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Isotopic Implicit Surface Meshing

This paper addresses the problem of piecewise linear approximation of implicit surfaces. We first give a criterion ensuring that the zero-set of a smooth function and the one of a piecewise linear approximation of it are isotopic. Then, we deduce from this criterion an implicit surface meshing algorithm certifying that the output mesh is isotopic to the actual implicit surface. This is the first algorithm achieving this goal in a provably correct way.

However, most graphical algorithms, and especially those implemented in hardware, cannot process implicit surfaces directly, and require that a piecewise linear approximation of the considered surface has been computed beforehand. As a consequence, polygonization of implicit surfaces has been widely studied in the literature.

, are grid based, or, more generally, based on a tesselation of the ambient 3D space. They consist of two steps : first build a tesselation of space, and then analyze the intersection of the considered surface with each cell of the tesselation to construct the approximation.

, who uses an adaptive enumeration method. His algorithm combines interval arithmetic with a quadtree tesselation of the domain of interest. It seems hard to generalize this method to implicit surfaces in three-space. Moreover, this algorithm seems to have high complexity due to the large number of

Introduction

Implicit equations are a popular way to encode geometric objects; See, e.g., [START_REF]Introduction to Implicit Surfaces[END_REF] and [START_REF] Velho | Implicit Objects in Computer Graphics[END_REF]. Typical examples are CSG models, where objects are defined as results of boolean operations on simple geometric primitives. Given an implicit surface, associated geometric objects of interest, such as contour generators, are also defined by implicit equations. Another advantage of implicit representations is that they allow for efficient blending of surfaces, with obvious applications in CAD or metamorphosis. Finally, this type of representation is also relevant to other scientific fields, such as level set methods or density estimation [START_REF] Dobkin | Contour Tracing by Piecewise Linear Approximations[END_REF]. calls to the interval version of Newton's method.

When the conference version of the present paper was published (Proceedings of STOC'04), there was only one paper devoted to the problem of homeomorphic polygonization of surfaces [START_REF] Stander | Guaranteeing the Topology of an Implicit Surface Polygonizer for Interactive Modeling[END_REF]. Since then there has been several papers [START_REF] Plantinga | Isotopic Approximation of Implicit Curves and Surfaces[END_REF][START_REF] Cheng | Sampling and Meshing a Surface with guaranteed Topology and Geometry[END_REF][START_REF] Boissonnat | Provably Good Sampling and Meshing of Surfaces[END_REF] that solve the same problem as ours, or a related one. The main theoretical tool used in [START_REF] Stander | Guaranteeing the Topology of an Implicit Surface Polygonizer for Interactive Modeling[END_REF] is Morse theory. The authors first find a level set of the considered function that can be easily polygonized. This initial polygonization is then progressively transformed into the desired one, by computing intermediate level sets. This requires in particular to perform topological changes when critical points are encountered. This algorithm has an intuitive justification and seems to work on simple cases. Unfortunately, the authors do not give any proof of its correctness, and it is not clear to us whether it can deal with complex shapes in a robust way. In particular, the method does not guarantee that the mesh produced are self-intersection free.

In this paper, we give the first certified algorithm for the more difficult problem of isotopic implicit surface polygonization. This means that our output can be continuously deformed into the actual implicit surface without introducing self-intersections [START_REF] Hirsch | Differential Topology[END_REF]. For instance, if the original implicit surface is knotted, then our output is guaranteed to be knotted in the same way, which would not be guaranteed by an algorithm ensuring only homeomorphic polygonization. Moreover, the whole algorithm can be implemented in the setting of interval analysis. We only assume that the considered isosurface is smooth, that is, does not contain any critical point. By Sard's theorem [START_REF] Sard | The measure of the critical values of differentiable maps[END_REF], this is a generic condition. Our polygonization is the zero-set of the linear interpolation of the implicit function on a mesh of R 3 . We first exhibit a set of conditions on the mesh used for interpolation that ensure the topological correctness (section 2).

Then, we describe an algorithm for building a mesh satisfying these conditions, thereby leading to a provably correct isotopic polygonization algorithm (section 3).

