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ON THE STRONG MAXIMUM PRINCIPLE FOR SECOND ORDER

NONLINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
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61 Avenue du Président Wilson, F-94230 Cachan

Abstract. This paper is concerned with the study of the Strong Maximum Principle for semi-
continuous viscosity solutions of fully nonlinear, second-order parabolic integro-differential equa-
tions. We study separately the propagation of maxima in the horizontal component of the
domain and the local vertical propagation in simply connected sets of the domain. We give
two types of results for horizontal propagation of maxima: one is the natural extension of the
classical results of local propagation of maxima and the other comes from the structure of the
nonlocal operator. As an application, we use the Strong Maximum Principle to prove a Strong
Comparison Result of viscosity sub and supersolution for integro-differential equations.
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1. Introduction

We investigate the Strong Maximum Principle for viscosity solutions of second-order non-
linear parabolic integro-differential equations of the form

ut + F (x, t,Du,D2u,I[x, t, u]) = 0 in Ω× (0, T ) (1.1)

where Ω ⊂ RN is an open bounded set, T > 0 and u is a real-valued function defined on RN ×
[0, T ]. The symbols ut, Du, D

2u stand for the derivative with respect to time, respectively the
gradient and the Hessian matrix with respect to x. I[x, t, u] is an integro-differential operator,
taken on the whole space RN . Although the nonlocal operator is defined on the whole space, we
consider equations on a bounded domain Ω. Therefore, we assume that the function u = u(x, t)
is a priori defined outside the domain Ω. The choice corresponds to prescribing the solution in
Ωc × (0, T ), as for example in the case of Dirichlet boundary conditions.

The nonlinearity F is a real-valued, continuous function in Ω × [0, T ] × RN × SN × R, (SN

being the set of real symmetric N ×N matrices) and degenerate elliptic, i.e.

F (x, t, p,X, l1) ≤ F (x, t, p, Y, l2) if X ≥ Y, l1 ≥ l2, (1.2)

for all (x, t) ∈ Ω× [0, T ], p ∈ RN \ {0}, X,Y ∈ SN and l1, l2 ∈ R.
Throughout this work, we consider integro-differential operators of the type

I[x, t, u] =

∫

RN

(u(x+ z, t)− u(x, t)−Du(x, t) · z1B(z))µx(dz) (1.3)

where 1B(z) denotes the indicator function of the unit ball B and {µx}x∈Ω is a family of Lévy
measures, i.e. non-negative, possibly singular, Borel measures on Ω such that

sup
x∈Ω

∫

RN

min(|z|2, 1)µx(dz) <∞.
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2 ON THE STRONG MAXIMUM PRINCIPLE FOR PIDES

In particular, Lévy-Itô operators are important special cases of nonlocal operators and are
defined as follows

J [x, t, u] =

∫

RN

(u(x+ j(x, z), t) − u(x, t)−Du(x, t) · j(x, z)1B(z))µ(dz) (1.4)

where µ is a Lévy measure and j(x, z) is the size of the jumps at x satisfying

|j(x, z)| ≤ C0|z|, ∀x ∈ Ω,∀z ∈ R
N

with C0 a positive constant.

We denote by USC(RN × [0, T ]) and LSC(RN × [0, T ]) the set of respectively upper and
lower semi-continuous functions in RN × [0, T ]. By Strong Maximum and Minimum Principle
for equation (1.1) in an open set Ω× (0, T ) we mean the following.

SMaxP: any u ∈ USC(RN × [0, T ]) viscosity subsolution of (1.1) that attains a maximum at
(x0, t0) ∈ Ω× (0, T ) is constant in Ω× [0, t0].

The Strong Maximum Principle follows from the horizontal and vertical propagation of max-
ima, that we study separately. By horizontal propagation of maxima we mean the following;
if the maximum is attained at some point (x0, t0) then the function becomes constant in the
connected component of the domain Ω×{t0} which contains the point (x0, t0). By local vertical
propagation we understand that if the maximum is attained at some point (x0, t0) then at any
time t < t0 one can find another point (x, t) where the maximum is attained. This will further
imply the propagation of maxima in the region Ω× (0, t0).

We set QT = Ω × (0, T ] and for any point P0 = (x0, t0) ∈ QT , we denote by S(P0) the set
of all points Q ∈ QT which can be connected to P0 by a simple continuous curve in QT and by
C(P0) we denote the connected component of Ω× {t0} which contains P0.

The horizontal propagation of maxima in C(P0) requires two different perspectives. An almost
immediate result follows from the structure of the nonlocal operator. More precisely, we show
that Strong Maximum Principle holds for PIDEs involving nonlocal operators in the form (1.3)
whenever the whole domain (not necessarily connected) can be covered by translations of measure
supports, starting from a maximum point. This is the case for example of a pure nonlocal
diffusion

ut − I[x, t, u] = 0 in R
N × (0, T ) (1.5)

where I is an isotropic Lévy operator of form (1.3), integrated against the Lévy measure asso-

ciated with the fractional Laplacian (−∆)β/2:

µ(dz) =
dz

|z|N+β
.

The result is the natural extension to PIDEs of the maximum principle for nonlocal operators
generated by nonnegative kernels obtained by Coville in [12].

Nevertheless, there are equations for which maxima do not propagate just by translating
measure supports, such as pure nonlocal equations with nonlocal terms associated with the
fractional Laplacian, but whose measure supports are defined only on half space. Mixed integro-
differential equations, i.e. equations for which local diffusions occur only in certain directions
and nonlocal diffusions on the orthogonal ones cannot be handled by simple techniques, as they
might be degenerate in both local or nonlocal terms but the overall behavior might be driven by
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their interaction (the two diffusions cannot cancel simultaneously). We have in mind equations
of the type

ut − Ix1
[u]−

∂2u

∂x22
= 0 in R

2 × (0, T ) (1.6)

for x = (x1, x2) ∈ R2. The diffusion term gives the ellipticity in the direction of x2, while the
nonlocal term gives it in the direction of x1

Ix1
[u] =

∫

R

(u(x1 + z1, x2)− u(x)−
∂u

∂x1
(x) · z11[−1,1](z1))µx1

(dz1)

where {µx1
}x1

is a family of Lévy measures. However, we manage to show that under some
nondegeneracy and scaling assumptions on the nonlinearity F , if a viscosity subsolution attains
a maximum at P0 = (x0, t0) ∈ QT , then u is constant (equal to the maximum value) in the
horizontal component C(P0). We then prove the local propagation of maxima in the cylindrical
region Ω× (0, T ] and thus extend to parabolic integro-differential equations the results obtained
by Da Lio in [15] and Bardi and Da Lio in [5] and [6] for fully nonlinear degenerate elliptic convex
and concave Hamilton Jacobi operators. For helpful details of Strong Maximum Principle results
for Hamilton Jacobi equations we refer to [8]. Yet, it is worth mentioning that Strong Maximum
Principle for linear elliptic equations goes back to Hopf in the 20s and to Nirenberg, for parabolic
equations [22].

In the last part we use Strong Maximum Principle to prove a Strong Comparison Result
of viscosity sub and supersolution for integro-differential equations of the form (1.1) with the
Dirichlet boundary condition

u = ϕ on Ωc × [0, T ] (1.7)

where ϕ is a continuous function.

Nonlocal equations find many applications in mathematical finance and occur in the theory of
Lévy jump-diffusion processes. The theory of viscosity solutions has been extended for a rather
long time to Partial Integro-Differential Equations (PIDEs). Some of the first papers are due
to Soner [26], [27], in the context of stochastic control jump diffusion processes. Following his
work, existence and comparison results of solutions for first order PIDEs were given by Sayah
in [24] and [25].

Second-order degenerate PIDEs are more complex and required careful studies, according
to the nature of the integral operator (often reflected in the singularity of the Lévy measure
against which they are integrated). When these equations involve bounded integral operators,
general existence and comparison results for semi-continuous and unbounded viscosity solutions
were found by Alvarez and Tourin [1]. Amadori extended the existence and uniqueness results
for a class of Cauchy problems for integro-differential equations, starting with initial data with
exponential growth at infinity [2] and proved a local Lipschitz regularity result.

Systems of parabolic integro-differential equations dealing with second order nonlocal oper-
ators were connected to backwards stochastic differential equations in [9] and existence and
comparison results were established. Pham connected the optimal stopping time problem in a
finite horizon of a controlled jump diffusion process with a parabolic PIDE in [23] and proved ex-
istence and comparison principles of uniformly continuous solutions. Existence and comparison
results were also provided by Benth, Karlsen and Reikvam in [11] where a singular stochastic
control problem is associated to a nonlinear second-order degenerate elliptic integro-differential
equation subject to gradient and state constraints, as its corresponding Hamilton-Jacobi-Bellman
equation.
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Jakobsen and Karlsen in [20] used the original approach due to Jensen [21], Ishii [18], Ishii
and Lions [17], Crandall and Ishii [13] and Crandall, Ishii and Lions [14] for proving comparison
results for viscosity solutions of nonlinear degenerate elliptic integro-partial differential equations
with second order nonlocal operators. Parabolic versions of their main results were given in [19].
They give an analogous of Jensen-Ishii’s Lemma, a keystone for many comparison principles,
but they are restricted to subquadratic solutions. The viscosity theory for general PIDEs has
been recently revisited and extended to solutions with arbitrary growth at infinity by Barles
and Imbert [10]. The authors provided as well a variant of Jensen Ishii’s Lemma for general
integro-differential equations. The notion of viscosity solution generalizes the one introduced by
Imbert in [16] for first-order Hamilton Jacobi equations in the whole space and Arisawa in [3],
[4] for degenerate integro-differential equations on bounded domains.

