Crossed-products of Calabi-Yau algebras by finite groups
Patrick Le Meur

To cite this version:

HAL Id: hal-00488814
https://hal.science/hal-00488814v3
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License
CROSSED PRODUCTS OF CALABI-YAU ALGEBRAS BY FINITE GROUPS

PATRICK LE MEUR

Abstract. Let a finite group G act on a differential graded algebra A. This article presents necessary conditions and sufficient conditions for the skew group algebra $A \ast G$ to be Calabi-Yau. In particular, when A is the Ginzburg dg algebra of a quiver with an invariant potential, then $A \ast G$ is Calabi-Yau and Morita equivalent to a Ginzburg dg algebra. Some applications of these results are derived to compare the generalised cluster categories of A and $A \ast G$ when they are defined and to compare the higher Auslander-Reiten theories of A and $A \ast G$ when A is a finite dimensional algebra.

Contents

Introduction 1
1. Main results and structure of the article 2
2. Definitions and notation 6
3. The main theorems 8
4. Application to Ginzburg dg algebras 17
5. Application to cluster tilting objects 26
6. Application to higher Auslander-Reiten theory 36
7. Acknowledgements 38
8. References 38

Introduction

Calabi-Yau algebras occur in many parts of mathematics and play a special role in several areas related to representation theory. In the non commutative algebraic geometry initiated by Artin and Schelter ([4]), they appear naturally among the regular algebras used as non commutative analogues of polynomial algebras. They also serve to define generalised cluster categories ([2]), which are used to categorify the cluster algebras of Fomin and Zelevinsky. When a cluster algebra is given by a marked surface, quivers with potentials are associated to the triangulations of the surface ([3, 26]); recall that quivers with potentials are the base ingredients in the definition of Ginzburg differential graded (dg) algebras, which are Calabi-Yau. Finally, in the higher Auslander-Reiten theory developed by Iyama et al., the higher representation infinite algebras ([19]) are defined using higher derived preprojective algebras, which are Calabi-Yau completions of finite dimensional algebras of finite global dimension ([24]).

Recall that a dg algebra A over a field k is called d-Calabi-Yau, where d is an integer, when...
A is homologically smooth, that is $A \in \text{per}(A^e)$, and
\[\Sigma^d \text{RHom}_{A^e}(A, A^e) \simeq A \] in the derived category $D(A^e)$ of A^e.

Here, Σ denotes the suspension for all triangulated categories, A^e denotes the enveloping dg algebra $A \otimes_k A^{op}$ and $\text{per}(A^e)$ denotes the perfect derived category of A^e.

This article investigates the Calabi-Yau duality of skew group algebras $A \ast G$ of dg algebras A under the action of a finite group G with a particular interest on the dg algebras which are involved in the above mentioned theories. This is motivated by several developments some of which being recent and others being older.

On one hand, some of the early developments of non commutative algebraic geometry focused to the regularity properties of invariant subrings under actions of finite groups. And this has led to the study of skew group algebras from the viewpoint of regularity. Recently, many articles have studied when the skew group algebra of an ordinary (not dg) algebra is Calabi-Yau and fairly complete answers are known when the original algebra is Koszul ([34] connected graded ([35]), or is the universal enveloping algebra of a finite dimensional Lie algebra ([16]).

On the other hand, the recent works [3] and [33] use skew group algebras of Ginzburg dg algebras and the associated generalised cluster categories for marked surfaces. While the former uses actions of $\mathbb{Z}/2\mathbb{Z}$ to relate punctured surfaces to unpunctured surfaces, the latter uses free actions of finite groups for orbifolds. In both cases, the considered skew group algebra happens to be a Ginzburg dg algebra up to a Morita equivalence. Recall that, in the context of a generalised cluster category C, important information is provided by the cluster tilting objects and the cluster tilting subcategories. A functorially finite subcategory $T \subseteq C$ is called cluster tilting if
\[T = \{ X \in C \mid (\forall M \in T) \ C(X, \Sigma M) = 0 \}, \]
and an object $T \in C$ is called cluster tilting if its closure $\text{add}(T)$ under direct sums and direct summands is cluster tilting.

The present article therefore aims at giving general answers to the following questions for a given dg algebra A acted upon by a finite group G by dg automorphisms $g \mapsto g \ast a$.

1. **Main results and structure of the article**

The main results assume the following setting

Setting 1.1. Let d be an integer. Let k be a field. Let A be a dg algebra over k. Let G be a finite group acting on A by dg automorphisms $(g, a) \mapsto g \ast a$. Denote by $A^{\ast G}$ the skew group dg algebra $A \ast G$.

Recall that A is defined as follows. As a complex it is equal to $A \otimes kG$, where kG is a complex concentrated in degree 0, and the product is such that $(a \ast g) \cdot (b \ast h) = a^g b \ast gh$ for all $a, b \in A$ and $g, h \in G$, where $a \ast g$ stands for $a \otimes g$.

Note that the dg algebras considered in this article do not satisfy particular conditions such as being Koszul, connected graded or Artin-Schelter.

In the original version of this article, [29], only the first two of these questions are treated.
The investigation of the Calabi-Yau duality for Λ makes use of an auxiliary dg subalgebra of Λ^e denoted by Δ.

\[(1.1.1) \quad \Delta = \bigoplus_{g \in G} (A \ast g) \otimes (A \ast g^{-1}).\]

It features the following properties.

- A is a dg Δ-module and $A \otimes^L_\Delta \Lambda^e \simeq \Lambda$ in $\mathcal{D}(\Lambda^e)$.
- The functor $\text{Hom}_{A^e}(-, \Lambda^e) : \text{Mod}(\Lambda^e) \to \text{Mod}(\Lambda^e)$ induces a functor $\text{Mod}(\Delta) \to \text{Mod}(\Delta)$ also denoted by $\text{Hom}_{A^e}(-, \Lambda^e)$ and whose total derived functor $\text{RHom}_{A^e}(-, \Lambda^e)$ is such that $\text{RHom}_{A^e}(-, \Lambda^e) \otimes^L_\Delta \Lambda^e \simeq \text{RHom}_{A^e}(- \otimes^L_\Delta \Lambda^e, \Lambda^e)$.

These are used to prove the first main result of this article.

Theorem 1.2 (Theorem 3.4.1). Assume setting I.1. Assume that $\text{char}(k) \nmid \text{Card}(G)$, that A is homologically smooth and that $\Sigma^d \text{RHom}_{A^e}(A, \Lambda^e) \simeq A$ in $\mathcal{D}(\Delta)$, then A and Λ are d-Calabi-Yau.

See Proposition 3.4.2 for a necessary condition for Λ to be d-Calabi-Yau expressed in terms of $\text{RHom}_{A^e}(A, \Lambda^e)$ when the Hochschild cohomology group $\text{HH}^0(A)$ is a local algebra.

Several constructions of Calabi-Yau dg algebras behave nicely with respect to taking skew group algebras. This article concentrates on two constructions, namely, the Calabi-Yau completion $\Pi_d(A)$ and the Ginzburg dg algebras of [15, 24]. When A is homologically smooth, its d-Calabi-Yau completion $\Pi_d(A)$ is defined as $\theta^d_A(\Sigma^{d-1} \Theta_A)$ where Θ_A is any cofibrant replacement of $\text{RHom}_{A^e}(A, \Lambda^e)$ also called an inverse dualising complex of A. It is d-Calabi-Yau. Any Hochschild homology class $c \in \text{HH}_{d-2}(A)$ yields a deformation of the differential of $\theta^d_A(\Sigma^{d-1} \Theta_A)$, thus giving rise to the deformed Calabi-Yau completion $\Pi_d(A, c)$. If c lies in the image of the natural mapping $\text{HN}_{d-2}(A) \to \text{HH}_{d-2}(A)$, where HN is the negative cyclic homology, then $\Pi_d(A, c)$ is d-Calabi-Yau ([37]). Both constructions depend on the choice of Θ_A and on the choice of a representative of c, but they are independent of these choices up to a quasi-isomorphism of dg algebras. Now, here is how these constructions are compatible with taking skew group algebras.

Theorem 1.3 (Theorem 3.5.4). Assume setting I.1. Assume that A is homologically smooth and that $\text{char}(k) \nmid \text{Card}(G)$.

1. $A \ast G$ is homologically smooth and, up to appropriate choices of inverse dualising complexes of A and $A \ast G$, the group G acts on $\Pi_d(A)$ by dg automorphisms and $\Pi_d(A) \ast G \simeq \Pi_d(A \ast G)$ as dg algebras. In particular, $\Pi_d(A) \ast G$ is d-Calabi-Yau.
2. Let $c \in \text{HH}_{d-2}(A)^G$. Let \overline{c} be the image of c under the mapping $\text{HH}_{d-2}(A) \to \text{HH}_{d-2}(A \ast G)$ induced by $A \to A \ast G, a \mapsto a \ast e$. Up to appropriate choices as in (1) and up to appropriate choices of representatives of c and \overline{c}, the group G acts on $\Pi_d(A, c)$ by dg automorphisms and $\Pi_d(A, c) \ast G \simeq \Pi_d(A \ast G, \overline{c})$ as dg algebras. In particular, if c lifts to $\text{HN}_{d-2}(A)$ (so that $\Pi_d(A, c)$ is d-Calabi-Yau), then $\Pi_d(A, c) \ast G$ is d-Calabi-Yau.

Note that, if A is a finite dimensional algebra of global dimension d, then $H^0(\Pi_{d+1}(A))$ is isomorphic to the $(d+1)$-preprojective algebra of A in the sense of [21] Definition 2.11. Hence, part (1) of Theorem 1.3 entails that, in this case, G acts on the $(d+1)$-preprojective algebra of A and that the resulting skew group algebra is isomorphic to the $(d+1)$-preprojective algebra of $A \ast G$ (see Proposition 6.2.1). In the more particular case where $d = 1$, these are classical preprojective algebras of hereditary algebras and this result is proved in [9].

The Ginzburg dg algebras are particular instances of deformed Calabi-Yau completions. They are Calabi-Yau. Here, they are considered using the following setting.

Setting 1.4. Let Q, G, W be as follows.
• Q is a finite graded \mathbb{k}-quiver.
• G is a finite group with order not divisible by $\text{char}(\mathbb{k})$ and acting on the path algebra $\mathbb{k}Q$ by degree preserving automorphisms in such a way that both the set of (idempotents associated with) vertices and the vector space generated by the arrows of Q are stabilised by the action.
• W is a homogeneous potential of degree $d - 3$ on Q.

The Ginzburg dg algebra $\mathcal{A}(Q, W)$ is quasi-isomorphic to the deformed Calabi-Yau completion $\Pi_d(\mathbb{k}Q, c)$, where the graded path algebra $\mathbb{k}Q$ has zero differential and c is the image of W under Connes’ boundary $\text{HH}_{d - 3}(\mathbb{k}Q) \to \text{HH}_{d - 2}(\mathbb{k}Q)$. Theorem 1.3 applies as follows.

Corollary 1.5 (Corollary 4.4.3). Assume setting 1.4. Assume that W is G-invariant up to cyclic permutation.

1. The action of G on $\mathbb{k}Q$ extends to an action of G on $\mathcal{A}(Q, W)$ by dg automorphisms and $\mathcal{A}(Q, W) * G$ is a d-Calabi-Yau.
2. For all graded \mathbb{k}-quivers Q' and for all (non unital) graded algebra homomorphisms $\mathbb{k}Q' \to \mathbb{k}Q * G$ whose restriction-of-scalars functor is an equivalence from $\text{Mod}(\mathbb{k}Q * G)$ to $\text{Mod}(\mathbb{k}Q')$ (see [9]), there exists a homogeneous of degree $d - 3$ potential W' on Q' such that $\mathbb{k}Q' \to \mathbb{k}Q * G$ extends to a (non unital) dg algebra homomorphism $\mathcal{A}(Q', W') \to \mathcal{A}(Q, W) * G$

whose restriction-of-scalars functor induces an equivalence

$$D(\mathcal{A}(Q, W) * G) \xrightarrow{\sim} D(\mathcal{A}(Q', W'))$$

More precisely, $\mathbb{k}Q' \to \mathbb{k}Q * G$ induces an isomorphism $\text{HH}_{d - 3}(\mathbb{k}Q') \to \text{HH}_{d - 3}(\mathbb{k}Q * G)$. Using it as an identification, W' may be taken equal to the image of W under the mapping $\text{HH}_{d - 3}(\mathbb{k}Q) \to \text{HH}_{d - 3}(\mathbb{k}Q * G)$ induced by the natural embedding $\mathbb{k}Q \to \mathbb{k}Q * G$, $\alpha \mapsto \alpha * e$. When $d = 3$, Corollary 1.5 is proved in [3] Theorem 2.6, Corollary 2.7] assuming that $G = \mathbb{Z}/2\mathbb{Z}$ and the action of G on $\mathbb{k}Q$ is induced by an action on Q by quiver automorphisms.

As mentioned in the introduction, 3-Calabi-Yau algebras are base ingredients in the construction of generalised cluster categories. Theorem 1.2 and Corollary 1.5 raise the question of the comparison of generalised cluster categories of A and $A * G$ when they are defined. The setting in which this article addresses this question is the following.

Setting 1.6. Let \mathbb{k} be a field. Let G be a finite group. Let A be dg \mathbb{k}-algebra acted upon by G by dg automorphisms. Assume that

• A is concentrated in non positive degrees and $H^0(A)$ is finite dimensional,
• $\text{char}(\mathbb{k})$ does not divide $\text{Card}(G)$,
• and both A and $A * G$ are 3-Calabi-Yau.

This ensures the existence of the generalised cluster categories \mathcal{C}_A and $\mathcal{C}_{A * G}$ of A and $A * G$, respectively. In particular, they have distinguished cluster tilting objects \overline{A} and $\overline{A * G}$, respectively. In this setting, the group G acts (strictly) on \mathcal{C}_A by (strict) automorphisms of triangulated categories. Also, the extension-of-scalars functor $D(A) \to D(A * G)$ and the restriction-of-scalars functor $D(A * G) \to D(A)$ induce triangle functors

$$F_\lambda: \mathcal{C}_A \to \mathcal{C}_{A * G}: F$$

which form a biadjoint pair with split units (see Proposition 5.1.2). These functors are the basement of the comparison between the cluster tilting objects of \mathcal{C}_A and those of $\mathcal{C}_{A * G}$.

Theorem 1.7 (Corollary 5.2.2 and Proposition 5.2.3). Assume setting 1.6.
Corollary 1.9 (Propositions 6.1.2 and 6.2.1). Let \(A \) be a finite dimensional algebra of global dimension \(d \). Let \(G \) be a finite group acting on \(A \) by algebra automorphisms. Assume that \(\text{char}(k) \) does not divide \(\text{Card}(G) \).
\(1\) \(A\) is \(d\)-representation finite if and only if so is \(A \ast G\).

\(2\) \(A\) is \(d\)-representation infinite if and only if so is \(A \ast G\).

The article is organised as follows. Basic material is recalled in section 2. Section 3 develops the needed properties of the dg algebra \(\Delta\) and proves Theorems 1.2 and 1.3. Section 4 is devoted to the application to Ginzburg dg algebras, it proves Corollary 1.5. The comparison between the generalised cluster categories of \(A\) and \(A \ast G\), when these are defined, is made in section 4. This includes proofs of Theorem 1.7 and Corollary 1.8. Finally, Corollary 1.9 on higher representation (in)finite algebras is proved in section 6.

2. Definitions and notation

Throughout the text, \(k\) denotes a field. The tensor product over \(k\) is denoted by \(\otimes\). Let \(A\) be a dg algebra over \(k\). All dg algebras are over \(k\) and with differential of degree 1. Denote by \(A^{op}\) the opposite dg algebra of \(A\). Denote by \(A^e\) the enveloping dg algebra \(A \otimes A^{op}\) of \(A\), with product given by \((a \otimes b) \cdot (c \otimes d) = (-1)^{\deg(b)(\deg(c)+\deg(d))}ac \otimes db\) for all (homogeneous) \(a, b, c, d \in A\).

The dg category of dg (right) \(A\)-modules is denoted by \(\text{Mod}(A)\). See [23] for a background. In all places, the suspension functor is denoted by \(\Sigma\). Given dg \(A\)-modules \(M, N\) the complex of morphisms \(M \to N\) in \(\text{Mod}(A)\) is denoted by \(\text{Hom}_A(M, N)\); in particular \(Z^0\text{Hom}_A(M, N)\) is the vector space of morphisms of dg \(A\)-modules, that is, with degree 0 and commuting with the differentials, and \(H^0\text{Hom}_A(M, N)\) is the vector space of morphisms of dg \(A\)-modules up to homotopy. The derived category of \(A\) is denoted by \(\mathcal{D}(A)\), this is the localisation of the graded category \(H^0\text{Mod}(A)\) at quasi-isomorphisms. It contains two full subcategories used here,

- the perfect derived category denoted by \(\text{per}(A)\), this is the thick triangulated subcategory of \(\mathcal{D}(A)\) generated by \(A\) and
- the full subcategory \(\mathcal{D}_{gl}(A)\) of objects \(X \in \mathcal{D}(A)\) such that \(\dim(\oplus_{i \in \mathbb{Z}} H^i(X)) < \infty\).

In particular, \(A\) is a dg \(A^e\)-module for the following structure map

\[
A \otimes A^e \rightarrow A^e,
\]

\[
a \otimes (b \otimes c) \mapsto ((-1)^{\deg(c)(\deg(b)+\deg(a))}cb)\cdot a.
\]

and \(A\) is called homologically smooth if \(A \in \text{per}(A^e)\).

2.1. Calabi-Yau algebras. For all \(X \in \text{Mod}(A)\), the complex \(\text{Hom}_{A^e}(X, A^e)\) is viewed as a dg \(A^e\)-module such that \((f \cdot (a \otimes b))(x) = (-1)^{\deg(f) \cdot \deg(a) + \deg(b) \cdot \deg(a)}(b \otimes a) \cdot f(x)\) for all \(f \in \text{Hom}_{A^e}(X, A^e)\), \(x \in X\) and \(a, b \in A\). When \(A\) is homologically smooth, \(\text{RHom}_{A^e}(-, A^e)\) induces a duality \(\text{RHom}_{A^e}(-, A^e) : \text{per}(A^e) \rightarrow \text{per}(A^e)\). Let \(d\) be an integer. Following [15 3.2.3], the dg algebra \(A\) is called \(d\)-Calabi-Yau if the two following assertions hold true:

\(1\) \(A\) is homologically smooth,

\(2\) \(\Sigma^d \text{RHom}_{A^e}(A, A^e) \simeq A\) in \(\mathcal{D}(A^e)\).

2.2. Skew group algebras. Let \(G\) be a finite group and \(A\) be a dg algebra. In all places, \(e\) denotes the neutral element of \(G\). By an action of \(G\) on \(A\) by dg automorphism is meant a morphism of complexes \(kG \otimes A \rightarrow A\), where \(kG\) is a complex in degree 0 and with zero differential, such that, denoting by \(g^a\) the image of \(g \otimes a\) for all \(g \in G\) and \(a \in A\), then

- \(g(ab) = g^ag^b\) for all \(a, b \in A\) and \(g \in G\) and
- \(e^a = a\) and \(e^b = g(\hat{b})a\) for all \(a \in A\) and \(g, h \in G\).

This defines the skew group dg algebra \(A \ast G\) with underlying complex of vector spaces equal to \(A \otimes kG\), where any tensor \(a \otimes g\) with \(a \in A\) and \(g \in G\) is denoted by \(a \ast g\) and with product such that \((a \ast g) \cdot (b \ast h) = a \ast gb \ast gh\) for all \(a, b \in A\) and \(g, h \in G\).

For all \(g \in G\), denote by \(A \ast g\) the dg \(A^e\)-module \(A \ast g = \{ a \ast g \mid a \in A\}\). It is isomorphic to \(A\) as a dg \(A\)-module. Besides, \(A \ast G = \oplus_{g \in G} A \ast g\) as a dg \(A^e\)-module.
2.3. **Adjunctions.** Let G be a finite group acting on a dg algebra A by dg automorphism. For all $g \in G$ denote the restriction of scalars along the dg automorphism $A \to A, a \mapsto g^*a$ as follows

\[
\begin{align*}
\text{Mod}(A) & \to \text{Mod}(A) \\
M & \mapsto M^g \\
M & \overset{\text{res}}{\to} M' \mapsto M^g \overset{L_g}{\to} M'^g.
\end{align*}
\]

This defines a strict action of G on $\text{Mod}(A)$ on the right by automorphisms of dg categories. It preserves both projective and injective model structures of $\text{Mod}(A)$, and hence defines a strict action of G on $\mathcal{D}(A)$ by strict automorphisms of triangulated category.