We note that since the publication of the conference version of the present paper, another method appeared that solves exactly the same problem as ours [START_REF] Plantinga | Isotopic Approximation of Implicit Curves and Surfaces[END_REF]. One difference between the two methods is that [START_REF] Plantinga | Isotopic Approximation of Implicit Curves and Surfaces[END_REF] uses octrees instead of triangulations. A more important difference is in the refinement stopping criterion: in [START_REF] Plantinga | Isotopic Approximation of Implicit Curves and Surfaces[END_REF], cells are subdivided until the intersection of the implicit surface with each cell is sufficiently flat.

By contrast, we stop refinement as soon as a certain global criterion ensuring topological correctness is met. Hence, we may expect that our method is faster than [START_REF] Plantinga | Isotopic Approximation of Implicit Curves and Surfaces[END_REF]. This remains to be proved though, since we did not implement our method.

A condition for isotopic meshing

Let f be a C 2 function from R 3 to R, and M be its zero-set. We assume that M, the surface we want to polygonize, is compact (condition a1). In what follows, T denotes a triangulation of a domain Ω ⊂ R 3 containing M and f the function that coincides with f at the vertices of T and that is linearly interpolated on the simplices of T . A vertex v will be said to be larger (resp. smaller) than a vertex u if f (v) is larger (resp. smaller) than f (u) ; the sign of f at a vertex will be referred to as the sign of that vertex. We set M = f -1 (0).

Topological Background

Collapses. Loosely speaking, a collapse [START_REF] Rourke | Introduction to Piecewise-Linear Topology[END_REF] is an operation which consists of removing cells from a simplicial complex whithout changing its connectivity. More precisely :

Definition 1 If L is a simplicial complex and K a subcomplex of L, one says that there is an elementary collapse from L to K if there is a p-simplex s of L and a (p -1)-face t of s such that :

-s is not a face of any simplex of L.

-t is not a face of any simplex of L other than s.

-L is the union of K, s, and all the faces of s.

-∂ s \ K is the relative interior of t.
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s t K L Figure 1: Elementary collapse.
Definition 2 If L is a simplicial complex and K a subset of L, one says that L collapses to K if there is a subdivision L of L such that a subdivision of K can be obtained from L by a sequence of elementary collapses.

Definition 2 is illustrated in figure 2. In figure 2, the complexes in the middle and on the right do not collapse to the bold curve because they would need to be "torn" in order to do so.
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v - + Figure 2:
The grey complex L on the left collapses to the bold curve K (dashed edges represent the subdivision L ). This is not true for the two other complexes.

Smooth Morse theory. The topology of implicit surfaces is usually investigated through Morse theory [START_REF] Milnor | Morse theory[END_REF]. Given a real function f defined on a manifold, Morse theory studies the topological changes in the sets f -1 (] -∞, a]) (lower level-sets) when a varies. In our case, as f is defined on R 3 , this amounts to studying how the topology of the part of the graph of f lying below a horizontal hyperplane changes as this hyperplane sweeps R 4 . Classical Morse theory assumes that f is of class C 2 . In this case, as is well known, these topological changes are related to the critical points of f , that is, the points where the gradient ∇ f of f vanishes. More precisely, the only topological changes occur when f -1 (a) passes through a critical point p. The value a is then called a critical value. Generically, in the 2-dimensional case, the topology of f -1 (] -∞, a]) can change in three possible ways, according to the type of the critical point p (see figure 3). In figure 3, the sets f -1 (] -∞, a]) are displayed as light grey regions. The leftmost column depicts the situation where p is a local maximum, that is, when the Hessian of
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f at p is positive. In this case, f -1 (] -∞, a + ε]) is obtained from f -1 (] -∞, a -ε])
by gluing a topological disk along its boundary. In the case of a saddle point (i.e. the Hessian has critical values of both signs), passing a critical value amounts to gluing a thickened topological line segment (in grey) along its "thickened" boundary (in bold).

Finally, passing through a local minimum (negative Hessian) just amounts to adding a disk disconnected from f -1 (] -∞, a -ε]). If p does not fall in any of these categories, that is, if the Hessian at p is degenerate, then classical Morse theory cannot be applied.

C 2 functions the critical points of which all have non-degenerate Hessian are called Morse functions. From now on, we will assume that f is a Morse function (condition a2). Also, we require that 0 is not a critical value of f (condition a3), which implies that M is a manifold.

