Voronoi edges, condition 1. of definition 2.2 is verified if and only if every surface Delaunay ball
B(e,r) has a radius of at most € dps(c).

Observe that condition 1. alone is not sufficient to control the density of £. Indeed, according to
our definition of the restricted Delaunay triangulation, a point of E is a vertex of Del|g(E) only if
at least one edge of the boundary of its Voronoi cell intersects S. It follows that some of the points
of £ may not be vertices of Del g(E). In some situations (see figure 1 for an example), Del|s(E)
may even be empty, in which case condition 1. is trivially verified for any value of e.

Figure 1: A case when Del 5(E) is empty: the four points of E (in red) are placed on a torus, such
that the Voronoi edges (in blue) pass through the hole.

e-samples and loose e-samples are closely related but not identical concepts. The next lemma
follows from definitions 2.1 and 2.2, and from theorem 2 of [3].



Lemma 2.3 If E is an e-sample of S, with € < 0.1, then it is also a loose e-sample of S.

Proof Clearly, condition 1. of definition 2.2 is automatically verified when F is an e-sample of S.
To show that condition 2. is also verified, we use theorem 2 of [3], which states that, when ¢ < 0.1,
every k-face of Vor(E) either does not intersect S or intersects S along a (k — 1)-topological ball.
Hence, the Voronoi cell p* of any point p € E intersects S along a topological disk whose boundary
lies in the boundary of p* since S has no boundary. Moreover, the boundary of S N p* cannot lie
inside a single facet of the boundary of p*, since otherwise this facet would intersect S along a
topological circle, and not along a topological arc. It follows that one edge at least of the boundary
of p* intersects S, which means that p is a vertex of Del, s(E). Moreover, since ¢ < 1, E has some
points on all the connected components of S. Condition 2. of definition 2.2 is therefore fulfilled. [

The converse is true asymptotically, as we will see in section 4.3 (corollary 4.12).

2.3 Other notations

The following constants are used in the paper:
2e

® o is the only positive root of equation =% + arcsin 1= — 7 = 0. g9 = 0.091.

e ¢ is the only positive root of equation 13675 + arcsin %g — 7 = 0. g1 = 0.096.
— ™ ~

® &9 — iyor ~ 0.097.

e 3 is the only positive root of equation = + arcsin %g -5 = 0. e3=0.17.

e ¢, is the only positive root of equation == + arcsin 1= — 7 = 0. g4 = 0.17.

e5 is the only positive root of e(1 +8.5¢) — 0.1 = 0. &5 = 0.065.

We also use the notation (', v') to denote the modulus of the angle (measured in [—7, 7]) between
vectors © and ¥ of R}, and %.7 to denote their dot-product.

3 Local properties of loose s-samples

In this section, we prove that surface Delaunay balls of sufficiently small radii keep important
properties of planar disks. In particular, we show that they intersect S along topological disks
whose boundaries pairwise intersect in at most two points (proposition 3.9).

3.1 Technical lemmas

In this paragraph, we recall several lemmas by Amenta and Bern [3] that will be useful in the
remainder of the paper.

Lemma 3.1 Let f be a facet of Delg(E). Assume that some surface Delaunay ball B(c,r) of f is

such that r < p dp(c), with p < % Let a be a vertex of f. If a has an inner angle of at least w/3,
pV3

then the smaller angle between the line normal to f and the normal to S at a is at most arcsin =



Otherwise, the smaller angle between the line normal to f and the normal to S at a is at most

2p = pV3
-7, + arcsin T—p

Proof By assumption, the radius of B(c,r) is 7 < p dpr(c), which is at most p (das(a) + ||c — a|)
since dps is 1-Lipschitz. Since B(c, ) circumscribes f, we have ||c — a|| = r. Thus, r < ﬁ dyr(a).
It follows that the proof of lemma 7 of Amenta and Bern [3] holds here. [

Lemma 3.2 For any two points p and q on S with ||p — q|| < p dym(p), the smaller angle between
the line segment pq and the surface normal at p is at least § — arcsin .

Lemma 3.3 For any two points p and q on S with ||p—q|| < p min{da(p),drn(q)}, for any p < %,
the modulus of the angle between the normals to S at p and at q is at most ﬁ.

We will need the two following corollaries of the above lemmas.

Lemma 3.4 Let ¢ and ¢ be two points of S such that ||c — || < e (dum(c) +dum(c)), where e < 5.
%

There exists a vector v orthogonal to cc', such that the angle between ¥ and the normal to S at

any point of SN B(c,2e dp(c)) is at most 13%5 +arcsin t==. Hence, if € < &g, this angle is at most
s

4-

Proof Let BT = B(c,2¢ dp(c)). We have

Vr € Bt NS, ||z — ¢ < 2¢ dp(c) (1)
thus
V$€B+ﬂ5, dM(-'L‘) ZdM(C)_ ||'T_C|| (2)
> (1—-2¢) du(c)
(1) and (2) give
Vo € BY NS, [l —c| < 7= min{du (), du (@)}

which implies, according to lemma 3.3,

¥z € BY NS, (W(w), W(0) < 1 %S(I iis) T i686

We have |[c — || < e du(c) + e du(cd) < 2e du(c) +¢ [le — ||, hence [|c — || < 2= dum(c). Thus,
lemma 3.2 tells that
(3)

o T T . €
min {(cc', 7 (c)),(c'c, n'(c))} > 5 — aresin o
—c

— —
Inside plane (c,cc’, 7 (c)), let ¥ be the unitary vector that is orthogonal to cc¢’ and has a positive
scalar product with 7(c). According to (3) we have (7 (c), v') < arcsin t&. Thus,



Yz € SNBY, (W(x), ) (? z),n(c)) + (7 (c), V)

1 3 13
Toge T arcsin y=—

IAIA

O

Lemma 3.5 Let f and f' be two facets of Del‘S(E) that have a common vertex v. If f and f' both
have a surface Delaunay ball B(c,r) of radius r < €1 dpr(c), then their orthogonal projections onto
T(v) do not overlap, i.e. their interiors do not intersect.

Proof Let B = B(c,r) be a surface Delaunay ball of f and B’ = B(¢/,r') a surface Delaunay ball
of f/, such that 7 < &1 dps(c) and 1’ < &1 dps(c’). Since f and f’ have a common vertex, B and
0B’ have a non-empty intersection. Let P be the bisector plane of B and B’. It contains dBNJB’,
hence it contains v. Let u and w be the other vertices of f and let v’ and w’ be the other vertices
of f'. On one side of P, B is included in the interior of B’, whereas on the other side of P, B’ is
included in the interior of B. Thus, u and w lie one the same side of P, whereas u’ and w’ lie on
the other side. It follows that f and f’ lie on different sides of P.

Since r < g1 dpy(c) and 7" < g1 dp(c), we have |[c — || < r+ 7' < &1 (dy(e) + du(d)) <
e1 (2 du(c) + |lc = ¢||), which implies [lc — ¢/|| < 2L - dpy(c). Hence, by lemma 3.2, we have

— — — N e
min {(cc’, 7 (c)), (c'c, m(c))} > 5 arcsin

dar(v), (7 (c), 7 (v)) is less than 17 by lemma 3.3.

1 61
It follows that mln{(cc , 1 (v)), (c ¢, W(v))}> 5 — arcsin T4~ — 1=4;;- And since P is orthogonal
1

to line (cc’), we get (7 (v), P) < arcsin .= -+ 17> which is less than 7 since 1 < &4.

Moreover, since ||c — UH < ep dyle ) <

We define 7'y and 7 ; as the unit vectors normal to f and f’ oriented so that m ;.7 (v) > 0 and
&

1V3 :
o7, which

2e1 .
T 7e; -+ arcsin

7w p. 7 (v) > 0. By lemma 3.1, (7 s, 7 (v)) and (7, 7 (v)) are at most

is less than %.

By proj we denote the orthogonal projection onto plane T'(v). Since (7' f, 7' (v)) < T and (7 (v), P) <
T, proj(f) lies on the same side of P as f. Similarly, f’ and proj(f’) lie on the same side of P.
Thus, proj(f) and proj(f’) lie on different sides of P. Since P is not parallel to T'(v), proj(f) and
proj(f’) do not overlap. O

3.2 Topological disks and terrains

Lemma 3.6 ([7]) Let B be a ball that intersects S. If the intersection is not a topological disk,
then B contains a point of the medial azxis of S. As a consequence, if E is a loose e-sample, with
e < 1, then surface Delaunay patches are topological disks.

Lemma 3.7 If E is a loose e-sample, with ¢ < €9, then, for every surface Delaunay ball B =
B(c,r), for any point x € SN B, SN B(x,2r) is a topological disk and a terrain over T(x).



Proof Since E is a loose e-sample, we have r < ¢ dp(c) < e(dpy(x) + ||z — ¢||) < e(dp(x) + 7),
that is, 7 < 1= da(x). Thus, 2r < dp(x) since € < g3 < % According to lemma 3.6, SN B(z, 2r)
is thus a topological disk.

In addition, since r < 1= dps(x), we have

Vy € B(z,2r), lly —zll <2r < % du(z)

<
= —€
< 2 (du(y) + lly — =)

which implies that ||y — z| < 13635 dy(y). Tt follows that ||y — || < pmin{dy(y),dp(z)}, with
2¢

p = 1232+ Thus, according to lemma 3.3,

2¢e
Vy € B(z,2r), (n(y), w'(x)) < 1=3p 1-9

Since £ < gg < 9, we have 13695 < 3, hence SN B(x,2r) is a terrain by lemma 9.4. [

3.3 Pseudo-disks

Definition 3.8 Topological disks are pseudo-disks if they pairwise intersect along topological disks
(that may be empty or reduced to a point) and if their boundaries pairwise intersect in at most two
points.

Observe that the boundaries of two pseudo-disks either do not intersect, or intersect in one point
tangentially, or intersect in two points transversally.

Proposition 3.9 If E is a loose e-sample, with € < gq, then surface Delaunay patches are pseudo-
disks.

Proof Let B = B(c,r) and B’ = B(d,r') be two surface Delaunay balls. According to lemma
3.6, D = BNS and D' = B'N S are topological disks, since ¢ < gy < 1. Their boundaries C
and C' are topological circles. Let us assume that balls B and B’ intersect, the other case being
trivial. Notice that none of them can be contained in the other one, since they are Delaunay balls.
Thus, their bounding spheres B and 0B’ also intersect. Let I' be the circle 90BN dB’, p its radius
(p < min{r,7'}) and P its supporting plane. We define A = BN P and notice that I' = 9A. Since
S is a closed surface, we have C C 9B and C’ C 0B’, which implies that

cnc’'csSnr (4)

Let BT = B(c,27). Since |[c=(|| <r+71' <edpy(c) +edpy(d), where e < gy, by lemma 3.4 there

—)
exists a vector v orthogonal to c¢c’ such that

Vz e SNBY, (7(z), ) < % (5)

—
Let us choose in R? a reference frame of origin ¢, of y-axis directed along ¢’c, and of z-axis directed
along v'. We call L; and L, the two lines of P, parallel to the z-axis, that are tangent to I'. The
region of P bounded by L; and L, is called G (see figure 2). In the following, ¢ denotes SN BT NG.