Since $A * g \simeq A$ as dg A-modules for all $g \in G$, the extension-of-scalars functor $- \otimes_A (A * G)$: $\text{Mod}(A) \to \text{Mod}(A * G)$ preserves quasi-isomorphisms and so does the restriction-of-scalars functor res: $\text{Mod}(A * G) \to \text{Mod}(A)$. Consider the adjoint pair of triangle functors

$$- \otimes_A^L (A * G): \mathcal{D}(A) \overset{\simeq}{\longrightarrow} \mathcal{D}(A * G): \text{Res}$$

Lemma 2.3.1. The functors $- \otimes_A A * G$ and Res have the following properties.

1. The pairs $(\text{Res}, - \otimes_A^L (A * G))$ and $(- \otimes_A^L (A * G), \text{Res})$ are adjoint.
2. The unit of the adjoint pair $(- \otimes_A^L (A * G), \text{Res})$ splits.
3. If $\text{char}(k) \not| \text{Card}(G)$, then the unit morphism $N \to (\text{Res} N) \otimes_A^L (A * G)$ of the adjoint pair $(\text{Res}, - \otimes_A^L (A * G))$ splits functorially for all $N \in \mathcal{D}(A * G)$.
4. For all $M \in \mathcal{D}(A)$ there is a functorial isomorphism in $\mathcal{D}(A)$

$$\text{Res}(M \otimes_A^L (A * G)) \simeq \bigoplus_{g \in G} M^g.$$

5. For all $M, M' \in \mathcal{D}(A)$ there is a bifunctorial isomorphism

$$\bigoplus_{g \in G} \mathcal{D}(A)(M, M'^g) \simeq \mathcal{D}(A * G)(M \otimes_A^L (A * G), M' \otimes_A^L (A * G)).$$

6. There exists an isomorphism of functors $\lambda_g: -g \otimes_A^L (A * G) \simeq - \otimes_A^L (A * G)$, for all $g \in G$, such that the following equalities hold true, for all $M \in \mathcal{D}(A)$ and $g, h \in G$,

$$\begin{align*}
(\lambda_g)_M &= \mathbb{1}_M \\
(\lambda_{gh})_M &= (\lambda_g)_M \circ (\lambda_h)_M.
\end{align*}$$

7. $\text{Res} \simeq (\text{Res})^g$ for all $g \in G$.

Proof. This is known for finitely generated modules over Artin algebras. Here are some details.

(1) See [34, Theorem 1.4]. Given $X \in \text{Mod}(A * G)$ and $Y \in \text{Mod}(A)$, the following is an isomorphism of complexes

$$\Phi: \text{Hom}_A(\text{res} X, Y) \to \text{Hom}_{A*G}(X, Y \otimes_A (A * G)),$$

where $\Phi(f)$ is defined as follows, for all $f \in \text{Hom}_A(\text{res} X, Y)$,

$$\begin{align*}
\Phi(f): X & \to Y \otimes_A (A * G) \\
x & \mapsto \sum_{g \in G} f(x \cdot (1 * g^{-1})) \otimes (1 * g).
\end{align*}$$

The inverse of Φ maps any $f' \in \text{Hom}_{A*G}(X, Y \otimes_A (A * G))$ to its composition with the mapping $Y \otimes_A A * G \to Y$ induced by the counit $kG \to k$. Hence, the pair $(\text{res}, - \otimes_A (A * G))$ of functors between $\text{Mod}(A)$ and $\text{Mod}(A * G)$ is adjoint. This is a Quillen adjunction, which yields the adjunction at the level of derived categories (note that both res and $- \otimes_A (A * G)$ preserve quasi-isomorphisms).
A splitting in $D(A)$ is induced by the counit $kG \rightarrow k$.

(3) The unit morphism $N \rightarrow (\text{Res } N) \otimes_A (A * G)$ is induced by

$$ n \mapsto \sum_{g \in G} (n \cdot (1 * g^{-1})) \otimes (1 * g). $$

A splitting in $D(A * G)$ is induced by $n \otimes (a * g) \mapsto \frac{1}{\text{card}(G)} \cdot n \cdot (a * g)$.

(4) See [34, Proposition 1.8]. The isomorphism is induced by

$$ \bigoplus_{g \in G} M^g \rightarrow M \otimes_A (A * G) $$

$$ m \otimes (a * h) \mapsto m \otimes (g^a \otimes h). $$

(5) follows from (1) and (4).

(6) There exists an isomorphism of dg $A * G$-modules, for all $M \in \text{Mod}(A)$ and $g \in G$,

$$ \ell_{g,M} : M^g \otimes_A (A * G) \rightarrow M \otimes_A (A * G) $$

$$ m \otimes (a * h) \mapsto m \otimes (g^a \otimes h). $$

And $\ell_{a,M} = \mathbb{1}_M$ and $\ell_{a,M} \circ \ell_{g,M} = \ell_{g a, M}$ for all $M \in \text{Mod}(A)$ and $g, h \in G$. This proves (6).

(7) $N \rightarrow N^g$, $n \mapsto n \cdot (1 * g^{-1})$ is an isomorphism of dg A-modules, for all $N \in \text{Mod}(A * G)$. \square

3. The main theorems

This section assumes setting 1.1. This setting is restated below for convenience.

Setting 3.1. Let d be an integer. Let k be a field. Let A be a dg algebra over k. Let G be a finite group acting on A by dg automorphisms $(g, a) \mapsto g a$. Denote by Λ the dg algebra $A * G$.

The section aims at proving Theorem 1.2 which gives sufficient conditions for Λ to be d-Calabi-Yau and Theorem 1.3 which explains when G acts on the (deformed) Calabi-Yau-completions of A so that the resulting skew group algebras are Calabi-Yau.

For this purpose, an auxiliary dg subalgebra Δ of A^e such that $A \otimes_\Delta A^e \simeq \Lambda$ is introduced in subsection 3.2. This allows to relate A being homologically smooth to Λ being homologically smooth in subsection 3.2. The proofs of these results are based on a relationship between the inverse dualising complexes of A and Λ established in subsection 3.3. Theorem 1.2 is proved in subsection 3.4 and Theorem 1.3 is proved in subsection 3.5.

3.1. The dg algebra Δ and its dg modules. Recall that Δ is defined in (1.1.1). The group G acts on A^e by dg automorphisms as follows

$$ G \times A^e \rightarrow A^e $$

$$ (g, a \otimes b) \mapsto g a \otimes g b, $$

and the resulting skew group algebra is isomorphic to Δ via the following isomorphism

$$ \Delta \rightarrow A^e * G $$

$$ (a * g) \otimes (b * g^{-1}) \mapsto (a \otimes g^{-1} b) * g. $$

To be given a dg Δ-module is equivalent to be given a dg A^e-module M together with a compatible action of G on M by automorphisms of complexes of vector spaces $G \times M \rightarrow M, (g, m) \mapsto g m$. Here, by “compatible”, is meant that, for all $g \in G$, $a, b \in A$ and $m \in M$,

$$ g (m \cdot (a \otimes b)) = g m \cdot g (a \otimes b), $$

the structure of dg Δ-module is then such that $m \cdot ((a * g) \otimes (b * g^{-1})) = (g^{-1} m) \cdot (g^{-1} a \otimes b)$.

To any dg Δ-module M is associated a dg Λ^c-module $M \ast G$ with underlying complex of vector spaces $M \otimes kG$ and with action of Λ^c such that $(m \ast g) \cdot (a \ast b \otimes b \ast k) = (km \cdot (k_g \ast b)) \ast kgh$ for all $m \in M$, $a, b \in A$, and $g, h, k \in G$. Note that $A \in \Mod(\Delta)$ by means of the following structure mapping

$$A \otimes \Delta \rightarrow A$$

$$a \otimes (b \ast g \otimes c \ast g^{-1}) \mapsto (-1)^{\deg(c)(\deg(b)+\deg(a))} g^{-1} a \ast g^{-1} b.$$

Of course, in this case, the resulting dg Λ^c-module $A \ast G$ is Λ. The following basic properties are used throughout the section.

Lemma 3.1.1. Assume setting [7.2]

1. $\Delta \simeq (A^c)^{\Card(G)}$ as dg A^c-modules.
2. $\Lambda^c \simeq \Delta^{\Card(G)}$ as dg Λ^c-modules.
3. Let $M \in \Mod(\Delta)$, then
 - the following mapping is an isomorphism of dg Λ^c-modules,
 - $M \otimes \Lambda^c \rightarrow M \ast G$
 $$m \otimes (a \ast g \otimes b \ast h) \mapsto (m \cdot (a \ast h^{-1} \otimes b \ast h)) \ast hg.$$
 - M is a direct summand of $M \otimes \Lambda^c$ in $Z^0\Mod(\Delta)$.
 - if $\text{char}(k) \nmid \Card(G)$ then M is a direct summand of $M \otimes \Delta$ in $Z^0\Mod(\Delta)$.

4. The restriction-of-scalars functor $\Mod(\Delta) \rightarrow \Mod(A^c)$ maps cofibrant objects to cofibrant objects. Moreover, for all cofibrant resolutions $X \rightarrow A$ in $\Mod(\Delta)$, the composite morphism $X \otimes \Delta \Lambda^c \rightarrow A \otimes \Delta \Lambda^c$ is a cofibrant resolution in $\Mod(\Lambda^c)$.

Proof. (1) follows from the definition of Δ and the fact that $A \ast g \simeq A$ as dg A-modules.

(2) follows from the direct sum decompositions

$$\Lambda^c = \bigoplus_{t \in G} \left(\bigoplus_{g \in G} (A \ast g) \otimes (A \ast g^{-1}t) \right)$$

where each term $\bigoplus_{g \in G} (A \ast g) \otimes (A \ast g^{-1}t)$ (or, $\bigoplus_{g \in G} (A \ast g) \otimes (A \ast t^{-1})$) is a dg $\Delta \otimes (A^c)^{\text{op}}$-submodule (or, a dg $A^c \otimes (A^c)^{\text{op}}$-submodule) of Λ^c freely generated by $1 \ast c \otimes (1 \ast t)$ as a dg Δ-module (or, as a dg Λ^c-module), and hence is isomorphic to Δ as a dg Δ-module (or, as a dg Λ^c-module, respectively).

(3) The mapping [3.1.3] is a well-defined morphism of Λ^c-modules, its inverse is

$$M \ast G \rightarrow M \otimes \Lambda^c$$

$$m \ast g \mapsto m \otimes ((1 \ast g) \otimes (1 \ast c)).$$

In order to prove that M is a direct summand of $M \otimes \Delta \Lambda^c$ in $Z^0\Mod(\Delta)$, denote by X_t the dg $\Delta \otimes (A^c)^{\text{op}}$-submodule $\bigoplus_{g \in G} (A \ast g) \otimes (A \ast g^{-1}t)$ of Λ^c, for all $t \in G \setminus \{c\}$. In the decomposition [3.1.4], both summands X_e and $\bigoplus_{t \in G \setminus \{c\}} X_t$ are dg $\Delta \otimes (A^c)^{\text{op}}$-submodules. Accordingly, there is a direct sum decomposition in $Z^0\Mod(\Delta)$

$$M = (M \otimes \Delta X_e) \bigoplus \left(M \otimes \Delta \left(\bigoplus_{t \neq e} X_t \right) \right).$$

Since $X_e = \Delta$, the dg module M is a direct summand of $M \otimes \Delta \Lambda^c$ in $Z^0\Mod(\Delta)$.

Finally, note that Lemma 2.3.1 may be applied here to the dg algebras A^c and $\Delta \simeq A^c \ast G$ instead of to A and $A \ast G$, respectively. Using part (3) of that lemma yields that M is a direct summand of $M \otimes \Delta \ast \Delta$ in $Z^0\Mod(\Delta)$.

(4) Let $X \rightarrow A$ be a cofibrant resolution in $\Mod(\Delta)$.

In view of (1), the functor $\Hom_{A^e}(\Delta, -) : \text{Mod}(A^e) \to \text{Mod}(\Delta)$ preserves quasi-isomorphisms and component-wise surjective morphisms. Accordingly, its left adjoint, the restriction-of-scalars functor $\text{Mod}(\Delta) \to \text{Mod}(A^e)$, preserves cofibrant objects. Thus, $X \to A$ is a cofibrant resolution in $\text{Mod}(A^e)$.

The restriction-of-scalars functor $\text{Mod}(\Lambda^e) \to \text{Mod}(\Delta)$ preserves quasi-isomorphisms and component-wise surjective morphisms. Accordingly, its left adjoint, the extension-of-scalars functor $- \otimes_\Delta \Lambda^e : \text{Mod}(\Delta) \to \text{Mod}(\Lambda^e)$ preserves cofibrant objects. In view of (2), it also preserves quasi-isomorphisms. Thus, $X \otimes_\Delta \Lambda^e \to A \otimes_\Delta \Lambda^e$ is a cofibrant resolution in $\text{Mod}(\Lambda^e)$ and remains so after composing with the quasi-isomorphism (3.1.3). \qed

3.2. Homological smoothness of A and Λ.

Proposition 3.2.1. Assume setting $[\Lambda, A]$.

1. If Λ is homologically smooth, then so is A.
2. The converse holds true when $\text{char}(k)$ does not divide $\text{Card}(G)$.

Proof. (1) Assume that Λ is homologically smooth. Consider the restriction-of-scalars functors,

$$D(\Lambda^e) \xrightarrow{\text{res}_1} D(\Delta) \xrightarrow{\text{res}_2} D(A^e).$$

Since $A^e \simeq \Delta^{\text{Card}(G)}$ (see Lemma 3.1.1 part (2)), the triangle functor res_1 maps $\text{per}(\Lambda^e)$ into $\text{per}(\Delta)$. Moreover, $A \in \text{per}(A^e)$. Therefore,

\[(3.2.1)\quad A \in \text{per}(\Delta).\]

Applying part (3) of Lemma 3.1.1 to $M = A$ and using the restriction-of-scalars functor $D(\Lambda^e) \to D(\Delta)$ yields that $A \simeq A \otimes_\Delta \Lambda^e$ in $D(\Delta)$ and that A is a direct summand of $A \otimes_\Delta \Lambda^e$ in $D(\Delta)$. Therefore, it follows from (3.2.1) that

\[(3.2.2)\quad A \in \text{per}(\Delta).\]

Finally, $\Delta \in \text{per}(A^e)$ because $\Delta \simeq (A^e)^{\text{Card}(G)}$ (see Lemma 3.1.1 part (1)); accordingly, $\text{res}_2(\text{per}(\Delta)) \subseteq \text{per}(A^e)$; therefore $A \in \text{per}(A^e)$ (see (3.2.2)), that is, A is homologically smooth.

(2) Assume that $\text{char}(k)$ does not divide $\text{Card}(G)$ and that A is homologically smooth. Consider the extension-of-scalars functors,

$$D(A^e) \xrightarrow{- \otimes^L_\Lambda \Delta} D(\Delta) \xrightarrow{- \otimes^L_\Lambda \Lambda^e} D(\Lambda^e).$$

First, $A \otimes^L_\Lambda \Delta \in \text{per}(\Delta)$ because $A \in \text{per}(A^e)$. Besides, $A \otimes^L_\Lambda \Delta \simeq A \otimes_{A^e} \Delta$ in $D(\Delta)$ because $\Delta \simeq (A^e)^{\text{Card}(G)}$ as $\text{dg}(A^e)^{\text{op}}$-modules (see Lemma 3.1.1 part (1)). Now, A is a direct summand of $A \otimes_{A^e} \Delta$ in $D(\Delta)$ (see above or part (3) of Lemma 3.1.1). Thus,

\[(3.2.3)\quad A \in \text{per}(\Delta).\]

Finally, $A \otimes_\Delta \Lambda^e \simeq A \otimes^L_\Lambda \Lambda^e$ because $\Lambda^e \simeq \Delta^{\text{Card}(G)}$ as $\text{dg} \Delta^{\text{op}}$-modules, and $\Lambda \simeq A \otimes_\Delta \Lambda^e$ in $D(\Lambda^e)$ (see Lemma 3.1.1 parts (2) and (3)). Therefore $A \in \text{per}(\Lambda^e)$ (see (3.2.3)), that is, A is homologically smooth. \qed

3.3. Interaction between duality and extension of scalars. This subsection establishes a relationship between $\text{RHom}_{A^e}(A, A^e)$ and $\text{RHom}_{A^e}(\Lambda, \Lambda^e)$. For this purpose, the following lemma makes of $\text{RHom}_{A^e}(\cdot, A^e)$ a triangle functor $D(\Delta) \to D(\Delta)$.

Lemma 3.3.1. Assume setting $[\Lambda, A]$. Let $M \in \text{Mod}(\Delta)$. For all $f \in \text{Hom}_{A^e}(M, A^e)$ and $g \in G$, denote by $g f$ the following mapping

\[(3.3.1)\quad g f : \quad M \to A^e \quad m \mapsto g f(m \cdot ((1 \ast g) \otimes (1 \ast g^{-1}))).\]
This construction defines an action of G on $\text{Hom}_{A^e}(M,A^e)$ compatible with the natural structure of dg A^e-module, and hence an additive functor

\[(3.3.2)\quad \text{Hom}_{A^e}(-,A^e) : \text{Mod}(\Delta) \to \text{Mod}(\Delta)\]
such that the two following diagrams are commutative (the vertical arrows are the restriction-of-scalars functors).

\[
\begin{array}{cccc}
\text{Mod}(\Delta) & \xrightarrow{\text{Hom}_{A^e}(-,A^e)} & \text{Mod}(\Delta) \\
\downarrow & & \downarrow \\
\text{Mod}(A^e) & \xrightarrow{\text{Hom}_{A^e}(-,A^e)} & \text{Mod}(A^e)
\end{array}
\]

\[(3.3.3)\quad \mathcal{D}(\Delta) \xrightarrow{\text{RHom}_{A^e}(-,A^e)} \mathcal{D}(\Delta)\]

\[
\begin{array}{cccc}
\mathcal{D}(\Delta) & \xrightarrow{\text{RHom}_{A^e}(-,A^e)} & \mathcal{D}(\Delta) \\
\downarrow & & \downarrow \\
\mathcal{D}(A^e) & \xrightarrow{\text{RHom}_{A^e}(-,A^e)} & \mathcal{D}(A^e)
\end{array}
\]

Proof. The part of the statement before \[(3.3.3)\] follows from a direct computation. In particular, \[(3.3.3)\] is commutative. Following Lemma 3.1.1 (part (4)), the vertical arrows in \[(3.3.3)\] preserve cofibrant objects. The diagram \[(3.3.4)\] therefore arises from \[(3.3.3)\]. \qed

Note that, given a quasi-isomorphism $X \to M$ in $\mathcal{D}(\Delta)$ such that X is cofibrant in $\text{Mod}(A^e)$, the image of M under $\text{RHom}_{A^e}(-,A^e) : \mathcal{D}(\Delta) \to \mathcal{D}(\Delta)$ is isomorphic to $\text{Hom}_{A^e}(X,A^e)$. Indeed, there exists a cofibrant resolution $X' \to X$ in $\text{Mod}(\Delta)$. Therefore, the image of M under $\text{RHom}_{A^e}(-,A^e) : \mathcal{D}(\Delta) \to \mathcal{D}(\Delta)$ is isomorphic to $\text{Hom}_{A^e}(X',A^e)$. Now, X' is cofibrant in $\text{Mod}(A^e)$ because so it is in $\text{Mod}(\Delta)$; actually, it follows from [17 Proposition 2.5] and from the isomorphism \[(3.1.1)\] that a dg Δ-module is homotopically projective if and only if it is so as a dg A^e-module. The quasi-isomorphism $X' \to X$ between cofibrant objects in $\text{Mod}(A^e)$ therefore induces a quasi-isomorphism $\text{Hom}_{A^e}(X,A^e) \to \text{Hom}_{A^e}(X',A^e)$ in $\text{Mod}(A^e)$, and hence also in $\text{Mod}(\Delta)$. In particular, there is no risk of misunderstanding in using the same notation, $\text{RHom}_{A^e}(-,A^e)$, for both functors $\mathcal{D}(A^e) \to \mathcal{D}(A^e)$ and $\mathcal{D}(\Delta) \to \mathcal{D}(\Delta)$.