The number n of negative eigenvalues of the Hessian at p is classically called the index of p. However, for consistency reasons that will appear later, we call the index of p the integer (-1) n . The index of f on a region V is the sum of the indices of all critical points of f lying in V . The index satisfies the following important theorem : Theorem 1 (Poincaré-Hopf index theorem) The index of f on one of its lower levelsets is the Euler characteristic of that lower level-set. PL Morse theory. Morse theory has been extended to a broad class of non-smooth functions by Goresky and McPherson [12]. We now outline the special case of PL functions, that is, we consider the case of f . We assume from now on that no two neighboring vertices map to the same value under f , and that no vertex of T maps to 0 under f (conditions b1 and b2), which guarantees that M is a manifold. We refer to these assumptions as genericity assumptions. Let us first recall some well-known definitions [START_REF] Edelsbrunner | Hierarchical Morse complexes for piecewise linear 2-manifolds[END_REF][START_REF] Goresky | Stratified Morse Theory[END_REF] : Definition 1 The star of a vertex is the union of all simplices 1 containing this vertex.

The link of a vertex is the boundary of its star.

Definition 2

The lower star St -(v) of f at a vertex v is the union of all simplices 1 By simplex we mean a closed cell of T of any dimension. 

-1 (] -∞, f (v) -ε]) in grey, and sets f -1 ([ f (v) -ε, f (v) + ε]) in light grey.
Figure 4 shows that -for small ε-the topological changes between lower level-

sets f -1 (] -∞, f (v) -ε]) and f -1 (] -∞, f (v) + ε]) are determined by the topology of Lk -(v).
In particular, in 2D, topological changes occur whenever Lk -(v) is not connected or equals the link of v (right and middle cases in figure 4). This is what motivates the next definition in the higher dimensional case :

Definition 3 A critical point of f is a vertex whose lower link is not collapsible 2 . A
vertex that is not a critical point of f will be called regular.

With this definition, topological changes in lower level-sets occur exactly at critical points, which is consistent with smooth Morse theory. The index of a vertex v is defined to be 1 minus the Euler characteristic of Lk -(v) [START_REF] Th | Critical points and curvature for embedded polyhedra[END_REF]. In particular, regular points all have index 0. The converse is not true however in dimension at least 3. Also, checking if a vertex is regular is easy for PL functions defined on three-dimensional meshes : it is sufficient to check that the lower link and the upper link are both non-empty and connected 3 . Define the index of f on a region V to be the sum of the indices of all critical points of f lying in V . Again, this definition is consistent with the smooth case, since the PL index can be shown to also satisfy the Poincaré-Hopf index theorem [START_REF] Th | Critical points and curvature for embedded polyhedra[END_REF].

The following lemma will be used later :

Lemma 2 If the gradients of f on tetrahedra incident to a vertex v all have a positive inner product with some vector, then v is regular.

PROOF. By Proposition 1.2 page 450 in [1], f -1 (] -∞, f (v) + ε]) retracts by deforma- tion on f -1 (] -∞, f (v) -ε]) for sufficiently small ε. Hence Lk -(v)
has the homology groups of a point, implying that it is collapsible since it is a subcomplex of the 2sphere.

Main result

We assume throughout the paper that f and T satisfy conditions a1, a2, a3, b1, b2.

That is, M is compact, f is a Morse function, 0 is not a critical value of f , no vertex of T map to 0 by f , and no two neighboring vertices of T map to the same value by f .

Additionally, we assume that the following condition holds: 0. f does not vanish on any tetrahedron of T containing a critical point of f .

Theorem 3 Let W be a subcomplex of T satisfying the following conditions :

1. f does not vanish on ∂W .

W contains no critical point of f .

2'. W contains no critical point of f .

3.

W collapses to M.

f and f have the same index on each bounded component of Ω \W.

Then M and M are isotopic in W . Moreover, the Hausdorff distance between M and M is smaller than the "width" of W , that is, the maximum over the components V of W of the Hausdorff distance between the subset of ∂V where f is positive and the one where f is negative.

