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CROSSED PRODUCTS OF CALABI-YAU ALGEBRAS BY FINITE GROUPS

PATRICK LE MEUR

Abstract. Let a finite group G act on a differential graded Calabi-Yau algebra A over a field whose character-
istic does not divide the order of G. This note studies when the crossed-product of A by G is still Calabi-Yau.
Under a compatibility condition between the action of G on A and the Calabi-Yau structure of A, it is proved
that this is indeed the case. Similar results are proved for general constructions of Calabi-Yau algebras such as
deformed Calabi-Yau completions and Ginzburg algebras.

Introduction

Ginzburg introduced Calabi-Yau algebras in [11] as non commutative versions of coordinate rings of Calabi-
Yau varieties. They have been object of much interest recently. For instance, in the study of Donaldson-Thomas
invariants, Calabi-Yau algebras are associated to brane tilings ([17]). The algebras considered there are Jacobian
algebras, that is, the 0-th cohomology algebra of Ginzburg algebras A(Q,W ) of quivers with potentials (Q,W )
([11, 3.6]). The Ginzburg algebras were proved to be Calabi-Yau in [15]. Moreover, in representation theory,
Calabi-Yau algebras satisfying some finiteness condition are used to construct the generalised cluster categories
[2] which serve to categorify cluster algebras [10]. Finally, it is proved in [16] that the mutation of quivers
with potentials in the sense of [8] define equivalences between the derived categories of the associated Ginzburg
algebras. Since the definition of Calabi-Yau algebras was given in [11], many known algebras have been proved
to be Calabi Yau: The algebra C[x1, . . . , xn] of polynomials in n variables is Calabi-Yau of dimension n; if X is
a smooth affine variety with trivial canonical sheaf, then C[X ] is Calabi-Yau of dimension dimX (see [11, 3.2]);
also the Weyl algebra An = C[x1, . . . , xn,

∂
∂x1

, . . . , ∂
∂xn

] is Calabi-Yau of dimension 2n (see [3]); and, finally, the

Yang-Mills algebras ([6]) are Calabi-Yau of dimension 3 ([12]).
Let k be a field and A be a differential graded algebra over k (dg algebra, for short). The enveloping algebra

of A is the algebra Ae = A⊗Aop. The definition of the Calabi-Yau property is expressed in terms of the duality

RHomAe(−, A⊗A) : per(Ae) → per((Ae)op)

denoted by M 7→ M∨, for simplicity. Here, RHomAe(−, A ⊗ A) is the total derived functor, and per(Ae) is
the perfect derived category of Ae, that is, the full triangulated subcategory of the derived category of right
dg Ae-modules containing Ae and stable under shifts in both directions and under taking direct summands.
Following [11], the dg algebra A is called Calabi-Yau of dimension d if:

(1) A is homologically smooth, that is, A ∈ per(Ae), and
(2) there exists an isomorphism f : A∨[d] → A in the derived category of left dg Ae-modules such that

f∨[d] = f .

In the last equality, right dg (Ae)op-modules (equivalently, left dg Ae-modules) are identified with right dg Ae-
modules using the canonical anti-involution of Ae. Recall that if A is an algebra concentrated in degree 0 (with
zero differential) then condition (1) above means that the A-bimodule AAA has a resolution of finite length by
finitely generated projective A-bimodules, and condition (2) gives the following isomorphisms of A-bimodules:

Hi(A;A⊗A)
def
= ExtiAe(A,A⊗A) ≃

{
0 if i 6= d,
A if i = d

where Hi(A;−) denotes the Hochschild cohomology of A. For a Calabi-Yau algebra A, the complex A∨ plays
an important rôle. If θA → A∨ is a cofibrant resolution (of left dg Ae-bimodule), then θA is called the inverse
dualizing complex of A ([21]). It is unique up to quasi-isomorphism.

This text studies the actions of finite groups on dg Calabi-Yau algebras. The motivation for this work is
the following. Let X be a smooth affine Calabi-Yau variety and G be a finite group acting on X . Then, the
quotient variety X/G has singularities (if G 6= 1), G acts on C[X ] and C[X/G] is the algebra of invariants
C[X ]G. A crepant resolution of X/G is a resolution of singularities f : Y → X/G such that f∗ωX/G ≃ ωY

(which implies that Y is itself Calabi-Yau). Such resolutions do not always exist and are not always unique.
But it is conjectured by Bondal and Orlov that given crepant resolutions Y1 → X/G and Y2 → X/G, there exists
an equivalence Db(CohY1) ≃ Db(CohY2). In some cases, these resolutions, are related to the crossed-product
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algebra (or, skew-group algebra) C[X ]⋊ G. For example, if X = V is a vector space and G <
finite

SL(V ), then

C[X ] is the symmetric algebra S(V ) and S(V ) ⋊ G is a non commutative crepant resolution of V/G in the
sense of [22]; also, if V = C3, then S(V )⋊G is Morita equivalent to the 0-th cohomology algebra H0(A(Q,W ))
for some quiver with potential (Q,W ), and, for any crepant resolution Y → C3/G, there is an equivalence
Db(S(V )⋊G) ≃ Db(CohY ) ([11, 4.4] and [5]).

This motivates the following question:

(Q): Let A be a dg Calabi-Yau algebra over a field k and G be a finite group acting on A by dg automorphisms
such that car(k) does not divide ♯G. Is the crossed-product A⋊G a Calabi-Yau algebra?

Recall the following result closely related to (Q): Given an algebra A (concentrated in degree 0), if A has the

Van den Bergh duality (that is, ExtiAe(A,A⊗A) is 0 is i 6= d and is an invertible A-bimodule if i = d), then so
does A ⋊ G ([1, Prop. 7.1], see also [9] for a generalisation to crossed-products of algebras by Hopf algebras).
The main result of this text is the following. Recall that the definition of the Calabi-Yau property involves a
quasi-isomorphism f : θA[d] ≃ A∨[d] → A.

Theorem 1. Let k be a field and A be a dg algebra over k. Let G be a finite group whose order is not divisible
by cark and assume that G acts on A by dg automorphisms.

(1) Up to an adequate choice of the inverse dualizing complex θA of A, the group G acts on θA by automor-
phisms of dg modules and the inverse dualizing complex of A⋊G is:

θA⋊G = θA ⋊G .

(2) If A is Calabi-Yau of dimension d and if the quasi-isomorphism f : θA[d] ≃ A∨[d] → A is G-equivariant,
then A⋊G is Calabi-Yau of dimension d.

When A is concentrated in degree 0, part (1) was proved in [9, Thm. 17, Ex. 21] and it is easy to check
that part (2) follows from the same result (see also [1]). Unfortunately, the proofs in [1] and [9] are based
on Stefan’s spectral sequence on Hochschild cohomology for Hopf-Galois extensions ([18]) so their proof cannot
apply directly to dg algebras not concentrated in degree 0 (for instance, all Calabi-Yau algebras used to construct
generalised cluster categories). Therefore, in order to prove the above theorem, different techniques are needed.
Recently, Witherspoon introduced methods to study the Hochschild cohomology ring of the crossed-products of
algebras by finite groups ([23]). It appears that the techniques introduced there can be adapted to dg algebras
and applied to prove Theorem 1.

The text is organised as follows. Section 1 fixes notation and all the definitions. Section 2 proves Theorem 1.
Section 3 studies (Q) for dg Calabi-Yau algebras arising from a general construction by Keller and called
deformed Calabi-Yau completion ([15]): Given a homologically smooth dg algebra A, an integer d > 3 and
c ∈ HHd−2(A) (the Hochschild homology of A with coefficients in A), the construction defines a dg Calabi-Yau
algebra of dimension d and denoted by Πd(A, c). This section proves that if G acts on A and if c ∈ HHd−2(A)

G,
then G acts naturally on Πd(A, c) and Πd(A, c)⋊G is itself a deformed Calabi-Yau completion and, therefore, is
Calabi-Yau. Section 4 applies the results of Section 3 to crossed products of Ginzburg algebras by finite groups.
In particular, sufficient conditions are given for the crossed-product of a Ginzburg algebra by a finite group to
have a derived category equivalent to that of a Ginzburg algebra. Finally, Section 5 comments the equivariance
hypothesis of Theorem 1, it appears that this hypothesis is of geometric nature.

1. Definitions and notation

Throughout the text, k will denote a field.

1.1. Differential graded algebras and their modules. Tensor product over k is denoted by ⊗. The reader
is referred to [14] for a background on differential graded algebras (dg algebras, for short). All dg algebras
are over k and with differential of degree 1. Let A be a dg algebra. Its opposite algebra has A as underlying
complex of vector spaces and its product map is defined by Aop ⊗ Aop → Aop, a ⊗ b 7→ (−1)deg(a)deg(b)ba, for
homogeneous a, b ∈ A (and ba is the product in A). If B is another dg algebra, then the graded vector space

A ⊗ B is a dg algebra with product defined by (a ⊗ b).(a′ ⊗ b′) = (−1)deg(a′)deg(b)aa′ ⊗ bb′ and differential
defined by d(a ⊗ b) = d(a) ⊗ b + (−1)deg(a)a ⊗ d(b), for homogeneous a, a′ ∈ A and b, b′ ∈ B. In particular,
the enveloping algebra of A is the dg algebra Ae = A ⊗ Aop. Note that the map Ae → (Ae)op defined by
a⊗ b 7→ (−1)deg(a)deg(b)b⊗ a, for homogeneous a, b ∈ A, is an isomorphism of dg algebras.