Figure 2: Definitions of G and G’

Lemma 3.10 ¢ s a connected x-monotone arc.

Proof According to (5), we have Vo € SN BT, (7(z), v) < Z. Thus, by lemma 9.4, Bt N S is
xy-monotone, which implies that £ is z-monotone. Moreover, according to lemma 9.5, BT N S lies
outside the cone of apex ¢ € S, of vertical axis and of half-angle 7. The equation of the cone in
our frame is 22 = 2% 4+ y2. It intersects P along two hyperbolic arcs of equations z = +v/22 + d2,
where d < 7 is the distance from ¢ to P. Consider the subregion G’ of G that is bounded vertically

by the two hyperbolic arcs (see figure 2). Since SN B lies outside the cone, ¢ is included in G'.

The points of G’ that are farthest from c are the points (£p, —d, +1/p? + d?). Their distance to ¢
is
V2(p? +d?) < 2r

In other words, G’ C int(B™). It follows that ¢ is included in int(B*) and cannot intersect B™.
Its endpoints must then lie on the vertical lines L, and L;. But there can be only one endpoint per
vertical line, since ¢ is z-monotone. Hence, ¢ has at most two endpoints and is thus connected. (I

Lemma 3.11 |SNT| < 2.

Proof Let us assume for a contradiction that |SNT'| > 2. First, we show that there exists a point
where the curvature of £ is high and hence the distance to the medial axis M is small. Then we
work out a contradiction with the fact that E is a loose e-sample, with ¢ < ¢g.

Claim 3.11.1 There exists a point ¢ at which the curvature of € is at least %.

Proof We made the assumption that |[SNT| > 2. Since ' C G and T C BT, ¢ also intersects T
more than twice. And since £ is connected by lemma 3.10, there is a subarc ab of £ that lies outside
A and whose endpoints ¢ and b lie on I'. This subarc may be reduced to a point (a = b), since &
may be tangent to I'. But in this case, in the vicinity of a, £ is locally included in A and tangent



to I' at a. Thus, its curvature at a is at least %, which proves the claim with ¢ = a. So now we
assume that arc ab of £ is not reduced to a point. Since £ is z-monotone by lemma 3.10, a and b
lie on the same half of ', upper half or lower half (say upper half). Thus, the smaller arc of I" that
joins a and b is also z-monotone. Then, by lemma 9.3, there is a point ¢ of arc ab of ¢ at which the
curvature of £ is at least %, which proves the claim. I

Claim 3.11.2 dy(q) < pV2.

Proof Let m¢(g) be the normal to planar curve ¢ at point g. By (5), 7(g) is not orthogonal to
P, thus T¢(q) is oriented along the projection of 7' (g) onto P. Hence, by lemma 9.2, we have
(7 (g), We(q)) < (W (g), ¥) which is at most Z by (5). According to theorem 9.1, we then have at

q
I(¢,€) > cos 7 [¢"]

¢’ is the unit tangent vector of £ at ¢ and ||€”]| is the curvature of £ at ¢, which is more than %
according to claim 3.11.1. So, at ¢ we have

1

(e ¢ -
(é,i)zp\/5

(6)

Recall that I is a symmetric bilinear form, thus it can be diagonalized in an orthonormal frame, and
its eigenvalues are the minimum and maximum curvatures of S at ¢g. Let us call these values kmin(q)
and Kmax(q) respectively. Since ¢’ is a unit vector, we have I(¢',¢’') < max {|£min(q)|, |Fmax(q)|}- It
follows, according to (6), that max {|kmin(q)|, |Fmax(q)|} > pIW’ or, equivalently, that the minimal

radius of curvature of S at ¢ is at most p\/i The result follows. O

The end of the proof of the lemma is immediate. We have

du(c) dum(q) + lle — 4l
pV2 4 2r

(V2 +2)

ININAIA

So, the radius of ball B is at least \/51” dps(c), which contradicts the assumption that F is a loose
1

e-sample, with ¢ < gg < VTR O

From lemma 3.11, it immediately follows that |C' N C’| < 2, by (4).
Lemma 3.12 SN A is not reduced to two points.

Proof Let us assume that S intersects A in two points exactly, say a and b. Then, the subarc of £
that joins points a and b lies outside A. It follows, by the same reasoning as in the proof of claim
3.11.1, that there exists some point ¢ of £ at which the curvature of £ is at least %. It follows by

claim 3.11.2 that ds(q) < pv/2, which leads to a contradiction, as in the end of the proof of lemma
3.11. 0



It follows from the above lemmas that D and D’ intersect along a topological disk. The result is
clear if D C D' or if D’ C D. Otherwise, we have |CNC’'| < 2, by lemma 3.11. If |CNC’| = 0, then
DN D' is empty. If |CNC’'| =1, then DN D’ is reduced to a point. If |C N C'| =2, then DN D’
is either a topological disk or equal to CNC’. Butif DN D' =CNC’, then SNA = CnNC’ since
CNC'CSNACDND'. This contradicts lemma 3.12. Hence, D N D' is not equal to C N C’ and
is therefore a topological disk. This ends the proof of proposition 3.9. [

4 Global properties of loose s-samples

In this section, F is a loose e-sample of S. We prove that, for a sufficient small value of ¢, Del s(F)
is a manifold without boundary (theorem 4.4), ambient isotopic to S (corollary 4.6), at Hausdorff
distance O(£?) from S (theorem 4.7). From the latter we deduce that E is an (1 + 8.5 ¢)-sample
of S (corollary 4.12). We also prove that the surface Delaunay balls cover S (theorem 4.14).

4.1 Manifold

Here, we assume that ¢ < 1. We first prove that every edge of Del s(E) is incident to exactly
two facets of Del|g(£). We then prove that every vertex of Del g(E) has only one umbrella. An
umbrella of a vertex v is a subset of facets of Del, 5(F) incident to v whose adjacency graph is a
cycle.

Lemma 4.1 The dual of a facet of Del 5(E) intersects S only once, and transversally.

Proof Let f be a facet of Del g(E), and f* its dual Voronoi edge. We denote by a the vertex of
f that has the largest inner angle. We have G > 5, and since € < g9 < %, lemma 3.1 says that

(7' (a), W s) < arcsin 16 (7)

— &

where 7 7 denotes the unitary vector orthogonal to f that makes the smaller angle with 7 (a). Let
B, be the ball B(a, =7 dar(a)). For any surface Delaunay ball B(c,r) that circumscribes f, we

have
lc—all=7 <edu(c)

e (dm(a) +[lc —al))

Hence, ||c — a|| < = dar(a). In other words, every center of surface Delaunay ball of f lies in B,.
In addition, we have

Vz € B,NS, ||lv—al| <15 du(a)
<

which implies ||z — a|| < %5z du(z). According to lemma 3.3, we then have Vz € B, N S,

R e/(1-2) €
(W), (o) < T3 7a =29 ~ T3¢




(7) and (8) give

Vz € B,NS, (7 (x), Wf) < (7 (z), W (a)) + (7 (a), Wf)
<= i

which is less than § since ¢ < g9 < €3. Thus, by lemma 9.4, B, N S is a terrain over the plane

ITI; that supports f. Since f* is orthogonal to IIy, it cannot intersect B, NS more than once, nor
tangentially. And since every center of surface Delaunay ball of f lies in By, f* cannot intersect S
more than once, nor tangentially. O

For a restricted Delaunay facet f, we denote by By = (cy,ry) the corresponding surface Delaunay
ball. The surface Delaunay patch of f, SN By, is denoted by D;. We define Cy = 0Dy.

From lemmas 3.5 and 4.1, we deduce the following result.
Proposition 4.2 Every edge of Dels(E) is incident to ezxactly two facets of Del 3(E).

Proof Let e be an edge of Del g(E). We denote by e* the Voronoi face dual to e. Since S has no
boundary, S Naff(e*) is a union of simple closed curves, none of which intersects the boundary de*
of * tangentially, by lemma 4.1. Thus, by the Jordan curve theorem, each component of SNaff(e*)
intersects de* at an even number of points. It follows that S intersects de* at an even number of
points. Moreover, by lemma 4.1, each edge of Je* can be intersected at most once by S. Thus,
S intersects an even number of edges of Je*, and e is incident to an even number of restricted
Delaunay facets.

In addition, e cannot be incident to more than two restricted Delaunay facets. Indeed, by lemma
3.5, the projections onto T'(v) (where v is a vertex of e) of the restricted Delaunay facets incident to
e pairwise do not overlap, thus they must lie on different sides of the line supporting the projection
of e.

In conclusion, the number of facets of Del ¢(E) incident to e is even, at least 1 and at most 2. The
result follows. O

It follows from the above proposition that the restricted Delaunay facets incident to a vertex of
Del|g(E) form a set of umbrellas.

Proposition 4.3 Every vertex of Del g(E) has evactly one umbrella.

Proof Let v be a vertex of Del g(E). Let F(v) be one of the umbrellas formed by the facets of
Del|s(E) incident to v.

Claim 4.3.1 In projection onto T(v), v belongs to the interior of F(v).

Proof Let us assume the contrary. Then there exists an edge (u,v) that belongs to the boundary
of F(v) in projection onto T'(v). By proposition 4.2, (u,v) is incident to two facets of F(v), say
(u,v,w) and (u,v,w'). Since (u,v) is an edge of the boundary of F(v) (in projection), (u,v,w)



and (u,v,w’) project themselves onto the same side of (u,v), thus they overlap, which contradicts
lemma 3.5. O

The above claim implies that every other facet of Del g(FE) incident to v overlaps some facet of
F(v), in projection onto T'(v), which contradicts lemma 3.5. The result follows. O

The next theorem follows from propositions 4.2 and 4.3.

Theorem 4.4 Let S be a smooth closed surface and E a loose e-sample of S. If ¢ < g1 = 0.096,
then Delig(E) is a 2-manifold without boundary.

Since Del|5(E) is a closed 2-manifold embedded in R3, we can orient the normals of its facets
consistently. For instance, they can be chosen so as to point to the unbounded component of
R3 \ Del g(E).

4.2 Homeomorphism and ambient isotopy

Let 7 : R — S map each point of R® to the closest point of S. In [4], the authors have shown
that the restriction of 7 to a 2-simplicial complex W whose vertices lie on S is a homeomorphism
between W and S, provided that:

HO W is a manifold without boundary.
H1 W has vertices on all the connected components of S.
H2 The angle between the oriented normals of two facets of W sharing a vertex is lower than 7.

H3 (SMALL TRIANGLE CONDITION) every facet f of W has a surface Delaunay ball of radius at
most 0.113 min {dp(v), v vertex of f}.

H4 (FLAT TRIANGLE CONDITION) for every facet f of W, the line normal to f makes an angle
of at most 0.375 radians with 7 (v), where v is the vertex of f of largest inner angle.