Here, isotopic in W means that M can be continuously deformed into M while remaining a manifold embedded in W , so that M could not be a knotted torus if M is an unknotted one, for instance. We first prove that under the conditions of the theorem, M and M are homeomorphic. Under the assumptions of the theorem, the fact that they actually are isotopic will be a direct consequence of a result obtained in [START_REF] Chazal | A condition for isotopic approximation[END_REF]. Before 

Proof of the theorem

Lemma 4 Let S and T be two subsets of a topological space X that meet (ie S ∩T = / 0).

Assume the boundary of S, as well as T and X \ T , are connected.

If X \ S and X \ T meet but their boundaries do not, then S is contained in the interior of T or the other way around.

PROOF. The boundary of S is the disjoint union of ∂ S ∩ int(T ) and ∂ S ∩ int(X \ T )

since ∂ S ∩ ∂ T is empty. So we have a partition of ∂ S in two relatively open sets. As it is connected, one has to be empty.

If ∂ S ∩ int(T ) is empty then ∂ S ⊂ int(X \ T ) that is, T ∩ ∂ S is empty. As a consequence,
T is included in int(S) or in int(X \ S) by connectedness. Since S and T meet, we have that T ⊂ int(S). M ∩V is a connected smooth compact manifold without boundary.

Now if ∂ S ∩ int(X \ T ) is empty then X \ T is contained in int(S)
PROOF. Condition 3 implies easily that V collapses to M ∩ V . Therefore V contains a simplex having positive and negative vertices. As a consequence, f vanishes on V . Since f does not vanish on ∂W (condition 1), M intersects V . Also, M does not meet the boundary of V (condition 1), so M ∩V is a smooth compact manifold without boundary.

Because V , which is connected, collapses to M ∩ V , M ∩ V is a connected closed surface. Therefore, the complement of M ∩ V has exactly two components, one of which is bounded. Because V collapses to M ∩V , R 3 \V also has exactly one bounded component which we denote by A and one unbounded component we denote by B (see figure 8). The complement of A, which is B ∪ V , is connected, because B and V are connected. For the same reason, A ∪ V is also connected. Moreover, the complement of A ∪V , being equal to B, is also connected. In summary, A is connected as well as its complement, and the same is true for A ∪V .

Call now M i , i = 1..n the connected components of M ∩V (see figure 8). For each i,

let N i be the bounded component of R 3 \ M i . M i = ∂ N i does not meet ∂ (A ∪V ) ⊂ ∂W
(1), and A ∪V is connected as is its complement. So N i is included in A ∪V thanks to lemma 4. Now N i contains at least one critical point of f . But as

N i ⊂ A ∪ V , such a point has to lie in A, by 2. So N i meets A, but since ∂ N i = M i does not meet ∂ A ⊂ W , N i
contains A by lemma 4 again. Suppose M ∩V is not connected. Then N 1 and N 2 both contain A so they intersect. Because M is smooth, their boundaries do not intersect. So one has w.l.o.g. The proof of the bound on the Hausdorff distance between M and M is not difficult.

N 2 ⊂ N 1 . Now f vanishes on ∂ (N 1 \ N 2 ) = ∂ N 1 ∪ ∂ N 2 ,
Pick any point p in M and let V be the component of W containing it. Assume w.l.o.g. that f (p) > 0 and let p be the closest point of p on the component of ∂V where f is negative. By the intermediate value theorem, the line segment pp meets M at a point q. The distance between p and q is smaller than the distance between p and p which is smaller than the Hausdorff distance between the two components of ∂V . This shows one part of the bound. The other part can be proved in a similar way.

Now that we know that M and M are homeomorphic, the fact that they are isotopic is a consequence of proposition 7, which is proved in [START_REF] Chazal | A condition for isotopic approximation[END_REF].

Proposition 7 Let M be an orientable compact surface without boundary and let M be a surface such that

• M is homeomorphic to M,
• M separates the sides of a topological thickening4 W of M.

Then M is isotopic to M in W .

Indeed, considering a regular neighborhood of W [START_REF] Rourke | Introduction to Piecewise-Linear Topology[END_REF] yields the desired topological thickening W , as can be seen from the uniqueness theorem for regular neighborhoods from piecewise-linear topology [START_REF] Rourke | Introduction to Piecewise-Linear Topology[END_REF].

