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Abstract

This paper addresses the problem of piecewise linear approximation of implicit

surfaces. We first give a criterion ensuring that the zero-set of a smooth function

and the one of a piecewise linear approximation of it are isotopic. Then, we deduce

from this criterion an implicit surface meshing algorithm certifying that the output

mesh is isotopic to the actual implicit surface. This is the first algorithm achieving

this goal in a provably correct way.

1 Introduction

Implicit equations are a popular way to encode geometric objects; See, e.g., [4] and

[26]. Typical examples are CSG models, where objects are defined as results of boolean

operations on simple geometric primitives. Given an implicit surface, associated ge-

ometric objects of interest, such as contour generators, are also defined by implicit

equations. Another advantage of implicit representations is that they allow for efficient

blending of surfaces, with obvious applications in CAD or metamorphosis. Finally,

this type of representation is also relevant to other scientific fields, such as level set

methods or density estimation [8].
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However, most graphical algorithms, and especially those implemented in hard-

ware, cannot process implicit surfaces directly, and require that a piecewise linear

approximation of the considered surface has been computed beforehand. As a con-

sequence, polygonization of implicit surfaces has been widely studied in the literature.

There are two general classes of methods devoted to this problem: continuation meth-

ods and adaptive enumeration methods. A continuation algorithm is surface based

in the sense that it starts from a seed point on the surface, and computes successive

vertices of the mesh while following the surface in some tangent direction. None of

the algorithms in this category comes with topological guarantees: they might miss

some connected components, or merge different components into a single one. Adap-

tive enumeration methods, also called extrinsic polygonization methods [26], are grid

based, or, more generally, based on a tesselation of the ambient 3D space. They consist

of two steps : first build a tesselation of space, and then analyze the intersection of

the considered surface with each cell of the tesselation to construct the approximation.

The celebrated marching cube algorithm [17] belongs to this category. The goal of an

implicit surface polygonizer is twofold : its output should be geometrically close to the

original surface, and have the same topology. While the former is achieved by several

polygonization schemes [27], the latter has been barely addressed up to now.

Some algorithms achieve topological consistency, that is, ensure that the result is

indeed a manifold, by taking more or less arbitrary decisions when a topologically

ambiguous configuration is encountered. This implies that their output might have a

topology different from the one of the original surface, except in very specific cases

[16]. The problem of topologically correct polygonization of implicit curves in the

plane is treated by Snyder in [25], who uses an adaptive enumeration method. His

algorithm combines interval arithmetic with a quadtree tesselation of the domain of

interest. It seems hard to generalize this method to implicit surfaces in three-space.

Moreover, this algorithm seems to have high complexity due to the large number of
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calls to the interval version of Newton’s method.

When the conference version of the present paper was published (Proceedings of

STOC’04), there was only one paper devoted to the problem of homeomorphic polygo-

nization of surfaces [20]. Since then there has been several papers [19, 7, 5] that solve

the same problem as ours, or a related one. The main theoretical tool used in [20] is

Morse theory. The authors first find a level set of the considered function that can be

easily polygonized. This initial polygonization is then progressively transformed into

the desired one, by computing intermediate level sets. This requires in particular to

perform topological changes when critical points are encountered. This algorithm has

an intuitive justification and seems to work on simple cases. Unfortunately, the authors

do not give any proof of its correctness, and it is not clear to us whether it can deal with

complex shapes in a robust way. In particular, the method does not guarantee that the

mesh produced are self-intersection free.

In this paper, we give the first certified algorithm for the more difficult problem of

isotopic implicit surface polygonization. This means that our output can be continu-

ously deformed into the actual implicit surface without introducing self-intersections

[15]. For instance, if the original implicit surface is knotted, then our output is guar-

anteed to be knotted in the same way, which would not be guaranteed by an algorithm

ensuring only homeomorphic polygonization. Moreover, the whole algorithm can be

implemented in the setting of interval analysis. We only assume that the considered

isosurface is smooth, that is, does not contain any critical point. By Sard’s theorem

[23], this is a generic condition. Our polygonization is the zero-set of the linear inter-

polation of the implicit function on a mesh of R
3. We first exhibit a set of conditions

on the mesh used for interpolation that ensure the topological correctness (section 2).

Then, we describe an algorithm for building a mesh satisfying these conditions, thereby

leading to a provably correct isotopic polygonization algorithm (section 3).

We note that since the publication of the conference version of the present paper,
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another method appeared that solves exactly the same problem as ours [19]. One dif-

ference between the two methods is that [19] uses octrees instead of triangulations. A

more important difference is in the refinement stopping criterion: in [19], cells are sub-

divided until the intersection of the implicit surface with each cell is sufficiently flat.

By contrast, we stop refinement as soon as a certain global criterion ensuring topologi-

cal correctness is met. Hence, we may expect that our method is faster than [19]. This

remains to be proved though, since we did not implement our method.

2 A condition for isotopic meshing

Let f be a C2 function from R
3 to R, and M be its zero-set. We assume that M, the

surface we want to polygonize, is compact (condition a1). In what follows, T denotes a

triangulation of a domain Ω ⊂ R
3 containing M and f̂ the function that coincides with

f at the vertices of T and that is linearly interpolated on the simplices of T . A vertex v

will be said to be larger (resp. smaller) than a vertex u if f (v) is larger (resp. smaller)

than f (u) ; the sign of f at a vertex will be referred to as the sign of that vertex. We set

M̂ = f̂−1(0).