We will show that assertions HO through H4 are verified by W = De] s(E), provided that ¢ < &7.
HO has already been stated for Del g(E) in theorem 4.4. H1 is guaranteed by condition 2. of
definition 2.2.

Proof of H2

Let v be a vertex of Del g(E) and let F(v) be the umbrella of v. By lemma 3.1, the smaller angle

between 7 (v) and the line normal to any facet of F(v) is at most 13675 + arcsin %g, which is less
than 7 since € < £;1. It follows that the angle between 7 (v) and the oriented normal of the facet

is either lower than 7 or greater than 3%. Moreover, the facets of F(v) pairwise do not overlap in
projection onto T'(v), by lemma 3.5, thus F'(v) is a terrain over T'(v). Therefore, the angles between
7 (v) and the oriented normals of the facets of F(v) are all lower than Z, or they are all greater

than %TW' It follows that the angle between the oriented normals of any two facets of F(v) is lower

than 5. O




Proof of H3

Since E is a loose e-sample, every facet f of Del g(E) has a surface Delaunay ball By = B(cy,7y) of
radius 7 < e dps(cy). Let v be any vertex of f. We have dps(cp) < dar(v) +||v —cf|| < dur(v) + 7y,
thus 77 < == dp(v), which is less than 0.113 dps(v) since ¢ < e;. O

Proof of H4

Let f € Delg(F) and let v be the vertex of f of largest inner angle. By lemma 3.1, 7 (v) and the

line normal to f make an angle of at most arcsin %g, which is less than 0.375 radians since ¢ < .

O

The following result is then a direct consequence of theorem 19 of [4].

Theorem 4.5 Let S be a smooth closed surface and E a loose e-sample of S, with ¢ < 1 = 0.096.
The restriction of the mapping 7 to Delg(E) is a homeomorphism between Deljg(E) and S.

Corollary 4.6 Let S be a smooth closed surface and E a loose e-sample of S, with e < 1 =~ 0.096.
Delis(E) and S are ambient isotopic.

Proof Since the SMALL TRIANGLE CONDITION is verified by the facets of Del|g(E), lemma 12 of
[4] tells that Vo € Deljg(E), ||z — n(x)|| < 0.165 dps(7(x)). Moreover, according to theorem 4.5,
7 is a homeomorphism between Del g(F) and S. Thus, by theorem 9 of [5], Dels(E) and S are
ambient isotopic. O

4.3 Hausdorff distance

Theorem 4.7 Let S be a smooth closed surface and E a loose e-sample of S, with ¢ < 1 = 0.096.
The Hausdorff distance between S and Delg(E) is at most 4.5 €* dy;°.

The idea is to bound the distance from Del|g(E) to S, and then to use the surjectivity of 7 to prove
that the bound also holds for the distance from S to Del g(E).

Lemma 4.8 Let c € S. For any point x € S at distance at most ¢ dps(c) from c, the distance from
z to T(c) is at most 3e2du(c).

Proof Let B; and Bs be the two balls of radius djs(c), tangent to S at ¢. Their interiors cannot
intersect S and therefore do not contain z. Let 2’ be the intersection point other than ¢ of the
segment [c,x] with the boundary of B; U By. Let h be the distance of x to T'(c) and 6 the angle
between cz and T(c). We have

llc —2'|| = 2dpm(c)sinf < ||c — z|| < edum(c)
Therefore, sinf < § and h = ||c — z||sin 6 < $e2dp(c). O

Lemma 4.9 Let ¢ € S and let y be a point of T(c) at distance at most € dp(c) from c. The
distance of y to S is at most 4¢% dyr(c).



Proof Let z be the point of S closest to y, t the projection of z onto T'(¢) and ¢ = Lyzt, which is
also the angle between the normals to S in ¢ and in z. We have

lle =2l < lle=yll+lly = 2ll <2llc —yll < 2e dar(c) (9)

It then follows from lemma 4.8 that ||z —¢t|| < 22 ds(c). Moreover, since das(c) < dar(2) +1lc— 2],
(9) implies that [lc—z|| < 25-dum(z). It follows from lemma 3.3 that ¢ < 25-. Since ¢ < g1 < 0.1,
we have 12—5 < 1, thus ¢ < 1. Tt follows that —— < # <1+ ¢?, from which we deduce

-7

-8 — cos¢p —

2
Iy—ell = <22 auo) (1+(2))
< 4e? dp(e)

g

With lemmas 4.8 and 4.9, we can bound the distance from Del g(E) to S.

Proposition 4.10 Every point © € Delg(E) is at distance at most 4.5 €*dp(c) < 4.5 £2d3,” from
S, where c is the center of the surface Delaunay ball of the facet that contains x.

Proof Let z € Delg(E). Let f be a facet of Del|s(E) on which z lies, and let B(c,r) be the surface
Delaunay ball of f. Let 2’ be the orthogonal projection of x onto T'(¢). We have ||z — ¢|| < r, which
is at most ¢ dps(c) since E is a loose e-sample. Thus, by lemma 4.8, the distance from z to T'(c) is at
most 3e2 dar(c). Hence, ||z —2'|| < 32 dar(c). In addition, we have |2/ — || < ||z — || < e dum(c)-
Thus, by lemma 4.9, the distance from z’ to S is at most 4¢? dps(c). Tt follows that the distance
from x to S is at most 4.5 €% dar(c) < 4.5 2 dyF. O

We can now bound the distance from S to Del, s(E), which completes the proof of theorem 4.7.

Proposition 4.11 Every point x € S is at distance at most min{4.5 e2d}’,5.3 2dp(x)} from
Delig(E).

Proof Let z € S. Since the restriction of m to Del|g(E) is surjective, we have Wﬁills(E)(m) # 0.
Let 2’ € 7T|?)11|S(E)(‘T)' According to proposition 4.10, ||z — 2| < 4.5 e?dps(c) < 4.5 e2d},P, where ¢

is the center of the surface Delaunay ball of a facet that contains z’.

In addition, we have ||z’ — ¢|| < ¢ dp(c), since E is a loose e-sample. Thus, ||z — ¢|| < (¢ +
4.5 e2)dr(c) < (e + 4.5 €2)(dp (@) + |z — c])). It follows that ||z — ¢|| < {=F25E% 4y (2), which is
at most 0.17 dps(x) since € < 1 < 0.1. Hence,

lz —2'|| < 4.5 e%dpr(c) < 4.5 %(dpr(x) + ||z — ¢f) < 5.3 e2dps ()

O

By lemma 2.3, we know that e-samples are loose e-samples, for a sufficiently small value of €. The
converse is not true, but the following corollary shows that loose e-samples are close to be e-samples.



Corollary 4.12 Let S be a smooth closed surface and E a loose e-sample of S, with e < 1 =~ 0.096.
E is an (1 + 8.5 ¢)-sample of S.

Proof By proposition 4.11, any point x € S is at distance at most 5.3 €2 djs(z) from Del|s(E).
Let 2 be the point of Del g(E) closest to x, and f a facet of Del g¢(E) that contains z'. We call ¢
the center of the surface Delaunay ball of f, and ¢’ the center of the circumcircle of f. Let v be the
vertex of f closest to z’. Since z’ belongs to f, we have ||z’ — v|| < ||’ — v|| < || — v||- Moreover,
llc —v|| <edu(c) <e(dy(v) + ||c —v||), hence ||c — v|| < t5=das(v). Thus,

lz =]l <z = 2| + [|2" - of

<5.3e? dy(z) + 1= du(v)
<5.3e? du(z) + 1= (dm(z) + |z — v|)

It follows that

53(1—¢) o €
—|| < ———= ¢ d d
lz —vll < == ¢ dm(@) + T dm(@)
Since £ < &1 < 0.1, we have >20—5) < 6 and {1 <1+ 2.5 ¢, thus

|z —v|| <6 du(x)+e(l+25¢) dy(z)

|

4.4 Covering

Here, we assume that ¢ < gy. Let UfeDel|5(E) By (or U; By, for short) denote the union of the
surface Delaunay balls.

Let fo be a facet of Del g(E). Our goal is to prove that Cs, C int (Uf Bf). In fact, we will prove

a slightly more precise result, stated as lemma 4.13.

Let F'(fo) be the set of all facets of Del|g(E) that share a vertex with fo, including f itself. Since
e < eg < €1, Deljg(F) is a manifold without boundary, by theorem 4.4. Hence, F'(fy)\{fo} contains
one facet of Del|g(E) adjacent to fo through each edge of fo. We define R(fy) as the union of all
surface Delaunay patches associated with facets of F'(fp).

Lemma 4.13 Cy, C int(R(fo))-

Proof Let u, v and w be the vertices of fo. We call fyy, fow and fy, the three facets of F(fy) that
are incident to fy through edges wv, vw and wu respectively. By proposition 3.9, arcs uv, vw and
wu of Cy, are included in Dy, , Dy, and Dy, respectively, and only their endpoints may possibly
lie on Cy,,, Cf,., or Cg,.. Thus, the three arcs are included in the interior of R(fy), except for
their endpoints which may possibly lie on the boundary of R(fy).

We claim that u, v and w also belong to int(R(fy)). Let F(u) be the umbrella of facets of Del|g(E)
incident to u, and R(u) the union of the surface Delaunay patches of all facets of F'(u). Notice that



R(u) C R(fo), since F(u) C F(fy). Let B(c,r) be the ball of biggest radius, among the surface
Delaunay balls of the facets of F(u). For every point z € R(u), we have ||z — u|| < 2r, hence
R(u) is included in S N B(u,2r), which is a terrain over T'(u), by lemma 3.7. It follows that the
surface Delaunay patches of the facets of F((u), which are pseudo-disks in R?, are also pseudo-disks
in projection onto T'(w). Then, in projection onto 7'(u), u lies in int(R(u)) since it lies in int(F'(u))
by claim 4.3.1. It follows that u € int(R(u)), since R(u) is a terrain over T(u). So, u € int(R(fy))-
The reasoning holds for v and w as well, which completes the proof of the lemma. O

Theorem 4.14 Let S be a smooth closed surface and E a loose e-sample of S, with ¢ < ey =~ 0.091.
S is included in |J; By.

Proof By lemma 4.13, the union of surface Delaunay patches has no boundary. Thus, S does
not intersect the boundary of [ J 7 By. Moreover, since Del, s(FE) has vertices on all the connected
components of S, s By intersects all the connected components of S. Tt follows that S cannot
exit | J; By without intersecting the boundary of (J; By. O

Recall that our definition of Del ¢(E) excludes edges and vertices with no incident restricted De-
launay facet. Hence there might exist points of £ that are not vertices of Del g(E). In fact, this
cannot happen, as stated in the following corollary of theorem 4.14.

Corollary 4.15 Let S be a smooth closed surface and let E be a loose e-sample of S, with ¢ <
g0 ~ 0.091. Every point of E is a verter of Deljg(E).