Algorithm

In the algorithm, we take as W a set that is related to the notion of watershed from topography. This set satisfies properties 2'. and 3. by construction. In section 3.1, we give its definition, basic properties, and construction algorithms. Section 3.2 describes the meshing algorithm itself, which ensures that W fulfills also conditions 0., 1., 2., and 4., and proves its correctness.

PL watersheds

We first assume that the mesh T conforms to M, i.e. M is contained in a union of triangles of T . We will see later how to remove this assumption, which is in contradiction with the genericity assumptions. Define W + as the result of the following procedure :

Positive Watershed Algorithm set W + = M.
mark all vertices of M.

while there is a positive regular unmarked vertex v of T such that the vertices of Lk -(v) are marked

do set W + = W + ∪ St -(v). mark v.
end while return W + W -is defined as the result of the same algorithm applied tof . We set W = W + ∪W -. Note that W contains no critical point of f . Also, positive marked vertices are exactly the vertices of W + .
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W + i for all i. Let us first show that Lk -(v i ) is included in W + i . If it is not the case, let u be the largest vertex of some simplex s of Lk -(v i ) that is not in W + i . Simplex s is in St -(u) which is therefore not included in W + i . This is a contradiction since v i is marked. Therefore Lk -(v i ) ⊂ W + i . Now since v i is regular, Lk -(v i ) is collapsible.
Consider a sequence of elementary collapses allowing to collapse Lk -(v i ) to p and let s j ⊂ Lk -(v i ), j = 1, . . . , n be the sequence of simplices defining these elementary collapses. The simplices conv(s j ∪v i )), j = 1, . . . , n and the edge pv i define a valid sequence of elementary collapses allowing to collapse

W + i+1 = W + i ∪ St -(v i ) to W + i ,
which concludes the proof. One may prefer a more intrinsic definition of W + . In the same spirit as in [START_REF] Edelsbrunner | Surface reconstruction by wrapping finite point sets in space[END_REF], one can define a partial order on the vertices of T by the closure of the acyclic relation ≺ defined by u ≺ v if u ∈ Lk -(v) or u = v. We will denote this order ≺ again and say that v flows into u whenever u ≺ v. The next lemma shows that the vertices of W + do not depend on the order in which the vertices are considered in the construction. Note that W is the union of simplices with all their vertices in W . As a result, we get an intrinsic definition of W , and not only of its vertices. From an algorithmic point of view, it may be efficient to examine the vertices in increasing order in the construction of W + . One can for instance maintain the ordered list of vertices neighboring W , always consider the first element of this list for marking, and discard it if it cannot be marked. Indeed, with this strategy, a vertex that cannot be marked at some point will never be marked.

Another consequence of lemma 9, which will be useful later, goes as follows. Non conforming case. We now drop the assumption that T conforms to M and assume genericity again. From T and M one can build a mesh S that is finer than T , conforms to M, and has all its extra vertices on M. Indeed, it suffices to triangulate the overlay of M and T without adding extra vertices except those of M ∩ T . This can be done as the cells of the overlay are convex. The construction of W described above can then be applied to S. A positive vertex of T has its lower link in S containing only vertices of M if and only if its lower link in T contains only negative vertices. Thus, in order to find the positive vertices of W ∩ T , one can apply the positive watershed algorithm described above to T , if at the initialization step one marks all negative vertices having a positive neighbor instead of those of M. Still, note that if a negative critical point has a positive neighbor, then this neighbor will not be marked by this modified algorithm, whereas it could have been marked by the standard algorithm applied to S. However, if we assume that vertices having a neighbor of opposite sign are regular (condition c), then this does not happen and the result W of the modified algorithm is equal to W . The negative vertices of W ∩ T are determined similarly. In our meshing algorithm, we will not build the mesh S, but rather make sure condition c holds, and apply the modified algorithm.

Updating W . The intrinsic definition of W -or W -given above yields an efficient way of updating W when T undergoes local transformations. It is sufficient to describe the algorithm for updating the vertices of W + . Let T 1 be a mesh obtained from T by removing some set of tetrahedra E and remeshing the void left by E. Call

A the set of positive critical points of the linear interpolation of f on T 1 that lie in E.