2.1 Topological Background

Collapses. Loosely speaking, a collapse [21] is an operation which consists of re-

moving cells from a simplicial complex whithout changing its connectivity. More pre-

cisely :

Definition 1 If L is a simplicial complex and K a subcomplex of L, one says that there

is an elementary collapse from L to K if there is a p-simplex s of L and a (p−1)-face

t of s such that :

- s is not a face of any simplex of L.

- t is not a face of any simplex of L other than s.
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- L is the union of K, s, and all the faces of s.

- ∂ s\K is the relative interior of t.
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Figure 1: Elementary collapse.

Definition 2 If L is a simplicial complex and K a subset of L, one says that L collapses

to K if there is a subdivision L′ of L such that a subdivision of K can be obtained from

L′ by a sequence of elementary collapses.

Definition 2 is illustrated in figure 2. In figure 2, the complexes in the middle and

on the right do not collapse to the bold curve because they would need to be “torn” in

order to do so.
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Figure 2: The grey complex L on the left collapses to the bold curve K (dashed edges
represent the subdivision L′). This is not true for the two other complexes.

Smooth Morse theory. The topology of implicit surfaces is usually investigated

through Morse theory [18]. Given a real function f defined on a manifold, Morse the-

ory studies the topological changes in the sets f −1(]−∞,a]) (lower level-sets) when
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a varies. In our case, as f is defined on R
3, this amounts to studying how the topol-

ogy of the part of the graph of f lying below a horizontal hyperplane changes as this

hyperplane sweeps R
4. Classical Morse theory assumes that f is of class C2. In this

case, as is well known, these topological changes are related to the critical points of

f , that is, the points where the gradient ∇ f of f vanishes. More precisely, the only

topological changes occur when f −1(a) passes through a critical point p. The value a

is then called a critical value. Generically, in the 2-dimensional case, the topology of

f−1(]−∞,a]) can change in three possible ways, according to the type of the critical

point p (see figure 3).
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Figure 3: Smooth Morse theory in 2D.

In figure 3, the sets f−1(]−∞,a]) are displayed as light grey regions. The leftmost

column depicts the situation where p is a local maximum, that is, when the Hessian of

f at p is positive. In this case, f −1(]−∞,a + ε ]) is obtained from f −1(]−∞,a− ε ])

by gluing a topological disk along its boundary. In the case of a saddle point (i.e. the
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Hessian has critical values of both signs), passing a critical value amounts to gluing a

thickened topological line segment (in grey) along its “thickened” boundary (in bold).

Finally, passing through a local minimum (negative Hessian) just amounts to adding a

disk disconnected from f −1(]−∞,a− ε ]). If p does not fall in any of these categories,

that is, if the Hessian at p is degenerate, then classical Morse theory cannot be applied.

C2 functions the critical points of which all have non-degenerate Hessian are called

Morse functions. From now on, we will assume that f is a Morse function (condition

a2). Also, we require that 0 is not a critical value of f (condition a3), which implies

that M is a manifold.

The number n of negative eigenvalues of the Hessian at p is classically called the

index of p. However, for consistency reasons that will appear later, we call the index

of p the integer (−1)n. The index of f on a region V is the sum of the indices of all

critical points of f lying in V . The index satisfies the following important theorem :

Theorem 1 (Poincaré-Hopf index theorem) The index of f on one of its lower level-

sets is the Euler characteristic of that lower level-set.

PL Morse theory. Morse theory has been extended to a broad class of non-smooth

functions by Goresky and McPherson [12]. We now outline the special case of PL

functions, that is, we consider the case of f̂ . We assume from now on that no two

neighboring vertices map to the same value under f , and that no vertex of T maps to

0 under f (conditions b1 and b2), which guarantees that M̂ is a manifold. We refer

to these assumptions as genericity assumptions. Let us first recall some well-known

definitions [10, 12] :

Definition 1 The star of a vertex is the union of all simplices1 containing this vertex.

The link of a vertex is the boundary of its star.

Definition 2 The lower star St−(v) of f̂ at a vertex v is the union of all simplices

1By simplex we mean a closed cell of T of any dimension.
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incident on v whose vertices other than v are smaller than v. The lower link Lk−(v)

of f̂ at a vertex v is the union of all simplices of the link of v all vertices of which are

smaller than v. The upper star St+(v) and the upper link Lk+(v) are defined similarly.
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Figure 4: Morse theory for PL functions in 2D. Plus and minus signs indicate whether
neighbors of v are larger or smaller than v. Lower links are displayed in bold, sets
f̂−1(]−∞, f (v)− ε ]) in grey, and sets f̂−1([ f (v)− ε , f (v)+ ε ]) in light grey.