Proof Let p be a point of E. By theorem 4.14, S C Uf By, thus p belongs to the surface Delaunay
ball By = B(c,r) of some facet f of Del g(F). Let u, v and w be the vertices of f. Since By is
a Delaunay ball, p, u, v and w belong to its bounding sphere. If p € {u,v,w}, then f is incident
to p, thus p is a vertex of Del|g(F). Otherwise, (p,u,v,w) is a Delaunay tetrahedron, whose dual
Voronoi vertex is ¢ € S. Then, every facet of (p,u,v,w) is a restricted Delaunay facet, and here
again p is a vertex of Del g(E). O

5 Size of loose e-samples

5.1 Lower bound

Erickson [23] has shown that (“g ), with u(S) = [/ %, is a lower bound on the number of
points of any e-sample of S, with £ < % This bound holds for loose e-samples as well, by corollary
4.12. However, in the following we rewrite Erickson’s proof in the case of loose e-samples directly

and improve on the constant.

Theorem 5.1 Let S be a smooth closed surface and let E be a loose e-sample of S, with ¢ < gy =
0.091. We have |E| > 2 + 25

Br €2



Proof By theorem 4.14, we have S C UfeDel|s(E) By. Thus,

0= [l s 2o S de w

feDel5(E)

Moreover, since E is a loose e-sample, we have Vf € Del ¢(E), Vo € Dy, ||z — cf|| < edn(cy)- It
follows that |z — cf|| < t5-dn(x) and that dar(x) > (1 —e)dpr(cy), since dps is 1-Lipschitz. Thus,

Area(Dy)
Vf € Delis(E //Df = E)Zde( - (11)

Since Vz € Dy, ||z — cf|| < edp(cy) and ||z — cpl| < 52dp(w ) by lemma 3.3 we have Va € Dy,
(W (z), W(cs)) < =, which is less than % since ¢ S €0 < 3747+ Thus, by lemma 9.4, Dy is a
terrain over T'(cs), the plane tangent to S at c;. We can then bound the area of Dy by projecting
it orthogonally onto T'(cs). Let us call proj the orthogonal projection onto T'(cy). Since proj(Dy)

is included in the disk of radius edas(cs) centered at ¢y, we have

Area(proj(Dy))  _ we?dy,(cy)

: =3 — = _
xrgg; cos (' (x), ' (cy)) €oS T4

Area(Dy) < (12)

It follows from (10), (11) and (12) that

// d:r me?
a2, ( (1 —¢)?cos =5 m

where m is the number of facets of Del g(E). According to theorem 4.4, Delg(E) is a manifold
without boundary, thus the number of vertices of Del|g(E) is 2 + 5, by Euler’s formula. Hence,

|E| >2+ % > 2+%(1—5)200s1‘€4€“§2), which is at least 2 + £~ 2 “gz) since ¢ < gg.

5.2 Upper bound

Since adding points to an e-sample results in another e-sample, we cannot hope for an upper bound
on e-samples without making some additional assumptions. The same observation can also be
made for loose e-samples since e-samples are loose e-samples, by lemma 2.3. This motivates the
following definition.

Definition 5.2 Given a positive constant k, a point sample E of S is said to be k-sparse if Va €
E, dist(z,E\ {z}) > k du(x).

Here, we give an upper bound on x-sparse point samples, which a priori are not assumed to be
e-samples nor loose e-samples. Notice that, if E is k-sparse, then a fortiori it is k’-sparse, for any
k' < k. Therefore, we may assume for convenience that x < 2.

For every point x € E, we define B, as the open ball centered in x of radius § dy(x). Since E
is k-sparse, & dy(z) is smaller than % dist(z, E'\ {z}), which implies that the balls (B;)scp are
pairwise disjoint.



Lemma 5.3 For every point x € E, B, is included in the Voronoi cell of z in Vor(E).

Proof Let z be a point of B,. We have |z — z|| < § dy(x). Since E is k-sparse, every point y
of E\ {z} is at distance at least x dps(x) from x. Thus, ||y — z|| > 2||z — z||, which implies that
Iz — z|| < ||z — ||, by the triangle inequality. [

Before bounding the size of E, we prove that every ball B, intersects S along a topological disk of
large size.

Lemma 5.4 For every point x € E, we have Area(S N By) > &mk? dp*(x).

Proof By definition, the radius of B, is § das(x), which is less than dy(x) since x < 2. Thus,
B, N M = (. It follows that SN B, is a topological disk, by lemma 3.6. It follows also that S does
not intersect the open balls B(y, § dy(x)) and B(z, § du(x)), where y and z are the intersection
points of the normal of S in « with the bounding sphere of B,. Hence, S N B, lies outside these

two balls.

areathrough B,
which S may pass

Moreover, since S has no boundary, the boundary of S N B, lies on the bounding sphere of B,.
Thus, proj (SN B,), the orthogonal projection of S N B, onto T'(x), contains the projection of

B, N B (y, & du(z)), which is a disk of radius ”T‘/g dp(zx).

Hence,
Area(SNB;) > Area(proj(SN By))
> X owk? dp(x)
O

Theorem 5.5 Let S be a smooth closed surface and let E be a k-sparse point sample of S. We
have |E| < & uls)

3r k2 C

Proof We proceed as in the case of planar meshes [22, 28] and bound the integral over S of
1/dp%(t). Since SN B, C S for every point = € E, we have

//s#;(t)z//U(Bmﬂs) o

z€FE




Moreover, the balls (B;).cp are pairwise disjoint, thus

//U N S) dM Z//zns)dM

zeER

In addition, since djs is 1-Lipschitz, V¢ € By, dy(t) < dpy(z) + ||t — z[|< (1 + §) dp(x). It follows

that Arca(B, 1 S)
rea N
>
Z // (BzNS) dM Z

zeE 1+ ) hve (z)

Since Area(B, N S) > 1?’—67TI€2dM2($) by lemma 5.4, we have

3.2 2
Z Area(?mﬂf) > Z 5K 2dM (2:15) _ 3 o W |E|
sep (1+5) du’(2) — Jcp (1435) du’(x)  16(1+75)

which is greater than 2 mx? |E| since £ < 2. The result follows. O

It follows from theorem 5.5 that every loose e-sample of S that is x-sparse, for some k = Q(¢), has

size O (“ (5 )>, which is optimal in view of the bound of theorem 5.1. This gives a sufficient (local)
condition for a loose e-sample to have optimal size.

6 Surface sampling and meshing

In this section, we are given a smooth and compact, not necessarily connected, surface S without
boundary. From the previous sections (specifically from corollary 4.6 and theorem 4.7), we know
that, if we can construct a loose e-sample E of S, for an € < €1, then Delg(E) will be a good
approximation of S, both in a topological and in a geometric sense. In this section, we give

an algorithm that produces such a sample E and computes its restricted Delaunay triangulation
Del|s(E).

6.1 Algorithm

The algorithm is greedy and derives from Chew’s surface meshing algorithm [17]. It takes as input
the surface S and it is templated by some user-defined function ¢ : S — R that is positive and
1-Lipschitz. The algorithm starts with a small initial point sample E and, at each iteration, it
inserts a new point of S into E and updates Del ¢(E). Each point inserted into E is the center of
a bad surface Delaunay ball, i.e. a surface Delaunay ball B(c,r) such that r > o(c). The algorithm
stops when there are no more bad surface Delaunay balls, which will eventually happen since o
does not vanish on S, as shown in paragraph 6.3, lemma 6.2.

The surface is known only through an oracle that, given a line segment s, computes all the points
of s NS, which generically are finitely many. Del g(E) is stored as a subcomplex of Del(E) and
computed by detecting the intersections of the Voronoi edges with S, thanks to the oracle. At each



step of the algorithm, only the part of Vor(E) that has changed after the point insertion is tested.
As for the bad surface Delaunay balls, they are stored in a list L.

The initial point sample is constructed in such a way that the output point set verifies condition
2. of definition 2.2, i.e. that its restricted Delaunay triangulation has vertices on all the connected
components of S. The details of the construction are given in paragraph 6.2. Once the initial
point sample has been constructed, the algorithm computes Del, s(E) and stores the bad surface
Delaunay balls in L. Then, the algorithm executes the following loop:

while L is not empty {

take an element B(c,r) from L;

insert ¢ into E and update Del(E);

update Del g(E) by testing all the Voronoi edges that have changed or appeared:
delete from Del| s(F) the Delaunay facets whose dual Voronoi edges no longer intersect S;
add to Del g(E) the new Delaunay facets whose dual Voronoi edges intersect S;

update L by
deleting all the elements of L which are no longer bad surface Delaunay balls;
adding all the new surface Delaunay balls that are bad;

}

The algorithm stops at the end of the loop and returns F as well as Del‘S(E).

6.2 Construction of the initial point sample

As explained in paragraph 6.1, our purpose here is to construct, at the beginning of the algorithm,
an initial point sample such that the output point set is guaranteed to verify condition 2. of
definition 2.2. For clarity, F; and E, will denote respectively the initial point sample and the
output point set.

Let us assume that Del g(E;) contains a facet f; circumscribed by a surface Delaunay ball B; =
B(cj,r;) such that r; < %O'(Ci). Such a facet will be called a persistent facet. Persistent facets are
interesting in our context because they share a nice persistence property, illustrated in figure 3 and
stated in the following lemma.

Lemma 6.1 Every persistent facet remains a restricted Delaunay facet throughout the course of
the algorithm. In other words, all persistent facets are facets of Del|5(Eo).

Proof Let f; be a persistent facet and B; = B(c;, ;) a surface Delaunay ball circumscribing f;
such that r; < %a(ci). Assume that, at the end of the algorithm, f; ¢ Delg(E,). This implies that,
at some stage, the algorithm inserts some point z in the interior of B;. Hence, ||z — ;|| < $0(c:),
which gives o(x)> o(c;) — ||z — ¢|> %dM(ci), since o is assumed 1-Lipschitz. Let v be one of the
vertices of f;. Since v and z both lie in B;, we have |[v — z|| < 2r;< 20(¢;)< o(x). Now, since x
is inserted by the algorithm, it is the center of some bad surface Delaunay ball B, whose radius is
greater than o(x). It follows that v belongs to the interior of B, which contradicts the fact that
the latter is a Delaunay ball. [

To guarantee that E, verifies condition 2. of definition 2.2, it suffices to construct F; in such a
way that every connected component of S contains at least one vertex of a persistent facet. Here



Figure 3: Meshing of a torus: the persistent facet (in red) remains in the restricted Delaunay
triangulation throughout the process. In compensation, the final mesh has smaller triangles in its
vicinity.

is how we proceed: we pick up at least one point on each connected component of S, and we insert
the collected points in a set called E’;. For each point x € E';, we consider a ball B, centered in
z of radius less than min {dist(z, E'; \ {z}), du(), 30(x)}. Let £, be the bounding sphere of
B,. We pick up three points from S N X, and we insert them in E;, which will be the initial point
sample of the algorithm. After doing this for each point of E';, we have |E;| = 3 |E';|.