Then the vertex set of the positive watershed W + 1 associated with T 1 can be computed from the vertex set of W + by performing the following two operations. To begin with, the set of vertices of T 1 that flow into A must be removed from W + (lemma 9), which amounts to a graph traversal. The remaining vertices of T 1 all belong to W + 1 . Then, mark these vertices and apply the positive watershed algorithm loop to get the other

vertices of W + 1 .
Remark. The watershed we compute is in general strictly included in the 'true watershed'. The 'true watershed' seems hard to compute, though, and can intersect a triangle in a very complicated way. There might be interesting intermediate definitions between ours and the true one, for instance based on the PL analog of the Morse complex introduced in [10].

Main algorithm

Theorem 3 enables us to build a mesh isotopic to M using two simple predicates, vanish and vanish'. The predicate vanish (resp. vanish') takes a triangle or a box and return true if f (resp. ∇ f ) vanishes on that triangle or that box. We actually do not even need predicates, but rather filters. More precisely, vanish (or vanish') may return true even if f does not vanish on the considered element, but not the other way around. Still, we require that vanish returns the correct answer if the input triangle or box is sufficiently small. Such filters can be designed using interval analysis.

Our algorithm also requires to build a refinable triangulation of space such that f (resp. ∇ f ) converges to f (resp. ∇ f ) when the size of the elements tends to 0. As noticed by Shewchuk [START_REF] Shewchuk | What Is a Good Linear Finite Element? Interpolation[END_REF], this is guaranteed provided all tetrahedra have dihedral and planar angles bounded away from π. In [START_REF] Bern | Provably Good Mesh Generation[END_REF], Bern, Eppstein and Gilbert described an octree-based algorithm yielding meshes the angles of which are bounded away from 0.

In our case, which is much easier, the desired triangulation can simply be obtained by adding a vertex at the center of each square and each cube of the octree, triangulating the squares radially from their center, and doing the same with the cubes. Indeed, resulting planar and dihedral angles are all bounded away from π. One can expect that this scheme does not produce too many elements upon refinement, because the size of elements is allowed to change rapidly as we do not require that these have a bounded aspect ratio (see figure 10). The main algorithm uses an octree O, the associated tri- By the result of [START_REF] Agrachev | On Morse Theory for Piecewise Smooth Functions[END_REF] which we mentioned when we stated lemma 2, this implies that the index of p is 0. We thus proved the announced claim.

Suppose that some box b of Critical2 of size smaller than s 1 is split. Let v be a critical point of f included in b. All the boxes containing v are in Critical2 and their

Conclusion

We have given an algorithm that approximates regular level sets of a given function with piecewise linear manifolds having the same topology. Though no implementation has been carried out, we believe that it should be rather efficient due to the simplicity of the involved predicates and the relative coarseness of the required space decomposition.
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 3 Figure 3: Smooth Morse theory in 2D.
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 4 Figure 4: Morse theory for PL functions in 2D. Plus and minus signs indicate whether neighbors of v are larger or smaller than v. Lower links are displayed in bold, sets f-1 (] -∞, f (v) -ε]) in grey, and sets f -1 ([ f (v) -ε, f (v) + ε]) in light grey.
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 5 Figure 5: Condition 0. is necessary.
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 56 Figure 5 shows that condition 0. cannot be removed even in the 2D case. By allowing for critical points of f inside a triangle of T with positive vertices, one can build an example where M has an extra component with respect to M without violating
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 77 Figure7shows a 3D example where M is a torus whereas M is a sphere. This is because f has an extra negative minimum inside f -1 (] -∞, 0]) whereas f has an index 1 saddle point outside the bounding box Ω. Depending on whether this extra minimum lies in W or not (see the circle arc with arrows at both ends in figure7), one obtains counterexamples to the theorem if assumptions 2'. or 4. are dropped. One can build similar examples showing that condition 2. is also needed.We now return to the proof of theorem 3.
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 5 or in int(X \ S) by connectedness again. Similarly as above it has to be contained in int(X \ S), which implies that S ⊂ T . Thus int(S) ⊂ int(T ) so ∂ S ⊃ S \ int(T ) = S ∩ ∂ T . If S would meet ∂ T , then ∂ S and ∂ T would meet, which is impossible. Hence, S is included in the interior of T . Let V be a connected component of W .

and therefore has an extremum in N 1 \Figure 8 :

 18 Figure 8: Proof of lemma 5.
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 9 Figure 9: Construction of W + : lower stars of regular vertices (such as v 1 ) are added one by one. Lower stars of critical vertices (v 2 ) are discarded.