The category of (right) differential graded (dg) A-modules is denoted by C(A): Its objects are the right dg A-
modules (with differential of degree 1) and its morphisms are the homogeneous of degree 0 morphisms of graded
A-modules commuting with the differentials. The suspension in C(A) is denoted by M 7→ M [1]. For convenience,
C(Aop) will be considered as the category of left A-modules: If M is a right dg Aop-module and a ∈ A, m ∈ M
are homogeneous, then a.m is defined as (−1)deg(a)deg(m)m.a. Similarly, C(A ⊗ Bop) will be considered as the
category of dg B − A-bimodules (or, simply, A-bimodules, if A = B): If M is a right dg A ⊗ Bop-module and
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a ∈ A, b ∈ B, m ∈ M are homogeneous, then b.m.a is defined as (−1)deg(b).(deg(m)+deg(a))m.(a⊗ b). Note that
the canonical isomorphism Ae → (Ae)op induces an isomorphism between C(Ae) and C((Ae)op).

For example, A is a dg Ae-module for the action defined by x.(a ⊗ b) = (−1)deg(b)(deg(a)+deg(x))bxa for
homogeneous x, a, b ∈ A. Therefore, it is also a left dg Ae-module, for the action defined by (a ⊗ b).x =
(−1)deg(b)deg(x)axb. Also, the product in Ae endows A⊗A with a structure of Ae −Ae-bimodule.

Let L ∈ C(A) and M ∈ C(A⊗Bop). Then HomA(L,M) will denote the left dg B-module defined as follows:
Its component of degree n ∈ Z is the vector space of homogeneous of degree n morphisms f : L → M of
graded A-modules; the differential of f is dM ◦ f − (−1)nf ◦ dL (if dL and dM denote the differentials of L
and M , respectively); and the action of b ∈ B on f is b.f : x 7→ b.f(x).1. If M ∈ C(A ⊗ Bop) is fixed, this
defines the functor HomA(−,M) : C(A) → C(Bop). The associated right total derived functor is denoted by
RHomA(−,M) : D(A) → D(Bop). Recall that it may be computed on L ∈ D(A) as follows: Take a cofibrant
resolution X → L in C(A), then RHomA(L,M) = HomA(X,M).

1.2. Duality for bimodules, inverse dualizing complex and the Calabi-Yau property. Let A be dg
algebra. The total right derived functor RHomAe(−, A ⊗ A) : D(Ae) → D((Ae)op) induces, by restriction, a
duality (see [11, 3.2])

RHomAe(−, A⊗A) : per(Ae) → per((Ae)op) .

For convenience, this duality will sometimes be denoted by M 7→ M∨.
Let X → A be a cofibrant resolution in C(Ae). Then RHomAe(A,A ⊗ A) = HomAe(X,A ⊗ A). Let

θA → RHomAe(A,A ⊗ A) be a cofibrant resolution in C((Ae)op). Then θA is unique up to quasi-isomorphism
and is called the inverse dualizing complex of A ([20]).

Let d be an integer. Following [11, 3.2.3], the dg algebra A is called Calabi-Yau of dimension d if the two
following conditions hold:

(1) A is homologically smooth, that is, A ∈ per(Ae),
(2) there is an isomorphism f : RHomAe(A,A⊗A)[d] → A in D((Ae)op) such that RHom(Ae)op(f,A⊗A)[d] =

f .

In the last equality, left and right dg Ae-modules are identified using the canonical isomorphism Ae → (Ae)op,
and A∨∨ is identified with A (because A ∈ per(Ae)), so that RHom(Ae)op(f,A ⊗ A) is indeed a morphism
A∨[d] → A in D((Ae)op).

1.3. Crossed-products. Let G be a finite group and A be a dg algebra. As usual, conjugation of an element
g ∈ G by an element h ∈ G is denoted by hg = hgh−1. An action of G on A (by dg automorphisms) is an action
(g, a) 7→ ga of G on A by automorphisms of algebras such that:

- ga is homogeneous and deg( ga) = deg(a) if a ∈ A is homogeneous,
- the differential d of A verifies d( ga) = gd(a),

for a ∈ A and g ∈ G. This defines the crossed-product (or skew-group) dg algebra A ⋊ G as follows: As a
complex of vector spaces it equals A ⊗ kG where kG is concentrated in degree 0; the product is defined by
(a⊗ g) · (b⊗ h) = a gb⊗ gh; and the differential is defined by d(a⊗ g) = d(a)⊗ g, for a, b ∈ A and g, h ∈ G. As
usual, A and kG are considered as subalgebras of A ⋊ G and a ⊗ g is written ag, for short. Hence, ga = gag,
for a ∈ A and g ∈ G.

2. The main theorem

This section proves Theorem 1. The first paragraphs introduce the needed material for the proof, it is inspired
from the work of Witherspoon in [23].

2.1. The dg algebra ∆. Let g ∈ G. Denote by Ag = gA the subcomplex of vector spaces of Λ equal to
{ag | g ∈ G} = {ga | g ∈ G}. Then Ag = gA is a dg Ae-submodule of Λ and A ≃ Ag both in C(A) and C(Aop)
(but not in C(Ae)). Note that Λ =

⊕
g∈G

Ag in C((Ae)op ⊗Ae).

Let g, h ∈ G. Then, Ag ⊗ hA is a dg Ae-sub-bimodule of Λ ⊗ Λ. There are obvious isomorphisms A ⊗ A ≃
Ag ⊗ hA in C(Ae) and C((Ae)op). Note that Λ ⊗ Λ =

⊕
g,h∈G

Ag ⊗ hA both in C(Ae) and in C((Ae)op). Besides,

the product in Λe induces a map (Ag ⊗ hA)⊗ (Ag′ ⊗ h′A) → Agg′ ⊗ h′hA, for all g, g′, h, h′ ∈ G. In particular,⊕
g∈G

Ag ⊗ g−1A is a dg subalgebra of Λe. In the sequel, it will be denoted by ∆:

∆ =
⊕

g∈G

Ag ⊗Ag−1.

Note that Ae is a dg subalgebra of ∆.
The dg algebra ∆ has the following simple interpretation: The group G acts diagonally on the dg algebra

Ae: g(a⊗ b) = ga⊗ gb, for a, b ∈ A and g ∈ G. For this action, the map ∆ → Ae ⋊G, ag⊗ g−1b 7→ (a⊗ b).g is
an isomorphism of dg algebras. The dg ∆-modules also have a similar interpretation. By definition, an action
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of G on M ∈ C(Ae) compatible with the action of Ae is an action G ×M → M, (g,m) 7→ gm of G on M by
automorphism of complexes of vector spaces such that g(m.(a⊗ b)) = gm.( ga⊗ gb), for a, b ∈ A, m ∈,M and
g ∈ G. Then, the dg ∆-modules are precisely the dg Ae-modules M endowed with a compatible action of G

(with m.(g ⊗ g−1) = g−1

m, for m ∈ M and g ∈ G). Similarly, one defines the notion of compatible action of
G on left dg Ae-modules, and left dg ∆-modules are precisely left dg Ae-modules endowed with a compatible
action of G (with (g ⊗ g−1).m = gm, for m ∈ M and g ∈ G).

In the sequel, the following collection {Mg}g∈G of dg Ae − ∆-bimodules will be useful. Let g ∈ G. The
complex of vector spaces

⊕
h∈G

Ah⊗ h−1gA is a dg Ae −∆-sub-bimodule of Λe. It will be denoted by Mg:

Mg =
⊕

h∈G

Ah⊗ h−1gA.

The following lemma collects some information on these bimodules. Here and after, products are computed in
Λe, unless otherwise specified.

Lemma. Let t ∈ G.

(a) There is an isomorphism in C(∆):

∆ −→ Mt

u 7−→ (1⊗ t).u .

(b) Λe =
⊕
g∈G

Mg in C((Ae)op ⊗∆).

(c) Let g ∈ G. Multiplication by g ⊗ g−1 induces an isomorphism in C(∆):

Mt −→ Mgtg−1

u 7−→ (g ⊗ g−1).u .

(d) There is an isomorphism in C((Ae)op ⊗∆):

HomAe(∆, A⊗ tA) −→ Mt

ϕ 7−→
∑
g∈G

ϕ(g−1 ⊗ g).(g ⊗ g−1) .

Proof. Only (d) needs details. The given map is a morphism in C((Ae)op ⊗ ∆). One easily checks that the
following map is its inverse:

Mt −→ HomAe(∆, A⊗ tA)⊕
g∈G

Ag ⊗ g−1tA ∋ (mg)g 7−→
(
ag−1 ⊗ gb 7→ mg.(ag

−1 ⊗ gb)
)

,

where, on the right-hand side, a, b ∈ A and g ∈ G. �

2.2. Extensions of scalars between C(Ae), C(∆) and C(Λe). Recall ([14, 3.8]) the following adjunctions:

- − ⊗
Ae

Λe : C(Ae) → C(Λe) is left adjoint to the restriction-of-scalars functor,

- − ⊗
Ae

∆: C(Ae) → C(∆) is left adjoint to the restriction-scalars-functor,

- −⊗
∆
Λe : C(∆) → C(Λe) is left adjoint to the restriction-of-scalars functor,

- HomAe(∆,−) : C(Ae) → C(∆) is right adjoint to the restriction-of-scalars functor.