The paper is organized as follows. In section §2 we study separately the propagation of
maxima in C(P0) and in the region Ω × (0, t0). In section §3 similar results are given for Lévy
Itô operators. Examples are provided in section §4. In section §5 we prove a Strong Comparison
Result for the Dirichlet Problem, based on the Strong Maximum Principle for the linearized
equation.

2. Strong Maximum Principle for general nonlocal operators

The aim of this section is to prove the local propagation of maxima of viscosity solutions of
(1.1) in the cylindrical region QT . As announced, we study separately the propagation of maxima
in the horizontal domains Ω×{t0} and the local vertical propagation in regions Ω× (0, t0). Each
case requires different sets of assumptions.

In the sequel, we refer to integro-differential equations of the form (1.1) where the function u
is a priori given outside Ω. Assume that F satisfies

(E) F is continuous in Ω× [0, T ] × RN × SN × R and degenerate elliptic.

Results are presented for general nonlocal operators

I[x, t, u] =

∫

RN

(u(x+ z, t)− u(x, t)−Du(x, t) · z1B(z))µx(dz)

where {µx}x∈Ω is a family of Lévy measures. We assume it satisfies assumption

(M) there exists a constant C̃µ > 0 such that, for any x ∈ Ω,
∫

B
|z|2µx(dz) +

∫

RN\B
µx(dz) ≤ C̃µ.

To overcome the difficulties imposed by the behavior at infinity of the measures (µx)x, we
often need to split the nonlocals term into

I1
δ [x, t, u] =

∫

|z|≤δ
(u(x+ z, t)− u(x, t)−Du(x, t) · z1B(z))µ(dz)

I2
δ [x, t, p, u] =

∫

|z|>δ
(u(x+ z, t)− u(x, t)− p · z1B(z))µ(dz)

with 0 < δ < 1 and p ∈ RN .

There are several equivalent definitions of viscosity solutions, but we will mainly refer to the
following one.
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Definition 2.1 (Viscosity solutions). An usc function u : RN × [0, T ] → R is a subsolution of
(1.1) if for any φ ∈ C2(RN×[0, T ]) such that u−φ attains a global maximum at (x, t) ∈ Ω×(0, T )

φt(x, t) + F (x, t, φ(x, t),Dφ(x, t),D2φ(x, t),I1
δ [x, t, φ] + I2

δ [x, t,Dφ(x, t), u]) ≤ 0.

A lsc function u : RN × [0, T ] → R is a supersolution of (1.1) if for any test function φ ∈
C2(RN × [0, T ]) such that u− φ attains a global minimum at (x, t) ∈ Ω× (0, T )

φt(x, t) + F (x, t, φ(x, t),Dφ(x, t),D2φ(x, t),I1
δ [x, t, φ] + I2

δ [x, t,Dφ(x, t), u]) ≥ 0.

2.1. Horizontal propagation of maxima coming from translations of measure sup-

ports. Maximum principle results for nonlocal operators generated by nonnegative kernels de-
fined on topological groups acting continuously on a Hausdorff space were settled out by Coville
in [12]. In the following, we present similar results for integro-differential operators in the setting
of viscosity solutions. It can be shown that Maximum Principle holds for nonlocal operators
given by (1.3) whenever the whole domain can be covered by translations of measure supports,
starting from a maximum point.

An additional assumption is required with respect to the nonlinearity F . More precisely we
require that

(E′) F is continuous, degenerate elliptic and for x, p ∈ RN and l ∈ R

F (x, t, 0, O, l) ≤ 0 ⇒ l ≥ 0.

For the sake of precision, the following result is given for integro-differential equations defined
in RN . We explain in Remark 2.2 what happens when we restrict to some open set Ω.

Theorem 2.1. Assume the family of measures {µx}x∈Ω satisfies assumption (M). Let F satisfy
(E′) in RN × [0, T ] and u ∈ USC(RN × [0, T ]) be a viscosity solution of (1.1) in RN × (0, T ). If

u attains a global maximum at (x0, t0) ∈ RN × (0, T ), then u is constant on
⋃

n≥0An, with

A0 = {x0}, An+1 =
⋃

x∈An

(x+ supp(µx)). (2.8)

Proof. Assume that u is a viscosity subsolution for the given equation. Consider the test-function
ψ ≡ 0 and write the viscosity inequality at point (x0, t0)

F (x0, t0, 0, O,I
1
δ [x0, t0, ψ] + I2

δ [x0, t0,Dψ(x0, t0), u]) ≤ 0.

This implies according to assumption (E′), that

I2
δ [x0, t0, u] =

∫

|z|≥δ
(u(x0 + z, t0)− u(x0, t0))µx0

(dz) ≥ 0.

But u attains its maximum at (x0, t0) and thus u(x0 + z, t0) − u(x0, t0)) ≤ 0. Letting δ go to
zero we have

u(z, t0) = u(x0, t0), for all z ∈ x0 + supp(µx0
).

Arguing by induction, we obtain

u(z, t0) = u(x0, t0),∀z ∈
⋃

n≥0

An.

Take now z0 ∈
⋃

n≥0An. Then, there exists a sequence of points (zn)n ⊂
⋃

n≥0An converging
to z0. Since u is upper semicontinuous, we have

u(z0, t0) ≥ lim sup
zn→z0

u(zn, t0) = u(x0, t0).
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But (x0, t0) is a maximum point and the converse inequality holds. Therefore

u(z, t0) = u(x0, t0),∀z ∈
⋃

n≥0

An.

�

Remark 2.1. In particular when supp(µx) = supp(µ) = B, with µ being a Lévy measure and B
the unit ball, RN can be covered by translations of supp(µ) starting at x0

R
N = x0 +

⋃

n≥0

(
supp(µ) + ...+ supp(µ)
︸ ︷︷ ︸

n

)
.

and thus u(·, t0) is constant in RN .

Remark 2.2. Whenever the equation is restricted to Ω, with the corresponding Dirichlet con-
dition outside the domain, then iterations must be taken for all the points in Ω, i.e.

An+1 =
⋃

x∈Ω∩An

(x+ supp(µx))

In particular, if Ω ⊂
⋃

n≥0An, then u(·, t0) is constant in Ω.

Remark 2.3. The domain Ω may not necessarily be connected and still maxima might propa-
gate, since jumps from one connected component to another might occur when measure supports
overlap two or more connected components.

The previous result has an immediate corollary. If all measure supports have nonempty
(topological) interior and contain the origin, strong maximum principle holds.

Corollary 2.1. Let Ω be connected, F be as before and u ∈ USC(RN × [0, T ]) be a viscosity
subsolution of (1.1) in Ω× (0, T ). Assume that {µx}x∈Ω satisfies (M) and in addition that the
origin belongs to the topological interiors of all measure supports

0 ∈
˚̂

supp(µx),∀x ∈ Ω. (2.9)

If u attains a global maximum at (x0, t0) ∈ Ω× (0, T ), then u(·, t0) is constant in Ω.

Proof. Consider the iso-level

Γx0
= {x ∈ Ω;u(x, t0) = u(x0, t0)}.

Then the set is simultaneously open since 0 ∈
˚̂

supp(µx) implies, by Theorem 2.1, together with
Remark 2.2 that for any x ∈ Γx0

we have

(
x+

˚̂
supp(µx)

)
∩ Ω ⊂ Γx0

and closed because for any x ∈ Γ̄x0
we have by the upper-semicontinuity of u

u(x, t0) ≥ lim sup
y→x, y∈Γx0

u(y, t0) = max
y∈Ω

u(y, t0)

thus u(x, t0) = u(x0, t0). Therefore, Γx0
= Ω since Ω is connected. �
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2.2. Horizontal propagation of maxima under nondegeneracy conditions. There are
cases when conditions (2.8) and (2.9) fail, such as measures whose supports are contained in
half space or nonlocal terms acting in one direction, as we shall see in section §4. However,
we manage to show that, if a viscosity subsolution attains a maximum at P0 = (x0, t0) ∈ QT ,
then the maximum propagates in the horizontal component C(P0). This result is based on
nondegeneracy and scaling properties on the nonlinearity F :

(N) For any x̄ ∈ Ω and 0 < t0 < T there exist R0 > 0 small enough and 0 ≤ η < 1 such that
for any 0 < R < R0 and c > 0

F (x, t, p, I − γp⊗ p, C̃µ − cγ

∫

Cη,γ(p)

∣
∣p · z

∣
∣2µx(dz)) → +∞ as γ → +∞

uniformly for |x− x̄| ≤ R and |t− t0| ≤ R, R/2 ≤ |p| ≤ R, where

Cη,γ(p) = {z; (1− η)|z||p| ≤ |p · z| ≤ 1/γ}

and C̃µ appears in (M).
(S) There exist some constants R0 > 0, ε0 > 0 and γ0 > 0 s.t. for all 0 < R < R0, ε < ε0 and

γ ≥ γ0 the following condition holds for all |x− x̄| ≤ R and |t− t0| ≤ R, R/2 ≤ |p| ≤ R,

F (x, t, εp, ε(I − γp⊗ p), εl) ≥ εF (x, t, p, I − γp⊗ p, l).