Lemma 9

 9 The vertices of W + are exactly the positive vertices that do not flow into any positive critical point of f . PROOF. The vertices of W + have this property by construction. Let p be a positive vertex not belonging to W + and assume p does not flow into any positive critical point. In particular, p is regular by reflexivity. Hence, as p / ∈ W + , the lower link of p, which is not empty, has to contain an unmarked vertex. It cannot contain a critical point because as T conforms to M, vertices in Lk -(p) are all non-negative, and so p would flow into a positive critical point. There is thus an unmarked vertex in Lk -(p). If we can choose an unmarked positive vertex p 1 in Lk -(p), then p 1 does not belong to W + , and flows into a positive critical point. Repeating this process with p replaced by p 1 , we find a strictly decreasing sequence of positive vertices, that thus has to end. Let p k be its last term. The lower link Lk -(p k ) contains no positive unmarked vertices. But as T conforms to M, vertices in Lk -(p k ) are all non-negative. Since vertices of M are marked, we get a contradiction.

  Let c be the minimum of | f (v)|, and hence the minimum of | f (v)| over all critical points v of f . Lemma 10 W contains all vertices the image of which under | f | is smaller than c. PROOF. Let p be such that | f (p)| < c. Without loss of generality, assume that p is positive. Any critical point v into which p flows satisfies f (v) < f (p). So it cannot be positive by definition of c : by lemma 9, p lies in W + .

Figure 10 :

 10 Figure 10: Octree and triangulation used in the algorithm. In this 2D example, only the edges of the triangulation of the box on the right are shown (dashed).
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 11 Figure 11: Proof of lemma 11.

  angulation T , and the watershed W . We will say that two (closed) boxes of O are neighbors if they intersect. O is initialized to a bounding box Ω of M. Such a bounding box can be found by computing the critical points of the coordinate functions restricted to M, if possible, or by using interval analysis. Besides, we maintain five sets of boxes ordered by decreasing size. Critical1 is a certain set of boxes obtained by interval analysis (see below). This set has the property that the union of its boxes, which we call the critical set, encloses all critical points of f but does not intersect M. Critical2 contains all boxes containing a critical point of f that is not in a box belonging to Critical1. Index contains all boxes neighboring a box b in Critical1 such that f and f have different indices on the connected component of the critical set that contains b. We defer the description of a method that computes the index of f on a box in a certified way to the appendix. Boundary1 contains all boxes containing two neighboring vertices of opposite signs one of which is critical for f (condition c, see paragraph Non conforming case). Boundary2 contains all boxes that are not included in W , and that contain a triangle t of ∂W such that vanish(t) is true. Finally, for our algorithm to work, we need to introduce a slight modification of the watershed W , which we call W . The modification consists of taking as W + vertices -and the same for W || is smaller than g min /2 on the interior of that tetrahedron. If the tetrahedron is included in C, ||∇ f || > g min , which implies that ∇ f and ∇ f make an angle smaller than π/6.The proof of lemma 11 resorts to stratified Morse theory, which is an extension of both the smooth and PL Morse theory to the case of piecewise smooth functions. We refer to[START_REF] Goresky | Stratified Morse Theory[END_REF] for a complete exposition of this subject. PROOF. For p ∈ ∂ A, let d(p) denote the largest number such that the simplices of T that meet the open ball centered at p of radius d(p) all share a vertex, v(p). The quantity d(p) is the 3-dimensional analog of the local feature size function introduced by Ruppert [22]. We call d min the minimum of d, which is known to be positive, and set k equal to the minimum of d min and e, where e is half the distance from ∂ A to the closest box that does not meet ∂ A.

	while (true) do		
	update T , W , and the four sets.	
	if Critical2 = / 0 then		
	split its first element.	
	else if Boundary1 = / 0 then	
	split its first element.	
	else if Boundary2 = / 0 then	
	split its first element.	
		e	
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--the positive vertices that do not flow into positive critical points of f nor into vertices lying in a box containing a positive critical point of f . With this modification, lemma 8 still holds and lemma 10 holds if one replaces c by the minimum c of c and the minimum of | f | on the boxes containing a critical point of f . Also, c is positive as f does not vanish on these boxes. else if f and f have different indices on some component of the critical set then split the first element of Index. else return M end if end while