Let z € E!. We claim that the three points of E; that lie on X, form a persistent facet and lie on
the same connected component of S as xz. Indeed, since every ball By, y € E';, has a radius less
than £ dist(y, E'; \ {y}), the balls (By)ycp, are pairwise disjoint. Hence, B, intersects none of the
(By)ye E';\{z}- 1t follows that B, is a surface Delaunay ball of Ej, since every point of E; belongs
to the bounding sphere of some By, y € E';. In addition, the radius of B, is less than %O'(LE), thus
the three points of E; that lie on ¥, form a persistent facet. Moreover, they all lie on the same
connected component of S as z, since the radius of Bj is less than dps(x).

Since this is true for every x € E’;, and since E'; intersects all the connected components of S, F;
contains at least three points per connected component of S that form a persistent facet.

6.3 Termination and output guarantees

Lemma 6.2 The algorithm terminates.

Proof Notice that, since ¢ is Lipschitz, it is continuous. Moreover, ¢ does not to vanish on S
which is compact, thus there exists some constant oy > 0 such that o(z) > oy Yz € S.

Since the construction of the initial point set takes a finite amount of time, the only thing to prove
here is that the main loop of the algorithm terminates. At each iteration, the center of some bad
surface Delaunay ball B(c,r) is inserted. At this time, the distance from ¢ to E is 7, which is
greater than o(x) > oy since B(c,r) is bad. Therefore, the distance from any two points inserted
during the main loop is at least o9 > 0, and as a consequence, the open balls of radius %2, centered



at the points inserted during the main loop, are pairwise disjoint. Since S is compact, there can
be only a finite number of such balls. Thus, a finite number of points are inserted during the main
loop of the algorithm, which terminates since it inserts one point at each iteration. [

Lemma 6.3 If 0 < e dys, then, upon termination of the algorithm, E is a loose e-sample of S.

Proof When the algorithm stops, all surface Delaunay balls are good. Since a surface Delaunay
ball B(c,r) is good if r < o(c) < e dp(c), E verifies condition 1. of definition 2.2.

In addition, according to paragraph 6.2, once the initial point set has been constructed, every
connected component of S contains at least one vertex of a persistent facet. Therefore, upon
termination, Del|g(E) has at least one vertex on each connected component of S, by lemma 6.1,
and hence E verifies condition 2. of definition 2.2. O

It follows from corollary 4.6, theorem 4.7 and lemma 6.3, that, if 0 < 1 dps = 0.096 djy, then the
algorithm outputs a good approximation of .S, in terms of topology and geometry.

From now on, we assume that E’;, the point set from which the initial point sample is constructed
(see paragraph 6.2), contains at most ¢ points per connected component of S, where ¢ is a constant
that does not depend on S. Under this assumption, and provided that ¢ = € dj; for some ¢ < 1
(notice that o is positive and 1-Lipschitz in this case), we give an upper bound on the size of the
output, which is optimal in view of theorem 5.1.

Lemma 6.4 If 0 = ¢ dp, with ¢ < 1, then, upon termination of the algorithm, E is a loose
e-sample of S of size O (@)

Proof For convenience, we call F; the initial point sample constructed at the beginning of the
algorithm, and F, the output point set. According to lemma 6.3, E, is a loose e-sample of S. In
addition, since the algorithm is greedy, we have E; C E,. E, \ E; is the set of the points that
are inserted during the main loop of the algorithm. To bound the size of E,, it suffices to bound
independently the sizes of E; and of E, \ E;.

As explained in paragraph 6.2, we have |E;| = 3 |E’;|. Moreover, by asumption, |E’;| < ¢ |S|, where
|S] is the number of connected components of S. Thus, |E;| < 3¢ |S].

Claim 6.4.1 [S| < 32 ;(S).

Proof For each connected component S; of S, we define §; as the diameter of S;. Let a;,b; € S;
such that ||a; — bi|| = ;. Let Eg = |J;{ai,bi}. We have |Eg| =2 |S].

Since the balls B(a;, ;) and B(b;, 6;) both contain S;, we have ||a; — b;||= 8; >max {dnr(a;), drr(b;i)},
by lemma 3.6. Moreover, for any j # 4, ||a; —a;|| > da(a;) since a; and a; lie on different connected
components of S. It follows that Eg is x-sparse, with x = 1. Hence, |[Eg| < £ p(S), by theorem
5.5. The result follows. O

It follows from claim 6.4.1 that |E;| < 32¢ 4(S).



We now bound the size of E, \ E;. Every point z inserted during the main loop of the algorithm
is at distance at least o(z) = ¢ dps(x) from E at the time when it is inserted, since it is the center
of some bad surface Delaunay ball. It follows that, for any two points = and y of E, \ E;, we have
|l —y|| > & dy(x) or ||z — y|]| > € dp(y), depending on whether z is inserted last or not. In
both cases, we have ||z — y|| > 15zdm(z), since dy is 1-Lipschitz. Thus, E, \ E; is k-sparse, with

K= 1L+s It follows that |E, \ E;| < 64(;%)2 @, by theorem 5.5.

In conclusion, the size of E, is at most 22¢ ;(S) + 64%%)2 ”g): O (“S)), which ends the proof
of lemma 6.4. O

6.4 Improvements
6.4.1 Removing the skinny facets

Once a point sample Ey of S has been obtained (or is given), one can remove the skinny facets from
the mesh, simply by running the algorithm with Ej as the initial point sample and by using a new
definition of a bad surface Delaunay ball. In the remainder of the paragraph, a surface Delaunay
ball B(e,r) is called bad if it is too big, i.e. r > o(c), or if the restricted Delaunay facet f it
circumscribes is skinny, i.e. one of its inner angles is less than §. The initial point sample is built
in the same way as in paragraph 6.2, except that none of the persistent facets must be skinny. The
output of the algorithm is then a loose e-sample of S (provided that o < € djs) containing Ey and
such that no facet of the restricted Delaunay triangulation is skinny. Some results are reported in

figure 10.

Notice that, unlike e-samples, loose e-samples are not stable under point insertion: if one inserts
some new point in a loose e-sample, the latter may not remain a loose e-sample. Therefore, we
have to keep the size criterion in the new definition of a bad surface Delaunay ball, if we want to
ensure that the output of the algorithm will be a loose e-sample.

Lemma 6.5 The version of the algorithm that removes skinny facets terminates.

Proof Since o is continuous and does not vanish on .S, which is compact, there exists some constant
oo > 0 such that o(z) > 09 Vo € S. Let = be a point inserted by the algorithm. Assume that x is
the center of some bad surface Delaunay ball B. We call r(x) the radius of b, which is equal to the
distance from z to F at the time when it is inserted. If B is bad because it is too big, then we have
r(x) > o(x) > og. Otherwise, the restricted Delaunay facet f circumscribed by B is skinny, i.e.
its smallest inner angle is less than . Let e be the smallest edge of f, and v the vertex of e that
was inserted last. If both vertices of e belong to Ejy, then call v any of them. We have r(v) < |e|,
where |e| is the length of edge e. A quick computation shows that the sinus of the smallest inner
angle of f (which is ooposite to e) is greater than half the ratio between |e| and the circumradius
%%7
the radius of any ball circumscribing f. It follows that r(z) > r(v).

of f. Therefore, we have sin § > since |e| > 7(v) and since the circumradius of f is at most

To summarize, 7(x) is either greater than og or greater than r(v) for some v inserted before x or
belonging to Ey. Thus, r(x) is always greater than min {0, ¢}, where ry denotes the minimum of



r over Fy, that is, the minimal distance between two points of Ey. It follows, by the same packing
argument as in the proof of lemma 6.2, that the algorithm inserts finitely many points and hence
terminates. [J

6.4.2 Speeding up the oracle

As stated in paragraph 6.1, the algorithm relies on an oracle that is able to compute all the
intersection points between a line segment and the surface. This oracle is called the intersection
oracle in the sequel. In practice, e.g. for implicit surfaces, computing all the intersection points
can be quite time-consuming — see section 6.6.1 for more details. We can reduce the requirements
for the oracle as follows: given a line segment s, the oracle is now supposed to be only able to:

e compute the parity of the number of transversal intersections between s and S

e find one point of s NS when s intersects S transversally an odd number of times.

On several types of surfaces, in particular implicit surfaces, the two above operations are much
easier to perform than the former ones — see section 6.6.1 for more details. However, the new
oracle knows whether a Voronoi edge e intersects S only when e intersects .S transversally an odd
number of times. Such an edge is called bipolar, because its two endpoints lie in different connected
components of R? \ S. Its dual Delaunay facet is called a bipolar Delaunay facet. The subcomplex
of Del g(E) made of the bipolar Delaunay facets is called the bipolar Delaunay triangulation and
denoted by DelfS(E). The new oracle, which discriminates only the bipolar elements among the set
of all Voronoi edges, is called bipolar oracle, as opposed to the intersection oracle which detects all
restricted Delaunay edges. A Delaunay ball centered in some point computed by the bipolar oracle
is called a bipolar ball.

To build the initial point sample, we perform the construction described in paragraph 6.2, using the
intersection oracle, which provides one persistent facet per connected component of S. However,
some persistent facets may not be bipolar. Let f be one of them. We insert in E the centers of all
surface Delaunay balls of f, except the one whose center ¢ and radius r verify r < % o(c). We do
this for all the persistent facets, and we take the result as the initial point sample of the algorithm.

Since Delf’S(E) is a subcomplex of Delg(E), the proof of lemma 6.2 holds when the algorithm is
run with the bipolar oracle instead of the intersection oracle. Hence, the algorithm terminates. We
claim that, if ¢ < 1 djps, then, upon termination, DelfS(E) verifies assertions (HO) through (H4)
of paragraph 4.2.

Proof of HO

Since bipolar balls are surface Delaunay balls and since they have small radii upon termination of
the algorithm, the lemmas of section 3 that are stated for surface Delaunay balls hold for bipolar
balls as well. In the same way, lemma 3.1 holds here for bipolar Delaunay facets. However, lemma
4.1 does not hold as is. Indeed, it requires that all the surface Delaunay balls that circumscribe
a given facet f have small radii, whereas here we control only the radius of one of the surface
Delaunay balls of f, namely the one whose center is computed by the bipolar oracle. Nevertheless,
proposition 4.2 holds for the edges of Del?S(E). It suffices to change in the proof of the proposition
the sentences Moreover, by lemma 4.1, each edge of 0e* can be intersected at most once by S. Thus,



S intersects an even number of edges of de*, by the following one: As a consequence, the number
of edges of Oe* that intersect S transversally an odd number of times is even.

In addition, the proof of proposition 4.3 relies only on the results of section 3 and on proposition
4.2, thus it holds here for Del?S(E). It follows that theorem 4.4 is true with DelfS(E), which means
that the latter verifies assertion (H0). O

Proof of H1

After the construction of the initial point sample, all persistent facets have become bipolar. Indeed,
in the proof of lemma 4.1 we have shown that a Voronoi edge cannot contain more than one center
c of surface Delaunay ball of radius less than 1 dys(c). Since o < 1 dpy, it follows that any center
x of a surface Delaunay ball inserted in F during the construction of the initial point sample is
farther than 1 dy(x) > o(x) from E, at the time of its insertion. By the same proof as for lemma
6.1, all persistent facets remain restricted Delaunay facets during the construction of the initial
point sample. At the end of the construction, their dual Voronoi edges intersect S exactly once,
hence they are bipolar.