Of course, similar adjunctions hold true for left dg modules. In particular, Λe⊗
∆
− : C(∆op) → C((Λe)op) has the

following well-known interpretation that will be used later. Let M be a left dg Ae-module with a compatible
action of G. Equivalently (2.1), it is naturally a left dg ∆-module. Then, the crossed-product M ⋊ G of M
by G is the left dg Λe-module constructed as follows: As a complex of vector spaces, it is equal to M ⊗ kG
(with deg(m ⊗ g) = deg(m), for g ∈ G and homogeneous m); and the action of Λe on M ⋊ G is defined by
(a⊗ b).(m⊗ g) = ((a⊗ gb).m)⊗ g and (h⊗ k).(m⊗ g) = hm⊗hgk, for a, b ∈ A, m ∈ M and g, h, k ∈ G. Then,
M ⋊G ≃ Λe ⊗

∆
M in C((Λe)op). Actually, the two following maps are isomorphisms in C((Λe)op) and inverse to

each other:
M ⋊G −→ Λe ⊗

∆
M

m⊗ g 7−→ (1⊗ g)⊗m , and
Λe ⊗

∆
M −→ M ⋊G

(ag ⊗ hb)⊗m 7−→ ((a⊗ ghb). gm)⊗ gh ,

where a, b ∈ A, m ∈ M and g, h ∈ G.
The adjunctions recalled at the beginning of the paragraph satisfy the following properties that will be

useful later. Notice that (d) was first proved in [4, Lem. 3.3] for group algebras and in [23, Lem. 3.5] for
crossed-products of algebras. The proof for is recalled for convenience.

Lemma. Denote by N the order of G.
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(a) There are isomorphisms {
∆ ≃ (A⊗A)N in C(Ae), and
Λ ⊗ Λ ≃ ∆N in C(∆).

(b) The following functors preserve quasi-isomorphisms and componentwise surjective morphisms:
- HomAe(∆,−) : C(Ae) → C(∆),
- − ⊗

Ae
Λe : C(Ae) → C(Λe),

- −⊗
∆
Λe : C(∆) → C(Λe).

(c) The following functors preserve cofibrant objects and cofibrant resolutions:
- − ⊗

Ae
∆: C(Ae) → C(∆),

- −⊗
∆
Λe : C(∆) → C(Λe),

- the restriction-of-scalars functor C(∆) → C(Ae).
(d) The following map is an isomorphism in C(Λe):

A⊗
∆
Λe −→ Λ

a⊗ (x ⊗ y) 7−→ a.(x ⊗ y) = (−1)deg(y).(deg(x)+deg(a))yax

(defined on homogeneous a ∈ A and x, y ∈ Λ).
(e) Let M ∈ C(∆), then:

- M is a direct summand of M ⊗
∆
Λe in C(∆),

- M is a direct summand of M ⊗
Ae

∆ in C(∆) if, moreover, N ∈ k×,

- if M is cofibrant in C(∆), then so is it in C(Ae). The converse holds true if N ∈ k×.

Proof. (a) follows directly from the discussion made in 2.1.
(b) follows from (a). Notice that all restriction-of-scalars functors preserve quasi-isomorphisms and compo-

nentwise surjective morphisms.
(c) Recall the following basic fact on adjunctions: If B and C are dg algebras and F1 : C(B) → C(C) and

F2 : C(C) → C(B) are additive functors such that (F1, F2) is adjoint and F2 preserves morphisms which are both
quasi-isomorphisms and componentwise surjective, then F1 preserves cofibrant objects. This and (b) show that
(c) holds true.

(d) The given map is a morphism in C(Λe). It is straightforward to check that the following map is its inverse:

Λ −→ A⊗
∆
Λe

ag 7−→ a⊗ (g ⊗ 1) .

(e) Recall that Mt =
⊕
g∈G

Ag⊗g−1tA ∈ C((Ae)op⊗∆) was defined in 2.1. Then, both M1 and M 6=1 :=
⊕
t6=1

Mt

are dg ∆-sub-bimodules of Λ⊗ Λ. Therefore, Λ ⊗ Λ = M1 ⊕M 6=1 and M1 = ∆ in C(∆). Thus, M = M ⊗
∆
M1

is a direct summand of M ⊗
∆
Λe in C(∆).

Next, assume that N ∈ k×. The functor − ⊗
Ae

∆: C(Ae) → C(∆) is left adjoint to the restriction-of-scalars

functor and the counit of this adjunction evaluates at M as:

ηM : M ⊗
Ae

∆ −→ M

m⊗ u 7−→ mu
in C(∆).

On the other hand, there is a well-defined morphism in C(∆):

M −→ M ⊗
Ae

∆

m 7−→ 1
♯G

∑
g∈G

(
m.(g ⊗ g−1)

)
⊗ (g−1 ⊗ g) .

A simple verification shows that it is right inverse to ηM . Thus, M is a direct summand of M ⊗
Ae

∆ in C(∆).

Finally, if M is cofibrant in C(∆), then so is it in C(Ae), because of (c). Conversely, if M is cofibrant in C(Ae)
and ♯G ∈ k×, then M ⊗

Ae
∆ is cofibrant in C(∆), because of (c), and it admits M as a direct summand in C(∆),

as proved before. Thus, M is cofibrant in C(∆). �

The last assertion in (e) has the following practical consequence, where A is a dg algebra acted on by a
finite group G whose order is invertible in k: Cofibrant objects in C(∆) are precisely cofibrant objects in C(Ae)
endowed with a compatible action of G; in particular, given M ∈ C(∆), the cofibrant resolutions of M in C(∆)
are precisely the cofibrant resolutions P → M in C(Ae) which are G-equivariant, where P is endowed with a
compatible action of G. Of course, if ♯G = 0 in k, then a cofibrant object in C(Ae) endowed with a compatible
action of G needs not be cofibrant in C(∆).
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2.3. Interaction between duality and extension of scalars. This paragraph is a key-step towards a com-
parison of the inverse dualizing complexes of A and Λ. For this purpose, it is convenient to introduce a functor
C(∆) → C(∆op) induced by HomAe(−, A⊗A) : C(Ae) → C((Ae)op).

Let M ∈ C(∆). Then, the left dg Ae-module structure on HomAe(M,A⊗A) arises from the action of Ae on
A⊗A on the left. Let g ∈ G and f ∈ HomAe(M,A⊗A). Let gf : M → A⊗A be the map defined by:

(∀m ∈ M) ( gf)(m) = (g ⊗ g−1).f(m.(g ⊗ g−1)).(g−1 ⊗ g).

This defines an action of G on HomAe(M,A ⊗ A) compatible with the structure of left dg Ae-module. In
other words, the structure of left dg Ae-module on HomAe(M,A ⊗ A) extends to a structure of left dg ∆-
module by setting (g ⊗ g−1).f = gf for g ∈ G and f ∈ HomAe(M,A ⊗ A). This defines an additive functor
HomAe(−, A⊗A) : C(∆) → C(∆op) such that the following diagram commutes:

(D1) C(∆)
HomAe (−,A⊗A)

//

��

C(∆op)

��

C(Ae)
HomAe (−,A⊗A)

// C((Ae)op)

where the vertical arrows are the restriction-of-scalars functors, they preserve quasi-isomorphisms and cofibrant
resolutions (2.2). Therefore, the preceding diagram yields a commutative diagram (up to isomorphism of
functors), by taking right total derived functors:

(D2) D(∆)
RHomAe (−,A⊗A)

//

��

D(∆op)

��

D(Ae)
RHomAe (−,A⊗A)

// D((Ae)op)

where the notation RHomAe(−, A⊗A) : D(∆) → D(∆op) is adopted for the right total derived functor of
HomAe(−, A⊗A) : C(∆) → C(∆op). This notation is justified by (D1).

The following result makes a comparison between RHomAe(−, A⊗A) : D(∆) → D(∆op) and RHomΛe(−,Λ⊗
Λ): D(Λe) → D((Λe)op), using extensions of scalars.

Lemma. The following diagram commutes up to isomorphism of functors:

(D3) D(∆)
RHomAe (−,A⊗A)

//

−⊗
∆
Λe

��

D(∆op)

Λe⊗
∆
−

��

D(Λe)
RHomΛe (−,Λ⊗Λ)

// D((Λe)op) .

Proof. Recall (2.2) that −⊗
∆
Λe : C(∆) → C(Λe) and Λe ⊗

∆
− : C(∆op) → C((Λe)op) preserve quasi-isomorphisms

and cofibrant resolutions. Therefore, the vertical arrows of the diagram make sense and, in order to prove the
lemma, it suffices to prove that the following diagram commutes up to an isomorphism of functors:

(D4) C(∆)
HomAe (−,A⊗A)

//

−⊗
∆
Λe

��

C(∆op)

Λe⊗
∆
−

��

C(Λe)
HomΛe (−,Λ⊗Λ)

// C((Λe)op) .

Let M ∈ C(∆). The construction of a functorial isomorphism HomΛe(M⊗
∆
Λe,Λ⊗Λ) → Λe⊗

∆
HomAe(M,A⊗A)

will be made in three steps:

(a) First, construct an isomorphism HomΛe(M ⊗
∆
Λe,Λ⊗Λ) →

⊕
g∈G

HomAe(M,A⊗ gA) in C((Ae)op), using the

tools introduced in 2.1 and 2.2.
(b) Then, endow

⊕
g∈G

HomAe(M,A ⊗ gA) with a structure of left dg Λe-module such that the isomorphism of

the first step actually lies in C((Λe)op).
(c) Finally, construct an isomorphism

⊕
g∈G

HomAe(M,A⊗ gA) → Λe ⊗
∆
HomAe(M,A⊗A) in C((Λe)op).