Thanks to theorem 3 applied to W , the correctness of this algorithm amounts to its termination. We now show that the main algorithm terminates. First note that after the initialization step, no box containing a critical point of f is split, because such boxes belong to Critical1. The magnitude of ∇ f is thus larger than a certain constant g min on the complement C of the union of these boxes. Let us show that the size of the boxes of Critical2 that are split at some point is bounded from below. As ∇ f converges to ∇ f , there is a number s 1 such that for each tetrahedron with diameter smaller than s 1 ,

||∇ f -∇ f

A complex is collapsible if it collapses to a point.

This follows from Alexander duality together with the fact that contractible subcomplexes of the 2sphere are collapsible.

This means that there is a homeomorphism Φ : W → M × [0, 1] mapping M to M × {1/2}.

size is smaller than s 1 since we consider boxes in decreasing order. Now the gradients of f on tetrahedra incident on v all have a positive inner product with ∇ f (v) (recall ∇ f and ∇ f make an angle less than π/6), which is a contradicts lemma 2, implying that v is not critical. So the conclusion is that Critical2 becomes -at least temporarily-empty after a finite number of consecutive splittings of boxes in Critical2. To complete the proof of termination, we need to prove that Index does not contain boxes that are too small. This is true by applying lemma 11 to smooth neighborhoods of each connected component of the critical set. Finally :

Theorem 12 The main algorithm returns an isotopic piecewise linear approximation of M.

If one wishes to guarantee in addition that the Hausdorff distance between M and its approximation is less than say ε, by theorem 3 it is sufficient to modify the positive watershed algorithm so as to control that the width of W is smaller than ε.

Appendix

We now briefly explain how to compute the index of a generic smooth function f : R 3 → R on a box B ⊂ R 3 in a certified way. Without loss of generality, we assume that B = [0, 1] 3 . Our approach is based on a recursive definition of the index of a vector field introduced in [START_REF] Gottlieb | The index of discontinuous vector fields[END_REF]. The central formula in this work is the following (see figure 12). If V denotes a vector field (in our case, V = ∇ f ) defined on a compact smooth n-manifold M and not vanishing on ∂ M, then the index of V satisfies:

Here ∂ -V is a vector field defined on ∂ -M, which is the set of boundary points where V points inwards. On ∂ -M, ∂ -V coincides with the projection of V on the tangent space of ∂ M. Now suppose we can find a (n -1)-submanifold M 1 ⊂ ∂ -M that contains all zeroes of ∂ -V . Then, to compute the index of V on M, it is sufficient to compute the index of ∂ -V on M 1 (and the Euler characteristic of M 1 ). By repeated application of this principle, we can express the index of V as a sum of Euler characteristics and indices of vector fields defined over 1-manifolds, which are trivial to compute.

To apply this strategy to our case, in which M = B has edges and corners, we conceptually consider offsets of M, which are smooth, and let the offset parameter go to 0. Almost by definition, in this setting the zeros of ∂ -V are the points where V belongs to the normal cone and points inwards. Using interval analysis, it is not difficult to find a subset B 1 of ∂ -B that contains all such points, and such that ∂ -V does not vanish on ∂ B 1 . To do this, we recursively subdivide the faces of the cube until all cells satisfy one of the two following conditions: either the cell does not contain a zero of ∂ -V , or it is included in ∂ -B. The union of the cells of the latter type will then provide a suitable B 1 . For a square C lying on the face supported by, say, the plane 

Here V z (C) > 0 for instance means that the z-coordinate of V is positive on C. The condition under which C is included in ∂ -B is obviously V z (C) < 0. Edges of the cube might also have to be subdivided. Without loss of generality we assume that edge E is supported by the line with equation x = y = 1. Then sufficient conditions under which E cannot contain a zero are as follows:

Also, the condition under which E is included in ∂ -B is (V x (E) < 0) and (V y (E) < 0).

It can be checked that this subdivision process terminates if V has no zeroes on the surface of the cube, which is a generic condition. Upon termination of the subdivision process, we obtain a set B 1 to which the formula can be applied. It thus remains to