Then, throughout the course of the meshing algorithm, every persistent facet keeps its surface
Delaunay ball by lemma 6.1, and hence remains bipolar since its dual Voronoi edge intersects S
transversally only once. It follows that Delf’S(E) verifies (H1) upon termination of the algorithm.
O

Proof of H2, H3 and H4

The proofs of (H2), (H3) and (H4) detailed in paragraph 4.2 hold here for Delf’S(E) since they rely
exclusively on (H0) and on lemmas 3.1 and 3.5. O

It follows that all the properties stated for Del|g(E) in section 4 hold here for DelfS(E). In particular,
E is a (1 + 8.5 ¢)-sample of S, by corollary 4.12. If ¢ < 5 = 0.065, then (1 + 8.5 ¢) < 0.1 and
hence Del|g(E) is homeomorphic to S, by theorem 2 of [3]. This implies that Delf’S(E) = Del|g(E)

since they are homeomorphic and since Delf’S(E) is a subcomplex of Del g(E).

In conclusion, replacing the intersection oracle by the bipolar oracle implies that the algorithm
works with Delf’S(E) instead of Del|g(E). If 0 < &1 dy = 0.091 dpy, then upon termination of the

algorithm Delf’S(E) has all the properties stated in section 4 for Del|g(E). If o < &5 dps ~ 0.065 dp,

then Deljg(F) and Delf’S(E) are equal. As explained in paragraph 6.6.1 and illustrated in table 1,
the bipolar oracle is much more efficient than the intersection oracle when run on implicit surfaces.

6.4.3 Getting rid of persistent facets

By definition, the radius of the surface Delaunay ball of a persistent facet is three times as small as
the radius of a standard surface Delaunay ball. Therefore, the output mesh of the algorithm has
smaller triangles in the vicinity of persistent facets, which may not be satisfactory. An illustration
of this phenomenon is given in figure 3.

To avoid the construction of persistent facets during the initialization phase of the algorithm, we
use the set E'; described in paragraph 6.2 as the initial point sample, instead of E;, and we add
to the main loop of the algorithm a patch that uses the elements of E’; as control points to check



whether Del g(F) intersects all the connected components of S (assertion (H1) of paragraph 4.2).
Specifically, if all the points of E'; are vertices of Del g(E), then Del (E) verifies (H1) since E';
intersects all the connected components of S. Otherwise, we cannot decide whether Del g(E) verifies
(H1) or not, because we do not know on which connected components of S the vertices of Del g(E)
lie. Hence, we insert new points of S in E' and go on running the main loop of the algorithm until
all surface Delaunay balls are good and all the points in E'; have become vertices of Del g(E).
Lemma 6.6 shows that this process terminates. The proof relies on the fact that, in the “worst-
case” scenario, the algorithm creates persistent facets on all the connected components of S, which
implies that Del g(E) eventually verifies (H1). However, in practice the “worst-case” scenario does
not occur and the algorithm terminates without creating persistent facets — see figures 4 and 7.

Here is the modified version of the main loop:

while L is not empty or some point = of E'; is not a vertex of Delg(E) {
if L#0{ // proceed as before
take an element B(c,r) from L;
insert ¢ into E' and update Del(E);
update Del|g(E);
update L;
}
else { // © € E'; is not a vertex of Delg(E)
choose a random vector v';
insert in E the first point of intersection of ray (z, ") with S (if it exists);
insert in E the first point of intersection of ray (x, —v’) with S (if it exists);
update Deljg(E);
update L;

Lemma 6.6 If ¢ < gy, then the modified algorithm terminates, provided that o < ey dpy-

Proof Since the initial point sample, E';, is clearly computed in a finite amount of time, all we
have to prove is that the main loop of the algorithm terminates. Let E, denote the set of all points
ingerted by the main loop. Let E. be the set of all inserted centers of bad surface Delaunay balls.
Since o is continuous and does not vanish on S, which is compact, E, is finite by the same packing
argument as in the proof of lemma 6.2. Let us bound the size of E, \ E., which will complete the
proof of the lemma since the main loop of the algorithm inserts one point per iteration.

Let x € E';. We call S, the connected component of S on which x lies. On one side of T'(z), all
vectors point towards the interior of the object bounded by S. Therefore, all rays cast on this side
of T'(z) from x intersect the connected component S, of S that contains z. It follows that, if at
some stage of the execution x is not a vertex of Del g(E), the algorithm inserts at least one point
of S, in E. After a finite number of iterations of the main loop, either x has become and will
remain a vertex of Del s(E), or there are enough points of S, in E to guarantee that at least three
of them are close enough to one another to form a persistent facet, since S, is compact. In both
cases, Delg(F) has a vertex on S, for the rest of the course of the algorithm. Since this is true
for every x € E';, and since E'; intersects all the connected components of S, E verifies condition
2. of definition 2.2 after a finite time. At this stage, E also verifies condition 1. of definition 2.2



with € = g¢, since the centers of bad surface Delaunay balls are inserted first and since we took
o < g dy. Therefore, all the points of E (in particular, those of E';) are vertices of Del 4(E) by
corollary 4.15. Hence, E, \ E. is finite. O

Although we have no explicit upper bound on the size of the output, in practice it turns out that
this version of the algorithm generates sparse samples with no persistent facet — see figures 4 and
7. As an extreme, we could replace the initialization step by just computing a few random points
on S by shooting along random lines of R3. As reported in [10], this simple procedure verifies (H1)
with a probability that increases dramatically with the number of random points.

6.5 Choice of function o

Although the algorithm is conceptually simple, the theoretical guarantees hold only if ¢ is at most
e times djy, the distance to the medial axis of S. For some surfaces, e.g. skin surfaces [15], dps
is equal to the minimum radius of curvature and can therefore be estimated locally. However, in
most cases, dys depends on the global shape of the surface and is difficult to compute. This makes
the search for optimal e-samples difficult.

A much easier quest is to compute a uniform e-sample of S. This can be achieved by taking for o
a constant positive function oy < ¢ di]\‘}[f. The only prerequisite is to compute di]{}[f or any smaller
positive value, which is a simpler issue than computing djs at each center of surface Delaunay ball,
and which can be done once for all at beginning of the algorithm. The way one can estimate dij\‘,}f
depends highly on the nature of the surface. Strategies are discussed in paragraph 6.6, for several

types of surfaces.

Once a uniform e-sample E has been to constructed, it can be used to estimate djs. In [12], Chazal
and Lieutier introduced the notion of A-medial axis. In the case of F, it is a certain subset of

Vor(E), called My(E). They proved that, for values of A smaller than 10v/3 diam(E)%/? /4,

M), (E) is a good approximation of M, with respect to the Hausdorff distance. It follows that
dr,, the distance to M, (E), is a good estimate of dy;. Moreover, given x € S, dyy, (z) is easy
to compute. Therefore, in a second stage, if one wishes to generate a sparse loose e-sample of S,
one can restart the meshing algorithm from the beginning, taking o = &’ das,, for some &’ slightly
smaller than . According to lemma 6.4, the result is a size-optimal loose e-sample of S, provided
that E’;, the point set from which the initial point sample of the algorithm is constructed (see
paragraph 6.2), contains a constant number of points per connected component of S. To construct
E';, one can simply pick up one vertex on each connected component of Del, s(E). Since Del, s(E)
is homeomorphic to S and close to S for the Hausdorff distance, E’; will contain exactly one point

of each connected component of S.

6.6 Implementation and results

This paragraph gives some precisions on our implementation of the algorithm, as well as some
results. We adopted the two-passes strategy described in paragraph 6.5, using the version of
the algorithm described in paragraph 6.4.3, which does not use persistent facets. This way, we
minimized the prerequisites on the knowledge of the surface, which are the following ones:

P1 we can pick up at least one point from each connected component of S.



P2 we know (or we can compute) some positive constant less than diff.
P3 we can implement at least one of the two versions of the oracle.

These prerequisites are discussed in the sequel, for several types of surfaces. The purpose is to
build implementations to fulfill or bypass (P1), (P2) and (P3). Notice that (P3) is used through-
out the algorithm, whereas (P1) is involved only in the initialization phase and (P2) is a simple
precalculation. Therefore, algorithmic issues arise mainly from (P3).

Our implementation works for various types of surfaces: implicit surfaces, level sets in 3D-images,
point set surfaces and polyhedra. It is written in C*+ and uses the CGAL library [30], which
provides us with a data structure for representing and manipulating the restricted Delaunay trian-
gulation as a subcomplex of the 3D Delaunay triangulation.

6.6.1 Implicit surfaces

In this paragraph, S is a level set (say the zero-set) of some potential function f whose expression
is given explicitely. In other words, we have S = f 1({0}).

P1 We compute the points of .S that have a horizontal tangent plane. Each connected component
of S has at least two such points, since S has no boundary. These points are the critical points of
f with respect to the height function, 7.e. the solutions of the following system:

f(z,y,2) =0
9 (x,y,2) =0
S(@,y,2)=0

which is generically zero-dimensional. If f is a polynomial, then the system is algebraic and can
be solved by various means. Our approach consists in computing the generalized normal form
modulo the ideal generated by the three polynomials of the system, and then finding the roots
from eigencomputation — this method was developed in [29] and implemented in C** as part of
the SYNAPS library [31], which we use in our implementation. If f is not a polynomial but still
continuous, then we compute the solutions of the system using interval arithmetics. Notice that this
computation may be quite complicated but is involved only once, during the initialization phase of
the algorithm.

P2 Since S is compact, there exists a point p € S such that da(p) = dij{}[f. Let ¢ be the point of
M closest to p. Since ||c — p|| = ', we have dist(c,S) = ||c — p||. Hence, the ball B(c,||c — p|)
is tangent to S in at least one point, namely p. Let ¢ be another tangency point. We have
lc —qll = lle — pl| = &8, thus |lc — g|| = dm(q). It follows that the balls B(p,|lc — p||) and
B(q, ||c — q||) are both tangent to M in ¢, which implies that p, ¢ and ¢ are collinear. Hence, either
p = q or ¢ is the midpoint of the line segment [p, ¢]. In the first case, ||c — p|| equals the minimum
radius of curvature of S at p, whereas in the second case, the ball B(c,||c — pl||) is tangent to S in
two diametral points. Therefore, to compute dij\nf it suffices to find:



1. the point of S at which the smallest radius of curvature is minimal, which reduces to solving
some low-dimensional optimization problem constrained by S.

2. the smallest sphere bitangent to S with diametral contact points, which reduces to finding
the smallest real positive root of some zero-dimensional system.

These two issues can be solved using the same tools as for prerequisite (P1).