(a) By adjunction, the following map is an isomorphism in C((Λe)op) and functorial in M :

(1)
HomΛe(M ⊗

∆
Λe,Λ⊗ Λ) −→ Hom∆(M,Λ⊗ Λ)

f 7−→ (m 7→ f(m⊗ (1⊗ 1))) .
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Moreover, Λ⊗ Λ =
⊕
g∈G

Mg in C((Ae)op ⊗∆) (2.1, (b)), therefore:

(2) Hom∆(M,Λ⊗ Λ) =
⊕

g∈G

Hom∆(M,Mg) in C((Ae)op).

On the other hand, 2.1, (d), yields an isomorphism in C((Ae)op), for every g ∈ G:

(3)
Hom∆(M,Mg) −→ Hom∆(M,HomAe(∆, A⊗ gA))

f 7−→
(
m 7→

(
at−1 ⊗ tb 7→ (projection of f(m) on At⊗ t−1gA).at−1 ⊗ tb

))
,

where, on the right-hand side, a, b ∈ A and t ∈ G. Finally, by adjunction, the following map is an isomorphism
in C((Ae)op) and functorial in M , for every g ∈ G:

(4)
Hom∆(M,HomAe(∆, A⊗ gA)) −→ HomAe(M,A⊗ gA)

f 7−→ (m 7→ (f(m))(1 ⊗ 1)) .

Note that (2) and (3) are functorial in M . Putting together (1), (2), (3) and (4) yields the following functorial
isomorphism in C((Ae)op):

(5)

HomΛe(M ⊗
∆
Λe,Λ⊗ Λ) −→

⊕
g∈G

HomAe(M,A⊗ gA)

f 7−→
∑
g∈G

(m 7→ projection of f(m⊗ (1⊗ 1)) on A⊗ gA) .

This achieves the first step.
(b) The second step consists in extending the action of Ae on

⊕
g∈G

HomAe(M,A ⊗ gA) to an action of

Λe, such that (4) is an isomorphism in C((Λe)op). For this purpose, note that the compatible action of G
on HomAe(M,A ⊗ A) ∈ C((Ae)op) may be extended to HomAe(M,Λ ⊗ Λ) in a similar way: If g ∈ G and
ϕ ∈ HomAe(M,Λ ⊗ Λ), then let gϕ be the map M → Λ ⊗ Λ, m 7→ (g ⊗ g−1).ϕ(m.(g ⊗ g−1)).(g−1 ⊗ g). It
is easy to check that this defines an action (g, ϕ) 7→ gϕ on HomAe(M,Λ ⊗ Λ) compatible with the action of
Ae (but not with that of Λe) on the left. Therefore, the subspace HomAe(M,A ⊗ A) of HomAe(M,Λ ⊗ Λ) is
stabilized by this action; and the action of g ∈ G maps the subspace HomAe(M,Ah ⊗ kA) to the subspace
HomAe(M,A gh ⊗ gkA), for h, k ∈ G. In order to extend the left action of Ae on

⊕
g∈G

HomAe(M,A ⊗ gA) to

a left action of Λe, proceed as follows. Let t, g ∈ G and ϕ ∈ HomAe(M,A ⊗ gA). Denote by (1 ⊗ t) ∗ ϕ the
following map:

(1⊗ t) ∗ ϕ : M −→ A⊗ gtA
m 7−→ (1 ⊗ t).ϕ(m) .

It obviously lies in HomAe(M,A⊗ gtA). Denote by (t⊗ 1) ∗ ϕ the following map:

(t⊗ 1) ∗ ϕ : M −→ A⊗ gtA
m 7−→ (1⊗ t).( tϕ)(m) .

It obviously lies in HomAe(M,A ⊗ tgA). Finally, let (a ⊗ b) ∗ ϕ be (a ⊗ b).ϕ, for a, b ∈ A. It is then easy to
check that the assignment:

(at⊗ sb) ∗ ϕ := (a⊗ b) ∗ [(t⊗ 1) ∗ ((1⊗ s) ∗ ϕ)] , a, b ∈ A, s, t ∈ G

extends the action of Ae on
⊕
g∈G

HomAe(M,A⊗ gA) on the left to an action of Λe. Also easy is the verification

that (4) then becomes an isomorphism in C((Λe)op). This finishes the second step.
(c) Now, proceed the third step. The following map is certainly an isomorphism in C((Λe)op) and functorial

in M :

(6)

⊕
g∈G

HomAe(M,A⊗ gA) −→ Λe ⊗
∆
HomAe(M,A⊗A)

∑
g∈G

ϕg 7−→
∑
g∈G

(1⊗ g)⊗
(
(1⊗ g−1) ∗ ϕg

)
.

Putting together (4) and (6) shows that (D4) commutes up to an isomorphism of functors. This proves the
lemma. �

2.4. Main theorem. All the necessary tools have been introduced in order to prove the main result of the
text. Recall that crossed-products of left dg Ae-modules acted on compatibly by G were defined in 2.2 and that
this operation is precisely the extension of scalars from ∆ to Λe. The following implies Theorem 1

Theorem 2. Let A be a dg algebra over the field k. Assume that a finite group G acts on A by dg automorphisms.
Let Λ = A⋊G be the crossed-product and ∆ =

⊕
g∈G

Ag ⊗ g−1A.

(a) If Λ ∈ per(Λe), then A ∈ per(Ae). If ♯G ∈ k×, then the converse holds true.
(b) The dg algebra A admits an inverse dualizing complex θA ∈ C((Ae)op) endowed with a compatible action of

G. For this action, θA ⋊G is the inverse dualizing complex of Λ.
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(c) Assume that A is Calabi-Yau of dimension d and Λ ∈ per(Λe) (see (a)). If an isomorphism f : RHomAe(A,A⊗
A)[d] → A exists in D(∆op) and is such that RHomAe(f,A ⊗ A)[d] = f in D(∆), then Λ is Calabi-Yau of
dimension d.

Proof. Recall that the functor RHomAe(−, A⊗A) : D(∆) → D(∆op) was defined in 2.3, (D2).
Fix a cofibrant resolution p : X → A in C(∆). Following 2.2, (c), it is also a cofibrant resolution in C(Ae) and

so is p ⊗
∆
Λe : X ⊗

∆
Λe → A ⊗

∆
Λe. Composing with the isomorphism A ⊗

∆
Λe → Λ in C(Λe) (2.2, (d)) therefore

gives a cofibrant resolution X ⊗
∆
Λe → Λ in C(Λe).

(a) Assume first that Λ ∈ per(Λe). Therefore, A ⊗
∆
Λe ≃ Λ ∈ per(Λe). The restriction-of-scalars functor

C(Λe) → C(∆) preserves quasi-isomorphisms and maps Λe to Λe ≃ ∆♯G in C(∆) (2.2, (a)). Therefore, it induces
a functor D(Λe) → D(∆) which maps per(Λe) into per(∆). In particular, A⊗

∆
Λe ∈ per(∆). Since A is a direct

summand of A⊗
∆
Λe in C(∆) (2.2, (e)), and therefore in D(∆), this implies that A ∈ per(∆). On the other hand

the restriction-of-scalars functor C(∆) → C(Ae) preserves quasi-isomorphisms and maps ∆ to ∆ ≃ (Ae)♯G in
C(Ae) (2.2, (a)). Therefore, it induces a functor D(∆) → D(Ae) which maps per(∆) into per(Ae). It also maps
A to A Thus, A ∈ per(Ae).

Now, assume that A ∈ per(Ae) and ♯G ∈ k×. The two functors − ⊗
Ae

∆: C(Ae) → C(∆) and −⊗
∆
Λe : C(∆) →

C(Λe) preserve quasi-isomorphisms (2.2, (b)), the former maps Ae to Ae ⊗
Ae

∆ = ∆ and the latter maps ∆ to

∆⊗
∆
Λe = Λe. Therefore, these functors induce functors − ⊗

Ae
∆: D(Ae) → D(∆) and − ⊗

∆
Λe : D(∆) → D(Λe),

the former maps per(Ae) into per(∆), the latter maps per(∆) into per(Λe). The former maps A to A⊗
Ae

∆ and A

is a direct summand of A ⊗
Ae

∆ in C(∆), thus A ∈ per(∆). The latter maps A to A⊗
∆
Λe ≃ Λ, thus Λ ∈ per(Λe).

(b) By construction, HomAe(X,A ⊗ A) ∈ C(∆op). Let Y → HomAe(X,A ⊗ A) be a cofibrant resolution in
C(∆op). Therefore, it is also a cofibrant resolution in C((Ae)op) (2.2, (c)). Thus, θA may be chosen equal to
Y and, as a left dg ∆-module, it has an action of G compatible with the left action of Ae. Of course, not any
cofibrant resolution of HomAe(X,A⊗A) has this property.