Figure 4 shows that —for small ε— the topological changes between lower level-

sets f̂−1(]−∞, f (v)− ε ]) and f̂−1(]−∞, f (v) + ε ]) are determined by the topology

of Lk−(v). In particular, in 2D, topological changes occur whenever Lk−(v) is not

connected or equals the link of v (right and middle cases in figure 4). This is what

motivates the next definition in the higher dimensional case :

Definition 3 A critical point of f̂ is a vertex whose lower link is not collapsible2. A

vertex that is not a critical point of f̂ will be called regular.

With this definition, topological changes in lower level-sets occur exactly at critical

points, which is consistent with smooth Morse theory. The index of a vertex v is defined

to be 1 minus the Euler characteristic of Lk−(v) [2]. In particular, regular points all have

index 0. The converse is not true however in dimension at least 3. Also, checking if

a vertex is regular is easy for PL functions defined on three-dimensional meshes : it

is sufficient to check that the lower link and the upper link are both non-empty and
2A complex is collapsible if it collapses to a point.
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connected 3. Define the index of f̂ on a region V to be the sum of the indices of all

critical points of f̂ lying in V . Again, this definition is consistent with the smooth case,

since the PL index can be shown to also satisfy the Poincaré-Hopf index theorem [2].

The following lemma will be used later :

Lemma 2 If the gradients of f̂ on tetrahedra incident to a vertex v all have a positive

inner product with some vector, then v is regular.

PROOF. By Proposition 1.2 page 450 in [1], f̂−1(]−∞, f (v)+ε ]) retracts by deforma-

tion on f̂−1(]−∞, f (v)− ε ]) for sufficiently small ε . Hence Lk−(v) has the homology

groups of a point, implying that it is collapsible since it is a subcomplex of the 2-

sphere.

2.2 Main result

We assume throughout the paper that f and T satisfy conditions a1, a2, a3, b1, b2.

That is, M is compact, f is a Morse function, 0 is not a critical value of f , no vertex

of T map to 0 by f , and no two neighboring vertices of T map to the same value by f .

Additionally, we assume that the following condition holds:

0. f does not vanish on any tetrahedron of T containing a critical point of f .

Theorem 3 Let W be a subcomplex of T satisfying the following conditions :

1. f does not vanish on ∂W .

2. W contains no critical point of f .

2’. W contains no critical point of f̂ .

3. W collapses to M̂.

4. f and f̂ have the same index on each bounded component of Ω\W.

3This follows from Alexander duality together with the fact that contractible subcomplexes of the 2-
sphere are collapsible.
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Then M and M̂ are isotopic in W. Moreover, the Hausdorff distance between M

and M̂ is smaller than the “width” of W, that is, the maximum over the components V

of W of the Hausdorff distance between the subset of ∂V where f is positive and the

one where f is negative.

Here, isotopic in W means that M can be continuously deformed into M̂ while

remaining a manifold embedded in W , so that M could not be a knotted torus if M̂ is

an unknotted one, for instance. We first prove that under the conditions of the theorem,

M and M̂ are homeomorphic. Under the assumptions of the theorem, the fact that they

actually are isotopic will be a direct consequence of a result obtained in [6]. Before

proving the theorem, we first show by some examples that none of its assumptions

can be removed. In the three following pictures, (local) minima of f are represented by

min, (local) maxima by max, and saddle points by s. Critical points of f̂ are represented

similarly but with a caret. The sign preceding a critical point symbol indicates the sign

of the considered function ( f or f̂ ) at the critical point.

PSfrag replacements
+m̂in
−m̂in
+ ˆmax
− ˆmax

+ŝ
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Figure 5: Condition 0. is necessary.

Figure 5 shows that condition 0. cannot be removed even in the 2D case. By

allowing for critical points of f inside a triangle of T with positive vertices, one can

build an example where M has an extra component with respect to M̂ without violating
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conditions involving critical points and their indices. Indeed, in figure 5, f has index 0

on the triangle, since minima have index 1 and saddle points have index −1.
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Figure 6: Critical points do not determine the topology of level-sets.

The situation in figure 6 is a 2D example of two zero-sets M (boundary of the grey

region) and M′ which are not homeomorphic, though their defining functions have the

same critical points, with the same indices. The dashed curve represents a negative

level-set of the function defining M′. Such an example can also be built such that

M′ = M̂ for some mesh T . This shows the importance of the set W in the theorem. In

particular, conditions 1. and 3. cannot be removed. Indeed, if one drops 1., taking for

W any set satisfying 2. and 3. makes the theorem fail. On the other hand, if one drops

3., any W satisfying 2. and 1. also makes the theorem fail.

Figure 7 shows a 3D example where M is a torus whereas M̂ is a sphere. This is

because f̂ has an extra negative minimum inside f̂−1(]−∞,0]) whereas f has an index

1 saddle point outside the bounding box Ω. Depending on whether this extra minimum

lies in W or not (see the circle arc with arrows at both ends in figure 7), one obtains

counterexamples to the theorem if assumptions 2’. or 4. are dropped. One can build

similar examples showing that condition 2. is also needed.

We now return to the proof of theorem 3.
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Figure 7: Condition 2’. and 4. are necessary.

2.3 Proof of the theorem

Lemma 4 Let S and T be two subsets of a topological space X that meet (ie S∩T 6= /0).

Assume the boundary of S, as well as T and X \T, are connected.