It is now possible to establish the relationship between $\text{RHom}_{A^e}(A,A^e)$ and $\text{RHom}_{A^e}(A,A^e)$ announced at the beginning of the subsection.

Proposition 3.3.2. Assume setting \[(3.4)\]. The following diagram, where the top horizontal arrow is given by the top horizontal one of \[(3.3.4)\], is commutative up to an isomorphism of functors.

\[
\begin{array}{cccc}
\mathcal{D}(\Delta) & \xrightarrow{\text{RHom}_{A^e}(-,A^e)} & \mathcal{D}(\Delta) \\
\downarrow & & \downarrow \\
\mathcal{D}(A^e) & \xrightarrow{\text{RHom}_{A^e}(-,A^e)} & \mathcal{D}(A^e)
\end{array}
\]

Consequently, there are isomorphisms in $\mathcal{D}(A^e)$,

\[(3.3.6)\quad \text{RHom}_{A^e}(A,A^e) \ast G \simeq \text{RHom}_{A^e}(A,A^e) \otimes_{\Delta} \Lambda^e \simeq \text{RHom}_{A^e}(A,A^e) \ast G \simeq \text{RHom}_{A^e}(A,A^e) \otimes_{\Delta} \Lambda^e \ast G .
\]

Proof. For the ease of reading, A and $\mathfrak{k}G$ are identified with their respective canonical images in Λ and so are A^e and $(\mathfrak{k}G)^e$ in Λ^e. Unless otherwise specified, “\ast” denotes the product in Λ^e. For all $M \in \text{Mod}(\Delta)$, there is an isomorphism of dg Λ^e-modules,

\[(3.3.7)\quad \Phi_M : \text{Hom}_{A^e}(M,A^e) \ast_{\Delta} \Lambda^e \to \text{Hom}_{\Delta}(M,A^e)
\]
such that $\Phi_\Lambda(f \otimes (a \ast g) \otimes (b \ast h)))$ is given as follows, for all $f \in \text{Hom}_A(M, A^e)$, $a, b \in A$ and $g, h \in G$,

$$M \rightarrow \Lambda^e \quad m \mapsto \pm \sum_{s \in G} [(b \ast h) \otimes (a \ast g) \cdot f(m \cdot (k \otimes k^{-1})) \cdot (k^{-1} \otimes k)],$$

where the sign is $(-1)^{\text{deg}(b) \cdot \text{deg}(a) + \text{deg}(f) + \text{deg}(a) \cdot \text{deg}(f)}$. Here is a description of Φ_Λ^{-1}. Given $\varphi \in \text{Hom}_\Delta(M, \Lambda^e)$ and $m \in M$, there is a unique decomposition $\varphi(m) = \sum_{s \in G} \varphi_{s,t}(m) \cdot (s \otimes t)$ in Λ^e, where $\varphi_{s,t}(m) \in A^e$; in particular, for all $s, t \in G$,

- $\varphi_{s,t}(m \cdot (a \otimes b)) = \varphi_{s,t}(m) \cdot (a \otimes t^{-1} b)$, for all $a, b \in A$, and
- $\varphi_{s,t}(m \cdot (k \otimes k^{-1})) = \varphi_{sk^{-1},kt}(m)$, for all $k \in G$;

hence, the following well-defined mapping lies in $\text{Hom}_A(M, A^e)$, for all $g \in G$,

$$\varphi^{(g)}: M \rightarrow A^e \quad m \mapsto (g^{-1} \otimes 1) \cdot \varphi_{g,c}(m) \cdot (g \otimes 1).$$

With this notation, Φ_Λ^{-1} is given by $\varphi \mapsto \sum_{g \in G} \varphi^{(g)} \otimes (g \otimes 1)$.

This construction is natural. Since, moreover, $\text{Hom}_\Delta(-, \Lambda^e) \cong \text{Hom}_{\Lambda^e}(- \otimes \Delta \Lambda^e, \Lambda^e)$, there is a functorial isomorphism of functors from $\text{Mod}(A^e)$ to $\text{Mod}(\Lambda^e)$.

\begin{equation}
\text{Hom}_A(-, \Lambda^e) \otimes \Delta \Lambda^e \cong \text{Hom}_{\Lambda^e}(- \otimes \Delta \Lambda^e, \Lambda^e).
\end{equation}

Now, recall that $\Lambda^e \simeq \Delta^\text{Card}(G)$ both as dg Δ-modules and as dg Δ^op-modules. Hence, deriving \begin{equation} \text{Hom}_A(-, \Lambda^e) \otimes \Delta \Lambda^e \cong \text{Hom}_{\Lambda^e}(- \otimes \Delta \Lambda^e, \Lambda^e). \end{equation} yields that \begin{equation} \text{Hom}_A(-, \Lambda^e) \otimes \Delta \Lambda^e \cong \text{Hom}_{\Lambda^e}(- \otimes \Delta \Lambda^e, \Lambda^e). \end{equation} with $M = A$ for the second one.

\section{Main theorem}

Now it is possible to prove Theorem \ref{thm:main}. Here is a restatement of it.

\begin{theorem}
Assume setting \ref{set:m}. Assume that $\text{char}(k) \nmid \text{Card}(G)$, that A is homologically smooth and that $\Sigma^4 \text{RHom}_A(A, A^e) \simeq A$ in $\mathcal{D}(\Delta)$, then A and Λ are d-Calabi-Yau.
\end{theorem}

\begin{proof}
By restriction of scalars, $\Sigma^4 \text{RHom}_A(A, A^e)$ is isomorphic to A in $\mathcal{D}(A^e)$ because this is the case in $\mathcal{D}(\Delta)$. Hence, A is d-Calabi-Yau. By Proposition \ref{prop:dg}, the dg algebra A is homologically smooth. Finally, since $\Sigma^4 \text{RHom}_A(A, A^e) \simeq A$ in $\mathcal{D}(\Delta)$, it follows from the isomorphism \ref{iso:main} with $M = A$ and from Proposition \ref{prop:iso} that A is d-Calabi-Yau.
\end{proof}

Here is a necessary condition for Λ to be Calabi-Yau. No assumption on $\text{char}(k)$ is made.

\begin{proposition}
Assume setting \ref{set:m}. Assume that $\text{HH}^0(A)$ is a local k-algebra. If Λ is d-Calabi-Yau, then A is homologically smooth and there exists $g \in G$ such that, in $\mathcal{D}(A^e)$,

$$\Sigma^4 \text{RHom}_A(A, A^e) \simeq A_g,$$

where \bullet_g denotes the restriction-of-scalars functor along the dg automorphism $A^e \rightarrow A^e$, $a \otimes b \mapsto g_a \otimes b$.
\end{proposition}

\begin{proof}
The dg algebra A is homologically smooth by Proposition \ref{prop:dg}. Since Λ is d-Calabi-Yau, there is an isomorphism $\Sigma^4 \text{RHom}_A(A, A^e) \simeq A$ in $\mathcal{D}(\Lambda^e)$. Using Proposition \ref{prop:iso} and the isomorphism \ref{iso:main} with $M = A$ yields that $\Sigma^4 \text{RHom}_A(A, A^e) \otimes_\Lambda \Lambda^e \simeq A \otimes_\Lambda \Lambda^e$ in $\mathcal{D}(\Lambda^e)$. Using \ref{iso:main} yields that there is an isomorphism in $\mathcal{D}(A^e)$,

\begin{equation}
\bigoplus_{g \in G} \Sigma^4 \text{RHom}_A(A, A^e)_g \simeq \bigoplus_{g \in G} A_g.
\end{equation}

Note that all the summands appearing in \ref{iso:main} lie in $\text{per}(A^e)$ because they are direct summands of Λ in $\mathcal{D}(A^e)$.
3.5. Skew group algebras of deformed Calabi-Yau completions. Assume setting [3.1] and assume that char(\<k\>) does not divide Card(G) and that A is homologically smooth. Hence Λ is homologically smooth. This subsection investigates when G acts on the deformed Calabi-Yau completions of A, as introduced in [24], and when the associated skew group algebras are deformed Calabi-Yau completions of Λ. For this subsection, consider a cofibrant replacement in \(\text{Mod}(\Delta)\)

\[r_A: X \rightarrow A, \]

and consider a quasi-isomorphism in \(\text{Mod}(\Delta)\) which is a cofibrant replacement in \(\text{Mod}(A^e)\),

\[p_A: \Theta_A \rightarrow \text{Hom}_{A^e}(X, A^e). \]

Recall that \(r_A\) is a cofibrant resolution in \(\text{Mod}(A^e)\) (see subsection [3.1]) and that dg Δ-modules are also viewed as dg \(A^e\)-modules with a compatible action of \(G\).

The quasi-isomorphism \(p_A\) induces a quasi-isomorphism in \(\text{Mod}(\kappa)\) because \(A\) is homologically smooth,

\[\Sigma^{d-2}X \otimes_{A^e} A \rightarrow \text{Hom}_{A^e}(\Sigma^{d-1}\Theta_A, \Sigma A) \]

\[x \otimes a \mapsto (\theta \mapsto (p_a(\theta))(x) \cdot a), \]

where the "\(\ast\)" denotes the structure action of \(A^e\) on the left dg \(A^e\)-module \(A\). The (deformed) Calabi-Yau completions of \(A\) are defined as follows.

Definition 3.5.1 ([24]). Let \(A\) be a homologically smooth dg algebra. Let \(\Theta_A\) be a cofibrant replacement of \(\text{RHom}_{A^e}(A, A^e)\) in \(\text{Mod}(A^e)\).

1. The d-Calabi-Yau completion \(\Pi_d(A)\) of \(A\) is the following tensor dg algebra,

\[\Pi_d(A) = T_A(\Sigma^{d-1}\Theta_A). \]

2. Let \(D \in Z^0\text{Hom}_{A^e}(\Sigma^{d-1}\Theta_A, \Sigma A)\). Denote by \(\delta\) the differential of \(\Sigma^{d-1}\Theta_A\). Define \(\delta_D\) to be the unique square-zero skew-derivation of degree 1 on the graded algebra \(T_A(\Sigma^{d-1}\Theta_A)\) whose restriction to \(A\) is equal to the differential of \(A\) and whose restriction to \(\Sigma^{d-1}\Theta_A\) is given by

\[[D, \delta]: \Sigma^{d-1}\Theta_A \rightarrow \Sigma A \bigoplus \Sigma^{d}\Theta_A. \]

3. Let \(c \in \text{HH}_{d-2}(A)\). Let \(D \in Z^0\text{Hom}_{A^e}(\Sigma^{d-1}\Theta_A, \Sigma A)\) represent \(c\) via (3.5.1). The deformed d-Calabi-Yau completion \(\Pi_d(A, c)\) is defined by

\[\Pi_d(A, c) = (T_A(\Sigma^{d-1}\Theta_A), \delta_D). \]

Up to quasi-isomorphisms of dg algebras, neither \(\Pi_d(A)\) nor \(\Pi_d(A, c)\) depend on the cofibrant replacement \(r_A: X \rightarrow A\) or on the cocycle \(D\).

Theorem 3.5.2 ([24] [37]). Let \(A\) be a homologically smooth dg algebra. Let \(d\) be an integer. The Calabi-Yau completion \(\Pi_d(A)\) is d-Calabi-Yau ([24] Theorem 4.8]). For all \(c \in \text{HH}_{d-2}(A)\) lying in the image of the canonical morphism \(\text{HN}_{d-2}(A) \rightarrow \text{HH}_{d-2}(A)\) the deformed Calabi-Yau completion \(\Pi_d(A, c)\) is d-Calabi-Yau ([37] Theorem 3.17]).

In order to relate the (deformed) Calabi-Yau completions of \(A\) to those of \(\Lambda\), it is necessary to endow the former ones with suitable actions of \(G\). For this purpose, note that the mapping (3.5.1) is \(G\)-equivariant provided that \(\Sigma^{d-2}X \otimes_{A^e} A\) and \(\text{Hom}_{A^e}(\Sigma^{d-1}\Theta_A, \Sigma A)\) are endowed with the following actions of \(G\),

- \(g(\ast a) = g \ast a\) for all \(g \in G\), \(x \in X\) and \(a \in A\).
uniqueness of this action follows from Theorem 3.5.4.

In particular, the former action induces the natural action on the Hochschild homology $HH_{d-2}(A)$ which is computed by $X \otimes_{A'} A$.

Lemma 3.5.3. Assume setting 3.1. Assume that char(\mathbb{k}) does not divide Card(G) and that A is homologically smooth. Let Θ_A be a dg Δ-module which is a cofibrant replacement of $R\text{Hom}_{A^e}(A, A^e)$ in Mod(A^e).

1. The actions of G on A and on Θ_A extend uniquely to an action by dg automorphisms on $T_A(\Sigma^{d-1}\Theta_A) = \Pi_d(A)$.
2. Let $c \in HH_{d-2}(A)$. Then, there exists $D \in Z^0\text{Hom}_{A^e}(\Sigma^{d-1}\Theta_A, \Sigma A)$ which represents c via (3.5.1) and such that $D(\theta g) = g(D(\theta))$ for all $g \in G$ and $\theta \in \Theta_A$. For any such D, the action of G on the dg algebra $T_A(\Sigma^{d-1}\Theta_A)$ is an action by dg automorphisms on $(T_A(\Sigma^{d-1}\Theta_A), \delta_D) = \Pi_d(A, c)$ (see part (2) of Definition 3.5.1 for the definition of δ_D).

Proof. (1) In view of (3.1.2), there is an action of $\Pi_d(A) * G$ on $T_A(\Sigma^{d-1}\Theta_A) = \Pi_d(A)$.

(2) Note that $(H^0\text{Hom}_{A^e}(\Sigma^{d-1}\Theta_A, \Sigma A))^G \cong H^0(\text{Hom}_{A^e}(\Sigma^{d-1}\Theta_A, \Sigma A)^G)$ because the algebra $\mathbb{k}G$ is semisimple. This explains the existence of D. In particular, both the differential of A and the mapping $\Pi_d(A) * G$ are G-equivariant. Hence, so is δ_D. Accordingly, the action of G on the graded algebra $T_A(\Sigma^{d-1}\Theta_A)$ is an action by dg automorphisms on $\Pi_d(A, c)$ when the latter is taken equal to $(T_A(\Sigma^{d-1}\Theta_A), \delta_D)$. \hfill \Box

Lemma 3.5.3 sets the framework in which the dg algebras $\Pi_d(A) * G$ and $\Pi_d(A, c) * G$ are defined. Using this, it is possible to prove Theorem 3.4. This theorem is restated below for convenience.

Theorem 3.5.4. Assume setting 3.1. Assume that A is homologically smooth and that char(\mathbb{k}) \nmid Card(G).

1. $A * G$ is homologically smooth and, up to appropriate choices of inverse dualising complexes of A and $A * G$, the group G acts on $\Pi_d(A)$ by dg automorphisms and $\Pi_d(A) * G \simeq \Pi_d(A * G)$ as dg algebras. In particular, $\Pi_d(A) * G$ is d-Calabi-Yau.
2. Let $c \in HH_{d-2}(A)^G$. Let \overline{c} be the image of c under the mapping $HH_{d-2}(A) \to HH_{d-2}(A * G)$ induced by $A \to A * G, a \mapsto a * e$. Up to appropriate choices as in (1) and up to appropriate choices of representatives of c and \overline{c}, the group G acts on $\Pi_d(A, c)$ by dg automorphisms and $\Pi_d(A, c) * G \simeq \Pi_d(A * G, \overline{c})$ as dg algebras. In particular, if c lifts to $HN_{d-2}(A)$ (so that $\Pi_d(A, c)$ is d-Calabi-Yau), then $\Pi_d(A, c) * G$ is d-Calabi-Yau.

Proof. It follows from Proposition 3.2.1 that A is homologically smooth.

(1) Here, $\Pi_d(A)$ is taken equal to the dg algebra $T_A(\Sigma^{d-1}\Theta_A)$ endowed with the action of G introduced in Lemma 3.5.3. Note that $\Theta_A * G$ is a cofibrant replacement of $R\text{Hom}_{A^e}(A, A^e)$ in Mod(A^e) (see subsection 3.1 and Proposition 3.3.2). Hence, $\Pi_d(A * G)$ may be taken equal to the tensor dg algebra $T_A(\Sigma^{d-1}\Theta_A * G)$. To avoid confusion, the piece of notation “$*$” is kept for elementary tensors in $A * G$ and $\Theta_A * G$ but not for those in $T_A(\Sigma^{d-1}\Theta_A) * G$. The following map is therefore a morphism of dg algebras,

\[
\Pi_d(A) * G \longrightarrow \Pi_d(A * G)
\]

\[
a \otimes g \longmapsto a * g \in A * G
\]

\[
(\phi_1 \otimes \cdots \otimes \phi_n) \otimes g \longmapsto (\phi_1 * e) \otimes \cdots \otimes (\phi_{n-1} * e) \otimes (\phi_n * g)
\]

(3.5.5)
where \(a \in A, \phi_1, \ldots, \phi_n \in \Sigma^{d-1}\Theta_A \) and \(g \in G \). It is an isomorphism, its inverse maps \(a \ast g \in A * G \) onto \(a \otimes g \), for all \(a \in A \) and \(g \in G \), and it maps \((\phi_1 \ast g_1) \otimes \cdots \otimes (\phi_n \ast g_n) \) onto
\[
(\phi_1 \otimes^g \phi_2 \otimes \cdots \otimes^g \phi_{t+1} \otimes \cdots \otimes^g \phi_{n-1} \otimes^g \phi_n) \otimes g_1 \cdots g_n
\]
for all \((\phi_1 \ast g_1), \ldots, (\phi_n \ast g_n) \in \Sigma^{d-1}\Theta_A * G\).

(2) In view of the functoriality of the Hochschild homology and of the negative cyclic homology, if \(c \) lifts to \(\text{HN}_{d-2}(A) \) then \(\bar{c} \) lifts to \(\text{HN}_{d-2}(A * G) \). It is hence sufficient to prove the first statement of (2). Thanks to the remark following Lemma 3.3.1, it is possible to choose \((3.5.8)\), \(\text{Hom} \) and \((3.5.7)\).

Hence, \(p \) lifts to \(A \) by dg automorphisms. \((3.5.9)\)\(\Sigma \Lambda \) the quasi-isomorphism \((3.5.6)\) identifies with the following one
\[
\delta T \Lambda A \to \text{Hom}_{\Lambda^e}((\Sigma \Theta_A \otimes \Delta \Lambda^e, \Sigma \Lambda) \to \text{Hom}_{\Lambda^e}(X \otimes \Delta \Lambda^e, \Lambda^e).
\]
The following composite mapping is a cofibrant resolution in \(\text{Mod}(\Lambda^e) \),
\[
p_{A}: \Theta_A \otimes \Delta \Lambda^e \to \text{Hom}_{\Lambda^e}(X, \Lambda^e) \otimes \Delta \Lambda^e \xrightarrow{\text{Hom}_{\Lambda^e}(p_A)} \text{Hom}_{\Delta}(X, \Lambda^e) \xrightarrow{\Sigma} \text{Hom}_{\Delta^e}(X \otimes \Delta \Lambda^e, \Lambda^e).
\]
Hence, \(\Pi_\delta(A, \tau) \) may be taken equal to the graded algebra \(T_A((\Sigma^{d-1}\Theta_A \otimes \Delta \Lambda^e)) \) with the differential \((\delta \otimes \Delta \Lambda^e)_{D'}\), where \(D' \) is any 0-cocycle in \(\text{Hom}_{\Lambda^e}((\Sigma^{d-1}\Theta_A \otimes \Delta \Lambda^e, \Sigma \Lambda) \) which represents \(\tau \) via the following quasi-isomorphism
\[
(3.5.6) \quad \Sigma^{d-2}(X \otimes \Delta \Lambda^e) \otimes \Lambda^e \xrightarrow{\alpha \otimes \lambda} \text{Hom}_{\Lambda^e}((\Sigma^{d-1}\Theta_A \otimes \Delta \Lambda^e, \Sigma \Lambda)
\]
where the “•” stands for the structure action of \(\Lambda^e \) on \(\Lambda \). Recall that \(\delta \) is the differential of \(\Sigma^{d-1}\Theta_A \).

In order to prove (2), it is hence sufficient to prove the following claim.