As we shall see in §4 the assumption (M) which states that the measure µx is bounded at
infinity, uniformly with respect to x and the possible singularity at the origin is of order |z|2 is
not sufficient to ensure condition (N). The following assumption is in general needed, provided
that the nonlinearity F is nondegenerate in the nonlocal term.

(M c) For any x ∈ Ω there exist 1 < β < 2, 0 ≤ η < 1 and a constant Cµ(η) > 0 such that the
following holds ∫

Cη,γ(p)
|z|2µx(dz) ≥ Cµ(η)γ

β−2,∀γ ≥ 1

with Cη,γ(p) as before.

As pointed out in section §4, (M c) holds for a wide class of Lévy measures as well as (N)− (S)
for a class of nonlinearities F .

Theorem 2.2. Assume the family of measures {µx}x∈Ω satisfies assumptions (M). Let u ∈
USC(RN × [0, T ]) be a viscosity subsolution of (1.1) that attains a global maximum at P0 =
(x0, t0) ∈ QT . If F satisfies (E), (N), and (S) then u is constant in C(P0).

Proof. We proceed as for locally uniformly parabolic equations and argue by contradiction.

1. Suppose there exists a point P1 = (x1, t0) such that u(P1) < u(P0). The solution u being
upper semi-continuous, by classical arguments we can construct for fixed t0 a ball B(x̄, R) where

u(x, t0) < M = max
RN

(u(·, t0)),∀x ∈ B(x̄, R).

In addition there exists x∗ ∈ ∂B(x̄, R) such that u(x∗, t0) = M . Translating if necessary the
center x̄ in the direction x∗ − x̄, we can choose R < R0, with R0 given by condition (N).

Moreover we can extend the ball to an ellipsoid

ER(x̄, t0) := {(x, t); |x− x̄|2 + λ|t− t0|
2 < R2}

with λ large enough the function u satisfies

u(x, t) < M, for (x, t) ∈ ER(x̄, t0) s.t. |x− x̄| ≤ R/2.
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Remark that (x∗, t0) ∈ ∂ER(x̄, t0) with u(x
∗, t0) =M.

2. Introduce the auxiliary function

v(x, t) = e−γR2

− e−γ(|x−x̄|2+λ|t−t0|2)

where γ > 0 is a large positive constant, yet to be determined. Note that v = 0 on ∂ER(x̄, t0)
and −1 < v < 0, in ER(x̄, t0). Denote d(x, t) = |x− x̄|2 + λ|t− t0|

2. Direct computations give

vt(x, t) = 2γe−γd(x,t)λ(t− t0)

Dv(x, t) = 2γe−γd(x,t)(x− x̄)

D2v(x, t) = 2γe−γd(x,t)(I − 2γ(x− x̄)⊗ (x− x̄)).

In upcoming Proposition 2.1 we show there exist two positive constants c = c(η,R) and γ0 > 0
such that for γ ≥ γ0, the following estimate of the nonlocal term holds

I[x, t, v] ≤ 2γe−γd(x,t)
{
C̃µ − cγ

∫

Cη,γ(x−x̄)

∣
∣(x− x̄) · z

∣
∣2µx(dz)

}

in the subdomain

DR(x̄, t0) := {(x, t) ∈ ER(x̄, t0); |x− x̄| > R/2}.

3. From the nondegeneracy condition (N) and scaling assumption (S) we get that v is a strict
supersolution at points (x, t) in DR(x̄, t0). Indeed, for γ large enough

F
(
x, t, x− x̄, I − 2γ(x− x̄)⊗ (x− x̄), C̃µ − cγ

∫

Cη,γ(x−x̄)

∣
∣(x− x̄) · z

∣
∣2µx(dz)

))
> 0

which implies

vt(x, t) + F (x, t,Dv(x, t),D2v(x, t),I[x, t, v])

= 2γe−γd(x,t)λ(t− t0) + F
(
x, t, 2γe−γd(x,t)(x− x̄), 2γe−γd(x,t)(I − 2γ(x− x̄)⊗ (x− x̄)

)
,

..., 2γe−γd(x,t)
{
C̃µ − cγ

∫

Cη,γ(x−x̄)

∣
∣(x− x̄) · z

∣
∣2µx(dz)

}
)

≥ 2γe−γd(x,t)
(
λ(t− t0) + F

(
x, t, x− x̄, I − 2γ(x− x̄)⊗ (x− x̄),

..., C̃µ − cγ

∫

Cη,γ(x−x̄)

∣
∣(x− x̄) · z

∣
∣2µx(dz)

))
> 0.

Furthermore, the scaling assumption (S) ensures the existence of a constant ε0 > 0 such that
for all ε < ε0, εv is a strict supersolution of (1.1) in DR(x̄, t0). Indeed we have

εvt(x, t) + F (x, t, εDv(x, t), εD2v(x, t), εI[x, t, v])

≥ ε
(
vt(x, t) + kF (x, t,Dv(x, t),D2v(x, t),I[x, t, v])

)
> 0.

4. Remark that

v ≥ 0 in Ec
R(x̄, t0)

u < M in ER(x̄, t0) \ DR(x̄, t0).

Therefore, there exists some ε0 > 0 such that for all ε < ε0 outside the domain DR(x̄, t0)

u(x, t) ≤ u(x∗, t0) + εv(x, t).
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Then we claim that the inequality holds inside DR(x̄, t0). Indeed, if u ≤ u(x∗, t0) + εv does not
hold, then maxRN (u −M − εv) > 0 would be attained in DR(x̄, t0) at say, (x

′, t′). Since u is a
viscosity subsolution the following would hold

εvt(x
′, t′) + F (x′, t′, εDv(x′, t′), εD2v(x′, t′),I[x′, t′, εv]) ≤ 0

arriving thus to a contradiction with the fact that M + εv is a strict supersolution of (1.1).

5. The function u(x, t) − εv(x, t) has therefore a global maximum at (x∗, t0). Since u is a
viscosity subsolution of (1.1), we have

εvt(x
∗, t0) + F (x∗, t0, εDv(x

∗, t0), εD
2v(x∗, t0),I[x

∗, t0, εv]) ≤ 0.

As before, we arrived at a contradiction because εv is a strict supersolution and thus the converse
inequality holds at (x∗, t0). Consequently, the assumption made is false and u is constant in the
horizontal component of P0. �

In the following we give the estimate for the nonlocal operator acting on the auxiliary function.
We use the same notations as before.

Proposition 2.1. Let R > 0, λ > 0, γ > 0 and consider the smooth function

v(x, t) = e−γR2

− e−γd(x,t)

d(x, t) = |x− x̄|2 + λ|t− t0|
2

Then there exist two constants c = c(η,R) and γ0 > 0 such that for γ ≥ γ0 the nonlocal operator
satisfies

I[x, t, v] ≤ 2γe−γd(x,t)
{
C̃µ − cγ

∫

{(1−η)|z||x−x̄|≤|(x−x̄)·z|≤1/γ}

∣
∣(x− x̄) · z

∣
∣2µx(dz)

}

for all R/2 < |x− x̄| < R.

Proof. In order to estimate the nonlocal term I[x, t, v], we split the domain of integration into
three pieces and take the integrals on each of these domains. Namely we part the unit ball into
the subset

Cη,γ(x− x̄) = {z; (1 − η)|z||x − x̄| ≤ |(x− x̄) · z| ≤ 1/γ}

and its complementary. Indeed Cη,γ(x− x̄) lies inside the unit ball, as for |x− x̄| ≥ R/2 and for
γ large enough

|z| ≤
1

γ(1− η)|x− x̄|
≤

2

γ(1 − η)R
≤ 1. (2.10)

Thus we write the nonlocal term as the sum

I[x, t, v] = T 1[x, t, v] + T 2[x, t, v] + T 3[x, t, v]

with

T 1[x, t, v] =

∫

|z|≥1
(v(x+ z, t)− v(x, t))µx(dz)

T 2[x, t, v] =

∫

B\Cη,γ(x−x̄)
(v(x+ z, t)− v(x, t)−Dv(x, t) · z)µx(dz)

T 3[x, t, v] =

∫

Cη,γ(x−x̄)
(v(x+ z, t)− v(x, t) −Dv(x, t) · z)µx(dz).
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In the sequel, we show that each integral term is controlled from above by an exponential term
of the form γe−γd(x,t). In addition, the last integral is driven by a nonpositive quadratic nonlocal
term.

Lemma 2.1. We have

T 1[x, t, v] ≤ e−γd(x,t)

∫

|z|≥1
µx(dz),∀(x, t) ∈ Ω× [0, T ].