P3 The bipolar oracle is quite easy to implement for implicit surfaces. Indeed, the parity of
the number of transversal intersections between S and a given line segment [a,b] is given by the
signs of f in a and b: if the signs are equal, then the number of transversal intersections is even,
otherwise it is odd. In the latter case, we can find a transversal intersection point by means of a

binary search. The computation time is O(1) for the bipolar test, and O (log @) for finding

an intersection point within a precision of A > 0. When f is a polynomial, we use Descartes’ rule
instead of evaluating the signs of f in a and b, which reduces the computation time.

The intersection oracle is also simple to implement, and we did it by means of a divide-and-conquer
strategy. However, computing all the intersection points of S and segment [a, b] within a precision

A > 0 takes © @ time. Therefore, the intersection oracle is far less efficient than the bipolar

oracle on implicit surfaces. Some timings are reported in table 1.

Figure 4: Results on smooth algebraic surfaces, with ¢ = 0.09 dj,.

Experimental results Some results on smooth algebraic surfaces are reported in figure 4. The
top line shows the inputs, the bottom line shows the outputs. From left to right, we have a



torus, a genus-three surface of degree 4, called “chair”, and a genus-five surface of degree 4, called
“tanglecube”. These surfaces have been meshed taking 0.09 ds for function . The first observation
is that the theoretical results stated in section 4 are verified in practice, since our meshed surfaces
are good topological and geometric approximations of their models. The second observation is that
the version of the algorithm we used here, which is the one that does not construct persistent facets
during the initialization phase, does not generate any small facet in practice: see the regularity of
the mesh on the torus, compared to the mesh of figure 3.

Figure 5: The standard left trefoil knot, in “sausage” format, meshed with ¢ = 0.09 dy,.

Corollary 4.6 is illustrated in figures 5 and 6, which show the results of the algorithm respectively
on the standard left trefoil knot and on a more intricate knot with high self-entanglement. In
both cases, the result of the algorithm is ambient isotopic to the original algebraic model. Notice
that every knot is represented in “sausage” format, i.e. as the boundary of a thickening of some
knotted curve. Figure 5 (left) shows that such a curve can be defined as the intersection of two
algebraic surfaces, f{ = 0 and fo = 0, which are the images through a stereographic projection of
two 2-manifolds embedded in the unit sphere of R*, as explained in [11]. One possible thickening
of the curve fi = fo = 0is fZ + f2 < 6, whose boundary fZ + f7 = § is a smooth surface, for a
sufficiently small §. Notice that this thickening does not have a constant radius, as one can observe
in figure 5 (right).

Some results on non-smooth algebraic surfaces are presented in figure 7. The left column contains
the algebraic models, the center column their meshed versions, and the right column some close-ups
of both versions. From top to bottom, we have:

- Barth’s octic surface, of degree 8 (according to its name), made of eight pillows placed at the
vertices of a cube and connected along the edges of the cube by means of two singular points.
Hence, 24 singular points in total. This surface was meshed taking o = 0.03.

- a degree-six surface called “heart”, with two pinch points, one at the top and the other at the



Figure 6: An intricate knot, in “sausage” format, meshed with o = 0.09 d.

bottom. We took o = 0.05 to mesh this surface.
- Klein’s bottle, which is not a manifold when immersed in 3-space. Here, we took ¢ = 0.1.

Figure 7 illustrates two things. First, that the algorithm terminates on all kinds of compact surfaces,
in accordance with the statement of lemma 6.2. Second, that the algorithm does a good job far
from the singularities. We have added to our implementation a patch that checks whether Del g(E)
is a manifold and that goes on refining the mesh in the negative. This patch can be toggled by
the user, which allows him to force the algorithm to generate a manifold. This option has been
activated for the “heart” and Barth’s octic. The corresponding meshes are manifolds. Notice that,
as a corollary, the singular points of Barth’s octic are missing in our triangulated version.

Timings of computation for the above algebraic models are reported in table 1. The precalculation
of dmf is not taken into account here. We tried the two versions of the oracle: intersection oracle
and blpolar oracle. Since the meshing process works in two passes, the timings for the oracles are
reported only in the columns of the second pass. For the first pass, we used the bipolar oracle
systematically. Notice that the three last models, which are singular surfaces, were meshed in one
pass only, using a constant function o, as explained above.

The first observation is that the ratio between the sizes of the outputs of both passes depends
highly on the input surface. The main difference between both passes is that the first one uses dij\r/}f
instead of das. Hence, if the distance to the medial axis is almost constant over the surface, then
the ratio between the sizes of the outputs of both passes will be close to 1. It is the case for the
two knots!, which are tubular surfaces of almost constant diameter. Differently, if the distance to
the medial axis varies much over the surface, as it is the case for the “chair” and the “tanglecube”,
then the ratio between the sizes of the outputs will be big (almost 3 for the “chair”).

1 The ratio is even smaller than 1 for the most intricate knot !



First pass Second pass
Surface Intersection oracle (uses Del g(E)) Bipolar oracle (uses DelfS(E))
T.O tal Ou't put Engine Oracle T.otal Ou.t put Engine Oracle T.O tal Ou.t put
time s1ze time s1ze time size
(secs) (# pts) || Time [ % | # calls | Time | % (secs) (# pts) || Time | % [ # calls | Time | % (secs) (# pts)
Sphere 0.29 1,146 0.032 | 14.6 | 8,929 0.19 | 85.4 0.22 445 0.033 | 87.5 | 3,226 | 0.005 | 12.5 0.038 445
Ellipsoid 0.59 1,864 0.1 6.3 7,410 1.48 | 93.7 1.58 380 0.11 | 91.7 | 8,170 0.01 8.3 0.12 380
Torus 1.21 2,234 0.05 0.2 58K 26.83 | 99.8 26.88 1,268 0.055 | 88.7 63K 0.07 | 11.3 0.62 1,307
Chair 8.56 17,996 2.94 0.5 260K | 618.3 | 99.5 621.3 6,619 2.86 | 89.4 | 255K 0.34 | 10.6 3.2 6,461
Tanglecube 3.66 7,173 1.72 2.9 168K | 73.24 | 97.1 74.96 4,225 1.72 1 90.8 | 165K 0.18 9.2 1.9 4,242
’IEEZ?I 8.32 10,312 6.02 1.6 545K | 375.7 | 98.4 | 381.83 8,329 5.9 93.2 | 592K 0.43 | 6.8 6.3 8,317
Inﬁgite 82.41 127K 92 | 2.3 | 5.2M | 3,953 | 97.7 | 4,045 133K 944 |89.9| 7M | 106 |10.1| 105 148K
Barth’s
octic 5.92 1.7 547K | 337.8 | 98.3 | 343.72 13,928 6.16 | 83.8 | 603K 1.19 | 16.2 7.35 14,168
Heart 3.24 7 252K | 42.96 | 93 46.19 8,445 3.11 | 91.8 | 263K 0.28 | 8.2 3.39 8,539
L |
Igftlﬁes 0.076 | 0.4 | 101K | 21.44 | 99.6 | 21.58 3,424 |/ 0.082 | 92 | 102K | 0.07 | 8 0.89 3,445

Table 1: Timings and size of output for various algebraic surfaces, on a Pentium IV - 3 GHz machine.
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Figure 7: Results on non-smooth or non-manifold algebraic surfaces, with ¢ = g9 > 0.

The second observation is that the ratio between the timings of the two versions of the oracle is
quite large. In the table, it ranges from several units for small models (e.g. 4 for the sphere),
to several dozens for huge models (e.g. 40 for the intricate knot). As explained previously, this
phenomenon is due to the algorithmic structure of the oracle, which makes its standard version run
in linear time versus 1/A, where A is a user-defined precision threshold (1076 here), whereas its
bipolar version runs in logarithmic time versus 1/A.
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Figure 8: Results on 3D greyscaled images, with ¢ = 0.09 dj,.

6.6.2 Level sets in 3D images

In this paragraph, S is a level of grey in a 3D greyscaled image. Formally, it is a level set of some
potential function f whose expression is not given explicitely. However, we can retrieve the value
of f(z) for any z € R? by interpolation. Our implementation uses the YAV++ library [32], which




provides us with basic tools for manipulating 3D greyscaled images.

P1 We compute the points of S that have a horizontal tangent plane, by sweeping a horizontal
plane vertically across the image. Since S has no boundary. this gives us at least two points per
connected component of S.

P2 We use a thinning algorithm [13] to compute a discrete approximation M of the medial axis
of S. An estimate of d'if can be easily computed from M.

P3 We proceed as in the case of an implicit surface.

Experimental results Figure 8 shows some results of the algorithm on 3D greyscaled images.
The input images are courtesy of Olivier Clatz. The first one has size 256° ~ 16.7M voxels, the
second one 50 * 60 * 60 = 180K voxels. The first mesh has about 25K vertices, which is far less
than the size of the output of Marching Cubes (several millions of vertices). The advantage of
our mesher over Marching Cubes is that the user can specify through function ¢, at which level of
detail he wants to work. The second mesh has approximately 100K vertices, which is comparable
to the size of the input image. The reason for this is that the surface is quite complicated, with a

small diﬂr}[f, hence it requires a lot of points in order to be e-sampled.

6.6.3 Point set surfaces

Here, S is known only through a finite point set E. The points of E are assumed to be close to S,
though they may not lie on S exactly. We use our algorithm to generate a new point sample. The
original one is used only for fulfilling prerequisites (P1), (P2) and (P3).

P3 Since S is known only through F, it is impossible to compute new points of S. Therefore,
to fulfill prerequisite (P3), we have to derive from E some local approximation S of S. Then, our
algorithm will sample S instead of S. Such a strategy has been proposed in [1, 7, 24]. In [7],
S is compact and C'-smooth, and our results imply that the meshing algorithm outputs a good
approximation of S. In [1], S is also compact and Cl-smooth, provided that F is a good sample
of S in some sense (which we assume in the sequel). Notice that we have a lot of freedom in the
choice of S. In particular, S may or may not interpolate the points of F.

P1 Since E is a good sample of S, in the sens given in [1], we can compute an approximation of
the tangent plane of S in each point of E. We pick up the points of E whose tangent plane is almost
horizontal. Since S has no boundary, this gives us at least two points per connected component of
S.

P2 If S interpolates the points of E, then we can approximate the distance to the medial axis of
S with the distance to the A-medial axis of E — see paragraph 6.5. In that case, we sample S in one



pass only, since the input point sample provides us with an estimate of the distance to the medial
axis of S. Therefore, we do not have to fulfill (P2). If S does not interpolate but approximates the
points of E, then we can consider E as a noisy point sample of S. Therefore, we can apply the
same strategy as above, with additional filtering of Vor(E) [20].

Figure 9: Results on a point set surface, with o = 0.09 djy.

Experimental results Figure 9 shows the results of the algorithm on a noisy point set of 42K
points — upper-left corner. In the upper-right corner is the output of our algorithm when used



with the interpolating surface of [7]. In the bottom-right corner is the result of our algorithm when
used with the approximating surface of [1] — shown in the bottom-left corner. Both outputs have
the right topology type. However, the interpolating surface leads to a wrong approximation of the
normals of the original surface, due to the presence of noise. This is clearly not the case with the
approximating surface.
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Figure 10: Removing the skinny facets (triceratops model).