\textbf{Claim 1 -} \(D' \) may be chosen such that, in addition, \((3.5.5)\) is an isomorphism of dg algebras from \((T_A((\Sigma^{d-1}\Theta_A)), \delta_D) \ast G \) to \((T_A((\Sigma^{d-1}\Theta_A \otimes \Delta \Lambda^e)), (\delta \otimes \Delta \Lambda^e)_{D'})\).

Note that, in view of the definition of \(p_{A} \), and up to the two canonical identifications
\[
(3.5.7) \quad (X \otimes \Delta \Lambda^e) \otimes \Lambda \cong X \otimes \Delta \Lambda
\]
and
\[
(3.5.8) \quad \text{Hom}_{\Lambda^e}((\Sigma^{d-1}\Theta_A \otimes \Delta \Lambda^e, \Sigma \Lambda) \cong \text{Hom}_{\Delta}((\Sigma^{d-1}\Theta_A, \Sigma \Lambda),
\]
the quasi-isomorphism \((3.5.6)\) identifies with the following one
\[
(3.5.9) \quad \Sigma^{d-2}X \otimes \Lambda \to \text{Hom}_{\Delta}((\Sigma^{d-1}\Theta_A, \Sigma \Lambda) \xrightarrow{x \otimes \lambda} \sum_{k \in G}(p_{A}(\theta))(k^{-1}x) \cdot (k^{-1} \otimes k) \cdot \lambda),
\]
where, for simplicity, \(A^e \) and \((kG)^e \) are viewed as subspaces of \(\Lambda^e \) in a natural way.

Denote by \(\overline{D} \) the following cocycle
\[
\overline{D}: \Sigma^{d-1}\Theta_A \to \Sigma \Lambda
\]
\[
\theta \mapsto D(\theta) \ast e.
\]
Then, the following diagram where the rightmost vertical arrow is the pre-image of D under $3.5.8$ is commutative,

\[
\begin{array}{c}
\Sigma^{d-1} \Theta_A \ast G \xrightarrow{3.5.8} \Sigma^{d-1} \Theta_A \otimes \Delta \Lambda^c \\
\downarrow D \\
\Sigma A \ast G \xrightarrow{3.5.8} \Sigma \Lambda
\end{array}
\]

Hence, in order to prove claim 1, it is sufficient to prove the following claim.

Claim 2 - D' may be chosen such that its image under $3.5.8$ is equal to D.

In order to prove this claim, consider the following diagram

\[
(\Sigma^{d-2} X \otimes A^e, A)^G \xrightarrow{3.5.1} \Sigma^{d-2} X \otimes \Delta \Lambda \xrightarrow{3.5.7} (\Sigma^{d-2} X \otimes \Delta \Lambda^c) \otimes A^e, A
\]

\[
\xrightarrow{3.5.9} \text{Hom}_{\Delta}(\Sigma^{d-1} \Theta_A, \Sigma A) \xrightarrow{3.5.8} \text{Hom}_{\Delta}(\Sigma^{d-1} \Theta_A, \Sigma A) \otimes (\Sigma^{d-1} \Theta_A \otimes \Delta \Lambda^c, \Sigma \Lambda)
\]

where

- the codomain of the G-invariant part of $3.5.1$ is indeed equal to $\text{Hom}_{\Delta}(\Sigma^{d-1} \Theta_A, \Sigma A)$ as a subcomplex of $\text{Hom}_{\Delta}(\Sigma^{d-1} \Theta_A, \Sigma A)$,
- the unlabelled top horizontal arrow is induced by the mapping $x \otimes a \mapsto x \otimes (a \ast e)$, and
- the unlabelled bottom horizontal arrow is given by the composition with the embedding $\Sigma A \to \Sigma \Lambda$, $a \mapsto a \ast e$.

Note that,

- the mapping $\text{HH}_{d-2}(A)^G \to \text{HH}_{d-2}(A \ast G)$ which assigns c to c is induced by the composition of the top horizontal arrows of $3.5.10$,
- D is the image of D under the unlabelled bottom horizontal arrow of $3.5.10$,
- c (or θ) is represented by any cocycle in $(\Sigma^{d-2} X \otimes A^e, A)^G$ (or, in $(\Sigma^{d-2} X \otimes \Delta \Lambda^c) \otimes A^e, A$) whose image under the leftmost (or, rightmost) vertical arrow of $3.5.10$ is cohomologous to D (or, to D', respectively), when viewing $\text{Hom}_{\Delta}(\Sigma^{d-1} \Theta_A, \Sigma A)$ as a subcomplex of $\text{Hom}_{\Delta}(\Sigma^{d-1} \Theta_A, \Sigma A)$.

Hence, in order to prove claim 2, it is sufficient to prove the following claim.

Claim 3 - The diagram $3.5.10$ is commutative.

Here is a proof of this claim. Given that $3.5.9$ is obtained upon composing $3.5.7$, $3.5.6$, and $3.5.8$, the rightmost square is commutative. Let $\sum_i x_i \otimes a_i \in (\Sigma^{d-2} X \otimes A^e, A)^G$. Hence, for all $k \in G$,

\[
\sum_i x_i \otimes a_i = \sum_i k x_i \otimes k a_i.
\]

On one hand, the image of $\sum_i x_i \otimes a_i$ under the leftmost vertical arrow of $3.5.10$ is as follows

\[
\Sigma^{d-1} \Theta_A \xrightarrow{\theta} \Sigma A \xrightarrow{3.5.6} \sum_i (p_A(\theta)(x_i)) \cdot a_i,
\]

which has image under the unlabelled bottom horizontal arrow as follows

\[
\Sigma^{d-1} \Theta_A \xrightarrow{\theta} \Sigma A \xrightarrow{3.5.8} \sum_i ((p_A(\theta)(x_i)) \cdot a_i) \ast e = (p_A(\theta)(x_i)) (a_i \ast e).
\]
On the other hand, the image of $\sum x_i \otimes a_i$ under the unlabelled top horizontal arrow of (3.5.10) is equal to $\sum x_i \otimes (a_i * e)$, which has image under the middle vertical arrow as follows

$$\sum^{d-1} \Theta_A \to \Sigma A$$

$$\theta \mapsto \frac{1}{\text{Card}(G)} \cdot \sum_{k \in G} i \left(p_A(\theta) \left(k^{-1} x_i \right) \right) \cdot (k^{-1} \otimes k) \cdot (a_i * e).$$

(3.5.13)

In view of (3.5.11), the mappings (3.5.12) and (3.5.13) are equal. Thus (3.5.10) is commutative. This finishes proving claim 3, claim 2, claim 1, and, finally, (2).

4. Application to Ginzburg dg algebras

Assume setting 1.4. It is restated below for convenience.

Setting 4.1. Let Q be a finite graded k-quiver. Let G be a finite group such that $\text{char}(k) \nmid \text{Card}(G)$, acting on $\check{k}Q$ by degree preserving automorphisms in such a way that both the set of (idempotents associated with) vertices and the vector space generated by the arrows of Q are stabilised by the action. Let W be a homogeneous potential of degree $d - 3$ on Q.

The purpose of this section is to prove Corollary 1.5 by applying section 3 to Ginzburg dg algebras. Subsection 4.1 gives a reminder on Ginzburg dg algebras. Subsection 4.2 proves that cyclic derivations are G-equivariant. This is used in subsection 4.3 to prove that G acts on $A(Q,W)$ by dg automorphisms if W is G-invariant up to cyclic permutation. Subsection 4.4 proves Corollary 1.5.

4.1. Reminder on Ginzburg dg algebras. These were introduced in [15, 4.2]. The more general definition used here follows [21, 6.3].

Let Q be a finite graded k-quiver, that is, Q is a quiver (or, an oriented graph) with (finite) set of vertices denoted by Q_0 and (finite) set of arrows denoted by Q_1, and the kQ_0-bimodule kQ_1 spanned by Q_1 has a \mathbb{Z}-grading. Without loss of generality, assume that every arrow of Q is homogeneous. The path algebra kQ is hence \mathbb{Z}-graded, idempotents e_x of vertices x have degree 0. With this grading, kQ is also viewed as a dg algebra with zero differential.

The space of potentials on Q is the \mathbb{Z}-graded vector space,

$$\check{k}Q \otimes_{kQ_0} kQ_0$$

$$\langle uv \otimes e_x - (-1)^{\deg(u) \cdot \deg(v)} v u \otimes e_y \mid u \in e_x kQ e_y, v \in e_y kQ e_x \text{ homogeneous}, x, y \in Q_0 \rangle.$$

Hence, potentials are linear combinations of oriented cycles in Q, each of which is considered up to cyclic permutation with Koszul-type signs. Note that kQ has a cofibrant resolution in $\text{Mod}(kQ^\vee)$ by the cone of

$$kQ \otimes_{kQ_0} kQ_1 \otimes_{kQ_0} kQ$$

$$u \otimes a \otimes v \mapsto u a \otimes v - u \otimes a v$$

so that the Hochschild homology of kQ is computed by the cone of

$$(kQ_1 \otimes_{kQ_0} kQ) \otimes_{kQ_0} kQ_0$$

$$a \otimes u \otimes 1 \mapsto (-1)^{\deg(a) \cdot \deg(u)} u a \otimes 1.$$

Hence, a homogeneous potential of degree n on Q may be viewed as an element of $\text{HH}_n(kQ)$.

Let $d \geq 3$ be an integer. Let W be a homogeneous potential on Q of degree $d - 3$. The Ginzburg dg algebra $A(Q,W)$ is defined as follows. As a graded algebra, $A(Q,W)$ equals $k\tilde{Q}$ where \tilde{Q} is the following graded k-quiver,

- \tilde{Q} and Q have the same vertices,
as a graded $\mathbb{k}Q_0$-bimodule, $\tilde{\mathbb{k}Q}_1$ is equal to
\[
\tilde{\mathbb{k}Q}_1 = \mathbb{k}Q_1 \bigoplus \Sigma^{d-2} \text{Hom}_{\mathbb{k}Q_0^e}(\mathbb{k}Q_1, \mathbb{k}Q_0^c) \bigoplus \Sigma^{d-1} \mathbb{k}Q_0,
\]
given an arrow $a: x \to y$ in Q denote by a^* the element of $\text{Hom}_{\mathbb{k}Q_0^e}(\mathbb{k}Q_1, \mathbb{k}Q_0^c)$ defined by its behaviour on arrows as follows
\[
a^*: b \in Q_1 \mapsto \begin{cases} e_x \otimes e_y & \text{if } b = a \\ 0 & \text{otherwise}, \end{cases}
\]
and given $i \in Q_0$ denote by c_i the corresponding element of $\Sigma^{d-1} \mathbb{k}Q_0$; this defines a bijective \mathbb{k}-linear mapping
\[
\mathbb{k}Q_1 \to \text{Hom}_{\mathbb{k}Q_0^e}(\mathbb{k}Q_1, \mathbb{k}Q_0^c),
\]
where $a \in Q_1 \mapsto a^*$.

Note that the grading on $A(Q, W)$ is determined by the grading on $\mathbb{k}Q$.

The differential on $A(Q, W)$ (of degree $+1$) is uniquely determined by the following rules:
- it vanishes on $\mathbb{k}Q$,
- it maps $a^* : y \to x$ to the cyclic derivative $\partial_a W$, for all arrows $a: x \to y$ in Q,
- it maps $c_i : i \to i$ to $\sum_{a: i \to i} a^* a - \sum_{a: i \to i} a^* a$, where the first sum runs over all the arrows of Q starting in i and the second sum runs over all the arrows of Q arriving in i.

Recall that, when $a \in Q_1$, the cyclic derivative ∂_a is the linear mapping which takes a path p to $\partial_a p = \sum_{p=p_1a p_2} (-1)^{\deg(p_1) \deg(ap_2)} p_2 p_1$, where the sum runs over all decompositions $p = p_1 a p_2$ with paths p_1 and p_2.

By [24] Subsections 6.1 and 6.2, and Theorem A.12, $A(Q, W)$ is d-Calabi-Yau and there is a quasi-isomorphism of dg algebras
\[
\Pi_d(\mathbb{k}Q, c) \xrightarrow{\sim} A(Q, W),
\]
where $c \in \text{HH}_{d-2}(\mathbb{k}Q)$ is the image of W under Connes' boundary in Hochschild homology $\text{HH}_{d-3}(\mathbb{k}Q) \xrightarrow{B} \text{HH}_{d-2}(\mathbb{k}Q)$.

4.2. Equivariant non commutative differential calculus on quiver algebras

Assume setting [4.1]. In this subsection, tensor products, quotients and Hom-spaces involving G-modules are considered as G-modules in the classical sense of group representations. Denote by $\text{DR}(\mathbb{k}Q)$ the G-module of potentials on $\mathbb{k}Q$. The following lemma is essential for subsection 4.3

Lemma 4.2.1. Assume setting [4.1]. The following \mathbb{k}-linear mapping is G-equivariant
\[
\text{Hom}_{\mathbb{k}Q_0^e}(\mathbb{k}Q_1, \mathbb{k}Q_0^c) \otimes \text{DR}(\mathbb{k}Q) \to \mathbb{k}Q,
\]
\[
\varphi \otimes w \mapsto d_{A(Q, w)}(\varphi),
\]
where $d_{A(Q, w)}$ denotes the differential of the dg algebra $A(Q, w)$, for all potentials w on Q.

Proof. The proof uses the interpretation ([15] Subsections 3.5 and 3.6) of cyclic derivatives as reduced contractions [8 Section 2]). Recall that the tensor product of two homogeneous \mathbb{k}-linear mappings f and f' is defined using the Koszul-sign rule, that is $(f \otimes f')(u \otimes v) = (-1)^{\deg(f') \deg(u)} f(u) \otimes f'(v)$ for all homogeneous u, v such that $f(u)$ and $f'(v)$ are defined. Denote by $\Delta_{\mathbb{k}Q}$ the natural coassociative and counital comultiplication of $\mathbb{k}Q$, viewed as $T_{\mathbb{k}Q_0}(\mathbb{k}Q_1)$.

Denote by p the natural projection from $\mathbb{k}Q$ to $\mathbb{k}Q_1$. Denote by $-^\circ$ the \mathbb{k}-linear mapping from $\mathbb{k}Q \otimes \mathbb{k}Q$ to $\mathbb{k}Q$ given by $(u \otimes v)^\circ = (-1)^{\deg(u) \deg(v)} vu$ for all homogeneous $u, v \in \mathbb{k}Q$.

By considering tensors of the shape $a^* \otimes w$ where $a \in Q_1$ and $w \in \text{DR}(kQ)$, it is elementary to check that (4.2.1) is equal to the following mapping (for the ease of reading, no distinction is made between a linear combination of oriented cycles and its associated potential)

$$
\text{Hom}_{kQ^e}(kQ_1, kQ_0^e) \otimes \text{DR}(kQ) \rightarrow kQ
$$

$$
\varphi \otimes w \mapsto (((\text{Id} \otimes (\varphi \circ \text{Id}) \circ (\Delta_{kQ} \otimes \text{Id}) \circ \Delta_{kQ})(w))^e .
$$

This is G-equivariant, hence so is (4.2.1) \hfill \Box

Remark 4.2.2. The proof and the statement of Lemma 4.2.1 still hold true when G is infinite.

Remark 4.2.3. Let $g \in G$. It is elementary to check that (4.2.1) is (g)-equivariant if

$$
(\forall a \in Q_1) \quad g a \in \{ t \cdot b \mid t \in k^\times, b \in Q_1 \} .
$$

Since G is finite, one may try to reduce the proof of Lemma 4.2.1 to that particular case using a k-algebra automorphism $f : kQ \rightarrow kQ$ such that $f^{-1}(g f(-))$ satisfies (4.2.2) in place of g. The reduction then consists in proving that the conjugation of (4.2.1) under f^{-1} is (g)-equivariant. However, this is not immediate because the conjugate of (4.2.1) under f^{-1} is not (4.2.1). Rather, its expression is governed by the cyclic chain rule ([11, Lemma 3.9]). The details of the reduction using this rule is left to the reader.

The following example illustrates the fact that conjugating the cyclic derivation by an automorphism does not yield the cyclic derivation.

Example 4.2.4. Assume that $k = \mathbb{C}$, that $G = \{ e, g \}$, that Q is the quiver $\begin{array}{c} e \rightarrow b \end{array}$, where $\text{deg}(a) = \text{deg}(b) = 0$, that $g a = \frac{a + b}{2}$ and $g b = \frac{a - b}{2}$, and that W is the (g)-invariant potential $a^2 + g(a^2) = \frac{1}{2}(3a^2 + ab + ba + b^2)$. In Remark 4.2.3, one may assume that $f(a) = a - ib$ and $f(b) = a + ib$. Indeed, $g f(a) = \frac{1 + i}{\sqrt{2}} f(b)$ and $g f(b) = \frac{1 - i}{\sqrt{2}} f(a)$. Denote (4.2.1) by ι and denote its conjugate under f^{-1} by ι'. Note that f acts on $\text{Hom}_{kQ^e}(kQ_1, kQ_0^e)$ by precomposition with f^{-1}. On one hand, $\iota(a^* \otimes W) = \partial_0(W) = 3a + b$. On the other hand, $\iota'(a^* \otimes W) = f^{-1}(\iota((a^* \circ f^{-1}) \otimes f(W)))$; note that $a^* \circ f^{-1} = \frac{1}{2}(a^* - ib^*)$ and $f(W) = 3a^2 + iab + iba - b^2$; hence $\iota'(a^* \otimes W) = 4a + 2ib$. Thus ι is not invariant under conjugation by f^{-1}.

4.3 Group actions on $A(Q, W)$

Assume setting 4.1 and assume that W is G-invariant up to cyclic permutation. Like in subsection 4.2, tensor products, quotients and Hom-spaces involving G-modules are considered as G-modules in the classical sense of group representations. In particular, $	ext{Hom}_{kQ^e}(kQ_1, kQ_0^e)$ is a G-module. Denote by c the image of W under $B : \text{HH}_{d-3}(kQ) \rightarrow \text{HH}_{d-2}(kQ)$. Then c lies in $\text{HH}_{d-2}(kQ)^G$. The purpose of this subsection is to show that G acts on $A(Q, W)$ by algebra automorphisms, that this is an action by dg automorphisms, and that, when $\Pi_d(kQ, e)$ is endowed with the action of G of Lemma 3.5.3, the following quasi-isomorphism of [24, Theorem 6.3] is G-equivariant

$$
\Pi_d(kQ, c) \rightarrow A(Q, W) .
$$

Here is a reminder on this quasi-isomorphism. In $\text{Mod}(kQ^e)$, there is a cofibrant replacement of kQ equal to the cone of the following morphism

$$
\begin{array}{c}
kQ \otimes_{kQ} kQ_1 \otimes_{kQ} kQ \\
1 \otimes a \otimes 1 \\
\rightarrow \\
\rightarrow \\
\rightarrow
\end{array}
$$

Denote by Θ_{kQ} the cylinder of the following morphism

$$
\text{Hom}_{kQ^e}(kQ \otimes_{kQ} kQ, kQ^e) \rightarrow \text{Hom}_{kQ^e}(kQ \otimes_{kQ} kQ_1 \otimes_{kQ} kQ, kQ) .
$$
Hence, Θ_{kQ} is a cofibrant replacement of $R\text{Hom}_{kQ^e}(kQ, kQ \otimes kQ)$ in $\text{Mod}(kQ^e)$ and it determines the dg algebra $\Pi_d(kQ, c)$ (see part (2) of Lemma 3.5.3). Note that Θ_{kQ} is canonically isomorphic to the cone of the following morphism

$$\Pi_d(kQ, c) = T_{kQ}(\Sigma^{d-1}\Theta_{kQ}) \text{ as graded algebras, (4.3.1)}$$

is an isomorphism of graded algebras, not just a quasi-isomorphism, and it is induced by the natural inclusions (4.3.5)

$$kQ \to A(Q, W), \Sigma^{d-2}\text{Hom}_{kQ^e}(kQ_1, kQ_0^e) \to A(Q, W) \text{ and } c_i \mapsto c_i.$$

Note that each one of the kQ^e-modules appearing in (4.3.3) and (4.3.4) is endowed with an action of G. These actions are compatible so that the corresponding objects are dg Δ-modules. In this sense, (4.3.3) and (4.3.4) are morphisms of dg Δ-modules and their cones lie in $\text{Mod}(\Delta)$.

On one hand, Θ_{kQ} is a dg Δ-module on its own by means of Lemma 3.3.1 and this structure is used to endow $\Pi_d(kQ, c)$ with action of G (see Lemma 3.5.3). By construction, the structure of dg Δ-module of $\Sigma \Theta_{kQ}$ coincides with the one of the cone of (4.3.3).