If X \S and X \T meet but their boundaries do not, then S is contained in the interior

of T or the other way around.

PROOF. The boundary of S is the disjoint union of ∂S∩ int(T ) and ∂S∩ int(X \ T )

since ∂S∩∂T is empty. So we have a partition of ∂S in two relatively open sets. As it

is connected, one has to be empty.

If ∂S∩ int(T ) is empty then ∂S ⊂ int(X \T ) that is, T ∩∂S is empty. As a consequence,

T is included in int(S) or in int(X \S) by connectedness. Since S and T meet, we have

that T ⊂ int(S).

Now if ∂S∩ int(X \ T ) is empty then X \ T is contained in int(S) or in int(X \ S) by

connectedness again. Similarly as above it has to be contained in int(X \ S), which

implies that S ⊂ T . Thus int(S)⊂ int(T ) so ∂S ⊃ S\ int(T ) = S∩∂T . If S would meet

∂T , then ∂S and ∂T would meet, which is impossible. Hence, S is included in the

interior of T .
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Lemma 5 Let V be a connected component of W .

M∩V is a connected smooth compact manifold without boundary.

PROOF. Condition 3 implies easily that V collapses to M̂ ∩V . Therefore V contains

a simplex having positive and negative vertices. As a consequence, f vanishes on

V . Since f does not vanish on ∂W (condition 1), M intersects V . Also, M does not

meet the boundary of V (condition 1), so M∩V is a smooth compact manifold without

boundary.

Because V , which is connected, collapses to M̂ ∩V , M̂ ∩V is a connected closed

surface. Therefore, the complement of M̂ ∩V has exactly two components, one of

which is bounded. Because V collapses to M̂∩V , R
3 \V also has exactly one bounded

component which we denote by A and one unbounded component we denote by B (see

figure 8). The complement of A, which is B∪V , is connected, because B and V are

connected. For the same reason, A∪V is also connected. Moreover, the complement

of A∪V , being equal to B, is also connected. In summary, A is connected as well as its

complement, and the same is true for A∪V .

Call now Mi, i = 1..n the connected components of M∩V (see figure 8). For each i,

let Ni be the bounded component of R
3 \Mi. Mi = ∂Ni does not meet ∂ (A∪V ) ⊂ ∂W

(1), and A∪V is connected as is its complement. So Ni is included in A∪V thanks to

lemma 4. Now Ni contains at least one critical point of f . But as Ni ⊂ A∪V , such a

point has to lie in A, by 2. So Ni meets A, but since ∂Ni = Mi does not meet ∂A ⊂ W̄ , Ni

contains A by lemma 4 again. Suppose M ∩V is not connected. Then N1 and N2 both

contain A so they intersect. Because M is smooth, their boundaries do not intersect. So

one has w.l.o.g. N2 ⊂ N1. Now f vanishes on ∂ (N1 \N2) = ∂N1 ∪∂N2, and therefore

has an extremum in N1 \N2, which is impossible by 2 because N1 \N2 ⊂V .

So M ∩V and M̂ ∩V are connected compact surfaces without boundary. As seen

in the preceding proof, A contains all critical points of f enclosed by M ∩V . Also, A

contains all critical points of f̂ enclosed by M̂∩V by 2’. From condition 4., we deduce
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that the volumes enclosed by M ∩V and by M̂ ∩V have the same Euler characteristic,

since the Euler characteristic of a lower level set is the index of the considered function

on that lower level set (theorem 1). So M ∩V and M̂ ∩V have the same genus and

are thus homeomorphic. To complete the proof that M and M̂ are homeomorphic, it

remains to check that :

Lemma 6 M is included in W.

PROOF. Let D be some component of Ω \W . We claim that M ∩D is empty. First

M̂ ∩D is empty by condition 1 so w.l.o.g vertices lying in the closure of D are all

positive. If M ∩D is not empty then some component E of f −1(]−∞,0]) meets D.

Moreover, ∂D does not meet E. Indeed, f is positive at vertices of ∂D, and does not

vanish on ∂D ⊂ ∂W ∪ ∂Ω by condition 1. So E, being connected, is included in the

interior of D. But then E is compact and thus f reaches its minimum on E, implying

that E contains a (negative) critical point of f . This is impossible since the tetrahedron

containing this critical point would have negative vertices by condition 0, though being

included in D.

The proof of the bound on the Hausdorff distance between M and M̂ is not difficult.

Pick any point p in M̂ and let V be the component of W containing it. Assume w.l.o.g.
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that f (p) > 0 and let p′ be the closest point of p on the component of ∂V where f is

negative. By the intermediate value theorem, the line segment pp′ meets M at a point

q. The distance between p and q is smaller than the distance between p and p′ which

is smaller than the Hausdorff distance between the two components of ∂V . This shows

one part of the bound. The other part can be proved in a similar way.

Now that we know that M and M̂ are homeomorphic, the fact that they are isotopic

is a consequence of proposition 7, which is proved in [6].

Proposition 7 Let M̂ be an orientable compact surface without boundary and let M be

a surface such that

• M̂ is homeomorphic to M,

• M separates the sides of a topological thickening4 W̃ of M̂.

Then M is isotopic to M̂ in W̃ .