By definition of the inverse dualizing complex of Λ, there is a quasi-isomorphism θΛ : HomAe(X ⊗
∆
Λe,Λ⊗Λ)

in C((Λe)op). On the other hand, the proof in 2.3 gave an isomorphism HomAe(X ⊗
∆

Λe,Λ ⊗ Λ) → Λe ⊗
∆

HomAe(X,A⊗A) in C((Λe)op) and Λe⊗
∆
HomAe(M,A⊗A) ≃ HomAe(X,A⊗A)⋊G in C((Λe)op). Thus, there

is a quasi-isomorphism θΛ → θA ⋊G in C((Λe)op). For this reason, θΛ may be chosen equal to θA ⋊G.
(c) Assume that A ∈ per(Ae), Λ ∈ per(Λe) and that there is an isomorphism f : RHomAe(A,A⊗A)[d] → A

in D(∆op) such that RHomAe(f,A ⊗ A)[d] = f in D(∆). Applying the functor Λe ⊗
∆
− : D(∆op) → D((Λe)op)

yields an isomorphism in D((Λe)op):

Λe ⊗
∆
f : Λe ⊗

∆
RHomAe(A,A⊗A)[d]

∼
−→ Λe ⊗

∆
A ≃ Λ.

As explained above, Λe ⊗
∆

RhomAe(A,A ⊗ A) identifies with RHomΛe(Λ,Λ ⊗ Λ). Thus, in order to conclude,

it only remains to prove that RHom(Λe)op(Λ
e ⊗

∆
f,Λ ⊗ Λ)[d] = Λe ⊗

∆
f . But this follows from the equality

RHomAe(f,A⊗A)[d] = f in D(∆) and from the commutativity of the following diagram obtained by applying
2.3 (and interchanging the rôles played by left and right modules):

D(∆op)
RHom(Ae)op (−,A⊗A)

//

Λe⊗
∆
−

��

D(∆)

−⊗
∆
Λe

��

D((Λe)op)
RHom(Λe)op (−,Λ⊗Λ)

// D(Λe) .

Thus, Λ is Calabi-Yau of dimension d. �

Here are some technical comments on the hypotheses made in part (c) of the above theorem. Let X → A be
a cofibrant resolution in C(∆) and θA → HomAe(X,A⊗A) be a cofibrant resolution in C(∆op). The data of an
isomorphism RHomAe(A,A ⊗ A)[d] → A in D(∆op) is equivalent to that of a quasi-isomorphism θA[d] → A in
C(∆op) that is, a quasi-isomorphism in C((Ae)op) which is compatible with the actions of G on θA and on A.
Given an isomorphism f : RHomAe(A,A⊗A)[d] → A in D(∆op), the equality RHom(Ae)op(f,A⊗A)[d] = f holds
true in D(Ae) if it does so in D(∆), because of (D2) (after interchanging the rôles of left and right modules).
The converse needs not hold true because the restriction-of-scalars functor D(∆) → D(Ae) is not necessarily
faithful. However, D(∆) → D(Ae) is faithful if ♯G ∈ k×: Indeed, it is right adjoint to − ⊗

Ae
∆: D(Ae) → D(∆)

and the counit of this adjunction splits if ♯G ∈ k× (see the proof of 2.1, (e)).
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These considerations give Theorem 1 as a simplification of Theorem 2 in case ♯G ∈ k×:

Theorem 1. Let A be a dg algebra acted on by a finite group G such that ♯G ∈ k×. Fix the following data:

- X → A is a cofibrant resolution in C(Ae) such that X is endowed with a compatible action of G and the
resolution if G-equivariant,

- θA → HomAe(X,A⊗A) = RHomAe(A,A⊗A) is a cofibrant resolution in C((Ae)op) such that θA is endowed
with a compatible action of G and the resolution is G-equivariant.

Then:

(1) θA ⋊G is the inverse dualizing complex of A⋊G.
(2) Assume that A is homologically smooth and there exists a G-equivariant quasi-isomorphism f : θA[d] →

A in C((Ae)op) such that RHom(Ae)op(f,A ⊗ A)[d] = f in D(Ae) (in particular, A is Calabi-Yau of
dimension d). Then A⋊G is Calabi-Yau of dimension d.

Deleting the equivariance condition on f in Theorem 1 gives exactly the definition of the Calabi-Yau property
for A. Later, this equivariance condition will be discussed on and referred to as the compatibility condition, for
short.

3. Crossed-products of Calabi-Yau completions

This section investigates when the crossed-product of a dg Calabi-Yau algebra A by a finite group G is still
Calabi-Yau when A arises from a particular construction introduced in [15] and called deformed Calabi-Yau
completion.

3.1. A reminder on deformed Calabi-Yau completions. The reader is referred to [15] for a detailed
account on deformed Calabi-Yau completions. This paragraph recalls this construction briefly. Let A be a dg
algebra, d be an integer and θA ∈ C((Ae)op) be the inverse dualizing complex of A. The d-Calabi-Yau completion
of A is defined as the dg tensor algebra

Πd(A) = TA(θA[d− 1]) = A⊕ θA[d− 1]⊕ (θA[d− 1]⊗
A
θA[d− 1])⊕ · · · .

It does not depend on the choice of θA up to quasi-isomorphism of dg algebras. If A is homologically smooth,
then it is Calabi-Yau of dimension d ([15, Thm. 4.8]).

The definition of the deformed Calabi-Yau completion uses the following canonical isomorphisms where A is
assumed to be homologically smooth:

(7)
HHd−2(A) = TorA

e

d−2(A,A) = Hd−2(A
L

⊗
Ae

A) ≃ Hd−2(A
L

⊗
Ae

A∨∨)

≃ HomD((Ae)op)(A
∨, A[d− 2])

≃ HomD((Ae)op)(θA[d− 1], A[1])

where, for short, −∨ stands for RHomAe(−, A ⊗ A) (hence θA is any cofibrant resolution of A∨ in C((Ae)op),
and A ≃ A∨∨ in D(Ae) because A is homologically smooth). Also HH denotes the Hochschild homology. If
X → A and pA : θA → HomAe(X,A ⊗ A) are cofibrant resolutions in C(Ae) and C((Ae)op), respectively, then

HHd−2(A) = Hd−2(X ⊗
Ae

A). Also HomD((Ae)op)(θA[d − 1], A[1]) = H0
(
Hom(Ae)op(θA[d− 1], A[1])

)
, and the

isomorphism in (7) is induced by the following morphism of complexes (which is therefore a quasi-isomorphism):

(8)
X ⊗

Ae
A[2− d] −→ Hom(Ae)op(θA[d− 1], A[1])

x⊗ a 7−→ (α 7→ (pA(α))(x).a) .

Let c ∈ HHd−2(A). The associated morphism in HomD((Ae)op)(θA[d− 1], A[1]) (see (7)) admits, say, D : θA[d−
1] → A[1] as a representative. Then D is a morphism of graded left Ae-modules. Therefore, it induces a unique
Ae-linear (skew-)derivation of degree 1:

D : TA(θA[d− 1]) → TA(θA[d− 1]) .

Writing δ : TA(θA[d− 1]) → TA(θA[d− 1]) for the differential of the dg algebra Πd(A), the deformed Calabi-Yau
completion Πd(A, c) is defined as the dg algebra

Πd(A, c) = (TA(θA), δ +D) .

Here, δ + D is indeed a differential because c ∈ HHd−2(A). It is proved in [15, Thm. 5.2] that Πd(A, c) is
Calabi-Yau of dimension d, for every c (under the assumption that A is homologically smooth).

Throughout this section, A will denote a dg algebra, acted on by a finite group G. The crossed-product
A⋊G will be denoted by Λ and the dg subalgebra

⊕
g∈G

Ag ⊗ g−1A of Λ will be denoted by ∆ (see 2.1). Also, a

cofibrant resolution X → A in C(∆) will be fixed, recall that this is also a cofibrant resolution in C(Ae) and it

induces a cofibrant resolution X⊗
∆
Λe → A⊗

∆
Λe ∼

−→ Λ in C(Λe) (2.2, (c) and (d)). Finally, a cofibrant resolution

pA : θA → HomAe(X,A⊗A) in C(∆op) is fixed (so it is a cofibrant resolution in C((Ae)op)).
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Following 2.3, left dg ∆-modules will be considered as left dg Ae-modules endowed with a compatible action
of G. In particular, given M ∈ C(∆), the compatible action of G on HomAe(M,A ⊗ A) ∈ C(∆op) is such that
gf = (g ⊗ g−1).f maps m ∈ M to (g ⊗ g−1).f(m.(g ⊗ g−1)).(g−1 ⊗ g), for g ∈ G and f ∈ HomAe(M,A⊗A).

3.2. Group actions on deformed Calabi-Yau completions. Since θA ∈ C(∆op), there is an action of G on
θA which is compatible with the action of Ae on the left. This induces an action of G on Πd(A) = TA(θa[d− 1])

by dg automorphisms (g ∈ G acts diagonally on (θA[d− 1])
⊗
A

n

for all n > 1).
On the other hand, the actions of G on X ∈ C(∆) and on A induce a diagonal action of G on X ⊗

Ae
A and,

therefore, on HH∗(A). To be more precise: g(x ⊗ a) = gx ⊗ ga =
(
x.(g−1 ⊗ g)

)
⊗

(
(g ⊗ g−1).a

)
, for x ∈ X ,

a ∈ A and g ∈ G (see 2.1). As usual, HHd−2(A)
G denotes the set of fixed points in HHd−2(A) under this

action. The following lemma gives a necessary and sufficient condition on c ∈ HHd−2(A) for the action of G
on Πd(A) to be an action on Πd(A, c) by dg automorphisms (of course, G already acts on Πd(A, c) by graded
automorphisms, since Πd(A, c) = Πd(A) as graded algebras).