Proof. The estimate is due to the uniform bound of the measures µx away from the origin.
Namely

T 1[x, t, v] =

∫

|z|≥1
(−e−γd(x+z,t) + e−γd(x,t))µx(dz)

≤

∫

|z|≥1
e−γd(x,t)µx(dz) = e−γd(x,t)

∫

|z|≥1
µx(dz) ≤ e−γd(x,t)C̃µ.

�

Lemma 2.2. We have

T 2[x, t, v] ≤ γe−γd(x,t)

∫

B
|z|2µx(dz),∀(x, t) ∈ Ω× [0, T ].

Proof. Note that T 2[x, t, v] = −T 2[x, t, e−γd]. From Lemma 6.1 in Appendix

T 2[x, t, e−γd] ≥ e−γd(x,t)T 2[x, t,−γd] = −γe−γd(x,t)T 2[x, t, d].

Taking into account the expression for d(x, t), we get that

T 2[x, t, v] ≤ γe−γd(x,t)

∫

B\Cη,γ (x−x̄)
(d(x+ z, t)− d(x, t) −Dd(x, t) · z)µx(dz)

= γe−γd(x,t)

∫

B\Cη,γ (x−x̄)
|z|2µx(dz) ≤ γe−γd(x,t)

∫

B
|z|2µx(dz) ≤ γe−γd(x,t)C̃µ.

�

Lemma 2.3. There exist two positive constants c = c(η,R) and γ0 > 0 such that for γ ≥ γ0

T 3[x, t, v] ≤ e−γd(x,t)
(
γ

∫

B
|z|2µx(dz) − 2cγ2

∫

Cη,γ(x−x̄)

∣
∣(x− x̄) · z

∣
∣2µx(dz)

)
,∀(x, t) ∈ DR.

Proof. Rewrite equivalently the integral as

T 3[x, t, v] = T 3[x, t, v − e−γR2

] = −T 3[x, t, e−γd].

We apply then Lemma 6.2 in Appendix to the function e−γd and get that for all δ > 0 there
exists c = c(η,R) > 0 such that

T 3[x, t, e−γd] ≥ e−γd(x,t)
(
T 3[x, t,−γd] + 2cγ2

∫

Cη,γ(x−x̄)

(
d(x+ z, t)− d(x, t)

)2
µx(dz)

)

= −γe−γd(x,t)
(
T 3[x, t, d]− 2cγ

∫

Cη,γ(x−x̄)

(
d(x+ z, t)− d(x, t)

)2
µx(dz)

)
.

Remark that Cη,γ(x− x̄) ⊆ Dδ for δ = 2 + 2
(1−η)R , with

Dδ = {z; γ
(
d(x+ z, t)− d(x, t)

)
≤ δ} = {z; γ(2(x − x̄) · z + |z|2) ≤ δ}.
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We have thus

T 3[x, t, v] ≤ γe−γd(x,t)
(
T 3[x, t, d] − 2cγ

∫

Cη,γ(x−x̄)

(
d(x+ z, t)− d(x, t)

)2
µx(dz)

)
.

Taking into account the expression of d(x, t), direct computations give

T 3[x, t, d] =

∫

Cη,γ(x−x̄)

(
d(x+ z, t)− d(x, t) −Dd(x, t) · z

)
µx(dz)

=

∫

Cη,γ(x−x̄)
|z|2µx(dz) ≤

∫

B
|z|2µx(dz),

while the quadratic term is bounded from below by
∫

Cη,γ(x−x̄)

(
d(x+ z, t)− d(x, t)

)2
µx(dz) =

∫

Cη,γ(x−x̄)

∣
∣2(x− x̄) · z + |z|2

∣
∣2µx(dz)

≥

∫

Cη,γ(x−x̄)

∣
∣(x− x̄) · z

∣
∣2µx(dz).

Indeed, recall that |x− x̄| ≥ R/2 and see that for all z ∈ Cη,γ(x− x̄)

(1− η)|x− x̄||z| ≤ 1/γ ⇒ |z| ≤
2

γR(1− η)

(1− η)|x− x̄||z| ≤ |(x− x̄) · z| ⇒ |z| ≤
2|(x − x̄) · z|

R(1− η)

Then for γ0 = 4/R2(1− η)2 and γ ≥ γ0 we have the estimate

∣
∣2(x− x̄) · z + |z|2

∣
∣ ≥ 2|(x− x̄) · z| − |z|2 ≥ 2|(x− x̄) · z| −

4|(x− x̄) · z|

γR2(1− η)2

= |(x− x̄) · z|
(
2−

4

γR2(1− η)2
)
≥ |(x− x̄) · z|.

Therefore, we obtain the upper bound for the integral term

T 3[x, t, v] ≤ γe−γd(x,t)
(
∫

Cη,γ(x−x̄)
|z|2µx(dz)− 2cγ

∫

Cη,γ(x−x̄)

∣
∣(x− x̄) · z

∣
∣2µx(dz)

)
.

�

From the three lemmas estimating the integral terms we deduce that

I[x, t, v] ≤ e−γd(x,t)
{
∫

|z|≥1
µx(dz) + 2γ

∫

B
|z|2µx(dz)− 2cγ2

∫

Cη,γ(x−x̄)

∣
∣(x− x̄) · z

∣
∣2µx(dz)

}

≤ 2γe−γd(x,t)
{
C̃µ − cγ

∫

Cη,γ(x−x̄)

∣
∣(x− x̄) · z

∣
∣2µx(dz)

}
.

�



12 ON THE STRONG MAXIMUM PRINCIPLE FOR PIDES

2.3. Local vertical propagation of maxima. We show that if u ∈ USC(RN × [0, T ]) is a
viscosity subsolution of (1.1) which attains a maximum at P0 = (x0, t0) ∈ QT , then the maximum
propagates locally in rectangles, say,

R(x0, t0) = {(x, t)||xi − xi0| ≤ ai, t0 − a0 ≤ t ≤ t0}

where we have denoted x = (x1, x2, ..., xN ). Denote by R0(x0, t0) the rectangle R(x0, t0) less
the top face {t = t0}.

Local vertical propagation of maxima occurs under softer assumptions on the nondegeneracy
and scaling conditions. More precisely, we suppose the following holds:

(N ′) For any (x0, t0) ∈ QT there exists λ > 0 such that

λ+ F (x0, t0, 0, I, C̃µ) > 0

where C̃µ is given by assumption (M).
(S′) There exist two constants r0 > 0, ε0 > 0 such that for all ε < ε0 and 0 < r < r0 the

following condition holds for all (x, t) ∈ B((x0, t0), r), |p| ≤ r, l ≤ C̃µ

F (x, t, εp, εI, εl) ≥ εF (x, t, p, I, l).

Theorem 2.3. Let u ∈ USC(RN × [0, T ]) be a viscosity subsolution of (1.1) that attains a
maximum at P0 = (x0, t0) ∈ QT . If F satisfies (E), (N ′) and (S′) then for any rectangle
R(x0, t0), R0(x0, t0) contains a point P 6= P0 such that u(P ) = u(P0).

Proof. Similarly to the horizontal propagation of maxima, we argue by contradiction.

1. Suppose there exists a rectangle R(x0, t0) on which u(x, t) < M = u(x0, t0), with
R0(x0, t0) ⊆ Ω× [0, t0). Denote

h(x, t) =
1

2
|x− x0|

2 + λ(t− t0)

with λ > 0 a constant yet to be determined. Consider the auxiliary function

v(x, t) = 1− e−h(x,t).

Direct calculations give

vt(x, t) = λe−h(x,t)

Dv(x, t) = e−h(x,t)(x− x0)

D2v(x, t) = e−h(x,t)(I − (x− x0)⊗ (x− x0)),

Note that

v(x0, t0) = 0 vt(x0, t0) = λ

Dv(x0, t0) = 0 D2v(x0, t0) = I.

The nonlocal term is written as the sum of two integral operators:

I[x, t, v] = T 1[x, t, v] + T 2[x, t, v],

where

T 1[x, t, v] =

∫

|z|≥1
(v(x+ z, t)− v(x, t))µx(dz)

T 2[x, t, v] =

∫

B
(v(x+ z, t)− v(x, t)−Dv(x, t) · z)µx(dz).
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Similarly to Lemma 2.1 we obtain the estimate:

Lemma 2.4. We have

T 1[x, t, v] ≤ e−h(x,t)

∫

|z|≥1
µx(dz),∀(x, t) ∈ Ω× [0, T ].

On the other hand, the estimate obtained for the second integral term is softer than the
estimate obtained in the case of the horizontal propagation of maxima.

Lemma 2.5. We have

T 2[x, t, v] ≤ e−h(x,t)

∫

B
|z|2µx(dz),∀(x, t) ∈ Ω× [0, T ].

Proof. From Lemma 6.1 we have

T 2[x, t, v] = −T 2[x, t, e−h] ≤ e−h(x,t)T 2[x, t, h].

We then use a second-order Taylor expansion for h and get

T 2[x, t, h] =
1

2

∫

B
sup

θ∈(−1,1)

(
D2h(x+ θz, t)z · z

)
µx(dz)

=
1

2

∫

B
|z|2µx(dz) ≤

1

2

∫

B
|z|2µx(dz),

from where the conclusion. �

We now go back to the proof of the theorem and see that

I[x, t, v] ≤ e−h(x,t)C̃µ.