Indeed, considering a regular neighborhood of W [21] yields the desired topological

thickening W̃ , as can be seen from the uniqueness theorem for regular neighborhoods

from piecewise-linear topology [21].

3 Algorithm

In the algorithm, we take as W a set that is related to the notion of watershed from

topography. This set satisfies properties 2’. and 3. by construction. In section 3.1, we

give its definition, basic properties, and construction algorithms. Section 3.2 describes

the meshing algorithm itself, which ensures that W fulfills also conditions 0., 1., 2., and

4., and proves its correctness.
4This means that there is a homeomorphism Φ : W̃ → M̂ × [0,1] mapping M̂ to M̂×{1/2}.
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3.1 PL watersheds

We first assume that the mesh T conforms to M̂, i.e. M̂ is contained in a union of trian-

gles of T . We will see later how to remove this assumption, which is in contradiction

with the genericity assumptions. Define W + as the result of the following procedure :

Positive Watershed Algorithm

set W+ = M̂.

mark all vertices of M̂.

while there is a positive regular unmarked vertex v of T

such that the vertices of Lk−(v) are marked

do

set W+ = W+ ∪St−(v).

mark v.

end while

return W +

W− is defined as the result of the same algorithm applied to − f . We set W =

W+ ∪W−. Note that W contains no critical point of f̂ . Also, positive marked vertices

are exactly the vertices of W +.
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Figure 9: Construction of W + : lower stars of regular vertices (such as v1) are added
one by one. Lower stars of critical vertices (v2) are discarded.
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Lemma 8 W collapses to M̂.

PROOF. It is sufficient to show the result for W +. Let W+
i be the state of W + after i

steps of the algorithm, and let vi be the i-th marked vertex. As W +
0 = M̂, the only thing

we have to show is that W +
i+1 collapses to W +

i for all i. Let us first show that Lk−(vi)

is included in W +
i . If it is not the case, let u be the largest vertex of some simplex s

of Lk−(vi) that is not in W +
i . Simplex s is in St−(u) which is therefore not included

in W+
i . This is a contradiction since vi is marked. Therefore Lk−(vi) ⊂ W+

i . Now

since vi is regular, Lk−(vi) is collapsible. Consider a sequence of elementary collapses

allowing to collapse Lk−(vi) to p and let s j ⊂ Lk−(vi), j = 1, . . . ,n be the sequence of

simplices defining these elementary collapses. The simplices conv(s j∪vi)), j = 1, . . . ,n

and the edge pvi define a valid sequence of elementary collapses allowing to collapse

W+
i+1 = W+

i ∪St−(vi) to W +
i , which concludes the proof.

One may prefer a more intrinsic definition of W +. In the same spirit as in [11], one

can define a partial order on the vertices of T by the closure of the acyclic relation ≺

defined by u ≺ v if u ∈ Lk−(v) or u = v. We will denote this order ≺ again and say that

v flows into u whenever u ≺ v. The next lemma shows that the vertices of W + do not

depend on the order in which the vertices are considered in the construction.

Lemma 9 The vertices of W + are exactly the positive vertices that do not flow into any

positive critical point of f̂ .

PROOF. The vertices of W + have this property by construction. Let p be a positive

vertex not belonging to W + and assume p does not flow into any positive critical point.

In particular, p is regular by reflexivity. Hence, as p /∈W +, the lower link of p, which is

not empty, has to contain an unmarked vertex. It cannot contain a critical point because

as T conforms to M̂, vertices in Lk−(p) are all non-negative, and so p would flow into a

positive critical point. There is thus an unmarked vertex in Lk−(p). If we can choose an

unmarked positive vertex p1 in Lk−(p), then p1 does not belong to W +, and flows into

a positive critical point. Repeating this process with p replaced by p1, we find a strictly
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decreasing sequence of positive vertices, that thus has to end. Let pk be its last term.

The lower link Lk−(pk) contains no positive unmarked vertices. But as T conforms to

M̂, vertices in Lk−(pk) are all non-negative. Since vertices of M̂ are marked, we get a

contradiction.

Note that W is the union of simplices with all their vertices in W . As a result, we get

an intrinsic definition of W , and not only of its vertices. From an algorithmic point of

view, it may be efficient to examine the vertices in increasing order in the construction

of W+. One can for instance maintain the ordered list of vertices neighboring W ,

always consider the first element of this list for marking, and discard it if it cannot be

marked. Indeed, with this strategy, a vertex that cannot be marked at some point will

never be marked.

Another consequence of lemma 9, which will be useful later, goes as follows. Let c be

the minimum of | f̂ (v)|, and hence the minimum of | f (v)| over all critical points v of f̂ .

Lemma 10 W contains all vertices the image of which under | f | is smaller than c.

PROOF. Let p be such that | f (p)| < c. Without loss of generality, assume that p is

positive. Any critical point v into which p flows satisfies f (v) < f (p). So it cannot be

positive by definition of c : by lemma 9, p lies in W +.