Lemma. Let A be a homologically smooth dg algebra acted on by a finite group G such that ♯G ∈ k×. The
following conditions are equivalent:

(i) c ∈ HHd−2(A)
G,

(ii) there exists a cocycle D ∈ Hom(Ae)op(θA[n − 1], A[1]) which corresponds to c under (7) (see also (8))

and such that the action of G on Πd(A) is also an action on Πd(A, c) = (TA(θA[d − 1]), δ + D) by dg
automorphisms.

Proof. Let u ∈ X⊗
Ae

A be any representative of c ∈ HHd−2(A) = H0(X⊗
Ae

A). Let Du ∈ Hom(Ae)op(θA[d−1], A[1])

be the image of u under the isomorphism (8). Note that (8) is G-equivariant. On the other hand, c lies in
HHd−2(A)

G if and only if there is a choice of the representative u such that gu = u for all g ∈ G, because
♯G ∈ k×. Therefore, c lies in HHd−2(A)

G if and only if there is a representative u of c such that gDu = Du for
all g ∈ G.

Next, let D ∈ Hom(Ae)op(θA[d − 1], A[1]) be a 0-cocycle. Then, the action of G on Πd(A) is an action by

dg automorphisms on (TA(θA[d − 1]), δ + D) if and only if δ + D is a G-equivariant differential. Since δ is
itself G-equivariant, this is equivalent to say that D is G-equivariant. Clearly, this is equivalent to D being
G-equivariant. Note that if this is the case and if the cohomology class of D in HomD((Ae)op)(θA[d − 1], A[1])

corresponds to c under (7), then c lies in HHd−2(A)
G, because (7) is G-equivariant.

These considerations show the equivalence between (i) and (ii). �

Note that not all the actions of G on Πd(A, c) arise from actions on A such that c ∈ HHd−2(A)
G.

3.3. Crossed-products of Calabi-Yau completions. The following lemma shows that taking crossed-products
commutes with Calabi-Yau completion.

Lemma. Let A be a dg algebra acted on by a finite group G. Let d be an integer. Then, the dg algebras
Πd(A⋊G) and Πd(A)⋊G are quasi-isomorphic.

Proof. Recall that θA ⋊ G is the inverse dualizing complex of Λ = A ⋊ G (2.4, (b)). Therefore, Πd(A ⋊ G) =
TA⋊G(θA ⋊G[d− 1]). The following map is therefore a morphism of dg algebras:

Πd(A)⋊G −→ Πd(A⋊G)
a⊗ g 7−→ a⊗ g

(f1 ⊗ · · · ⊗ fn)⊗ g 7−→ f1 ⊗ · · · ⊗ fn−1 ⊗ (fn ⊗ g) ,

where a ∈ A, f1, . . . , fn ∈ θA[d − 1] and g ∈ G. It is straightforward to check that the following map is its
inverse:

Πd(A⋊G) −→ Πd(A)⋊G
a⊗ g 7−→ a⊗ g

(f1 ⊗ g1)⊗ · · · ⊗ (fn ⊗ gn) 7−→ (f1 ⊗
g1f2 ⊗ · · · ⊗ g1···glfl+1 ⊗ · · · ⊗ g1···gn−2fn−1 ⊗

g1···gn−1fn)⊗ g1 · · · gn ,

where a ∈ A, g, g1, . . . , gn ∈ G and f1, . . . , fn ∈ θA[d− 1]. �

3.4. Compatibility between crossed-products and deformed Calabi-Yau completions. The following
proposition is the main result of the section. It shows that under compatibility conditions, the crossed-product
of a deformed Calabi-Yau completion is still a deformed Calabi-Yau completion and, therefore, is Calabi-Yau.

Proposition. Let A be a homologically smooth algebra. Let G be a finite group acting on A by dg automorphisms
and such that ♯G ∈ k×. Finally let c ∈ HHd−2(A)

G. Then, up to a choice of the inverse dualizing complex
of A, the action of G on A induces an action on Πd(A, c) by dg automorphisms. For this action, there is an
isomorphism of dg algebras:

Πd(A, c)⋊G ≃ Πd(A⋊G, c) ,
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where c is the image of c under the canonical map HHd−2(A) → HHd−2(A⋊G). In particular, Πd(A, c)⋊G is
Calabi-Yau of dimension d.

Proof. For the purpose of the proposition, it is necessary to first introduce an adequate cofibrant resolution
pΛ : θΛ → RHomΛe(Λ,Λ⊗ Λ) in C((Λe)op). Following 2.4, the inverse dualizing complex of Λ is θΛ := Λe ⊗

∆
θA.

Moreover, X⊗
∆
Λe is a cofibrant resolution of Λ in C(Λe), because X is a cofibrant resolution of A in C(∆) (see 2.2,

(c) and (d)). Therefore, an explicit quasi-isomorphism pΛ : θΛ → HomΛe(X⊗
∆
Λe,Λ⊗Λ) = RHomΛe(Λ,Λ⊗Λ) in

C((Λe)op) is obtained as follows. On the one hand, Λe⊗
∆
pA : θΛ → Λe⊗

∆
HomAe(X,A⊗A) is a quasi-isomorphism

in C((Λe)op), because pA : θA → HomAe(X,A⊗A) is a quasi-isomorphism in C(∆op) (see 2.2, (c)). On the other
hand, the following map is an isomorphism in C(∆op), inverse to the composition of (5) with (6):

Λe ⊗
∆
HomAe(X,A⊗A) −→ HomAe(X ⊗

∆
Λe,Λ⊗ Λ)

(ag ⊗ hb)⊗ f 7−→ (x⊗ u 7→ (a⊗ ghb). (( gf)(x)) .u) ,

where a, b ∈ A, g, h ∈ G, f ∈ HomAe(X,A ⊗ A) and u ∈ Λe. Thus, the following map is an isomorphism in
C((Λe)op):

pΛ : θΛ −→ HomΛe(X ⊗
∆
Λe,Λ⊗ Λ)

(ag ⊗ hb)⊗ f 7−→ (x⊗ u 7→ (a⊗ ghb).( g(pA(f)))(x).u) .

Following 3.3, there exists D ∈ Hom(Ae)op(θA[d − 1], A[1]) which is G-invariant (that is, gD = D for every

g ∈ G) and such that Πd(A, c) is the graded algebra TA(θA[d−1]) endowed with the differential δA+D, where δA
denotes the differential of Πd(A). In particular, the action of G on A induces an action on Πd(A, c). Therefore,
Πd(A, c)⋊G is the graded algebra TA(θA[d−1])⋊G endowed with the differential whose restriction to θA[d−1]
equals to δA+D and which vanishes on G. It then follows from 3.2 that Πd(A, c)⋊G is isomorphic to the graded
algebra TA⋊G(θΛ[d− 1]) endowed with the differential δΛ +Λe ⊗

∆
D, where Λe ⊗

∆
D ∈ Hom(Λe)op(θΛ[d− 1],Λ[1])

(recall that θΛ = Λe ⊗
∆

θA and Λe ⊗
∆

A is identified to Λ in C((Λe)op), via u ⊗ a 7→ u.a). In other words,

Πd(A, c) ⋊G is the deformed Calabi-Yau completion Πd(Λ, c
′) where c′ ∈ HHd−2(Λ) corresponds to Λe ⊗

∆
D ∈

Hom(Λe)op(θΛ[d− 1],Λ[1]) under the map (8) corresponding to Λ.
Therefore, in order to prove the proposition, it suffices to prove that the following diagram commutes:

(D5) HHd−2(A)
G �

�

//

��

HHd−2(A)
(7)

// H0
(
Hom(Ae)op(θA[d− 1], A[1])

)

H0(Λe⊗
∆
−)

��

HHd−2(Λ) // H0
(
Hom(Λe)op(θΛ[d− 1],Λ[1])

)

where:

- the vertical arrow on the left is the composition HHd−2(A)
G →֒ HHd−2(A) → HHd−2(Λ),

- the bottom horizontal arrow is the map (7) corresponding to Λ,

For this purpose, it suffices to prove that the following diagram commutes (recall that HHd−2(A)
G = Hd−2((X ⊗

Ae

A)G) because ♯G ∈ k×):

(D6) (X ⊗
Ae

A)G

��

�

�

// X ⊗
Ae

A (8)
// Hom(Ae)op(θA[d− 1], A[1])

Λe⊗
∆
−

��
(X ⊗

∆
Λe) ⊗

Λe
Λ = X ⊗

δ
Λ // Hom(Λe)op(θΛ[d− 1],Λ[1])

where:

- the vertical arrow on the left is the composition (X ⊗
Ae

A)G →֒ X ⊗
Ae

A → X ⊗
∆
A,

- the bottom horizontal arrow is the map (8) corresponding to Λ.

Let
∑
i

xi ⊗ ai ∈ (X ⊗
Ae

A)G, that is,
∑
i

gxi ⊗
gai =

∑
i

xi ⊗ ai for every g ∈ G. Then, the image of
∑
i

xi ⊗ ai

under the composition of the top horizontal arrows in (D6) is the map (see (8)):

HomAe(X,A⊗A)[d− 1] −→ A[1]
f 7−→

∑
i

(pA(f))(xi).ai .
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Applying the right-hand side vertical arrow in (D6) yields the map:

(9)
Λe ⊗

∆
HomAe(X,A⊗A)[d− 1] −→ Λ[1]

u⊗ f 7−→
∑
i

u.(pA(f))(xi).ai .