In particular I[x0, t0, v] ≤ C̃µ.

2. From the nondegeneracy assumption (N ′) we have that there exists λ > 0 such that

vt(x0, t0) + F (x0, t0,Dv(x0, t0),D
2v(x0, t0),I[x0, t0, v])

≥ vt(x0, t0) + F (x0, t0,Dv(x0, t0),D
2v(x0, t0), C̃µ)

= λ+ F (x0, t0, 0, I, C̃µ) > 0.

Hence v is a strict supersolution of (1.1) at (x0, t0). By the continuity of F , there exists r < r0
such that ∀(x, t) ∈ B((x0, t0), r) ⊆ QT

vt(x, t) + F (x, t,Dv(x, t),D2v(x, t),I[x, t, v]) ≥ C > 0.

Consider then the set S = B((x0, t0), r) ∩ {(x, t)|v(x, t) < 0}. By (S′) there exists ε0 > 0 such
that ∀ε < ε0, εv is a strict supersolution of (1.1) in S. Indeed

εvt(x, t) + F (x, t, εDv(x, t), εD2v(x, t), εI[x, t, v]) ≥

ε
(
vt(x, t) + F (x, t,Dv(x, t),D2v(x, t),I[x, t, v])

)
> 0

3. Let ε0 be sufficiently small such that

u(x, t)− u(x0, t0) ≤ εv(x, t), ∀(x, t) ∈ ∂S.

Then, arguing as in the case of horizontal propagation of maxima we get

u(x, t)− u(x0, t0) ≤ εv(x, t), ∀(x, t) ∈ S.
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Thus (x0, t0) is a maximum of u− εv with Dv(x0, t0) = λ > 0. Since u is a subsolution, we have

εvt(x0, t0) + F (x0, t0, εv(x0, t0), εDv(x0, t0), εD
2v(x0, t0),I[x0, t0, εv]) ≤ 0.

We arrived at a contradiction with the fact that εv is a strict supersolution. Thus, the supposition
is false and the rectangle contains a point P 6= P0 such that u(P ) = u(P0). �

Example 2.1. Non-local first order Hamilton Jacobi equations describing the dislocation dy-
namics

ut = (c(x) +M [u(t, ·)])|Du| (2.11)

where M is a zero order nonlocal operator defined by

M [u(t, ·)](x) =

∫

RN

(
u(x+ z)− u(x))µ(dz)

with µ(dz) = g( z
|z|)

dz
|z|N+1 have vertical propagation of maxima.

Indeed, they do not satisfy any of the sets of assumptions required by Theorems 2.1 and 2.2.
Particularly nondegeneracy condition (N)

−
(
c(x) + C̃µ

)
|p| ≤ 0

fails if c(x) ≥ 0 and holds whenever c(x) ≥ −C̃µ. Hence, one cannot conclude on horizontal
propagation of maxima.

On the other hand we have local vertical propagation of maxima, since (N ′) is immediate and

(S′) is satisfied by F̃ = −c(x)|p|, the linear approximation of the nonlinearity F :

−
(
c(x) + εl)|εp| = −εc(x)|p|+ o(ε2).

2.4. Strong Maximum Principle. When both horizontal and local vertical propagation of
maxima occur for a viscosity subsolution of (1.1) which attains a global maximum at an interior
point, the function is constant in any rectangle contained in the domain Ω × [0, t0] passing
through the maximum point.

Proposition 2.2. Let u ∈ USC(RN × [0, T ]) be a viscosity subsolution of (1.1) that attains a
global maximum at P0 = (x0, t0) ∈ QT . If F satisfies (E), (N)− (N ′), and (S)− (S′), then u is
constant in any rectangle R(x0, t0) ⊆ Ω× [0, t0].

From the horizontal and local vertical propagation of maxima one can derive the Strong
Maximum Principle. The proof is based on geometric arguments and is identical to that for
fully nonlinear second order partial differential equations.

Theorem 2.4 (Strong Maximum Principle). Assume the family of measures {µx}x∈Ω satisfies
assumption (M). Let u ∈ USC(RN × [0, T ]) be a viscosity subsolution of (1.1) that attains a
global maximum at P0 = (x0, t0) ∈ QT . If F satisfies (E), (S)− (S′), and (N)− (N ′), then u is
constant in S(P0).

Similarly the following holds.

Theorem 2.5 (Strong Maximum Principle). Let u ∈ USC(RN×[0, T ]) be a viscosity subsolution
of (1.1) in RN × (0, T ) that attains a global maximum at (x0, t0) ∈ RN × (0, T ]. Assume the
family of measures {µx}x∈Ω satisfies assumption (M) and F satisfies (E′), (S′) and (N ′). Then

u is constant in
⋃

n≥0An × [0, t0] with {An}n given by (2.8).
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3. Strong Maximum Principle for Lévy-Itô operators

The results established for general nonlocal operators remain true for Lévy-Itô operators. We
translate herein the corresponding assumptions and theorems on the Strong Maximum Principle
for second order integro-differential equations associated to Lévy-Itô operators

J [x, t, u] =

∫

RN

(u(x+ j(x, z), t) − u(x, t)−Du(x, t) · j(x, z)1B(z))µ(dz),

where µ is a Lévy measure. In the sequel we assume that F respects the scaling assumption (S)

and the nondegeneracy condition

(NLI) For any x̄ ∈ Ω and 0 < t0 < T there exist R0 > 0 small enough and 0 < η < 1 such that
for any 0 < R < R0 and c > 0

F (x, t, p, I − γp⊗ p, C̃µ − cγ

∫

Cη,γ(p)

∣
∣p · j(x, z)

∣
∣2µ(dz)) → ∞ as γ → ∞

uniformly for |x− x̄| ≤ R and |t− t0| ≤ R, R/2 ≤ |p| ≤ R, where

Cη,γ(p) = {z; (1− η)|j(x, z)||p| ≤ |p · j(x, z)| ≤ 1/γ}.

and that the Lévy measure µ satisfies assumptions

(MLI) there exists a constant C̃µ > 0 such that for any x ∈ Ω,
∫

B
|j(x, z)|2µ(dz) +

∫

RN\B
µ(dz) ≤ C̃µ;

(M c
LI) For any x ∈ Ω there exist 1 < β < 2, 0 ≤ η < 1 and a constant Cµ(η) > 0 such that the

following holds
∫

Cη,γ(p)
|j(x, z)|2µ(dz) ≥ Cµ(η)γ

β−2,∀γ ≥ 1.

Theorem 2.1 holds for Lévy-Itô operators, since Lévy Itô measures can be written as push-
forwards of some Lévy measure µ̃

µx = (j(x, ·)∗(µ̃))

defined for measurable functions φ as
∫

RN

φ(x)µ(dz) =

∫

RN

φ(j(x, z))µ̃(dz).

Hence it is sufficient to replace supp(µx) = j(x, supp(µ̃)) in order to get the corresponding result.

Theorem 3.1. Assume the family of measures {µx}x∈RN satisfies assumptions (MLI). Let
u ∈ USC(RN × [0, T ]) be a viscosity subsolution of (1.1) that attains a maximum at P0 =
(x0, t0) ∈ QT . If F satisfies (E), (S), and (NLI) then u is constant in C(P0).

Proof. Since the proof is technically the same, we just point out the main differences, namely
the estimate of the nonlocal term. Consider as before the smooth function

v(x, t) = e−γR2

− e−γd(x,t)

where d(x, t) = |x − x̄|2 + λ|t − t0|
2, for large γ > γ0. Write similarly the nonlocal term as the

sum

J [x, t, v] = T 1[x, t, v] + T 2[x, t, v] + T 3[x, t, v]
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where

T 1[x, t, v] =

∫

|z|≥1
(v(x+ j(x, z), t) − v(x, t))µ(dz)

T 2[x, t, v] =

∫

B\Cη,γ(x−x̄)
(v(x+ j(x, z), t) − v(x, t)−Dv(x, t) · j(x, z))µ(dz)

T 3[x, t, v] =

∫

Cη,γ(x−x̄)
(v(x+ j(x, z), t) − v(x, t)−Dv(x, t) · j(x, z))µ(dz)

with Cη,γ(x− x̄) = {(1− η)|j(x, z)||x − x̄| ≤ |(x− x̄) · j(x, z)| ≤ 1/γ}.

Then the nonlocal operator satisfies for all (x, t) ∈ DR

T 1[x, t, v] ≤ e−γd(x,t)

∫

|z|≥1
µ(dz).

T 2[x, t, v] ≤ γe−γd(x,t)

∫

B
|j(x, z)|2µ(dz).

T 3[x, t, v] ≤ e−γd(x,t)
[
γ

∫

B
|j(x, z)|2µ(dz) − 2cγ2

∫

Cη,γ (x−x̄)

∣
∣(x− x̄) · j(x, z)

∣
∣2µx(dz)

]
.

from where we get the global estimation

J [x, t, v] ≤ e−γd(x,t)
[
∫

B
µ(dz) + 2γ

∫

B
|j(x, z)|2µ(dz)

−2cγ2
∫

Cη,γ (x−x̄)

∣
∣(x− x̄) · j(x, z)

∣
∣2µx(dz)

]

≤ 2γe−γd(x,t)
[
C̃µ − cγ

∫

Cη,γ(x−x̄)

∣
∣(x− x̄) · j(x, z)

∣
∣2µx(dz)

]
.