Non conforming case. We now drop the assumption that T conforms to M̂ and

assume genericity again. From T and M̂ one can build a mesh S that is finer than T ,

conforms to M̂, and has all its extra vertices on M̂. Indeed, it suffices to triangulate

the overlay of M̂ and T without adding extra vertices except those of M̂∩T . This can

be done as the cells of the overlay are convex. The construction of W described above

can then be applied to S. A positive vertex of T has its lower link in S containing only

vertices of M̂ if and only if its lower link in T contains only negative vertices. Thus, in

order to find the positive vertices of W ∩T , one can apply the positive watershed algo-

rithm described above to T , if at the initialization step one marks all negative vertices

having a positive neighbor instead of those of M̂. Still, note that if a negative critical
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point has a positive neighbor, then this neighbor will not be marked by this modified

algorithm, whereas it could have been marked by the standard algorithm applied to

S. However, if we assume that vertices having a neighbor of opposite sign are regular

(condition c), then this does not happen and the result W ′ of the modified algorithm is

equal to W . The negative vertices of W ∩T are determined similarly. In our meshing

algorithm, we will not build the mesh S, but rather make sure condition c holds, and

apply the modified algorithm.

Updating W ′. The intrinsic definition of W —or W ′— given above yields an

efficient way of updating W when T undergoes local transformations. It is sufficient

to describe the algorithm for updating the vertices of W +. Let T1 be a mesh obtained

from T by removing some set of tetrahedra E and remeshing the void left by E. Call

A the set of positive critical points of the linear interpolation of f on T1 that lie in E.

Then the vertex set of the positive watershed W +
1 associated with T1 can be computed

from the vertex set of W + by performing the following two operations. To begin with,

the set of vertices of T1 that flow into A must be removed from W + (lemma 9), which

amounts to a graph traversal. The remaining vertices of T1 all belong to W +
1 . Then,

mark these vertices and apply the positive watershed algorithm loop to get the other

vertices of W +
1 .

Remark. The watershed we compute is in general strictly included in the ’true

watershed’. The ’true watershed’ seems hard to compute, though, and can intersect

a triangle in a very complicated way. There might be interesting intermediate defini-

tions between ours and the true one, for instance based on the PL analog of the Morse

complex introduced in [10].

3.2 Main algorithm

Theorem 3 enables us to build a mesh isotopic to M using two simple predicates, vanish

and vanish’. The predicate vanish (resp. vanish’) takes a triangle or a box and return
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true if f (resp. ∇ f ) vanishes on that triangle or that box. We actually do not even need

predicates, but rather filters. More precisely, vanish (or vanish’) may return true even

if f does not vanish on the considered element, but not the other way around. Still, we

require that vanish returns the correct answer if the input triangle or box is sufficiently

small. Such filters can be designed using interval analysis.

Our algorithm also requires to build a refinable triangulation of space such that f̂

(resp. ∇ f̂ ) converges to f (resp. ∇ f ) when the size of the elements tends to 0. As

noticed by Shewchuk [24], this is guaranteed provided all tetrahedra have dihedral and

planar angles bounded away from π . In [3], Bern, Eppstein and Gilbert described an

octree-based algorithm yielding meshes the angles of which are bounded away from 0.

In our case, which is much easier, the desired triangulation can simply be obtained by

adding a vertex at the center of each square and each cube of the octree, triangulating

the squares radially from their center, and doing the same with the cubes. Indeed, re-

sulting planar and dihedral angles are all bounded away from π . One can expect that

this scheme does not produce too many elements upon refinement, because the size of

elements is allowed to change rapidly as we do not require that these have a bounded

aspect ratio (see figure 10). The main algorithm uses an octree O, the associated tri-

Figure 10: Octree and triangulation used in the algorithm. In this 2D example, only the
edges of the triangulation of the box on the right are shown (dashed).

20



angulation T , and the watershed W ′. We will say that two (closed) boxes of O are

neighbors if they intersect. O is initialized to a bounding box Ω of M. Such a bounding

box can be found by computing the critical points of the coordinate functions restricted

to M, if possible, or by using interval analysis. Besides, we maintain five sets of boxes

ordered by decreasing size. Critical1 is a certain set of boxes obtained by interval anal-

ysis (see below). This set has the property that the union of its boxes, which we call the

critical set, encloses all critical points of f but does not intersect M. Critical2 contains

all boxes containing a critical point of f̂ that is not in a box belonging to Critical1.

Index contains all boxes neighboring a box b in Critical1 such that f and f̂ have dif-

ferent indices on the connected component of the critical set that contains b. We defer

the description of a method that computes the index of f on a box in a certified way

to the appendix. Boundary1 contains all boxes containing two neighboring vertices of

opposite signs one of which is critical for f̂ (condition c, see paragraph Non conform-

ing case). Boundary2 contains all boxes that are not included in W ′, and that contain

a triangle t of ∂W ′ such that vanish(t) is true. Finally, for our algorithm to work, we

need to introduce a slight modification of the watershed W ′, which we call W ′′. The

modification consists of taking as W ′′+ vertices -and the same for W ′′−- the positive

vertices that do not flow into positive critical points of f̂ nor into vertices lying in a box

containing a positive critical point of f . With this modification, lemma 8 still holds and

lemma 10 holds if one replaces c by the minimum c′ of c and the minimum of | f | on

the boxes containing a critical point of f . Also, c′ is positive as f does not vanish on

these boxes.