On the other hand, the image of
∑
i

xi⊗ai under the left-hand side vertical arrow of (D6) is equal to
∑
i

xi⊗ai ∈

X ⊗
∆
Λ. Applying the bottom horizontal arrow of (D6) to

∑
i

xi ⊗ ai yields the following map (see (8)):

(10)
Λe ⊗

∆
HomAe(X,A⊗A)[d − 1] −→ Λ[1]

(ag ⊗ hb)⊗ f 7−→
∑
i

(pΛ((ag ⊗ hb)⊗ g)) (xi).ai .

The proof of the commutativity of (D6) therefore reduces to proving that the two maps (9) and (10) are equal.
Let a, b ∈ A, g ∈ G and f ∈ HomAe(X,A⊗A). Using the expression of pΛ that was computed at the beginning
of the proof, gives:

∑

i

(pΛ((ag ⊗ hb)⊗ f)) (xi).ai =
∑

i

(a⊗ ghb). ( g(pA(f))) (xi).ai .

Recall that g(pA(f))(xi) = (g ⊗ g−1).
(
(pA(f))(xi.(g ⊗ g−1))

)
.(g−1 ⊗ g), therefore:

∑

i

pΛ((ag ⊗ hb)⊗ f)(xi).ai =
∑

i

(a⊗ ghb).(g ⊗ g−1).
(
pA(f)(xi.(g ⊗ g−1))

)
.(g−1 ⊗ g).ai .

Note that (xi.(g⊗ g−1))⊗ ((g−1⊗ g).ai) =
g−1

ai⊗
g−1

ai, by definition of the action of G on X ⊗
Ae

A. Therefore:

∑
i

pΛ((ag ⊗ hb)⊗ g)(xi).ai =
∑
i

(ag ⊗ hb).pA(f)(
g−1

xi).
g−1

ai

=
∑
i

(ag ⊗ hb)pA(f)(xi).ai

where the last equality holds true because
∑
i

xi ⊗ ai ∈ (X ⊗
Ae

A)G. This proves that the maps (9) and (10) are

equal. Thus, (D6) and (D5) commute, which proves that Πd(A, c) ⋊ G ≃ Πd(A ⋊ G, c) where c is the image
of c under the map HHd−2(A) → HHd−2(A ⋊ G). The last assertion of the proposition holds true because
Πd(A⋊G, c) itself is Calabi-Yau of dimension d. �

4. Application to Ginzburg algebras

This section applies the previous study on crossed-products of deformed Calabi-Yau completions to the
particular case of Ginzburg algebras.

4.1. A reminder on Ginzburg algebras. Ginzburg algebras were introduced by Ginzburg in [11, 4.2]. The
definition used here it the more general one of [15, Sect. 6.3].

Let Q be a finite graded k-quiver, that is, the set Q0 of vertices is finite and the kQ0-bimodule kQ1

spanned by the (finite) set Q1 of arrows has a Z-grading. Thus, the path algebra kQ is a graded alge-
bra, such that the idempotents associated to trivial paths have degree 0. As usual, the idempotent as-
sociated to a vertex x is denoted by ex. A potential on Q is an element W of the quotient vector space(

kQ ⊗
(kQ0)e

kQ0

)
/
〈
uv ⊗ ex − (−1)deg(u).deg(v)vu⊗ ey | u, v

〉
of kQ ⊗

(kQ0)e
kQ0 by the subspace generated by all

elements of the form uv ⊗ ex − (−1)deg(u).deg(v)vu ⊗ ey for homogeneous u ∈ exkQ and v ∈ eykQ. Hence,
W is a linear combination of oriented cycles in Q, each of which is considered up to cyclic permutation with
Koszul-type signs. The grading on kQ defines a grading on the space of potentials.

Let d > 3 be an integer and W a homogeneous of degree 3−d potential on Q. The Ginzburg algebra A(Q,W )
associated to (Q,W ) is defined as follows. As a graded algebra, it is freely generated over kQ0 by the direct
sum of the following graded kQ0-bimodules:

- kQ1, hence kQ is a graded subalgebra of A(Q,W ),
- Hom(kQ0)e(kQ1, kQ0 ⊗ kQ0)[d− 2], hence, every arrow a : x → y in Q defines a new generator a∗ : y → x and

the linear combination
∑
t
λta

∗
t : y → x has degree 2 − d − n if

∑
t
λtat : x → y has degree n (with λt ∈ k and

at ∈ Q1),
- kQ0[d− 1], hence, every vertex i ∈ Q0 defines a new generator ci : i → i of degree 1− d.

The differential on A(Q,W ) (of degree +1) is uniquely determined by the following rules:

- it vanishes on kQ,
- it maps a∗ : y → x to the partial derivative ∂aW ,
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- it maps ci : i → i to
∑

a : i→·

aa∗ −
∑

a : ·→i

a∗a, where the first sum runs over all the arrows in Q starting in i and

the second sum runs over all the arrows in Q arriving in i.

Recall that the partial derivation ∂a is the linear map which takes a path p to:

∂ap =
∑

p=p1ap2

p2p1

where the sum runs over all decompositions p = p1ap2 with paths p1 and p2. Of course, this extends linearly to
define the partial derivation ∂u with respect to any u ∈ kQ1.

As said above, this definition is taken from [15, Sect. 6.2]. The original definition of Ginzburg corresponds
to the case where kQ has the trivial grading and d = 3. It is proved in [15, Thm. 6.3] (see also [15, Thm.
A.12]) that A(Q,W ) is quasi-isomorphic to the deformed Calabi-Yau completion Πd(kQ, c), where the graded
algebra kQ is endowed with the zero differential and c ∈ HHd−2(kQ) is as follows (see [15, 6.1 and 6.2] for more
details): As a homogeneous of degree 3−d potential, W may be considered as lying in the cyclic homology space
HCd−3(kQ) (and any element of HCd−3(kQ) arises in this way if car(k) = 0 or if n = 3), then c ∈ HHd−2(kQ)

is defined as the image of W under Connes’ map HCd−3(kQ)
B
−→ HHd−2(kQ).

4.2. The Morita reduced version of kQ ⋊ G. Let Q be a graded k-quiver and G a finite group such that
car(k) does not divide ♯G. Assume that G acts on the set Q0 (with action denoted by (g, i) 7→ g.i) and also on
the kQ0-bimodule kQ1 (with action denoted by (g, u) 7→ gu ), the two actions are supposed to be compatible
to each other, that is, ga ∈ eg.ikQ1eg.j if a ∈ eikQ1ej and g ∈ G. This defines an action of G on kQ by graded
automorphisms and any action of G on kQ by graded automorphisms stabilising Q0 and kQ1 arises in this way.

It is proved in [7] that if kQ has the trivial grading, then there exists a quiver Q′ such that D(kQ′) and
D(kQ⋊G) are equivalent. It is not difficult to check that the proof given there works for the graded situation
and actually shows the existence of a graded k-quiver Q′ and of an injective homomorphism of graded algebras
kQ′ → kQ⋊G which, by restriction, induces an equivalence D(kQ⋊G) → D(kQ′). Here is a description of Q′,
the reader is referred to [7] for a detailed proof.

If a group H acts on a set E on the left, [H\E] will denote an arbitrarily fixed set of representatives of the
orbit set H\E. For every i ∈ Q0, let κi ∈ G be such that κi.i ∈ [G\Q0]. The stabilizer of i is denoted by Gi.

The construction of kQ′ is done in two steps (see [7, 3.1] for more details). Let S be the semi-simple algebra

S =
∏

i∈[G\Q0]

kGi .

For i, j ∈ [G\Q0], consider the following graded kGi − kGj-sub-bimodule of kQ⋊G:
⊕

(i′,j′)∈[G\G.i×G.j]

Giκ
−1
i′ ei′kQ1ej′κj′Gj ⊆ kQ⋊G .

Here, the action of G on G.i×G.j is diagonal. Taking the direct sum of all these modules for (i, j) ∈ [G\Q0]×
[G\Q0] yields a graded S-subbimodule of kQ⋊G. Denote it by M . Then, the inclusion M →֒ kG⋊G induces
a homomorphism of graded algebras TS(M) → kQ ⋊G. It is injective and the associated restriction-of-scalars
functor D(kQ ⋊ G) → D(TS(M)) is an equivalence. The second step is as follows. For every i ∈ [G\Q0], let
ei1, . . . , e

i
ni

be primitive (orthogonal) idempotents in kGi such that ei1kGi, . . . , e
i
ni

kGi form a complete set of

representatives of the irreducible representations of Gi (recall that ♯G ∈ k×). Let e =
∑
i,j

eji ∈ S. This is an

idempotent and eSe is the algebra:

eSe =
∏

i,j

keij .

Moreover, eMe is a graded eSe-sub-bimodule of M . Then, any choice of a basis of eMe yields a quiver
Q′ and an isomorphism of graded algebras kQ′ ≃ TeSe(eMe). Besides, the inclusion eMe →֒ M induces a
homomorphism of graded algebras kQ′ ≃ TeSe(eMe) → TS(M). It is injective and the associated restriction-of-
scalars functor D(TS(M)) → D(TeSe(eMe)) ≃ D(kQ′) is an equivalence. The composition kQ′ ≃ TeSe(eMe) →
TS(M) → kQ⋊G is the desired homomorphism of graded algebras whose associated restriction-of-scalars functor
D(kQ⋊G) → D(kQ′) is an equivalence. By construction, if kQ has the trivial grading, then so does kQ′.