�

Vertical propagation of maxima holds under the same conditions. Strong Maximum Principle
can thus be formulated for Lévy-Itô operators.

Theorem 3.2 (Strong Maximum Principle - Lévy Itô). Assume the measure µ satisfies assump-
tion (MLI). Let u ∈ USC(RN × [0, T ]) be a viscosity subsolution of (1.1) that attains a global
maximum at P0 = (x0, t0) ∈ QT . If F satisfies (E), (S) − (S′), and (NLI) − (N ′), then u is
constant in S(P0).

Theorem 3.3 (Strong Maximum Principle - Lévy Itô). Let u ∈ USC(RN × [0, T ]) be a viscosity
subsolution of (1.1) in RN × (0, T ) that attains a global maximum at (x0, t0) ∈ RN × (0, T ].
Assume the family of measures {µx}x∈RN satisfies assumption (MLI) and F satisfies (E0), (S

′)

and (N ′). Then u is constant in
⋃

n≥0An × [0, t0] with {An}n given by (2.8).
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4. Examples

In this section we discuss the validity of the Strong Maximum Principle on several examples.

4.1. Horizontal propagation of maxima coming from translations of measure sup-

ports. As pointed out in section 2, translations of measure supports starting at any maximum
point x0 lead to horizontal propagation of maxima. In particular, Theorem 2.1 holds for nonlocal
terms integrated against Lévy measures whose supports are the whole space RN .

Example 4.1. Consider a pure nonlocal diffusion

ut − I[x, t, u] = 0 in R
N × (0, T ) (4.12)

where I is the Lévy operator integrated against the Lévy measure associated with the fractional
Laplacian (−∆)β/2:

µ(dz) =
dz

|z|N+β
.

Then the support of the measure is the whole space and thus horizontal propagation of maxima
holds for equation (4.12) by Theorem 2.1.

Example 4.2. Let N = 2 and consider equation (4.12) with {µx}x a family of Lévy measures
charging two axis meeting at the origin

µx(dz) = 1{z1=±αz2}νx(dz),

with α > 0 and supp(νx) = R2, for all x ∈ R2. Even though zero is not an interior point of
the support, translations of measure supports starting at any point x0 cover the whole space,
propagating thus maxima all over R2.

Similarly, horizontal propagation of maxima holds if measures charge a cone

µx(dz) = 1{|z1|>α|z2|}νx(dz),

with α > 0 and supp(νx) = R2.

4.2. Strong Maximum Principle driven by the nonlocal term under nondegeneracy

conditions. There are equations for which propagation of maxima does not propagate just
by translating measure supports, but cases when it requires a different set of assumptions.
Nondegeneracy and scaling conditions of the nonlinearity F need to be satisfied in order to have
a Strong Maximum Principle. But to ensure condition (N), one has to assume (M c).

Example 4.3. Consider as before equation (4.12) and let µ be the Lévy measure associated to
the fractional Laplacian and but restricted to half space

µ(dz) = 1{z1≥0}(z)
dz

|z|N+β
, β ∈ (1, 2).

where z = (z1, z
′) ∈ R × RN−1. Then RN can not be covered by translations of the measure

support and therefore one cannot conclude the function u is constant on the whole domain,
except for particular cases like the periodic case. However, C0,α regularity results hold (cf. [7])
and we expect to have Strong Maximum Principle.

We show that the nondegeneracy and scaling assumptions are satisfied in the case of Example
4.3. Before proceeding to the computations, remark that

Cη,γ(p) = {z; (1 − η)|p||z| ≤ |p · z| ≤ 1/γ} = {z; (1 − η)|p||γz| ≤ |p · γz| ≤ 1} = γ−1Cη,1(p)
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γ

∫

Cη,γ(p)∩{z1≥0}
|p · z|2

dz

|z|N+β
= γ−1

∫

Cη,1(p)∩{z1≥0}
γβ|p · z|2

dz

|z|N+β

≥ γβ−1|p|2(1− η)2
∫

Cη,1(p)∩{z1≥0}
|z|2

dz

|z|N+β

= C(η)γβ−1|p|2

where C(η) = (1− η)2
∫

Cη,1(p)∩{z1≥0} |z|
2dz/|z|N+β is a positive constant.

This further implies nondegeneracy condition (N). Indeed, there exist R0 > 0 small enough
and 0 ≤ η < 1 such that for any 0 < R < R0 and for all R/2 < |p| < R

−C̃µ + cγ

∫

Cη,γ(p)∩{z1≥0}
|p · z|2

dz

|z|N+β
≥ −C̃µ + C̃(η)γβ−1|p|2 → ∞ as γ → ∞

as long as β > 1. The rest of assumptions follow immediately.

Similar results hold for the following PIDE arising in the context of growing interfaces [28]:

ut +
1

2
|Du|2 − I[x, t, u] = 0, in R

N × (0, T ) (4.13)

with I is a general nonlocal operator of form (1.3). Scaling conditions (S) and (S′) are satisfied
by the nonlinearity F

|εp|2

2
− εl = ε

( |p|2

2
− l

)
+ o(1).

Remark 4.1. For integro-differential equations of the type

ut + b(x, t)|Du|m − I[x, t, u] = 0 in R
N × (0, T ) (4.14)

with b a continuous function and µ as in Example 4.3. Strong Maximum Principle holds provided
that b(·)(1 −m) ≥ 0.

4.3. Strong Maximum Principle coming from local diffusion terms. Theorem 2.4 ap-
plies to integro-differential equations uniformly elliptic with respect to the diffusion term and
linear in the nonlocal operator.

Example 4.4. Quasilinear parabolic integro-differential equations of the form

ut + trace(A(x, t)D2u)− I[x, t, u] = 0 in R
N × (0, T ) (4.15)

with A(x, t) satisfying

a0(x, t)I ≤ A(x, t) ≤ a1(x, t)I, a1(x, t) ≥ a0(x, t) > 0

satisfy Strong Maximum Principle.

We check the nondegeneracy and scaling conditions for this equation.

(N) −trace(A(x, t)(I − γp⊗ p))− C̃µ + cγ

∫

Cγ

|p · z|2µx(dz) =

−trace(A(x, t)) + γtrace(A(x, t)p ⊗ p))− C̃µ + cγ

∫

Cγ

|p · z|2µx(dz) ≥

−a1(x, t)N + a0(x, t)γ|p|
2 − C̃µ

︸ ︷︷ ︸

≫0, for γ large

+ cγ

∫

Cγ

|p · z|2µx(dz)

︸ ︷︷ ︸

≥0

.

(N ′) λ− trace(A(x, t)) − C̃µ ≥ λ− a1(x, t)N − C̃µ > 0.

The scaling properties are immediate since the nonlinearity is 1-homogeneous.
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Remark 4.2. More generally, one can consider equations of the form

ut + F (x, t,Du,D2u)− I[x, t, u] = 0 (4.16)

for which the corresponding differential operator F satisfies the nondegeneracy and scaling as-
sumptions. The nonlocal term is driven by the second order derivatives and thus Strong Maxi-
mum Principle holds.

4.4. Strong Maximum Principle for mixed differential-nonlocal terms. We consider
mixed integro-differential equations, i.e. equations for which local diffusions occur only in certain
directions and nonlocal diffusions on the orthogonal ones, and show they satisfy Strong Maximum
Principle. This is quite interesting, as the equations might be degenerate in both local or nonlocal
terms, but the overall behavior is driven by their interaction (the two diffusions cannot cancel
simultaneously).

Example 4.5. Consider the following equation where local and nonlocal diffusions are mixed up

ut −∆x2
u− Ix1

[u] = 0 in R
N × (0, T ) (4.17)

for x = (x1, x2) ∈ Rd × RN−d. The diffusion term gives the ellipticity in the direction of x2,
while the nonlocal term gives it in the direction of x1

Ix1
[u] =

∫

Rd

(u(x1 + z1, x2)− u(x)−
∂u

∂x1
(x) · z11B(z1))µx1

(dz1)

where µx1
is a Lévy measure satisfying (M) with C̃1

µ. The payoff for the Strong Maximum
Principle to hold is assumption (M c), with β > 1; then Theorem 2.4 applies.

Indeed the nondegeneracy conditions (N) and (N ′) hold, because when γ is large enough and
β > 1 the following holds

(N) −IN−d + γp2 ⊗ p2 − C̃1
µ + cγ

∫

C1
η,γ(p1)

|p1 · z1|
2µx1

(dz1) ≥

−(N − d) + γ|p1|
2 − C̃1

µ + cγ(1− η)2|p1|
2

∫

C1
η,γ(p1)

|z1|
2µx1

(dz1) ≥

−(N − d+ C̃1
µ) + γ|p1|

2 + C̃1(η)γβ−1|p1|
2 ≥ −c0 + c1γ

β−1
(
|p1|

2 + |p2|
2
)

where C̃1(η), c0 and c1 are positive constants and C1
η,γ(p1) = {z1 ∈ Rd; (1−η)|p1||z1| ≤ |p1 ·z1| ≤

1/γ}. As far as the scaling assumptions are concerned it is sufficient to see that the nonlinearity
is 1-homogeneous.