On the other hand, the actions of G on kQ and $\text{Hom}_{kQ^e}(kQ_1, kQ_0^e)$ endow \bar{Q} with an action by automorphisms of graded algebra (recall that \bar{Q} is the graded quiver whose path algebra equals the underlying graded algebra of $A(Q, W)$, see (4.1.2)). And it follows from Lemma 4.2.1 that this is actually an action by dg automorphisms. The mappings of (4.3.5) are G-equivariant, and hence so is (4.3.1).

Lemma 4.3.1. Assume that W is G-invariant up to cyclic permutation.

- Take Θ_{kQ} to be the cofibrant replacement of $R\text{Hom}_{kQ^e}(kQ, kQ^e)$ whose suspension is equal to the cone of (4.3.3) and endow $\Pi_d(kQ, c)$ with its action of G by dg automorphisms as in Lemma 3.5.3.

- Endow $\text{Hom}_{kQ^e}(kQ_1, kQ_0^e)$ with its natural action of G.

Then,

1. the latter action together with the one on kQ endow $A(Q, W)$ with an action of G by graded algebra automorphisms. For this action, (4.3.1) is G-equivariant.

2. the action of G on $A(Q, W)$ is an action by dg automorphisms and, taking $\Pi_d(kQ, c)$ like in part (2) of Lemma 3.5.3, the mapping (4.3.1) is a G-equivariant isomorphism of dg algebras.

Proof. This follows from the discussion made from the beginning of the subsection.

4.4. Skew group algebras of Ginzburg dg algebras. Assume that W is G-invariant up to cyclic permutation. Following subsection 4.3, endow $A(Q, W)$ with the resulting action of G by dg automorphisms. The purpose of this subsection is to prove Corollary 4.3.1.

Following [34] and [9], there exists a graded k-quiver Q' and a (non unital) injective homomorphism of graded algebras $kQ' \to kQ \ast G$ whose restriction-of-scalars functor is an equivalence $\text{Mod}(kQ \ast G) \to \text{Mod}(kQ')$. The quiver Q' is constructed in [34] when G is cyclic and in [9] in full generality. Here is a reminder of its definition.

Definition 4.4.1 ([9]). Let $[G_i, Q_0]$ be a complete set of representatives of the G-orbits of vertices of Q. For each $i \in Q_0$, denote by G_i the stabiliser of i and let $[G/G_i]$ be a complete set of representatives of the cosets of G modulo G_i. Finally, for all $i \in Q_0$, let $\text{irr}(G_i)$ be a complete set of representatives of the isomorphism classes of the irreducible representations of G_i; it is convenient to assume that $\rho = kG_i e_\rho$ for some primitive idempotent e_ρ of kG_i, for all $\rho \in \text{irr}(G_i)$.
(1) Let \(\varepsilon \) be the following idempotent of \(kQ \ast G \),
\[
\varepsilon = \sum_{i \in [G \setminus Q_0]} e_i \ast e_{\rho},
\]
(4.4.1)

(2) Let \(Q' \) be any quiver as follows.
- Its vertices are the pairs \((i, \rho)\) where \(i \in [G \setminus Q_0] \) and \(\rho \in \text{irr}(G_i) \).
- For all vertices \((i, \rho)\) and \((j, \tau)\), denote by \(M(i, j; \tau) \) the following vector subspace of \(kQ \ast G \)
\[
M(i, j; \tau) = \bigoplus_{y \in [G/G_i]} (e_i kQ_1 e_{y,j}) \ast (y kG_j e_{\tau});
\]
by means of the multiplication, \(kQ \ast G \) is a representation of \(G \) and, by restriction, it is a representation of \(G_i \); then \(M(i, j; \tau) \) is a subrepresentation of this \(G_i \)-module; the vector space with basis being the family of arrows of \(Q' \) from \((i, \rho)\) to \((j, \tau)\) is \(\text{Hom}_{G_i}(\rho, M(i, j; \tau)) \).

There exists an isomorphism of algebras
\[
kQ' \xrightarrow{\sim} \varepsilon \ast (kQ \ast G) \ast \varepsilon
\]
given as follows,
- for all vertices \((i, \rho)\) of \(Q' \), the corresponding idempotent of \(kQ' \) is mapped onto \(e_i \ast e_{\rho} \),
- for all vertices \((i, \rho)\) and \((j, \tau)\) of \(Q' \), and for all \(f \in \text{Hom}_{G_i}(\rho, M(i, j; \tau)) \), then \(f \) is mapped onto \(f(e_{\rho}) \). Hence, the arrow \(f: (i, \rho) \to (j, \tau) \) of \(Q' \) may be identified with the corresponding element \(f(e_{\rho}) \) of \((e_i \ast e_{\rho}) \cdot (kQ \ast G) \cdot (e_j \ast e_{\tau}) \).

The following lemma introduces a potential \(W' \) on \(Q' \). The purpose of this subsection is to prove that \(A(Q, W) \ast G \) and \(A(Q', W') \) have equivalent derived categories.

Lemma 4.4.2. Assume setting 4.4.1. Assume that \(W \) is \(G \)-invariant up to cyclic permutation. There exists a homogeneous potential \(W' \) of degree \(d - 3 \) on \(Q' \) such that the image of \(W \) under the mapping \(\text{HH}_{d-3}(kQ) \to \text{HH}_{d-3}(kQ \ast G) \) induced by the natural embedding \(kQ \to kQ \ast G \) is equal to the image of \(W' \) under the isomorphism \(\text{HH}_{d-3}(kQ') \to \text{HH}_{d-3}(kQ \ast G) \) induced by \(kQ' \to kQ \ast G \).

Proof. This follows from standard facts on Hochschild homology, see [31, Lemma 1.1.7, p. 10]. Here are some details since they are needed for the examples. Recall that, for a graded algebra \(R \), the piece of notation DR(\(R \)) stands for the quotient \(R \) by the vector subspace generated by the commutators \(u w - (-1)^{\text{deg}(u) \cdot \text{deg}(v)} u v \), for all homogeneous \(u, v \in R \).

Following [9], there exists a complete family \((\varepsilon_x)_{x \in I} \) of primitive pairwise orthogonal idempotents of \(kQ \ast G \) and there exists a subset \(I \subseteq J \) such that,
- the image of \(kQ' \to kQ \ast G \) is equal to \(\varepsilon_x kQ \ast G \), where \(\varepsilon_x \) denotes \(\sum_{i \in J} \varepsilon_i \) and for all \(j \in J \) there exists a unique \(\alpha(j) \in I \) such that \(\varepsilon_j \cdot (kQ \ast G) \simeq \varepsilon_{\alpha(j)} \cdot (kQ \ast G) \) as graded \(kQ \ast G \)-modules.

For all \(j \in J \), there hence exist homogeneous \(a_j, b_j \in kQ \ast G \) such that \(\varepsilon_j = a_j b_j \) and \(\varepsilon_{\alpha(j)} = b_j a_j \).

Now, since \(1_{kQ \ast G} = \sum_{j \in J} \varepsilon_j \), the following equalities hold true in DR(\(kQ \ast G \)), where elements of \(kQ \) are identified with their natural images in \(kQ \ast G \),
\[
W = \sum_{j \in J} \varepsilon_j W \varepsilon_j
= \sum_{j \in J} a_j b_j W a_j b_j a_j b_j
= \sum_{i \in I} \varepsilon_i \left(\sum_{j \text{ s.t. } \alpha(j) = i} \pm b_j W a_j \right) \varepsilon_i;
\]
the sign is \((-1)^{\deg(b_c) + \deg(a_i) + \deg(W)}\). The last term above defines an element of \(\text{DR}(\varepsilon(\k Q \ast G)\varepsilon)\) whose image under the mapping \(\text{DR}(\varepsilon(\k Q \ast G)\varepsilon) \to \text{DR}(\k Q \ast G)\) induced by the inclusion mapping \(\varepsilon \cdot (\k Q \ast G) \cdot \varepsilon \to \k Q \ast G\) is equal to the image of \(W\) under the mapping \(\text{DR}(\k Q) \to \text{DR}(\k Q \ast G)\) induced by \(\k Q \to \k Q \ast G\). Since \(\k Q' \simeq \varepsilon(\k Q \ast G)\varepsilon\) as graded algebras, this proves the lemma. \(\square\)

The potential provided by Lemma \ref{geom} fits the requirements of Corollary \ref{cor:geom} which can now be proved. This corollary is restated below for convenience.

Corollary 4.4.3. Assume setting \ref{assum}. Assume that \(W\) is \(G\)-invariant up to cyclic permutation.

1. The action of \(G\) on \(\k Q\) extends to an action of \(G\) on \(\mathcal{A}(Q, W)\) by dg automorphisms and \(\mathcal{A}(Q, W) \ast G\) is d-Calabi-Yau.
2. For all graded \(\k\)-quivers \(Q'\) and for all (non unital) graded algebra homomorphisms \(\k Q' \to \k Q \ast G\) whose restriction-of-scalars functor is an equivalence from \(\text{Mod}(\k Q \ast G)\) to \(\text{Mod}(\k Q')\) (see \[9\]), there exists a homogeneous of degree \(d - 3\) potential \(W'\) on \(Q'\) such that \(\k Q' \to \k Q \ast G\) extends to a (non unital) dg algebra homomorphism \(\mathcal{A}(Q', W') \to \mathcal{A}(Q, W) \ast G\) whose restriction-of-scalars functor induces an equivalence \(\mathcal{D}(\mathcal{A}(Q, W) \ast G) \sim \mathcal{D}(\mathcal{A}(Q', W'))\).

Proof. Let \(W'\) be as in Lemma \ref{geom}. The following diagram is commutative. In this diagram, \(B\) stands for the Connes’ boundary and the horizontal arrows are induced by \(\k Q \to \k Q \ast G\) and \(\k Q' \to \k Q \ast G\), and the rightmost horizontal arrows are isomorphisms because \(\k Q'\) and \(\k Q \ast G\) are Morita equivalent.

\[
\begin{array}{cccc}
\text{HH}_{d-3}(\k Q)^G & \xrightarrow{\Delta} & \text{HH}_{d-3}(\k Q) & \xrightarrow{\sim} & \text{HH}_{d-3}(\k Q') \\
\text{HH}_{d-2}(\k Q) & \xrightarrow{\sim} & \text{HH}_{d-2}(\k Q) & \xrightarrow{\sim} & \text{HH}_{d-2}(\k Q')
\end{array}
\]

This defines homology classes \(c, \tau, c'\) as follows,

1. \(c \in \text{HH}_{d-2}(\k Q)^G\) is the image of \(W\) under \(B: \text{HH}_{d-3}(\k Q) \to \text{HH}_{d-2}(\k Q)\).
2. \(\tau \in \text{HH}_{d-2}(\k Q \ast G)\) is the image of \(c\) under \(\text{HH}_{d-3}(\k Q) \to \text{HH}_{d-2}(\k Q \ast G)\) and
3. \(c' \in \text{HH}_{d-2}(\k Q')\) is the pre-image of \(\tau\) under \(\text{HH}_{d-2}(\k Q') \xrightarrow{\sim} \text{HH}_{d-2}(\k Q \ast G)\).

In particular,

4. \(c'\) is the image of \(W'\) under \(B: \text{HH}_{d-3}(\k Q') \to \text{HH}_{d-2}(\k Q')\).

The following realisations of the graded algebras \(\Pi_d(\k Q, c)\) and \(\Pi_d(\k Q \ast G, \tau)\) are used in this proof,

- as for \(\Pi_d(\k Q, c)\), take the de-suspension of the cone of \[4.3.3\] as a cofibrant replacement \(\Theta_{\k Q}\) of \(\text{RHom}_{(\k Q)^G}(\k Q, \k Q')\) and
- as for \(\Pi_d(\k Q, \tau)\), take \(\Theta_{\k Q \ast G}\) as cofibrant replacement of \(\text{RHom}_{(\k Q \ast G)^G}(\k Q \ast G, (\k Q \ast G)^G)\) (see the proof of Theorem \[5.5.4\]).

The proof of the proposition is based on a sequence of quasi-isomorphic dg algebras. Actually, because of the choices just made, this sequence comes from a sequence of composable isomorphisms of dg algebras.

As proved in Lemma \ref{equivariant}, there is \(G\)-equivariant isomorphism \(\Pi_d(\k Q, c) \xrightarrow{\sim} \mathcal{A}(Q, W)\) of dg algebras. Accordingly, there is an isomorphism of dg algebras

\[
\Pi_d(\k Q, c) \ast G \xrightarrow{\sim} \mathcal{A}(Q, W) \ast G.
\]
Following Theorem 4.3 there is an isomorphism of dg algebras

\[(4.4.6)\]

\[\Pi_d(kQ,c) \ast G \xrightarrow{\sim} \Pi_d(kQ * G, \bar{c}).\]

Now, by \cite[Theorem 5.8]{24}, the (non unital) algebra homomorphism \(kQ' \to kQ * G\) extends to a (non unital) dg algebra homomorphism \(\Pi_d(kQ', c') \to \Pi_d(kQ * G, \bar{c})\) whose restriction-of-scalars functor is a triangle equivalence

\[(4.4.7)\]

\[D(\Pi_d(kQ', c')) \simeq D(\Pi_d(kQ * G, \bar{c})).\]

Finally, in view of point (d) above relating \(c'\) to \(W'\), it follows from \cite[Theorem 6.3]{24} that the identity mapping \(kQ' \to kQ'\) extends to a quasi-isomorphism of dg algebras

\[(4.4.8)\]

\[\Pi_d(kQ', c') \xrightarrow{\text{qis}} A(Q', W').\]

The assertion (2) follows from (4.4.5), (4.4.6), (4.4.7), and (4.4.8). The assertion (1) follows from (2) and from the fact that \(A(Q', W')\) is \(d\)-Calabi-Yau. \(\square\)

4.5. Examples. Assume setting 4.1. Assume that \(W\) is \(G\)-invariant up to cyclic permutation. This subsection illustrates the computation of a quiver with potential \((Q', W')\) such as in Corollary 4.4.3. In the examples of this subsection, graded \(k\)-quivers are concentrated in degree 0 and the resulting Ginzburg dg algebras are 3-Calabi-Yau. For convenience, for all \(g \in G\) and \(i \in Q_0\), the vertex of \(Q\) associated with the idempotent \(g_e_i\) is denoted by \(g \cdot i\). In some places it is also convenient to identify the elements of \(kQ\) and \(G\) with their respective images in \(kQ * G\).

The computation of a potential \(W'\) such as above is therefore made in two steps.

1. Express \(W'\) as an element of \(\varepsilon \cdot (kQ * G) \cdot \varepsilon\), see the proof of Lemma 4.4.2

2. Express the result of the first step as a linear combination of paths in \(Q'\).

Remark 4.5.1. For the second step, it is worth noting that any oriented cycle in \(Q\) with source \(i_0 \in [G_0 \setminus Q_0]\) is equal in \(kQ * G\) to a linear combination of products of the shape

\[(4.5.1)\]

\[(\alpha_1 \ast \sigma_1) \cdots (\alpha_j \ast \sigma_j) \cdots (\alpha_t \ast \sigma_t) \cdot (1 \ast g),\]

where there exists a sequence \(i_1, \ldots, i_t \in [G_0 \setminus Q_0]\) such that \(\alpha_j\) is an arrow of \(Q\) from \(i_{j-1}\) to \(\sigma_j \cdot i_j\) and \(\sigma_j \in [G/G_i]\), for all \(j\), and where \(g \in G_{i_0}\); besides, when a given index \(j \in \{1, \ldots, t-1\}\) is such that \(G_{i_j}\) is abelian, then \(\sum_{\rho \in \text{irr}(G_{i_j})} e_\rho\) is the unity of \(kG_i\), and hence

\[(4.5.2)\]

\[(\alpha_j \ast \sigma_j) \cdot (\alpha_j \ast \sigma_j) = \sum_{\rho \in \text{irr}(G_{i_j})} (\alpha_j \ast \sigma_j) \cdot (e_j \ast e_\rho) \cdot (\alpha_j \ast \sigma_j).\]

Example 4.5.2. Assume that \((Q, W)\) is the following quiver with potential

\[(4.5.3)\]

\[W = x_{12}x_{23}x_{32} - x_{13}x_{32}x_{23}x_{31} + x_{13}x_{31}x_{11} - x_{12}x_{21}x_{11}\]

where \(x_{ij}\) denotes the unique arrow \(i \to j\) of \(Q\) if any, for all vertices \(i, j\). Recall that \(A(Q, W)\) is quasi-isomorphic to \(H^0A(Q, W)\) and that the latter is a non commutative crepant resolution of the suspended pinch-point, see \cite[Section 8]{22}. Let \(G\) be the subgroup \(\langle (23) \rangle\) of order 2 of the symmetric group \(S_3\). Then, \(G\) acts on \(kQ\) as follows

- \(\sigma \cdot i = \sigma(i)\) for all \(\sigma \in G\) and \(i \in \{1, 2, 3\}\),
- \((23)x_{12} = -x_{13}\) and \((23)x_{13} = -x_{12}\), and
- \(\sigma x_{ij} = x_{\sigma(i)\sigma(j)}\) for all \(\sigma \in G\) and all arrows \(x_{ij}\) of \(Q\) distinct from \(x_{12}\) and \(x_{13}\).
Note that, for this action, W is invariant up to cyclic permutation. One may take the following data to define Q'.

- $[G\backslash Q_0] = \{1, 2\}$, $[G/G_1] = \{\text{Id}\}$ and $[G/G_2] = G$.
- $\text{irr}(G_1)$ consists of the trivial representation $\rho_+ = \mathbb{k}G_1 \cdot (\text{Id} + (23))$ of G_1 and the non-trivial one $\rho_- = \mathbb{k}G_1 \cdot (\text{Id} - (23))$.
- $\text{irr}(G_2)$ consists of the trivial representation \mathbb{k} of G_2.