Main Algorithm
Initialization Refine O until all boxes b satisfy either vanish(b) is false or vanish’(b)

is false. Insert all boxes b such that vanish’(b) is true in Critical1.

compute T and W ′′, and the four sets Critical2, Boundary1,

Boundary2, and Index.
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while (true) do

update T , W ′′, and the four sets.

if Critical26= /0 then

split its first element.

else if Boundary16= /0 then

split its first element.

else if Boundary26= /0 then

split its first element.

else if f and f̂ have different indices on some component of the critical set then

split the first element of Index.

else

return M̂

end if

end while

Thanks to theorem 3 applied to W ′′, the correctness of this algorithm amounts to its

termination. We now show that the main algorithm terminates. First note that after the

initialization step, no box containing a critical point of f is split, because such boxes

belong to Critical1. The magnitude of ∇ f is thus larger than a certain constant gmin on

the complement C of the union of these boxes. Let us show that the size of the boxes

of Critical2 that are split at some point is bounded from below. As ∇ f̂ converges to

∇ f , there is a number s1 such that for each tetrahedron with diameter smaller than s1,

||∇ f −∇ f̂ || is smaller than gmin/2 on the interior of that tetrahedron. If the tetrahedron

is included in C, ||∇ f || > gmin, which implies that ∇ f̂ and ∇ f make an angle smaller

than π/6.

Lemma 11 Let A ⊂ R
3 be such that ∂A is a manifold included in C and containing no

vertex of T . Suppose that all boxes meeting ∂A are smaller than s1. Then f and f̂ have

the same index on A.
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The proof of lemma 11 resorts to stratified Morse theory, which is an extension of

both the smooth and PL Morse theory to the case of piecewise smooth functions. We

refer to [12] for a complete exposition of this subject.

PROOF. For p ∈ ∂A, let d(p) denote the largest number such that the simplices of

T that meet the open ball centered at p of radius d(p) all share a vertex, v(p). The

quantity d(p) is the 3-dimensional analog of the local feature size function introduced

by Ruppert [22]. We call dmin the minimum of d, which is known to be positive, and

set k equal to the minimum of dmin and e, where e is half the distance from ∂A to the

closest box that does not meet ∂A.

PSfrag replacements ∂A
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Figure 11: Proof of lemma 11.

Let us now consider a smooth nonnegative function φ : R
3 → R with support in-

cluded in the open ball centered at 0 of radius k. The convolution of f̂ and φ is a smooth

function f̃ . Let p be a point at distance less than e from ∂A. The gradient of f̃ at p is

a weighted average of the gradients of f̂ at points lying in the open ball centered at p

and with radius k. All gradients involved in this average are gradients of f̂ on tetrahe-

dra incident on v(p). Moreover, the size of these tetrahedra is smaller than s1 because

k ≤ e. As a consequence, all gradients considered make an angle smaller than π/6 with

the gradient of f at v(p). As the weights in the average are nonnegative, we have that
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the angle between ∇ f̃ (p) and ∇ f (v(p)) is smaller than π/6. Also, the angle between

∇ f (v(p)) and ∇ f (p) is less than π/3 since both vectors make an angle smaller than

π/6 with the gradient of f̂ on some tetrahedron containing p and v(p). Finally, we get

that ∇ f̃ (p) and ∇ f (p) have a positive inner product.

Let now U1 be a neighborhood of ∂A whose closure does not contain any vertex of

T and let U2 be an open set such that U1∪U2 = R
3. We also require that the Hausdorff

distance between U1 and ∂A is smaller than e and that U2∩∂A = /0. Denote by {u1,u2}

a partition of unity subordinate to the covering {U1,U2}. This means that u1 and u2 are

nonnegative smooth function defined on R
3, with support in U1 and U2 respectively,

and such that u1 + u2 = 1. In particular, u2 equals 1 on the complement of U1, and

u1 equals 1 on the complement of U2. So the function g = u2 f̂ + u1 f̃ coincide with

f̂ on R
3 \U1 and with f̃ on R

3 \U2. Now recall that ∇ f̃ and ∇ f have a positive

inner product on ∂A, which is contained in the complement of U2. Hence the linear

homotopy between both vector fields does not vanish on ∂A : by normalization, one

gets a homotopy between ∇ f̃ /||∇ f̃ || and ∇ f/||∇ f ||, considered as maps from ∂A to

the unit sphere. Because the degree (see [14] p. 134 for a definition) is invariant under

homotopy, we deduce that these maps have the same degree, which shows that f and

f̃ have the same index on A. Now as g and f̃ coincide in a neighborhood of ∂A, f and

g have the same index on A. To complete the proof, it thus suffices to show that g and

f̂ also have the same index on A. Now the critical points of f̂ are critical for g, with

the same index, as U1 contains no such point. Potential other critical points of g can

only lie in U1. But the gradient of g at any point p of U1 where it is defined is a convex

combination of ∇ f̃ (p) and ∇ f̂ (p) : it thus has a positive inner product with ∇ f (p).

By the result of [1] which we mentioned when we stated lemma 2, this implies that the

index of p is 0. We thus proved the announced claim.