6.6.4 Polyhedra

In this paragraph, S is defined as a polyhedron, which implies that it is not smooth everywhere.
Hence, the theoretical results stated in sections 3 and 4 no longer hold, since djs vanishes at singular
points. Nevertheless, we can run the algorithm with ¢ = oy, for any positive constant oy. The
algorithm will terminate, by lemma 6.2. However, the output is not guaranteed to be a loose
e-sample of S.

It is trivial to fulfill (P1) since S is a polyhedron. Moreover, we can forget about (P2) since we
take a constant function o that has no relationship with dp;. As for (P3), it can be satisfied by
means of a naive procedure which, given a line segment s, checks the intersection of s with each



facet of S. The segment-surface-intersection test is then performed in linear time, with respect to
the number of facets of S. Our implementation of the oracle uses some code implemented by M.
Samozino, which uses an octree to speed-up the segment-surface-intersection test.
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Figure 11: Results on polyhedra, with o = g9 > 0.

Experimental results Figure 11 shows some results on polyhedra. Here, we chose random
positive constants as function 0. As one can notice, the algorithm is robust regarding the choice
of the constant. In particular, it does a good job far from the sharp edges. We observe that, when
dihedral angles are bigger than 3, everything occurs as if the surface were smooth. It is the case
of the horse model, from which the algorithm generated a manifold with the right topology type.



However, in the vicinity of sharp edges, the output mesh may have cracks or holes, or it may even
not be a manifold. An illustration is given in the close-up of the octopus, in which the mesh is
shown with Gouraud shading. The effect is that dark stains appear in places where the normal is
oriented in the wrong direction. In these places, the surface is not locally a manifold.

Figure 10 shows the result of the skinny facet removal procedure, described in paragraph 6.4.1, on
the triceratops model. In accordance with the theory, we can remove all triangles with angles less
than % in practice.

7 Conclusion

We have introduced a new notion of surface sample, the so-called loose e-samples. We have shown
that loose e-samples are £(1+ 8.5 ¢)-samples and share the main properties of e-samples. Checking
if a sample E of a surface S is a loose e-sample reduces to comparing the radii of the surface
Delaunay balls with the distances of their centers to the medial axis of S. Hence we obtain a
new sufficient condition for sampling a surface with topological and geometric properties. This
condition is similar in spirit to other sampling conditions [21, 3, 4]. An important advantage of our
condition is that it leads to a simple and provably correct algorithm to sample and mesh surfaces,
which has several advantages over Marching Cubes [25, 16]: topological guarantees, approximation
of normals, facets with bounded aspect ratio, optimal size.

This paper has only considered the case of smooth closed surfaces. We plan to extend our work
to surfaces with boundaries and to piecewise smooth surfaces. Experimental results have shown
that the algorithm is robust and can produce good geometric approximations of surfaces with
singularities.

Our approach can be used for curves in any dimension: extending the proofs of this paper is not
difficult, and in fact the proofs are simpler. Further research is needed to extend this work to
manifolds of dimension more than one embedded in spaces of higher dimensions.

Since the submission of the conference version of this paper, several other certified algorithms have
been proposed to mesh smooth implicit surfaces. Plantinga and Vegter [27] proposed a variant
of the Marching Cubes algorithm with topological guarantees. Cheng et al [14] proposed another
Delaunay refinement algorithm for meshing implicit surfaces. Their algorithm assumes to be able
to compute critical points of height functions defined over S or over intersections of S with planes,
which seems to be a hard task except for simple cases (when the implicit function is a polynomial).
Boissonnat et al [9] proposed a meshing algorithm that offers topological guarantees based on some
results from Morse theory. Their method requires to compute the indices of critical points.
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Appendix: various lemmas

This appendix recalls a few well-known results.

Theorem 9.1 (Meusnier’s theorem)
Let S be a C? surface, m be a point of S, and & be a curve drawn on S that passes through m. &
18 parameterized by arclength. Then,

cos 6
where &' and £" are respectively the first and second derivatives of € at point m, II is the second
fundamental form of S at m, and 0 is the angle between the normal to S and the normal to £ at m.

A proof of this theorem can be found in [6]. In the cited book, the right hand of the expression is
wrong but corrected here.

Lemma 9. 2 Let ¥ be a vector of Euclidean space R, and II a vectorial plane that s not orthogonal
to v. Let v denote the orthogonal projection of v onto II. For any vector w of II \ { 0} we

have (v, ) > (v,v )

Proof Notice that (v — 17%) is orthogonal to II. Thus, for all @ € I, .7 =
— —

C= {?GH | | Z]| = ||[v™]|| }. For all @ € C, we have 7 (7—1}”) < 0. Thus, v

— — = — —
— (= — —
U.(u —v“) = U.U“—I—U“.(u —v”) <7
—
(v

Sl

—
™

" 4+

— .
.2 . Consider
— —

U = v
—
vy

— .
v ,v™) since

—

which means that cos (7', W) < cos

< v
_7%
— . . — — 2
Now, let w be any non-zero vector of II. There exists a unique vector u¢ € C such that (', u®) = 0.
— —
It follows that (o, v) = (uf, ) > (¥,v™). O

Lemma 9.3 Let f and g be two univariate functions of class C*. Let x4 and xp (r4 < xp) be two

reals such that
(i) f(za) = g(wa) and f(zp) = g(zp)
(i) Ve € [za, 28], f(x) > g(2)
(iii) Yz € |zq, 2], ¢"(2) <0

Then there exists a real x. € |Tq,xp| such that f"(z.) < g"(x.) < 0.

Proof By f(z,) and ¢'(z,) we denote the right derivatives of f and g at x,. Idem, by f'(zs)
and ¢'(zp) we denote the left derivatives of f and g at xp. (i) and (ii) imply that f/(z4) > ¢'(z4),
(za)

<

since otherwise there would exist a neighourhood V, of z, such that Vz € V, \ {z,}, f(T

Li(%)’ which would give that f < g on V, \ {z,}, which contradicts (ii). Idem, we have
f'(@p) < g'(@p).



Now, Taylor-Lagrange formula (at first order), applied to function (f’-g’), tells that there exists a
real x. € |4, xp[ such that (f' — ¢') (z.) = (—9)(@e)—("=9)(=a) ' \hich is negative since f(za) —

Tp—2Tq

g (zg) >0 and f'(xp) — ¢'(xp) < 0. It follows that f”(z.) — ¢"(z.) <0. O

Lemma 9.4 Let S be a compact surface without boundary, embedded in R, and let ¥ be a vector.
We choose an orthonormal frame (O,x,y, z) such that v is oriented along the [0, 2) direction. Let
Q be a conver subset of R®, such that Vz € SN, (W (z), V) < Z, where 7 (x) denotes the normal
to S at x. Then SN is zy-monotone.

Proof We assume without loss of generality that S is oriented such that its normal points outwards.
Let us assume for a contradiction that there exists a point (z,yo) of plane (O, z,y) such that the
vertical line d passing through (z¢, yo) intersects SN at least twice. Let (xq, yo, 21) and (x9, yo, 22)
be two points of intersection that are consecutive along d. If there are not two such points, then
this means that d intersects SN along a segment (which is a degenerate case), and at each point of
this segment the normal to S is orthogonal to d, and thus has a zero scalar product with @', which
contradicts the hypothesis of the lemma. So now we assume that points (xg, yo, 21) and (xo, yo, 22)
do exist. By definition, they are consecutive among the points of SN Nd. Since € is convex, QNd
is a segment of d, hence points (xg, yo, 21) and (xg, yo, 22) are also consecutive among the points of
SN d. Thus, the open segment of d that joins them is included in one component of R® \ S. Tt
follows that 7 (g, 0, 21) or 7 (xg,yo, 22) has a negative or zero scalar product with ¥, since the
normal of S always points outwards. This contradicts the hypothesis of the lemma. O

Lemma 9.5 Let S be a compact surface without boundary, embedded in R?, and let ¥ be a vector.
We choose an orthonormal frame (O,x,y,z) such that v is oriented along the [0,z) direction. Let
B be a ball centered at point ¢ € S, such thatVz € BNS, (7 (z), V') < %. Then SN B lies outside
the cone K of apex c, of vertical axis and of half-angle 7.

Proof Let proj be the vertical projection onto plane (O, z,y). Since BN S is zy-monotone by
lemma 9.4, the projection of BN S is one-to-one. Let us assume for a contradiction that there exists
a point ¢ € BN S that lies inside K. Let P be the vertical plane that passes through c and ¢'. Tt
intersects B NS along a set of simple arcs, since BN .S is xy-monotone. We consider the segment
that joins proj(c) and proj(c):

1. if it is included in proj(B N S), then ¢ and ¢’ belong to the same connected arc of PN BN S.
The problem becomes then two dimensional: inside plane P, K is a cone of apex c, of vertical axis
and of semi-angle 7, and ¢ and ¢’ belong to a connected arc that is the graph of a function f, and
whose normal makes an angle lower than § with the vertical direction (which means that |f/| < 1).
Let (O,t,z) be an orthonormal frame of P. We call ¢; and ¢, the t-coordinates of ¢ and ¢’. We

have |f(c}) — f(cr)| = ‘f:} fl(t)dt| < fccf |f'(t)|dt‘ <|c} — ¢t|, which means that ¢’ does not belong
to K, which contradicts the assumption.

2. if the segment that joins proj(c) and proj(c’) is not entirely included in proj(B N S), then
we have to find another point that satisfies all the assumptions of case 1. We call ¢} and ¢, the
points of B that have same (z,¥) coordinates as ¢/, and we assume without loss of generality that
| lies above cj. Let p; and ps be the upper and lower poles of 9B. We consider the meridian
m of OB than passes through p1, ¢}, ¢, and py. The smaller arc ay of m that joins p; and cf,



and the smaller arc ay of m that joins py and ¢}, project themselves onto the segment that joins
proj(c) = proj(p1) = proj(p2) and proj(c’) = proj(c}) = proj(ch). Since this segment is not entirely
included in proj(BN.S), it intersects the boundary of proj(BNS). Let ¢* be the point of intersection
that is closest to proj(c). Since S has no boundary, the boundary of BN .S belongs to 9B, thus the
point of BN S that projects onto c* lies on oy or as. We call proj—*(c*) this point. Since ¢/ € K
by assumption, ¢} and ¢} also belong to K. Thus, all the points of a; belong to K since they are
closer than ¢| to the vertical axis of the cone, while their z-coordinate is bigger than that of ¢}.
Idem, ay C K. Thus, proj~!(c*) belongs to K. Moreover, since c* is the point of intersection that
is closest to proj(c), segment [proj(c), ¢*] is included in proj(B N S). So, proj~!(c*) verifies all the
assumptions of case 1., and thus leads to the same contradiction. [