Remark 4.3. In general, linear integro-differential equations of the form

ut − a(x)Ix1
[u]− c(x)

∂2u

∂x22
= 0 in R

N × (0, T ) (4.18)

or
ut − a(x)Ix1

[u]− c(x)Ix2
[u] = 0 in R

N × (0, T ) (4.19)

satisfy Strong Maximum Principle if the corresponding Lévy measure(s) verify (M) and (M c),
with β > 1 and if a, c ≥ ζ > 0 in RN .

Indeed, F is 1-homogeneous and (N) holds:

c(x)
(
− IN−d + γp2 ⊗ p2

)
+ a(x)

(
− C̃2

µ + cγ

∫

Cη,γ(p1)
|p1 · z1|

2µx1
(dz1)

)
≥

≥ −c0(a(x) + c(x)) + c1γ
β−1

(
a(x)|p1|

2 + c(x)|p2|
2
)
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respectively

a(x)
(
− C̃1

µ + cγ

∫

Cη,γ(p1)
|p1 · z1|

2µx1
(dz1)

)
+ c(x)

(
− C̃2

µ + cγ

∫

Cη,γ(p2)
|p2 · z2|

2µx2
(dz2)

)
≥

≥ −c0(a(x) + c(x)) + c1γ
β−1

(
a(x)|p1|

2 + c(x)|p2|
2
)
.

where Cη,γ(pi) = {zi; |pi · zi| ≤ 1/γ}, for i = 1, 2.

5. Strong Comparison Principle

Let Ω ⊂ RN be a bounded, connected domain. In this section, we use Strong Maximum
Principle to prove a Strong Comparison Result of viscosity sub and supersolution for integro-
differential equations of the form (1.1)

ut + F (x, t,Du,D2u,J [x, t, u]) = 0, in Ω× (0, T ) (5.20)

with the Dirichlet boundary condition

u = ϕ on Ωc × [0, T ] (5.21)

where ϕ is a continuous function.

Let µ be a Lévy measure satisfying (MLI). Assume that the function j appearing in the
definition of J has the following property: there exists C0 > 0 such that for all x, y ∈ Ω and
|z| ≤ δ

|j(x, z)| ≤ C0|z|

|j(x, z) − j(y, z)| ≤ C0|z||x− y|.

We will need some additional assumptions on the equation, that we state in the following.
Suppose the nonlinearity F is Lipschitz continuous with respect to the variables p, X and l and
for each 0 < R < ∞ there exist a function ωR(r) → 0, as r → 0, cR a positive constant and
0 ≤ λR < ΛR such that

(H) F (y, s, q, Y, l2)− F (x, t, p,X, l1) ≤

ωR(|(x, t) − (y, s)|) + cR|p− q|+M+
R(X − Y ) + cR(l1 − l2),

for all x, y ∈ Ω, t, s ∈ [0, T ], X,Y ∈ SN (Ω) satisfying for some ε > 0
[
X 0
0 −Y

]

≤
1

ε

[
I −I
−I I

]

+

[
Z 0
0 0

]

, with Z ∈ S
N (Ω).

and |p|, |q| ≤ R and l1, l2 ∈ R, where M−
R is Pucci’s minimal operator:

M−(X) = λR
∑

λj>0

λj + ΛR

∑

λj<0

λj

with λj being the eigenvalues of X.

Theorem 5.1 (Strong Comparison Principle). Assume the Lévy measure µ satisfies assumption
(Mc) with β > 1. Let u ∈ USC(RN × [0, T ]) be a viscosity subsolution and v ∈ LSC(RN × [0, T ])
a viscosity supersolution of (1.1), with the Dirichlet boundary condition (5.21). Suppose one of
the following conditions holds:

(a) F satisfies (H) with wR and cR independent of R or
(b) u(·, t), v(·, t) ∈ Lip(Ω), ∀t ∈ [0, T ) and F satisfies (H).

If u− v attains a maximum at P0 = (x0, t0) ∈ Ω× (0, T ), then u− v is constant in C(P0).



ON THE STRONG MAXIMUM PRINCIPLE FOR PIDES 21

Proof. The proof relies on finding the equation for which w = u − v ∈ USC(RN × [0, T ]) is a
viscosity subsolution and applying strong maximum principle results for the latter. However, the
conclusion is not immediate as linearizion does not go hand in hand with the viscosity solution
theory approach and difficulties imposed by the behavior of the measure near the singularity
might appear.

1. Let w = u − v and consider φ a smooth test-function such that w − φ has a strict global
maximum at (x0, t0). We penalize the test function around the maximum point, by doubling
the variables, i.e. we consider the auxiliary function

Ψε,η(x, y, t, s) = u(x, t)− v(y, s)−
|x− y|2

ε2
−

(t− s)2

η2
− φ(x, t).

Then there exist a sequence of global maximum points (xε, yε, tη, sη) of function Ψε,η with the
properties

(xε, tη), (yε, sη) → (x0, t0) as η, ε→ 0

|xε − yε|
2

ε2
→ ε as ε→ 0

(tη − sη)
2

η2
→ 0 as η → 0

and the test-function ϕ being continuous

lim
η,ε→0

(u(xε, tη)− v(yε, sη)) = u(x0, t0)− v(x0, t0). (5.22)

In addition, there exist Xε, Yε ∈ SN such that

(aη + φt(xε, tη), pε +Dφ(xε, tη),Xε +D2φ(xε, tη)) ∈ D
2,+
u(xε, tη)

(aη, pε, Yε) ∈ D
2,−
v(yε, sη)

[
Xε +Dφ(xε, tη) 0

0 −Yε

]

≤
4

ε2

[
I −I
−I I

]

+

[
Dφ(xε, tη) 0

0 0

]

and pε, aη are defined by

pε := 2
xε − yε
ε2

and aη := 2
tη − sη
η2

.

Consider the test function

φ1ε,η(x, t) = v(yε, sη) +
|x− yε|

2

ε2
+

(t− sη)
2

η2
+ φ(x, t).

Then u − φ1ε,η has a global maximum at (xε, tη). But u is a subsolution of (1.1) and thus for
δ > 0 the following holds

φt(xε, tη) + aη + F
(
xε, tη,Dφ(xε, tη) + pε, ...

...,D2φ(xε, tη) +Xε,J
1
δ [xε, tη, φ+

|x− yε|
2

ε2
] + J 2

δ [xε, tη ,Dφ(xε, tη) + pε, u]
)
≤ 0.

Similarly, consider the test function

φ2ε,η(y, s) = u(xε, tη)−
|xε − y|2

ε2
−

(tη − s)2

η2
− φ(xε, tη).

Then v − φ2ε,η has a global minimum at (yε, sη). But v is a supersolution of (1.1) and thus:

aη + F
(
yε, sη, pε, Yε,J

1
δ [yε, sη,

|xε − y|2

ε2
] + J 2

δ [yε, sη, pε, v]
)
≥ 0.
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Subtracting the two inequalities and taking into account (H) we get that for all δ > 0

φt(xε, tη) − ω(|(xε, tη)− (yε, sη)|)− c|Dφ(xε, tη)| −M−(D2φ(xε, tη) +Xε − Yε)

− c(J 1
δ [xε, tη, φ+

|x− yε|
2

ε2
] + J 2

δ [xε, tη,Dφ(xε, tη) + pε, u])

− c(J 1
δ [yε, sη,−

|xε − y|2

ε2
]− J 2

δ [yε, sη, pε, v]) ≤ 0.

Taking into account the matrix inequality and the sublinearity of Pucci’s operator, we deduce
that

M−(D2φ(xε, tη) +Xε − Yε) ≤ M−(D2φ(xε, tη)).

On the other hand, we seek to estimate the integral terms. For this purpose denote

lu(z) := u(xε + j(xε, z), tη)− u(xε, tη)− (pε +Dφ(xε, tη)) · j(xε, z)

lv(z) := v(yε + j(yε, z), sη)− v(yε, sη)− pε · j(yε, z)

lφ(z) := φ(xε + j(xε, z), tη)− φ(xε, tη)−Dφ(xε, tη) · j(xε, z).

Fix δ′ ≫ δ and split the integrals into:

J 2
δ [xε, tη, pε +Dφ(xε, tη), u] = J 2

δ′ [xε, tη , pε +Dφ(xε, tη), u] +

∫

δ<|z|<δ′
lu(z)µ(dz)

J 2
δ [yε, sη, pε, v] = J 2

δ′ [yε, sη, pε, v] +

∫

δ<|z|<δ′
lv(z)µ(dz).

Since (xε, yε, tη, sη) is a maximum of Ψε,η we have

u(xε + j(xε, z), tη)− v(yε + j(yε, z), sη)−
|xε + j(xε, z)− yε − j(yε, z)|

2

ε2
−

−φ(xε + j(xε, z), tη) ≤ u(xε, tη)− v(yε, sη)−
|xε − yε|

2

ε2
− φ(xε, tη)

from where we get

lu(z)− lv(z) ≤ lφ(z) +
|j(xε, z)− j(yε, z)|

2

ε2

≤ lφ(z) + C2
0

|xε − yε|
2

ε2
|z|2.