Suppose that some box b of Critical2 of size smaller than s1 is split. Let v be a

critical point of f̂ included in b. All the boxes containing v are in Critical2 and their
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size is smaller than s1 since we consider boxes in decreasing order. Now the gradients

of f̂ on tetrahedra incident on v all have a positive inner product with ∇ f (v) (recall ∇ f

and ∇ f̂ make an angle less than π/6), which is a contradicts lemma 2, implying that v

is not critical. So the conclusion is that Critical2 becomes -at least temporarily- empty

after a finite number of consecutive splittings of boxes in Critical2.

Now if the algorithm splits a box b in Boundary1, then b contains a critical point

of f̂ . This critical point, which we assume to be positive, belongs to a box containing

a critical point of f as Critical2 is empty. So the maximum of | f | on b is larger than

the minimum of | f | on the boxes containing a critical point of f (i.e. c′). On the other

hand, f vanishes on b since b contains a negative vertex. This cannot happen if the size

of b is below a certain value, so that boxes in Boundary1 cannot be split indefinitely.

Suppose that the algorithm splits arbitrarily small boxes in Boundary2. If a small

enough box b is split, then b contains a triangle t of W ′′ on which f vanishes. So, if the

size of b is small enough, the maximum of | f | on b will be smaller than c′. By lemma

10, all vertices of b will then belong to W ′′ so b ⊂W ′′ which is a contradiction. Thus

the size of split boxes in Boundary2 is also bounded from below.

To complete the proof of termination, we need to prove that Index does not contain

boxes that are too small. This is true by applying lemma 11 to smooth neighborhoods

of each connected component of the critical set. Finally :

Theorem 12 The main algorithm returns an isotopic piecewise linear approximation

of M.

If one wishes to guarantee in addition that the Hausdorff distance between M and

its approximation is less than say ε , by theorem 3 it is sufficient to modify the positive

watershed algorithm so as to control that the width of W is smaller than ε .
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4 Conclusion

We have given an algorithm that approximates regular level sets of a given function

with piecewise linear manifolds having the same topology. Though no implementation

has been carried out, we believe that it should be rather efficient due to the simplicity of

the involved predicates and the relative coarseness of the required space decomposition.
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Appendix

We now briefly explain how to compute the index of a generic smooth function f :

R
3 → R on a box B ⊂ R

3 in a certified way. Without loss of generality, we assume

that B = [0,1]3. Our approach is based on a recursive definition of the index of a vector

field introduced in [13]. The central formula in this work is the following (see figure

12). If V denotes a vector field (in our case, V = ∇ f ) defined on a compact smooth

n-manifold M and not vanishing on ∂M, then the index of V satisfies:

Ind(V ) = χ(M)− Ind(∂−V )

Here ∂−V is a vector field defined on ∂−M, which is the set of boundary points where V

points inwards. On ∂−M, ∂−V coincides with the projection of V on the tangent space

of ∂M. Now suppose we can find a (n− 1)-submanifold M1 ⊂ ∂−M that contains all

zeroes of ∂−V . Then, to compute the index of V on M, it is sufficient to compute

the index of ∂−V on M1 (and the Euler characteristic of M1). By repeated application

of this principle, we can express the index of V as a sum of Euler characteristics and

indices of vector fields defined over 1-manifolds, which are trivial to compute.

To apply this strategy to our case, in which M = B has edges and corners, we

conceptually consider offsets of M, which are smooth, and let the offset parameter

go to 0. Almost by definition, in this setting the zeros of ∂−V are the points where

V belongs to the normal cone and points inwards. Using interval analysis, it is not

difficult to find a subset B1 of ∂−B that contains all such points, and such that ∂−V

does not vanish on ∂B1. To do this, we recursively subdivide the faces of the cube until

all cells satisfy one of the two following conditions: either the cell does not contain a

zero of ∂−V , or it is included in ∂−B. The union of the cells of the latter type will then

provide a suitable B1. For a square C lying on the face supported by, say, the plane
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Figure 12: An index 2 vector field V on a square C represented by a few flow lines.
∂−C is in bold. The dot on ∂−C represents the unique zero of ∂−V , which has index
−1.

z = 1, sufficient conditions ensuring that C does not contain any zero of ∂−V are

(Vz(C) > 0) or (0 /∈Vx(C)) or (0 /∈Vy(C))

Here Vz(C) > 0 for instance means that the z-coordinate of V is positive on C. The

condition under which C is included in ∂−B is obviously Vz(C) < 0. Edges of the cube

might also have to be subdivided. Without loss of generality we assume that edge E is

supported by the line with equation x = y = 1. Then sufficient conditions under which

E cannot contain a zero are as follows:

(Vx(E) > 0) or (Vy(E) > 0) or (0 /∈Vz(E))

Also, the condition under which E is included in ∂−B is (Vx(E) < 0) and (Vy(E) < 0).

It can be checked that this subdivision process terminates if V has no zeroes on the

surface of the cube, which is a generic condition. Upon termination of the subdivision

process, we obtain a set B1 to which the formula can be applied. It thus remains to
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recursively subdivide the boundary edges of B1 in a similar way as above to complete

the computation of the index of V .
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