Then (see (4.4.1)), $e = \varepsilon_+ + \varepsilon_- + \varepsilon_2$, where $\varepsilon_+ = \frac{1}{2}(e_1 \cdot \text{Id} + e_1 \cdot (23))$, $\varepsilon_- = \frac{1}{2}(e_1 \cdot \text{Id} - e_1 \cdot (23))$ and $\varepsilon_2 = e_2 \cdot e$, recall that e denotes the neutral element of G. Hence (see (4.4.2)),

\[
\begin{align*}
M(1, 1; \rho_+) &= \text{span}(x_{11}e_+) \simeq \rho_+ \quad M(2, 1; \rho_+) = \text{span}(x_{21}e_+) \simeq \mathbb{k} \\
M(1, 1; \rho_-) &= \text{span}(x_{11}e_-) \simeq \rho_- \quad M(2, 1; \rho_-) = \text{span}(x_{21}e_-) \simeq \mathbb{k} \\
M(1, 2; \mathbb{k}) &= \frac{\text{span}(e_{+}x_{12}e_2)}{\rho_+} \oplus \frac{\text{span}(e_{-}x_{12}e_2)}{\rho_-} \quad M(2, 2; \mathbb{k}) = \text{span}(x_{23}e_2) \simeq \mathbb{k},
\end{align*}
\]

note that, because of the equalities $(23)x_{12} = -x_{13}$ and $(23)x_{13} = -x_{12},$

\[
\begin{align*}
\varepsilon_- x_{11}e_+ &= 0, & \varepsilon_+ x_{12}e_2 &= -\varepsilon_+ x_{13}(23)e_2, \\
\varepsilon_+ x_{11}e_- &= 0, & \varepsilon_- x_{12}e_2 &= \varepsilon_- x_{13}(23)e_2.
\end{align*}
\]

Hence Q' is the following quiver

\[
\begin{array}{c}
(1, \rho_+) \\
\circ \\
(2, \mathbb{k}) \\
\circ \\
(1, \rho_-)
\end{array}
\]

with

\[
\begin{align*}
a &= \varepsilon_+ x_{11}e_+ & b &= \varepsilon_+ x_{12}e_2 & c &= e_2 x_{21}e_+ \\
d &= e_2 x_{21}(23)e_2 & e &= e_2 x_{21}e_- & f &= -e_- x_{12}e_2 \\
g &= \varepsilon_- x_{11}e_- &
\end{align*}
\]

Now, $W = e_1 W_{e_1} = \varepsilon_+ W_{\varepsilon_+} + \varepsilon_- W_{\varepsilon_-}$ because $e_1 = \varepsilon_+ + \varepsilon_-$. Note that $e_- W_{\varepsilon_+} = \varepsilon_+ W_{\varepsilon_-} = 0$ because W is G-invariant up to cyclic permutation. Therefore, by Lemma (4.4.2) it is possible to assume that

\[
W' = \varepsilon_+ W_{\varepsilon_+} + \varepsilon_- W_{\varepsilon_-}.
\]

There only remains to decompose W' as a linear combination of oriented cycles in Q'. For this purpose, it is worth noting that $\sum_{\rho \in \text{irr}(G_1)} e_1 \cdot \rho = \varepsilon_+ + \varepsilon_-$. And $\sum_{\rho \in \text{irr}(G_2)} e_2 \cdot \rho = e_2$. Using Remark (4.5.1) and (4.5.2), the computations yield,

\[
\begin{align*}
\varepsilon_+ x_{12}x_{23}x_{32}x_{21}e_+ &= (\varepsilon_+ x_{12}e_2) \cdot (\varepsilon_2 x_{23}(23)e_2) \cdot (\varepsilon_2 x_{21}e_+) \\
\varepsilon_- x_{12}x_{23}x_{32}x_{21}e_- &= (\varepsilon_- x_{12}e_2) \cdot (\varepsilon_2 x_{23}(23)e_2) \cdot (\varepsilon_2 x_{21}e_-) \\
\varepsilon_+ x_{13}x_{32}x_{23}x_{31}e_+ &= -(\varepsilon_+ x_{13}e_2) \cdot (\varepsilon_2 x_{23}(23)e_2) \cdot (\varepsilon_2 x_{21}e_+) \\
\varepsilon_- x_{13}x_{32}x_{23}x_{31}e_- &= -(\varepsilon_- x_{13}e_2) \cdot (\varepsilon_2 x_{23}(23)e_2) \cdot (\varepsilon_2 x_{21}e_-) \\
\varepsilon_+ x_{13}x_{31}x_{11}e_+ &= -\varepsilon_+ x_{13}e_2 \cdot \varepsilon_2 x_{21}e_+ \cdot x_{11}e_+ \\
\varepsilon_- x_{13}x_{31}x_{11}e_- &= -\varepsilon_- x_{13}e_2 \cdot \varepsilon_2 x_{21}e_- \cdot x_{11}e_- \\
\varepsilon_+ x_{12}x_{21}x_{11}e_+ &= (\varepsilon_+ x_{12}e_2) \cdot (\varepsilon_2 x_{21}e_+) \cdot x_{11}e_+ \\
\varepsilon_- x_{12}x_{21}x_{11}e_- &= (\varepsilon_- x_{12}e_2) \cdot (\varepsilon_2 x_{21}e_-) \cdot x_{11}e_- .
\end{align*}
\]

It follows from these computations and from (4.5.3) and (4.5.5) that $W' = 2(bd^2c + fc^2e - bca - feg)$.
Example 4.5.3. Assume that \((Q, W)\) is the following quiver with potential

\[
\begin{array}{c}
1 \\
\rightarrow \\
2 \\
\downarrow \\
3
\end{array}
\]

\[W = x_{12}x_{23}x_{31} - x_{13}x_{32}x_{21}\]

where the naming of the arrows follows the same convention as in Example 4.5.2. Let \(G\) be the symmetric group \(S_3\) on \(\{1, 2, 3\}\). It acts on \(kQ\) as follows.

- The action on the set of vertices is the natural one.
- \(\sigma_{x_{i,j}} = (-1)^{\sigma}x_{\sigma(i)\sigma(j)}\) for all \(\sigma \in G\) and \(i, j \in \{1, 2, 3\}\), where \((-1)^{\sigma}\) is the sign of the permutation \(\sigma\).

For this action, \(W\) is invariant up to cyclic permutation. Actually, \(W = \frac{1}{3}\sum_{\sigma \in G} \sigma(x_{12}x_{23}x_{31})\).

Take the following sets of representatives to define \(Q'\),

- \([G \setminus Q_0] = \{1\}\), \([G/G_1] = \{Id, c, c^2\} = \{\epsilon\}\), where \(c = (123)\),
- \(\text{irr}(G_1)\) consists of the trivial representation \(\rho_+ = kG_1 \cdot (\text{Id} + (23))\) of \(G_1 = G\) and the non trivial one \(\rho_- = kG_1 \cdot (\text{Id} - (23))\).

Then, \(\epsilon\) is the sum of two primitive pairwise orthogonal idempotents of \(kQ \ast G\),

\[\epsilon = \epsilon_+ + \epsilon_-\]

where \(\epsilon_+ = \frac{1}{2}(e_1 \ast \text{Id} + e_1 \ast (23))\) and \(\epsilon_- = \frac{1}{2}(e_1 \ast \text{Id} - e_1 \ast (23))\). Hence,

- \(M(1, 1; \rho_+) = \text{span}(x_{12}c\epsilon_+, x_{13}c^2\epsilon_+) = \text{span}(\epsilon_+ x_{12}c\epsilon_+) \oplus \text{span}(\epsilon_- x_{12}c\epsilon_+),\)
- \(M(1, 1; \rho_-) = \text{span}(x_{12}c\epsilon_-, x_{13}c^2\epsilon_-) = \text{span}(\epsilon_+ x_{12}c\epsilon_-) \oplus \text{span}(\epsilon_- x_{12}c\epsilon_-),\)

note that \((23)x_{13}c^2 = -x_{12}c(23)\) and \((23)x_{12}c = -x_{13}c^2(23)\) so that

\[
\begin{align*}
\epsilon_+ x_{12}c\epsilon_+ &= -\epsilon_+ x_{13}c^2\epsilon_+ , & \epsilon_- x_{12}c\epsilon_+ &= \epsilon_- x_{13}c^2\epsilon_+ , \\
\epsilon_+ x_{12}c\epsilon_- &= -\epsilon_+ x_{13}c^2\epsilon_- , & \epsilon_- x_{12}c\epsilon_- &= -\epsilon_- x_{13}c^2\epsilon_- .
\end{align*}
\]

Hence \(Q'\) is the following quiver

\[
\begin{array}{c}
\alpha \\

\beta \\

\gamma
\end{array}
\]

\[
(1, \rho_+) \xrightarrow{\alpha} (1, \rho_-) \xrightarrow{\beta} (1, \rho_-)
\]

where

\[
\alpha = \epsilon_+ x_{12}c\epsilon_+, \quad \beta = \epsilon_+ x_{12}c\epsilon_-, \quad \gamma = \epsilon_- x_{12}c\epsilon_-, \quad \delta = \epsilon_- x_{12}c\epsilon_+.
\]

Since \(e_1 = \epsilon_+ + \epsilon_-\),

\[W = e_1W e_1 = \epsilon_+ W \epsilon_+ + \epsilon_- W \epsilon_-,
\]

here \(\epsilon_- W \epsilon_+ = \epsilon_+ W \epsilon_- = 0\) because \(W\) is \(G\)-invariant up to cyclic permutation. Therefore, by Lemma 4.4.2, it is possible to assume that

\[
W' = \epsilon_+ W \epsilon_+ + \epsilon_- W \epsilon_-.
\]

There only remains to decompose \(W'\) as a linear combination of oriented cycles in \(Q'\). For this purpose, note that \(x_{12}x_{23}x_{31} = x_{12}c x_{12}c x_{12}c\), that \(x_{13}x_{32}x_{21} = x_{13}c^2 x_{13}c^2 x_{13}c^2\) and that
\[\sum_{\rho \in \text{Irr}(G_1)} \epsilon_{\rho} = \epsilon_{+} + \epsilon_{-} \] Hence, using Remark 4.5.1 and (4.5.7), the computations yield,

\[
\begin{align*}
\epsilon_{+} & \cdot x_{12} \cdot x_{23} \cdot x_{31} \cdot \epsilon_{+} = \alpha \alpha \alpha + \alpha \beta \delta + \beta \gamma \delta + \delta \alpha \delta, \\
\epsilon_{-} & \cdot x_{12} \cdot x_{23} \cdot x_{31} \cdot \epsilon_{-} = \gamma \gamma \gamma + \gamma \delta \beta + \delta \beta \gamma + \delta \alpha \beta, \\
\epsilon_{+} & \cdot x_{13} \cdot x_{32} \cdot x_{21} \cdot \epsilon_{+} = - (\alpha \alpha \alpha + \alpha \beta \delta + \beta \gamma \delta + \delta \alpha \delta), \\
\epsilon_{-} & \cdot x_{13} \cdot x_{32} \cdot x_{21} \cdot \epsilon_{-} = -(\gamma \gamma \gamma + \gamma \delta \beta + \delta \beta \gamma + \delta \alpha \beta).
\end{align*}
\]

It follows from these computations and from (4.5.6) and (4.5.8) that

\[
W' = 2 \sum_{w \text{ cycle of length 3}} w.
\]

5. Application to cluster tilting objects

Assume setting 1.6. It is restated below for convenience.

Setting 5.1. Let \(k \) be a field. Let \(G \) be a finite group such that \(\text{char}(k) \) does not divide \(\text{Card}(G) \). Let \(A \) be a dg \(k \)-algebra acted upon by \(G \) by dg automorphisms. Assume that \(A \) is concentrated in non positive degrees and \(H^0(A) \) is finite dimensional. Assume that both \(A \) and \(A \ast G \) are 3-Calabi-Yau.

Note that \(G \) acts on \(H^0(A) \) by algebra automorphisms and that \(H^0(A \ast G) \cong H^0(A) \ast G \) as algebras. In particular, \(H^0(A \ast G) \) is finite dimensional. These conditions ensure the existence of the associated generalised cluster categories \(C_A \) and \(C_{A \ast G} \). The purpose of this section is to relate these two categories by means of biadjoint functors

\[F_{\lambda} : C_A \rightarrow C_{A \ast G} : F \]

in order to compare the cluster tilting objects of \(C_A \) and those of \(C_{A \ast G} \).

Such a relationship appeared first in [27]: given a Galois covering \(R' \rightarrow R \) with group \(G \), which was not assumed to be finite, where \(R \) is a finite dimensional piecewise hereditary algebra of quiver type, [27] shows that \(R' \) is piecewise hereditary, it introduces an action of \(G \) on the cluster category \(C_{R'} \) of \(R' \) and a push-down functor from \(C_{R'} \) to the cluster category \(C_R \) of \(R \). This provides a description of the cluster tilting objects of \(C_R \) in terms of \(G \)-invariant cluster tilting objects of \(C_{R'} \). In particular, it is proved in [27] that every indecomposable direct summand of any cluster tilting object of \(C_R \) is isomorphic to the image under the push-down functor of an indecomposable direct summand of a \(G \)-invariant cluster tilting object of \(C_{R'} \). Recall that in that setting, \(R \) is Morita equivalent to \(R' \ast G \) [7 Proposition 2.4].

Following [2] the generalised cluster categories of \(A \) and \(A \ast G \) are, respectively,

\[C_A = \text{per}(A) / \mathcal{D}(A), \]
\[C_{A \ast G} = \text{per}(A \ast G) / \mathcal{D}(A \ast G). \]

They are Hom-finite, Krull-Schmidt and 2-Calabi-Yau, that is, the square of their suspensions are Serre functors. Denote by \(\pi_A \) and \(\pi_{A \ast G} \) the canonical functors

\[\pi_A : \text{per}(A) \rightarrow C_A, \]
\[\pi_{A \ast G} : \text{per}(A \ast G) \rightarrow C_{A \ast G}. \]

For simplicity, given an object \(T \) in \(C_A \) or \(C_{A \ast G} \), its endomorphism algebra is denoted by \(\text{End}(T) \). The objects \(\overline{A} := \pi_A(A) \) and \(\overline{A} \ast G := \pi_{A \ast G}(A \ast G) \) are cluster tilting in \(C_A \) and \(C_{A \ast G} \), respectively.

The section is organised as follows. Subsection 5.1 introduces an action of \(G \) on \(C_A \) and defines the adjoint functors \(F_{\lambda} : C_A \rightarrow C_{A \ast G} \) and \(F : C_{A \ast G} \rightarrow C_A \). Subsection 5.2 proves Theorem 1.7 which establishes a first general comparison between the cluster tilting subcategories of \(C_A \) and those of \(C_{A \ast G} \). This comparison is strengthened in subsection 5.3 when \(G \) acts freely on the isomorphism classes of indecomposable projective \(H^0(A) \)-modules. Finally, these results are
applied in subsection 5.4 to prove Corollary 1.8 which relates C_A being acyclic to C_{A*G} being acyclic.

5.1. The action of G on C_A and the adjunction between C_A and C_{A*G}. The action of G on $D(A)$ stabilises per(A) and $D_{id}(A)$. Accordingly, it induces a strict action of G on C_A by strict automorphisms of triangulated categories. For all $M \in C_A$, define the stabiliser of M as the subgroup $\{g \in G \mid M'' \simeq M\}$ of G, it is denoted by G_M.

Consider the adjoint pair of triangle functors of subsection 2.3,

$$- \otimes_A^L (A* G) : D(A) \rightleftharpoons D(A* G) : \text{Rres}$$

- $- \otimes_A^L (A* G)$ maps per(A) into per$(A* G)$, and Rres maps per$(A* G)$ into per(A) because $A* G \simeq \oplus_{g \in G} A$ in Mod(A), and
- $- \otimes_A^L (A* G)$ maps $D_{id}(A)$ into $D_{id}(A* G)$ because $A* G \simeq \oplus_{g \in G} A$ in Mod(A^{op}), and Rres maps $D_{id}(A* G)$ into $D_{id}(A)$.

Definition 5.1.1. The functors $F_{\lambda} : C_A \rightarrow C_{A*G}$ and $F : C_{A*G} \rightarrow C_A$ are the triangle functors induced by $- \otimes_A^L (A* G) : D(A) \rightarrow D(A* G)$ and Rres $D(A* G) \rightarrow D(A)$, respectively.

The functor F_{λ} between (generalised) cluster categories has already been considered in other situations, for instance,

- in [27, Section 4], between cluster categories $C_R \rightarrow C_R$ where R is a piecewise hereditary algebra and R' is a Galois covering of R with group G,
- in [33, Section 3], where A is the Ginzburg dg algebra of any quiver with potential (Q, P) and the action of G is given by a free action on Q by quiver automorphisms,
- in [8, Corollary 3.6], where A is the Ginzburg dg algebra of any quiver with potential (Q, P), and the action of $G = Z/2Z$ is given by an action on Q by quiver automorphisms, the last condition is actually superfluous in that result once one knows that the skew group algebra $A(Q, W) \ast Z/2Z$ is Morita equivalent to a Ginzburg dg algebra.

Proposition 5.1.2. Assume setting 5.1.

1. The pairs (F_{λ}, F) and (F, F_{λ}) are adjoint.
2. The units of these adjunctions split (functorially).
3. There exists a family $(\lambda_{gh}) : (F_{\lambda}(\bullet)) \rightarrow (F_{\lambda}(\bullet))$ of isomorphisms of triangle functors such that the following equalities hold true, for all $M \in C_A$ and $g, h \in G$,

$$\begin{align*}
(\lambda_{gh})_M &= \lambda_{gh}^M, \\
(\lambda_g)_M \circ (\lambda_h)_M &= (\lambda_{gh})_M.
\end{align*}$$

4. For all $M \in C_A$ there is a functorial isomorphism $F \lambda F M \simeq \oplus_{g \in G} M''$ in C_A.
5. For all $M, M' \in C_A$ there is an isomorphism $\oplus_{g \in G} C_A(M, M'') \rightarrow C_{A*G}(F_{\lambda} M, F_{\lambda} M')$ functorial in M and M'.
6. $(F N)' \simeq F_N$ for all $N \in C_{A*G}$.
7. For all indecomposable $M \in C_A$, if $G_M = \{e\}$, then $F_{\lambda} M$ is indecomposable.

Proof. (1) Consider the following subcategories of per(A) and per$(A* G)$, respectively,

$$\begin{align*}
F_{\lambda} &= D^{\leq 0}(A) \cap \perper(A), \\
F_{A*G} &= D^{\leq 0}(A* G) \cap \perper(A* G),
\end{align*}$$

where $D^{\leq i}$ stands for the full subcategory of objects Z such that $H^p Z$ vanishes for $p > i$ and \perper denotes the full subcategory of objects with no non zero morphism to any object in a given
subcategory \bullet. Following \cite[Proposition 2.9]{Schmidt}, the following restrictions of π_A and π_{A*G} are equivalences

\[
\begin{align*}
F_A &\to C_A, \\
F_{A*G} &\to C_{A*G}.
\end{align*}
\]

Since the pairs $(- \otimes_A^L (A \ast G), \text{Rres})$ and $(\text{Rres}, - \otimes_A^L (A \ast G))$ are adjoint, it is sufficient to prove the following assertions in order to prove that (F_A, F) and (F, F_A) are adjoint,

(a) $X \otimes_A^L (A \ast G) \in F_{A*G}$ for all $X \in F_A$, and

(b) $\text{Rres}Y \in F_A$ for all $Y \in F_{A*G}$.

Here is a proof of these assertions. First, recall that $- \otimes_A^L (A \ast G)$ and Rres map $\text{per}(A)$ and $\text{per}(A \ast G)$ into $\text{per}(A \ast G)$ and $\text{per}(A)$, respectively. Next, for all $i \in \mathbb{Z}$,

\[
(5.1.1) \quad \text{Rres}(D_{<i}(A \ast G)) \subseteq D_{<i}(A).
\]

Next, since A is concentrated in non positive degrees, the following holds true for all $i \in \mathbb{Z}$,

\[
(5.1.2) \quad (\forall M \in D_{<i}(A)) \quad X \otimes_A^L (A \ast G) \in D_{<i}(A).
\]

Because of the adjunction $(- \otimes_A^L (A \ast G), \text{Rres})$, it follows from (5.1.1) that

\[
(5.1.3) \quad (\forall X \in \per D_{<i-2}(A)) \quad X \otimes_A^L (A \ast G) \in \per D_{<i-2}(A \ast G).
\]

Because of the adjunction $(\text{Rres}, - \otimes_A^L (A \ast G))$, it follows from (5.1.2) that

\[
(5.1.4) \quad (\forall Y \in \per D_{<i-2}(A \ast G)) \quad \text{Rres}Y \in \per D_{<i-2}(A).
\]

The assertions (a) and (b) above are consequences of (5.1.1), (5.1.2), (5.1.3) and (5.1.4). Thus, (F_A, F) and (F, F_A) are adjoint.

(2), (3), (4), (5) and (6) follow from (1) and from Lemma \cite[Proposition 2.9]{2.3.1}.

(7) The arguments in the proof of \cite[3.5]{14} apply literally here: for a direct sum decomposition $F_A M = N \oplus N'$ such that N is non zero, there exists a non empty subset H of G such that $F_A N \cong \bigoplus_{g \in H} M^g$ and $F_A N' \cong \bigoplus_{g \in G \setminus H} M^g$ because M is indecomposable and because of (4); hence $gH \subseteq H$ for all $g \in G$ (because $(F N)^g \cong F N$); accordingly, $H = G$, and hence $N' = 0$. \hfill \Box

5.2. Comparison of cluster tilting subcategories of C_A and C_{A*G}. This subsection compares the cluster tilting subcategories of C_A to the ones of C_{A*G}. Using completely analogous, and hence omitted, arguments, the same conclusions are obtained when replacing cluster tilting subcategories by maximal rigid ones. The comparison is based on the following more general property where cluster tilting subcategories are used instead of cluster tilting objects for the ease of exposition.

Proposition 5.2.1. Let C and C' be triangulated k-linear categories which are Hom-finite, Krull-Schmidt and 2-Calabi-Yau. Assume that there exist triangle functors $F : C \to C'$ such that

- (F, F') and (F', F) are adjoint and
- for all $M \in C$ and $N \in C'$ the unit morphisms $M \to F' FM$ and $N \to FF' N$ split in C and C', respectively.

Then, the two assignments $T \mapsto \text{add}(FT)$ and $T' \mapsto \text{add}(F'T')$ induce mutually inverse bijections between

- cluster tilting subcategories T of C which are stable under $F'F$, and
- cluster tilting subcategories T' of C' which are stable under FF'.

The same result holds true when replacing cluster tilting subcategories by maximal rigid ones.
Proof. By adjunction, F and F' preserve functorially finite subcategories.