This leads us to
∫

δ<|z|<δ′
lu(z)µ(dz) −

∫

δ<|z|<δ′
lv(z)µ(dz) ≤

∫

δ<|z|<δ′
lφ(z)µ(dz) +O(

|xε − yε|
2

ε2
).

Letting first δ go to zero, we get

lim sup
δ→0

(
J 2
δ [xε, tη, pε +Dφ(xε, tη), u]− J 2

δ [yε, sη, pε, v]
)
≤

≤ J 2
δ′ [xε, tη, pε +Dφ(xε, tη), u]− J 2

δ′ [yε, sη, pε, v] + J 1
δ′ [xε, tη, φ] +O(

|xε − yε|
2

ε2
)

whereas close to the origin

J 1
δ [xε, tη,

|x− yε|
2

ε2
]− J 1

δ [yε, sη,−
|xε − y|2

ε2
] =

2

ε2

∫

|z|≤δ
|j(xε, z)|

2µ(dz) → 0

J 1
δ [xε, tη, φ] ≤

∫

|z|≤δ

(
sup
|θ|<1

D2φ(xε + θj(xε, z), tη)j(xε, z) · j(xε, z)
)
µ(dz) → 0.
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Furthermore, employing (5.22) and the regularity of the test function φ, as well as the upper
semicontinuity of u− v and the continuity of the jump function j, we have

lim sup
η,ε→0

(
J 2
δ′ [xε, tη, pε +Dφ(xε, tη), u] − J 2

δ′ [yε, sη, pε, v]
)

≤

∫

|z|≥δ′
lim sup
η,ε→0

(
(u(xε + j(xε, z), tη)− v(yǫ + j(yε, z), sη))− (u(xε, tη)− v(yε, sη))

−(Dφ(xε, tη) · j(xε, z) + pε · (j(xε, z)− j(yε, z)))1B(z)
)
µ(dz)

≤

∫

|z|≥δ′

(
lim sup
η,ε→0

(u(xε + j(xε, z), tη)− v(yε + j(yε, z), sη))

− lim
η,ε→0

(u(xε, tη)− v(yε, sη))− lim
η,ε→0

Dφ(xε, tη) · j(xε, z)1B(z)
)
µ(dz)

≤

∫

|z|≥δ′

(
(u(x0 + j(x0, z), tη)− v(x0 + j(x0, z), t0))− (u(x0, t0)− v(x0, t0))

−Dφ(x0, t0) · j(x0, z)
)
µ(dz) = J2

δ′ [x0, t0,Dϕ(x0, t0), w].

Passing to the limits in the viscosity inequality we get, for all δ′ > 0 that

φt(x0, t0)− c|Dφ(x0, t0)| −M−(D2φ(x0, t0))− c(J 1
δ′ [x0, t0, φ] + J2

δ′ [x0, t0,Dϕ(x0, t0), w]) ≤ 0.

Hence, w is a viscosity subsolution of the equation

wt − c|Dw| −M−(D2w)− cJ [x, t, w] = 0 in Ω× (0, T ).

In case the sub and super-solutions are Lipschitz continuous we take R∗ = max{||Du||∞, ||Dv||∞}
and denote by c = cR∗ and w = wR∗ .

2. The equation satisfies the strong maximum principle since the nonlinearity is positively
1-homogeneous and the nondegeneracy conditions (N) and (N ′) are satisfied.

(N) −c|p| −M−(I − γp⊗ p)− cC̃µ + cγ

∫

Cη,γ

|p · j(x, z)|2µ(dz) ≥

−c|p| − λ tr(I − γp⊗ p)− (Λ− λ)
∑

λj<0

λj(I − γp⊗ p)− cC̃µ + C(η)γβ−1|p|2 ≥

−c|p| − λN + λγ|p|2 − cC̃µ + C(η)γβ−1|p|2 > 0, for γ large.

Therefore, SMaxP applies and we conclude that if u− v attains a maximum inside the domain
Ω× (0, T ) at some point (x0, t0) then u− v is constant in Ω× [0, t0]. �

Remark 5.1. If Pucci’s operator M− appearing in hypothesis (H) is nondegenerate, i.e. λR >
0, then one can consider any Lévy measure µ, not necessarily satisfying (Mc).

Example 5.1. The linear PIDE

ut −∆u− I[u] = f(x) in Ω

satisfies Strong Comparison, as (H) holds for the corresponding nonlinearity.

Example 5.2. On the other hand, for the equation

ut + |Du|m − I[u] = f(x) in Ω

condition (H) holds if the sub and super-solutions are Lipschitz continuous in space.
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Indeed, for u subsolution and v supersolution

(u− v)t + |Du|m − |Dv|m − I[u− v] ≥ (u− v)t +m|Dv|m−2(Du−Dv)− I[u− v]

≥ (u− v)t − cD(u− v)− I[u− v].

6. Appendix

We present in the following some useful properties of the nonlocal terms. For a given function
v defined on RN × [0, T ], consider the integral operators

I[x, t, v] =

∫

D
(v(x+ z, t)− v(x, t) −Dv(x, t) · z1B(z))µx(dz),

and

J [x, t, v] =

∫

D
(v(x+ j(x, z), t) − v(x, t) −Dv(x, t) · j(x, z)1B(z))µ(dz),

where the integral is taken over a domain D ⊆ RN .

Lemma 6.1. Any smooth function v(x, t) = eϕ(x,t), satisfies the integral inequality

I[x, t, v] ≥ v · I[x, t, ϕ],∀(x, t) ∈ R
N × [0, T ]

Proof. The inequality is immediate from ey − 1 ≥ y, ∀y ∈ R. More precisely

I[x, t, v] =

∫

D

(
eϕ(x+z,t) − eϕ(x,t) − eϕ(x,t)Dϕ(x, t) · z1B(z)

)
µx(dz)

= eϕ(x,t)
∫

D

(
eϕ(x+z,t)−ϕ(x,t) − 1−Dϕ(x, t) · z1B(z)

)
µx(dz)

≥ eϕ(x,t)
∫

D

(
ϕ(x+ z, t)− ϕ(x, t) −Dϕ(x, t) · z1B(z)

)
µx(dz).

�

We straighten the convex inequality to the following:

Lemma 6.2. Let v be a smooth function of the form v(x, t) = eϕ(x,t). Then for any δ ≥ 0 there
exists a constant c = 1

2e
−δ such that v satisfies

I[x, t, v] ≥ eϕ(x,t) · [I[x, t, ϕ] + c

∫

D
(ϕ(x+ z, t)− ϕ(x, t))2µx(dz)],∀(x, t) ∈ R

N × [0, T ],

where the integral is taken over the domain D = {ϕ(x + z)− ϕ(x) ≥ −δ}.

Proof. The proof is direct application of the exponential inequality

ey − 1 ≥ y + cy2,∀y ≥ −δ.

We now insert the previous inequality with y = ϕ(x + z, t) − ϕ(x, t) in the nonlocal term and
obtain

I[x, t, eϕ] = eϕ(x,t)
∫

D

(
eϕ(x+z,t)−ϕ(x,t) − 1−Dϕ(x, t) · z1B(z)

)
µx(dz)

≥ eϕ(x,t)[

∫

D

(
ϕ(x+ z, t)− ϕ(x, t)−Dϕ(x, t) · z1B(z)

)
µx(dz)

+c

∫

D

(
(ϕ(x+ z, t)− ϕ(x, t)

)2
µx(dz)].

�
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Similar results hold for Lévy-Itô operators.

Lemma 6.3. The function v(x, t) = eϕ(x,t), satisfies the integral inequality

J [x, t, v] ≥ v · J [x, t, ϕ],∀(x, t) ∈ R
N × [0, T ].

Lemma 6.4. For any δ ≥ 0 there exists a constant c = 1
2e

−δ such that v = eϕ satisfies

J [x, t, v] ≥ eϕ(x,t) · [J [x, t, ϕ] + c

∫

D
(ϕ(x+ j(x, z), t) − ϕ(x, t))2µ(dz)],∀(x, t) ∈ R

N × [0, T ],

where the integral is taken over the domain D = {ϕ(x+ j(x, z)) − ϕ(x) ≥ −δ}.
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Boston, Boston, MA, 2001.


	1. Introduction
	2. Strong Maximum Principle for general nonlocal operators
	2.1. Horizontal propagation of maxima coming from translations of measure supports
	2.2. Horizontal propagation of maxima under nondegeneracy conditions
	2.3. Local vertical propagation of maxima
	2.4. Strong Maximum Principle

	3. Strong Maximum Principle for Lévy-Itô operators
	4. Examples
	4.1. Horizontal propagation of maxima coming from translations of measure supports
	4.2. Strong Maximum Principle driven by the nonlocal term under nondegeneracy conditions.
	4.3. Strong Maximum Principle coming from local diffusion terms
	4.4. Strong Maximum Principle for mixed differential-nonlocal terms

	5. Strong Comparison Principle
	6. Appendix
	References