4.3. Crossed-products of Ginzburg algebras by finite groups. Let d > 3 be an integer, Q a graded
k-quiver and W a homogeneous of degree 3 − d potential on Q. Let G be a finite group such that ♯G ∈ k×

and assume that G acts on the set Q0 and on the kQ0-bimodule kQ1 (with the two actions compatible to each
other), thus defining an action on kQ by graded automorphisms. This action extends to an action on A(Q,W )
by graded automorphisms as follows:

- given g ∈ G and an arrow a : x → y, if ga =
∑
t
λtat as linear combination of arrows in Q, then g(a∗) is defined

as ga =
∑
t
λta

∗
t ,
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- given g ∈ G and i ∈ Q0, then gci = cg.i.

Recall (4.2) that there exists a graded k-quiver Q and a morphism of graded algebras kQ′ → kQ ⋊ G whose
associated restriction-of-scalars functor D(kQ⋊G) → D(kQ′) is an equivalence.

Proposition. Keep the above setting. If W ∈ HCd−3(kQ)G, then the action of G on A(Q,W ) is an action by
dg automorphisms. Moreover, there is a quasi-isomorphism of dg algebras

A(Q,W )⋊G ≃
qis

Πd(kQ⋊G, c1)

where c1 ∈ HHd−2(kQ ⋊ G) is the image of W ∈ HHd−3(kQ) under the composite map HCd−3(kQ) →

HCd−3(kQ ⋊G)
B
−→ HHd−2(kQ⋊G). In particular, A(Q,W )⋊G is Calabi-Yau of dimension d.

If, moreover, car(k) = 0 or d = 3, then the image of W under the composite map HCd−3(kQ) → HCd−3(kQ⋊

G) ≃ HCd−3(kQ
′) is a homogeneous of degree d− 3 potential W ′ on Q′ and there exists a homomorphism of dg

algebras
A(Q′,W ′) → A(Q,W )⋊G

whose associated restriction-of-scalars functor D(A(Q,W )⋊G) → D(A(Q′,W )) is an equivalence.

Proof. Since the restriction-of-scalars functor D(kQ ⋊ G) → D(kQ′) is an equivalence, the canonical maps
HCd−3(kQ

′) → HCd−3(kQ ⋊ G) and HHd−2(kQ
′) → HHd−2(kQ ⋊ G) are isomorphisms ([13]). These embed

into the diagram:

HCd−3(kQ)G
�

�

//

��

HCd−3(kQ) //

B

��

HCd−3(kQ⋊G)

B

��

HCd−3(kQ
′)

∼oo

B

��

HHd−2(kQ)G
�

�

// HHd−2(kQ) // HHd−2(kQ⋊G) HHd−2(kQ
′)∼

oo

where B stands for the Connes’ map, the leftmost vertical arrow is induced by B and the horizontal arrows are
the canonical ones. Denote by c ∈ HHd−2(kQ), c1 ∈ HHd−2(kQ⋊G), c′ ∈ HHd−2(kQ

′) and W ′ ∈ HCd−3(kQ
′)

the corresponding images of W ∈ HCd−3(kQ). Note that, if car k = 0 or if d = 3, then W ′ is a homogeneous of
degree 3− d potential on Q′.

Note that ∂ga(p) =
g
(
∂a(

g−1

p)
)
, for g ∈ G, p ∈ kQ and a ∈ kQ1. Therefore, if W ∈ HCd−3(kQ)G, then:

- the action of G on A(Q,W ) is an action by dg automorphisms, and
- c ∈ HHd−2(kQ)G, so that G acts on Πd(kQ, c) by dg automorphisms, following 3.4.

From now on, suppose that W ∈ HCd−3(kQ)G. In [15, Thm. 6.3] is constructed a quasi-isomorphism of dg
algebras A(Q,W ) ≃ Πd(kQ, c) which is easily checked to be G-equivariant for the corresponding actions of G
on A(Q,W ) and Πd(kQ, c), respectively. Whence a quasi-isomorphism of dg algebras

(11) A(Q,W )⋊G ≃
qis

Πd(kQ, c)⋊G .

In particular, A(Q,W ) ⋊G is Calabi-Yau of dimension d because c ∈ HHd−2(kQ)G and because of 3.4. Next,
according to 3.4, there is a quasi-isomorphism of dg algebras

(12) Πd(kQ, c)⋊G ≃
qis

Πd(kQ⋊G, c1) .

Combining (11) and (12) shows that A(Q,W )⋊G and Πd(kQ⋊G, c1) are quasi-isomorphic.
Now assume that car(k) = 0 or d = 3. Then W ′ is a homogeneous of degree 3−d potential on W , as recalled

earlier. Applying [15, Thm. 5.5] to kQ′ → kQ⋊G gives a morphism of dg algebras

(13) Πd(kQ
′, c′) → Πd(kQ⋊G, c1)

whose associated restriction-of-scalars functor D(Πd(kQ ⋊G, c1)) → D(Πd(kQ
′, c′)) is an equivalence. Finally,

[15, Thm. 6.3] gives a quasi-isomorphism of dg algebras

(14) Πd(kQ
′, c′) ≃

qis
A(Q′,W ′) if car(k) = 0 or d = 3.

Combining (11), (12), (13) and (14) shows that A(Q,W )⋊G and A(Q′,W ′) have equivalent derived categories.
�

5. Geometric interpretation of the compatibility condition

Recall the following examples of Calabi-Yau algebras: The algebra C[x1, . . . , xn] of polynomials in n variables;
the coordinate ring C[X ] of a smooth affine variety with trivial canonical sheaf; and the Weyl algebra. The
crossed-product of any of these algebras by a finite group G has the Van den Bergh duality ([1, Prop. 7.1]).
Actually, it can be checked that the compatibility condition of Theorem 1 is satisfied (and, therefore, the
crossed-product is Calabi-Yau, in each of these three examples) under the following geometric conditions:

- G < SLn(C), in the case of the algebra C[x1, . . . , xn],
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- the action of G on C[X ] arises from an action of G on X such that the canonical sheaf is G-invariant,
- G < Sp2n(C), in the case of the Weyl algebra.

Here are some details on this fact in the case of the Weyl algebra An (the three cases are very similar).

Denote by V the vector space C
2n =

n⊕
i=1

C.xi⊕
n⊕

i=1

C. ∂
∂xi

and let G be a subgroup of Sp(V ) = Sp2n(C). Then

G acts on V and this action extends naturally to an action on An by algebra automorphisms. Recall that An

admits the following projective resolution (that is, a cofibrant resolution) in C(Ae
n) ([19, 3.2]):

(15) 0 → Λ2nV ⊗Ae
n → · · · → ΛdV ⊗Ae

n → · · · → V ⊗Ae
n → Ae

n → An → 0

where the differential Λd+1V ⊗Ae
n → ΛdV ⊗Ae

n is defined by

(v1 ∧ · · · ∧ vd+1)⊗ u 7→

d+1∑

i=1

(−1)d−i+1(v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vd+1)⊗ (vi ⊗ 1− 1⊗ vi).u .

This differential is G-equivariant for the diagonal action of G on Λ•V ⊗Ae
n. As earlier, let ∆ =

⊕
g∈G

Ang⊗g−1An.

Therefore, (15) is a cofibrant resolution of An in C(∆) (2.2, (e)). This implies that RHomAe
n
(An, An ⊗ An) =

HomAe
n
(Λ•V ⊗Ae

n, An ⊗An) in C(∆op), which is isomorphic in C(∆op) to:

(16) 0 → Ae
n ⊗ Λ0V ∗ → · · · → Ae

n ⊗ ΛdV ∗ → Ae
n ⊗ Λd+1V ∗ → · · · → Ae

n ⊗ Λ2nV ∗ → 0

where Ae
n ⊗ ΛdV ∗ is in degree d; the action of G on Ae

n ⊗ ΛdV ∗ is diagonal (and given by the adjoint action of
G on V ∗); and the differential is defined by:

Ae
n ⊗ ΛdV ∗ −→ Ae

n ⊗ Λd+1V ∗

u⊗ e∗i1 ∧ · · · ∧ e∗id 7−→
2n∑
j=1

u.(ej ⊗ 1− 1⊗ ej)⊗ e∗i1 ∧ · · · ∧ e∗id ∧ e∗j ,

where (e∗1, . . . , e
∗
2n) is the basis of V ∗ dual to (e1, . . . , e2n) = (p1, . . . , pn, q1, . . . , qn). Since Ae

n ⊗ ΛdV ∗ is a
projective left Ae

n-module for every d, the complex (16) is cofibrant in C(∆op) and is therefore equal to θAn
.

Consider the morphism of complexes θAn
[2n] → An given by the multiplication Ae

n ⊗ Λ2nV ∗ = Ae
n → An in

degree 0 (and the zero map in non zero degrees). Since An is Calabi-Yau of dimension 2n, the cohomology of
θAn

[2n] vanishes in non-zero degrees. Besides, θAn
[2n] → An is clearly a quasi-isomorphism in degree 0. Finally,

θAn
[2n] → An is obviously a morphism in C(∆op), that is, it is G-equivariant. This shows that the compatibility

condition in Theorem 1 holds true if G < Sp2n(C) acts on An. As a consequence, the crossed-product An ⋊G
is Calabi-Yau of dimension 2n.
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