Let \mathcal{T} be a cluster tilting subcategory of \mathcal{C} stable under F^*F. Then, $\mathcal{C}'(FM,\Sigma FM') = 0$ for all $M,M' \in \mathcal{T}$ (note that, by assumption, $F'FM' \in \mathcal{T}$). Hence, $\mathcal{C}'(N_1,\Sigma N_2) = 0$, for all $N_1,N_2 \in \text{add}(FT)$. Moreover, for all $N \in \mathcal{C}'$, if $\mathcal{C}'(N',\Sigma N) = 0$ for all $N' \in \text{add}(FT)$, then $\mathcal{C}(M,\Sigma F'M) \simeq \mathcal{C}'(FM,\Sigma N) = 0$ for all $M \in \mathcal{T}$; therefore, $F'N \in \mathcal{T}$, and hence $FF'N \in FT$; since $N \in \text{add}(FF'N)$, the object N lies in $\text{add}(FT)$. Thus, $\text{add}(FT)$ is a cluster tilting subcategory of \mathcal{C}'.

Mutatis mutandis, the same arguments show that, for all cluster tilting subcategories \mathcal{T}' of \mathcal{C}' stable under FF', the subcategory $\text{add}(F'\mathcal{T}')$ of \mathcal{C} is cluster tilting.

Finally, given a subcategory \mathcal{T} of \mathcal{C} (or \mathcal{T}' of \mathcal{C}') such that \mathcal{T} (or \mathcal{T}') is closed under direct sums, direct summands and $F'F'$ (or FF'), then $\text{add}(F'\text{add}(FT)) = \mathcal{T}$ (or $\text{add}(F\text{add}(F'\mathcal{T}')) = \mathcal{T}'$) because, for all $M \in \mathcal{C}$ (or $N \in \mathcal{C}'$), the unit morphism $M \to F'FM$ (or $N \to FF'N$, respectively) splits.

In view of Proposition 5.1.2, Proposition 5.2.1 applies to the current situation.

Corollary 5.2.2. Assume setting 5.1. The assignments $\mathcal{T} \mapsto \text{add}(F_*\mathcal{T})$ and $\mathcal{T}' \mapsto \text{add}(F'\mathcal{T}')$ induce mutually inverse bijections between

- cluster tilting subcategories \mathcal{T} of \mathcal{C}_A which are stable under the action of G, and
- cluster tilting subcategories \mathcal{T}' of \mathcal{C}_{A*G} which are stable under F_*F.

The same result holds true if cluster tilting subcategories are replaced by maximal rigid ones.

Proof. Note that, since $FF'M \simeq \oplus_{g \in G}M^g$, for all $M \in \mathcal{C}_A$, a full subcategory of \mathcal{C}_A which is closed under direct sums and direct summands is stable under the action of G if and only if it is stable under F_*F. The conclusion therefore follows from Proposition 5.2.1 applied to $\mathcal{C} = \mathcal{C}_A$, $\mathcal{C}' = \mathcal{C}_{A*G}$, $F = F_\lambda$, and $F' = F$.

Given cluster tilting (or maximal rigid) objects T,T' of \mathcal{C}_A and \mathcal{C}_{A*G}, respectively, such that $\text{add}(T') = \text{add}(F_*T)$ as in Corollary 5.2.2, it is natural to ask whether there exists a relation between $\text{End}(T)$ and $\text{End}(T')$. It is provided by the following result.

For a better understanding, recall (143, 3.1) that when C is a k-linear category endowed with an action of G (on the right) by automorphisms, the skew group category $C[G]$ is the idempotent completion of the orbit category $C|G|$ (see also [13] Definition 2.3) for an approach avoiding idempotent completion). Recall that the orbit category $C|G|$ has the same objects as C, that, for all $M,M' \in C$, its space of morphisms $M \to M'$ is defined by $C|G|(M,M') = \oplus_{g \in G}C(M,M^g)$, and that the composition of morphisms is induced naturally by the one in C. Recall also that, for a k-linear category C, the piece of notation $\text{mod}(C)$ stands for the category of finitely presented contravariant functors from C to finite dimensional vector spaces.

Proposition 5.2.3. Assume setting 5.1. Let \mathcal{T} be a cluster tilting subcategory of \mathcal{C}_A stable under the action of G. Let $\mathcal{T}' = \text{add}(F_*\mathcal{T})$. Then,

1. the skew group category $\mathcal{T} \ast G$ is Morita equivalent to \mathcal{T}' and
2. there exists a cluster tilting object $T \in \mathcal{C}_A$ such that $T^g = T$ for all $g \in G$ and $\mathcal{T} = \text{add}(T)$. For any such T, the algebras $\text{End}(T) \ast G$ and $\text{End}(F_\lambda T)$ are Morita equivalent.

The same result holds true when cluster tilting subcategories are replaced by maximal rigid ones.

Proof. (1) It follows from Proposition 5.1.2 that the categories $\mathcal{T}|G$ and $F_*\mathcal{T}$ are equivalent. Taking idempotent completions yields that $T \ast G$ and $\text{add}(F_*T)$ are equivalent. Hence,

\[(5.2.1) \quad \text{mod}(T \ast G) \simeq \text{mod}(\mathcal{T}')\].
(2) Let \(\{T_1, \ldots, T_n\} \) be a complete set of representatives of the \(G \)-orbits of the indecomposable objects of \(\mathcal{T} \). Let \(T \) be the object \(\bigoplus_{1 \leq i \leq n} T^g \) of \(\mathcal{C}_A \). Then \(T^g = T \) for all \(g \in G \) and \(\mathcal{T} = \text{add}(T) \).

The assignment \((g, f) \mapsto f^{g^{-1}} \) defines an action of \(G \) on \(\text{End}(T) \) by algebra automorphisms, which defines \(\text{End}(T) \ast G \).

Since \(\mathcal{T} \) is idempotent complete, the following holds true (\cite{34} Proposition 3.4),

\[
\text{mod}(\mathcal{T} \ast G) \simeq \text{mod}(\mathcal{T}) \ast G.
\]

By construction of \(\mathcal{T} \), the categories \(\text{mod}(\mathcal{T}) \) and \(\text{mod}(\text{End}(T)) \) are equivalent and

\[
\text{mod}(\text{End}(T)) \ast G \simeq \text{mod}(\mathcal{T}) \ast G.
\]

Note also that (\cite{34} 3.1)

\[
\text{mod}(\text{End}(T)) \ast G \simeq \text{mod}(\text{End}(T) \ast G).
\]

Finally, since \(\mathcal{T}' = \text{add}(F,T) \),

\[
\text{mod}(\mathcal{T}') \simeq \text{mod}(\text{End}(F,T)).
\]

The conclusion therefore follows from (5.2.1), (5.2.2), (5.2.3), (5.2.4) and (5.2.5). \(\square \)

5.3. Cluster tilting objects of the first kind. The considerations of subsection 5.2 raise the question whether a given cluster tilting or maximal rigid object of \(\mathcal{C}_{A \ast G} \) lies in the essential image of \(F_{\lambda} : \mathcal{C}_A \to \mathcal{C}_{A \ast G} \). For instance, \(F_{\lambda} \mathcal{A} = \mathcal{A} \ast G \). An object \(N \in \mathcal{C}_{A \ast G} \) is called here of the first kind with respect to \(F_{\lambda} \) if, for all indecomposable direct summands \(N' \) of \(N \), there exists \(M' \in \mathcal{C}_A \) such that \(F_{\lambda} M' \simeq N' \). This terminology comes from the theory of Galois coverings of algebras (see \cite{13}).

This subsection investigates cluster tilting or maximal rigid objects of \(\mathcal{C}_{A \ast G} \) which are of the first kind with respect to \(F_{\lambda} \). Clearly, further assumptions are needed for this investigation to be fruitful because, although \(F_{\lambda} \mathcal{A} = \mathcal{A} \ast G \), the indecomposable direct summands of \(\mathcal{A} \ast G \) need not lie in the essential image of \(F_{\lambda} \). This is because \(F_{\lambda} \) need not take an indecomposable direct summand of \(\mathcal{A} \) to an indecomposable object of \(\mathcal{C}_{A \ast G} \).

In view of Proposition 5.1.2, having some information on the stabilisers of the indecomposable direct summands of \(\mathcal{A} \) would be useful. This is provided by the following lemma.

For all \(g \in G \), the mapping \(A \to A \) given by \(a \mapsto ga \) induces an isomorphism in \(\mathcal{C}_A \) denoted by \(\alpha_g \),

\[
\alpha_g : \mathcal{A} \to \mathcal{A}^g.
\]

Recall \cite{2} Proposition 2.9 that the mapping \(A \to \text{Hom}_A(A,A) \) given by \(x \mapsto (a \mapsto xa) \) induces an isomorphism of algebras

\[
H^0(A) \sim \text{End}(\mathcal{A}).
\]

In particular, for all direct summands \(X \) of \(\mathcal{A} \), the \(\text{End}(\mathcal{A}) \)-module \(\mathcal{C}_A(\mathcal{A},X) \) is projective and its restriction of scalars along (5.3.2) is isomorphic to \(\varepsilon H^0(A) \) for some idempotent \(\varepsilon \in H^0(A) \).

Any idempotent of \(H^0(A) \) may be obtained in this way.

Lemma 5.3.1. Assume setting 5.1.

Let \(\varepsilon \in H^0(A) \) be an idempotent. Let \(X \) be a direct summand of \(\mathcal{A} \) such that \(\varepsilon H^0(A) \) is isomorphic, as an \(H^0(A) \)-module, to the restriction of scalars of \(\mathcal{C}_A(\mathcal{A},X) \) along (5.3.2). Let \(g \in G \). Let \(Y \) be a direct summand of \(\mathcal{A} \) such that \(X^g \simeq Y \) (see (5.3.1)). Then, \(\varepsilon \mathcal{A} H^0(A) \) is isomorphic to the restriction of scalars of \(\mathcal{C}_A(\mathcal{A},Y) \) along (5.3.2).
Proof. The proof is based on the following diagram where all the arrows are isomorphisms. Note that the top horizontal arrow is given by the action of G on A and the leftmost bottom horizontal arrow is given by the action of G on C_A.

\[
\begin{array}{c}
\xymatrix{H^0(A) \ar[r]^{x \mapsto s^{-1} x} & H^0(A) \\
\text{End}(\overline{A}) \ar[r]_{\alpha \mapsto \text{End}(\overline{A})} & \text{End}(\overline{A})}
\end{array}
\]

This diagram is commutative as shown by a direct computation using that
- \(\text{End}(\overline{A}) \overset{\varphi}{\longrightarrow} \text{End}(\overline{A}) \) is induced by the identity mapping \(\text{Hom}_A(A, A) \rightarrow \text{Hom}_A(A, A) \),
- \(\text{End}(\overline{A}) \) is induced by the mapping \(\text{Hom}_A(A, A) \rightarrow \text{Hom}_A(A, A) \) which assigns to any \(f \in \text{Hom}_A(A, A) \) the mapping \(a \mapsto s^{-1} f(ga) \).

On one hand, by assumption, the restriction of scalars of \(C_A(\overline{A}, X) \) along the rightmost vertical arrow of (5.3.3) is isomorphic to \(\epsilon H^0(A) \) as an \(H^0(A) \)-module and
- the following mapping is an isomorphism of \(H^0(A) \)-modules from the restriction of scalars of \(\epsilon H^0(A) \) along the top horizontal arrow of (5.3.3) to \(9 \epsilon H^0(A) \),
 \[
 \epsilon H^0(A) \rightarrow 9 \epsilon H^0(A)
 \]
 \[
 x \mapsto 9x.
 \]

On the other hand, denoting by \(\lambda : X \rightarrow Y \) any isomorphism in \(C_A \),
- the following mapping is an isomorphism of \(\text{End}(\overline{A}) \)-modules from the restriction of scalars of \(C_A(\overline{A}, X) \) along the arrow \(\text{End}(\overline{A}) \rightarrow \text{End}(\overline{A}) \) of (5.3.3) to \(C_A(\overline{A}, Y) \),
 \[
 C_A(\overline{A}, X) \rightarrow C_A(\overline{A}, Y)
 \]
 \[
 f \mapsto \lambda \circ f \circ \alpha^{-1},
 \]
- and the following mapping is an isomorphism of \(\text{End}(\overline{A}) \)-modules from the restriction of scalars of \(C_A(\overline{A}, Y) \) along the arrow \(\text{End}(\overline{A}) \rightarrow \text{End}(\overline{A}) \) of (5.3.3) to \(C_A(\overline{A}, Y) \),
 \[
 C_A(\overline{A}, Y) \rightarrow C_A(\overline{A}, Y)
 \]
 \[
 f \mapsto f^{s^{-1}}.
 \]

Since the diagram (5.3.3) commutes, it follows that the restriction of scalars of \(C_A(\overline{A}, Y) \) along (5.3.2) is isomorphic to \(9 \epsilon H^0(A) \).

The main results of this subsection prove that being of the first kind with respect to \(F_\lambda \) is an invariant property within a mutation class of cluster tilting or of maximal rigid objects. This fact is based on the following lemma. It is already proved in other contexts for Galois coverings instead of skew group algebras, namely, in [28, Lemma 3.2] in the context of module categories, in [30, Lemma 4.2] in the context of derived categories of finite dimensional algebras and in [27, Lemma 6.2] in the context of cluster categories of piecewise hereditary algebras.

Lemma 5.3.2. Assume setting [5.1]. Let \(\Delta : X \rightarrow M \rightarrow Y \rightarrow \Sigma X \) be a triangle in \(C_{X^\Delta G} \), such that
- there exists \(\overline{X} \in C_A \) such that \(F_\lambda \overline{X} \cong X \),
- there exists a direct sum decomposition into indecomposable objects \(M = M_1 \oplus \cdots \oplus M_t \) in \(C_{X^\Delta G} \), and there exist \(\overline{M}_1, \ldots, \overline{M}_t \in C_A \) such that \(F_\lambda \overline{M}_i \cong M_i \) for all \(i \),
- \(C_{X^\Delta G}(Y, \Sigma M) = 0 \).
Then, there exist $\tilde{Y} \in \mathcal{C}_A$ and $g_1, \ldots, g_t \in G$, and there exists a triangle $\tilde{X} \to \bigoplus_{i=1}^t \widetilde{M}^{g_i} \to \tilde{Y} \to \Sigma \tilde{X}$ in \mathcal{C}_A whose image under F_λ is isomorphic to Δ. In particular, $F_\lambda \tilde{Y} \cong Y$.

Proof. The proof of [30] Lemma 4.2] applies here provided that the occurrences of $\mathcal{D}^b(\text{mod } \mathcal{C})$ and $\mathcal{D}^b(\text{mod } A)$ there are replaced by \mathcal{C}_A and \mathcal{C}_{A+G} here. Note that, by Proposition 5.1.2 the functor $F_\lambda: \mathcal{C}_A \to \mathcal{C}_{A+G}$ has all the needed properties of the functor that is also denoted by F_λ in the proof of [30] Lemma 4.2].

As explained at the beginning of subsection 5.3, it is preferable to have some control on the stabilisers of the indecomposable direct summands of the cluster tilting or maximal rigid objects of \mathcal{C}_A. For this purpose, the following lemma is useful. Like Lemma 5.3.2 the following result is already known in the framework of Galois coverings in [30] Proposition 4.6] for tilting complexes over piecewise hereditary algebras and in [27] Proposition 6.7] for cluster tilting objects of cluster categories of piecewise hereditary algebras.

Lemma 5.3.3. Assume the setting of Lemma 5.3.2. Assume, moreover, that

- X is indecomposable and $X \not\cong M_i$ for all $i \in \{1, \ldots, t\}$,
- $\mathcal{C}_{A+G}(M, \Sigma X) = 0$,
- the stabiliser of \tilde{X} is trivial.

Then, for all triangles $\tilde{X} \to \bigoplus_{i=1}^t \widetilde{M}^{g_i} \to \tilde{Y} \to \Sigma \tilde{X}$ of \mathcal{C}_A whose images under F_λ are isomorphic to Δ, the stabiliser of \tilde{Y} is trivial.

Proof. The proof of [27] Proposition 6.7] may be adapted to the current situation. Here are the details. Let $\Delta: \tilde{X} \to \bigoplus_{i=1}^t \widetilde{M}^{g_i} \to \tilde{Y} \to \Sigma \tilde{X}$ be a triangle of \mathcal{C}_A whose image under F_λ is isomorphic to Δ. Let $w: \tilde{Y} \to \tilde{Y}$ be an isomorphism in \mathcal{C}_{A+G}, where $g \in G$. For all $h \in G$, the space $\mathcal{C}_A(\tilde{M}^h, \Sigma \tilde{X})$ is isomorphic to a subspace of $\mathcal{C}_{A+G}(M, \Sigma X)$ (see Proposition 5.1.2), since the latter is zero, there exist morphisms u, v, u', v' fitting into commutative diagrams as follows

$\begin{array}{cccccc}
\tilde{X}^g & \to & \bigoplus_{i=1}^t \widetilde{M}^{g_i} & \to & \tilde{Y}^g & \to & \Sigma \tilde{X}^g \\
 u & v & w & \Sigma u & w' & v' & \Sigma w' \\
 \tilde{X} & \to & \bigoplus_{i=1}^t \widetilde{M}^{g_i} & \to & \tilde{Y} & \to & \Sigma \tilde{X}
\end{array}$

Therefore, the following diagram commutes

$\begin{array}{cccccc}
\tilde{X} & \to & \bigoplus_{i=1}^t \widetilde{M}^{g_i} & \to & \tilde{Y} & \to & \Sigma \tilde{X} \\
 u \circ w' - 1 & v \circ v' - 1 & 0 & \Sigma(u \circ w' - 1) \\
 \tilde{X} & \to & \bigoplus_{i=1}^t \widetilde{M}^{g_i} & \to & \tilde{Y} & \to & \Sigma \tilde{X}
\end{array}$

and hence $(\Sigma(u \circ w' - 1))$ factors through $\Sigma \tilde{X} \to \bigoplus_{i=1}^t \Sigma \widetilde{M}^{g_i}$. Note that $\tilde{X} \not\cong \widetilde{M}^{g_i}$ because $X \not\cong M_i$, $X \cong F_\lambda \tilde{X}$ and $F_\lambda \tilde{M}_i \cong M_i$, for all $i \in \{1, \ldots, t\}$. Since \tilde{X} is indecomposable, it follows that $\Sigma(u \circ w' - 1)$ lies in the radical of the algebra $\text{End}(\Sigma \tilde{X})$, and hence $u \circ w'$ is an automorphism of \tilde{X}. Thus, $u: \tilde{X}^g \to \tilde{X}$ is an isomorphism. Given that \tilde{X} has trivial stabiliser, it follows that $g = e$. This proves that \tilde{Y} has trivial stabiliser. \(\square\)

Combining Lemmas 5.3.2 and 5.3.3 yields the following result. Recall that, given cluster tilting objects $T, T' \in \mathcal{C}_{A+G}$, the object T' is called a mutation of T if there exist indecomposable direct summands X and Y of T and T', respectively, such that the set of isomorphism classes of indecomposable direct summands of T not isomorphic to X is equal to the set of isomorphism
classes of indecomposable direct summands of T' not isomorphic to Y. In such a case, there exists a triangle $X \to M \to Y \to \Sigma X$ in \mathcal{C}_{A*G}, where $M \in \text{add}(T) \cap \text{add}(T')$. The mutation class of T is the transitive closure of $\{T\}$ under mutation. The same concepts are defined for maximal rigid objects. See [22] for more details.

Lemma 5.3.4. Assume setting [5.1] Let $T,T' \in \mathcal{C}_{A*G}$ be cluster tilting objects in the same mutation class. The following assertions are equivalent.

(i) All indecomposable direct summands of T lie in the essential image of F_λ.

(ii) All indecomposable direct summands of T' lie in the essential image of F_λ.

When these assertions are true, then the following ones are equivalent.

(iii) $G_X = \{e\}$ for all indecomposable objects $X \in \mathcal{C}_A$ such that $F_\lambda X$ is isomorphic to a direct summand of T.

(iv) $G_X = \{e\}$ for all indecomposable objects $X \in \mathcal{C}_A$ such that $F_\lambda X$ is isomorphic to a direct summand of T'.

The same result holds true when cluster tilting objects are replaced by maximal rigid ones.

Proof. This follows from Lemmas [5.3.2 and 5.3.3] □

Using Lemma [5.3.4], it is possible to prove a first result answering the question stated at the beginning of subsection [5.3] and regarding cluster tilting objects of \mathcal{C}_{A*G} which are of the first kind with respect to F_λ. Note that the action of G on $H^0(A)$ defines an action on the finite dimensional $H^0(A)$-modules like the action of G on A defines an action on $\text{dg} A$-modules.

Proposition 5.3.5. Assume setting [5.1]. Assume that G acts freely on the isomorphism classes of indecomposable projective $H^0(A)$-modules. Then, for all basic cluster tilting objects $T = T_1 \oplus \cdots \oplus T_n$ of \mathcal{C}_{A*G} in the mutation class of $A*G$ and where T_1, \ldots, T_n are indecomposable,

1. there exist $\tilde{T}_1, \ldots, \tilde{T}_n \in \mathcal{C}_A$ such that $F_\lambda \tilde{T}_i \simeq T_i$, and $G_{\tilde{T}_i} = \{e\}$, for all i.

Moreover, for any such $\tilde{T}_1, \ldots, \tilde{T}_n$, denoting $\bigoplus_{1 \leq i \leq n, g \in G} \tilde{T}_i^g$ by \tilde{T},

2. \tilde{T} is a cluster tilting object in \mathcal{C}_{A*G} such that $\text{add}(T) = F_\lambda \text{add}(\tilde{T})$ and $\tilde{T}^g = \tilde{T}$ for all $g \in G$, and

3. F_λ induces a Galois covering with group G from $\text{End}(\tilde{T})$ to $\text{End}(T)$.

The same result holds true if cluster tilting objects are replaced by maximal rigid ones.

Proof. (1) First, the stated property holds true when $\text{add}(T) = \text{add}(A*G)$. Indeed,

- $F_\lambda A = A*G$,
- by assumption, every indecomposable direct summand of A has a trivial stabiliser (see Lemma [5.3.1] and consequently,
- $F_\lambda M$ is isomorphic to an indecomposable direct summand of $A*G$ for all indecomposable direct summands M of A (see Proposition [5.1.2] part (7)).

Next, it follows from Lemma [5.3.4] that property (1) is preserved within a mutation class.

(2) By construction,

- $\text{add}(T) = F_\lambda \text{add}(\tilde{T})$ and $\tilde{T}^g = \tilde{T}$ for all $g \in G$. Moreover, $F_\lambda F_\lambda (F_\lambda \tilde{T}) \simeq F_\lambda (F_\lambda \text{Card}(G))$ (see Proposition [5.1.2] part (4)), and hence $\text{add}(F_\lambda \tilde{T})$ is stable under $F_\lambda F_\lambda$. Therefore, $\text{add}(\tilde{T})$ is a cluster tilting subcategory (see Corollary [5.2.2], and hence \tilde{T} is a cluster tilting object of \mathcal{C}_A.

(3) This was proved already in other contexts ([28] Lemma 2.2 and [30] Lemma 4.8) and may be proved similarly here. Here are some explanations for the ease of reading.
5.4. The acyclic case. This subsection proves Corollary 1.8 relating \(C_A \) being acyclic to \(C_{A*G} \) being acyclic. Cluster categories of Dynkin quivers are particular because these are exactly the Hom-finite, Krull-Schmidt and 2-Calabi-Yau categories with only finitely many isomorphism classes of indecomposable objects (II Corollary 6.6). For these, there is a general phenomenon as follows.

Here, \(\text{End}(\tilde{T}) \) and \(\text{End}(T) \) are identified with the categories whose objects sets are equal to the sets \{\(T_i^g \mid 1 \leq i \leq n, g \in G \)\} and \{\(T_1, \ldots, T_n \)\}, respectively. For all \(i \in \{1, \ldots, n\} \), let \(\mu_i : F_A \tilde{T}_i \to T_i \) be an isomorphism in \(C_{A*G} \). Then, define a functor

\[
(5.3.4) \quad \text{End}(\tilde{T}) \to \text{End}(T)
\]
as follows, where \(g, h \in G, i, j \in \{1, \ldots, n\} \),
- the object \(\tilde{T}_i^g \) is mapped onto \(T_i \),
- any morphism \(u : \tilde{T}_i^g \to \tilde{T}_j^h \) is mapped onto the following composite morphism

\[
T_i \xrightarrow{\mu_i^{-1}} F_A \tilde{T}_i \xrightarrow{(\lambda_g)^{-1}} F_A \tilde{T}_i^g \xrightarrow{F_A u} F_A \tilde{T}_j^h \xrightarrow{(\lambda_h)^{-1}} F_A \tilde{T}_j \xrightarrow{\mu_j} T_j,
\]
recall that \(\lambda_g, \lambda_h \) are introduced in Proposition 5.1.2 (part (3)).

In view of Proposition 5.1.2 (parts (3) and (5)) and since \(\tilde{T}_i^g \) has a trivial stabiliser, for all \(g \in G \) and \(i \in \{1, \ldots, n\} \), this construction does yield a Galois covering with group \(G \).

When the cluster tilting objects of \(C_{A*G} \) form a mutation class, Proposition 5.3.5 provides the following refinement of Corollary 5.2.2. Note that this hypothesis is known to hold true when, for instance, \(C_{A*G} \) is acyclic (II Proposition 3.5).

Corollary 5.3.6. Assume setting 5.1. Assume that \(G \) acts freely on the isomorphism classes of indecomposable projective \(H^0(A) \)-modules and that the cluster tilting objects of \(C_{A*G} \) form a mutation class. Then,

1. statements (1), (2) and (3) of Proposition 5.3.5 hold true for all basic cluster tilting objects of \(C_{A*G} \),
2. the mapping \(T \mapsto F_A T \) induces a bijection from the set of cluster tilting subcategories of \(C_A \) stable under the action of \(G \) to the set of cluster tilting subcategories of \(C_{A*G} \).

When cluster tilting objects are replaced by maximal rigid ones both in the hypotheses and the conclusion, then (1) and (2) still hold true and, in addition,

3. given \(N \in C_{A*G} \) indecomposable, the following assertions are equivalent.
 - \(N \) is rigid,
 - there exists a maximal rigid object \(T \in C_A \) such that \(T^g \simeq T \) for all \(g \in G \) and there exists an indecomposable direct summand \(M \) of \(T \) such that \(N \simeq F_A M \).

Proof. (1) follows from Proposition 5.3.5 (2) follows from (1) and Corollary 5.2.2 (3) follows from (2).
Proposition 5.4.1. Assume the setting of Proposition 5.2.1. The following assertions are equivalent.

(i) \(\mathcal{C} \) has finitely many isomorphism classes of indecomposable objects.
(ii) \(\mathcal{C}' \) has finitely many isomorphism classes of indecomposable objects.

Proof. It suffices to prove “(i) \(\implies \) (ii)”. Assume (i). Let \(M \in \mathcal{C} \) such that \(\mathcal{C} = \text{add}(M) \). Then \(\mathcal{C}' = \text{add}(FM) \) by assumption on the unit of the adjoint pair \((F,F')\). Thus, (ii) holds true. □

Using subsections 5.2 and 5.3 together with Proposition 5.4.1 it is possible to prove Corollary 1.8. This corollary is restated below for convenience.

Corollary 5.4.2. Assume setting 5.2.

(1) The following assertions are equivalent.
 (i) \(\mathcal{C}_A \) is equivalent to the cluster category of a Dynkin quiver.
 (ii) \(\mathcal{C}_{A,G} \) is equivalent to the cluster category of a Dynkin quiver.

(2) If \(\mathcal{C}_A \) is acyclic and has infinitely many isomorphism classes of indecomposable objects, then
 (a) there exists a cluster tilting object \(T \in \mathcal{C}_A \) such that \(\text{End}(T) \) is hereditary and \(T^g = T \) for all \(g \in G \) and
 (b) for any such \(T \), there exists a cluster tilting object \(T' \in \mathcal{C}_{A,G} \) such that the algebras \(\text{End}(T) \rtimes G \) and \(\text{End}(T') \) are Morita equivalent.

Consequently, \(\mathcal{C}_{A,G} \) is acyclic.

(3) Assume that \(G \) acts freely on the set of isomorphism classes of indecomposable projective \(H^0(A) \)-modules. If \(\mathcal{C}_{A,G} \) is acyclic, then so is \(\mathcal{C}_A \).

Proof. (1) follows from Propositions 5.1.2 and 5.4.1 and from [11, Corollary 6.6].

(2) The following arguments are adapted from [12] where it is proved that the skew group algebras of piecewise hereditary algebras are piecewise hereditary.

Since \(\mathcal{C}_A \) is acyclic, there exists a unique connected component \(\Gamma \) of the Auslander-Reiten quiver of \(\mathcal{C}_A \) having only finitely many \(\tau \)-orbits, where \(\tau = (\Sigma) \) is the Auslander-Reiten translation. Note that \(\Gamma \) is the repetitive quiver of a finite acyclic quiver because \(\mathcal{C}_A \) has infinitely many isomorphism classes of indecomposable objects.

The action of \(G \) preserves the Auslander-Reiten structure of \(\mathcal{C}_A \). In particular, it stabilizes \(\Gamma \). Following [12, Definition 4.1.1], let \(M_0 \in \Gamma \) and denote by \(\mathcal{X} \) the full subquiver of \(\Gamma \) consisting of the vertices \(M \in \Gamma \) such that

- there exists \(g \in G \) and there exists a path from \(M_0^g \) to \(M \in \Gamma \)
- any such path is sectional.

Note that \(\mathcal{X} \) is stable under the action of \(G \) up to isomorphisms. Moreover ([12 Proposition 4.1.4]) \(\mathcal{X} \) is a section of \(\Gamma \), that is, \(\mathcal{X} \) is a connected quiver, it is convex in \(\Gamma \) and it intersects each \(\tau \)-orbit of \(\Gamma \) exactly once. Let \(\{ T_i \}_{i \in \{1, \ldots, n\}} \) be a complete family of representatives of \(G \)-orbits of indecomposable objects of \(\text{add}(\mathcal{X}) \) and denote by \(T \) the object \(\bigoplus_{1 \leq i \leq n} T_i^g \) of \(\mathcal{C}_A \). Then, \(\text{add}(\mathcal{X}) = \text{add}(T) \) and \(T^g = T \) for all \(g \in G \). Since \(\mathcal{X} \) is a section of \(\Gamma \), the object \(T \) is a cluster tilting object of \(\mathcal{C}_A \) and \(\text{End}(T) \) is a hereditary algebra, isomorphic to \(k \mathcal{X} \). This proves (a). Note that (b) follows from (a) and from Proposition 5.2.3 taking \(T' = F \lambda T \).

Finally, it follows from (b) that \(\text{End}(T) \) and \(\text{End}(F_\lambda T) \) have the same global dimension ([34, Theorem 1.3]). Hence, \(\text{End}(F_\lambda T) \) is hereditary. Thus, \(\mathcal{C}_{A,G} \) is acyclic (see [25]).

(3) There exists a cluster tilting object \(T' \in \mathcal{C}_{A,G} \) such that \(\text{End}(T') \) is a hereditary algebra. In particular, the cluster tilting objects of \(\mathcal{C}_{A,G} \) form a mutation class (see [6, Proposition 3.5]). By Corollary 5.3.4 there exists a cluster tilting object \(T \in \mathcal{C}_A \) such that \(T^g \cong T \) for all \(g \in G \).
and such that $T' \simeq F_\lambda T$. By Proposition 5.2.3, the algebras $\text{End}(T) \ast G$ and $\text{End}(T')$ are Morita equivalent. Since $\text{End}(T')$ is hereditary, so is $\text{End}(T)$. Thus, C_A is acyclic (see [25]). □

6. APPLICATION TO HIGHER AUSLANDER-REITEN THEORY

This section applies the study of subsection 5.5 on Calabi-Yau completions to the interplay between skew group algebras and d-representation infinite algebras in the sense of [19]. For the sake of comprehensiveness, the corresponding interplay for d-representation finite algebras is presented in subsection 6.1. The case of d-representation infinite algebras is presented in subsection 6.2. The setting is the following.

Setting 6.1. Let A be a finite dimensional algebra. Let d be a non negative integer. Let G be a finite group acting on A by algebra automorphisms. Assume that $\text{char}(k) \nmid \text{Card}(G)$.

Until the end of the text, the category of finitely generated modules over a finite dimensional algebra R is denoted by $\text{mod}(R)$.

6.1. d-representation finite algebras

Given a finite dimensional algebra R, recall ([20]) that a d-cluster tilting subcategory of $\text{mod}(R)$ is a functorially finite subcategory \mathcal{C} such that

$$\mathcal{C} = \{ M \in \text{mod}(R) \mid (\forall X \in \mathcal{C}) (\forall i = 1, \ldots, d-1) \text{ Ext}^a_R(X, M) = 0 \}$$

and a d-cluster tilting module is a module $M \in \text{mod}(R)$ such that $\text{add}(M)$ is a d-cluster tilting subcategory. The algebra R is called d-representation finite when such an M exists and when R has global dimension at most d. When such an M exists and when d is equal to the global dimension of R, then $\text{add}(M)$ is necessarily equal to the following subcategory denoted by \mathcal{T}_R (see [18] Proposition 0.2),

$$\mathcal{T}_R = \text{add}\{ \tau_k^d I \mid k \in \mathbb{N}, I \in \text{mod}(A) \text{ injective} \},$$

where $\tau_d := D \text{Ext}_R^d(-, R) : \text{mod}(R) \to \text{mod}(R)$ is the higher Auslander-Reiten translation ($D := \text{Hom}_R(-, k)$).

The aim of this subsection is to prove that, when A has global dimension d, then A is d-representation finite if and only if so is $A \ast G$. This is based on the following lemma.

Lemma 6.1.1. Assume setting 6.1. Denote by F_λ and by F the extension-of-scalars functor $\text{mod}(A) \to \text{mod}(A \ast G)$ and the restriction-of-scalars functor $\text{mod}(A \ast G) \to \text{mod}(A)$, respectively.

1. $\tau_d F_\lambda M \simeq F_\lambda \tau_d M$ for all finite dimensional A-modules M.
2. $\tau_d F : N \simeq F \tau_d N$ for all finite dimensional A-modules N.

Proof. (1) Let $M \in \text{mod}(A)$. By adjunction, there is an isomorphism $D(\text{Hom}_{A \ast G}(F_\lambda M, A \ast G)) \simeq D(\text{Hom}_A(M, A \ast G))$ in $\text{mod}(A \ast G)$. The following composite mapping is bijective,

$$D(\text{Hom}_A(M, A \ast G)) \to \bigoplus_{g \in G} D(\text{Hom}_A(M, A^g)) \to \bigoplus_{g \in G} D(\text{Hom}_A(M, A)),$$

where the leftmost arrow is induced by the mapping $\oplus_{g \in G} A^g \to A \ast G$ given by $(a_g)_{g \in G} \mapsto \sum_{g \in G} a_g \ast g$ and the rightmost arrow is induced by the mappings $A \to A^g$ given by $a \mapsto g \cdot a$, for all $g \in G$. Let $\varphi \in D(\text{Hom}_A(M, A \ast G))$. If its image under (6.1.2) is denoted by $(\lambda_g)_{g \in G}$, then

$$(\forall g \in G) (\forall f \in \text{Hom}_A(M, A)) \lambda_g(f) = \varphi \left(\begin{array}{c} M \\ m \end{array} \right) \mapsto A \ast G \left(\begin{array}{c} \varphi \left(\begin{array}{c} M \\ m \end{array} \right) \mapsto A \ast G \left(\begin{array}{c} \varphi \left(\begin{array}{c} M \\ m \end{array} \right) \end{array} \right) \right).$$

Given $a \in A$, if $(\mu_g)_{g \in G}$ denotes the image of $\varphi \cdot (a \ast e)$ under (6.1.2), then $\mu_g(f) = \lambda_g(\varphi^{-1} a \cdot f)$ for all $g \in G$ and $f \in \text{Hom}_A(M, A)$; in other words, $\mu_g = \lambda_g \cdot (\varphi^{-1} a)$ for all $g \in G$. Besides,
given \(h \in H \), if \((\nu_g)_g \in G \) denotes the image of \(\varphi \cdot (1 \ast h) \) under (6.1.2), then \(\nu_g(f) = \lambda_{hg}(f) \) for all \(f \in \text{Hom}_A(M, A) \); in other words, \(\nu_g = \lambda_{hg} \) for all \(g \in G \).

It follows from these considerations that the composition of the following mapping with (6.1.2) is an isomorphism in \(\text{mod}(A \ast G) \) from \(D(\text{Hom}_A(M, A \ast G)) \) to \(D(\text{Hom}_A(M, A)) \otimes_A A \ast G \).

\[
\bigoplus_{g \in G} D(\text{Hom}_A(M, A)) \rightarrow D(\text{Hom}_A(M, A)) \otimes_A A \ast G \\
(\lambda_g)_{g \in G} \mapsto \sum_{g \in G} \lambda_g \otimes (1 \ast g^{-1}).
\]

Therefore, there is a functorial isomorphism in \(\text{mod}(A \ast G) \),

\[
D(\text{Hom}_{A\ast G}(F_\lambda M, A \ast G)) \simeq F_\lambda D(\text{Hom}_A(M, A)).
\]

Now, the isomorphism \(\tau_d F_\lambda M \simeq F_\lambda \tau_d M \) follows from (6.1.4) after deriving because \(F_\lambda \) is exact and preserves projective modules.

(2) Let \(N \in \text{mod}(A \ast G) \). By adjunction, there is an isomorphism in \(\text{mod}(A) \),

\[
D(\text{Hom}_A(FN, A)) \simeq D(\text{Hom}_{A\ast G}(N, A \ast G)).
\]

And the isomorphism \(\tau_d FN \simeq F \tau_d N \) follows from (6.1.5) after deriving also because \(F \) is exact and preserves projective modules.

Here is the first main result of this section.

Proposition 6.1.2. Assume setting 6.1. The following assertions are equivalent.

(i) \(A \) is d-representation finite.

(ii) \(A \ast G \) is d-representation finite.

Proof. Denote by \(F_\lambda \) and by \(F \) the extension-of-scalars functor \(\text{mod}(A) \rightarrow \text{mod}(A \ast G) \) and the restriction-of-scalars functor \(\text{mod}(A \ast G) \rightarrow \text{mod}(A) \), respectively. Note that \(A \ast G \) has global dimension \(d \). Since \(F_\lambda D(A) \simeq D(A \ast G) \) as \(A \ast G \)-modules and \(F D(A \ast G) \simeq D(A)^{\text{Card}(G)} \) as \(A \)-modules, it follows from Lemma 6.1.1 that

\[
\begin{align*}
\text{add}(F_\lambda I_A) & = I_{A \ast G} \\
\text{add}(F I_{A \ast G}) & = I_A.
\end{align*}
\]

Assume (i) and let \(M \in \text{mod}(A) \) be a \(d \)-cluster tilting module such that \(\text{add}(M) = I_A \). By construction, \(I_A \) is stable under the action of \(G \). Hence, so is \(\text{add}(M) \). Therefore, \(\text{add}(M) \) is stable under \(\text{add}(F_\lambda F) \) (see Lemma 2.3.1 part (4)). Hence, the proof of Proposition 5.2.1 can be adapted here to prove that \(\text{add}(F_\lambda M) \) is a \(d \)-cluster tilting subcategory of \(\text{mod}(A \ast G) \) provided that Lemma 2.3.1 is used instead of Proposition 5.2.1. Therefore, (i) \(\Rightarrow \) (ii).

Conversely, assume (ii) and let \(N \in \text{mod}(A \ast G) \) be a \(d \)-cluster tilting module such that \(\text{add}(N) = I_{A \ast G} \). Since \(I_{A \ast G} \) is stable under \(\text{add}(F_\lambda F) \) (6.1.6), the proof of Proposition 5.2.1 can also be adapted here to prove that \(\text{add}(F N) \) is a \(d \)-cluster tilting subcategory of \(\text{mod}(A) \). Therefore (ii) \(\Rightarrow \) (i). \(\square \)

6.2. d-representation infinite algebras.

Let \(R \) be a finite dimensional \(k \)-algebra. Following [19], it is called d-representation infinite when it has global dimension at most \(d \) and \(\Sigma^{-d} R \) is an \(R \)-module for all \(i \in \mathbb{N} \), where \(\Sigma \) denotes \((- \otimes^R_D DR) \circ \Sigma^{-d} \). This entails that \(R \) has global dimension equal to \(d \). When \(R \) has global dimension at most \(d \), it is d-representation infinite if and only if the cohomology of \(\Pi_{d+1}(R) \) is concentrated in degree 0. Recall that the Calabi-Yau completion \(\Pi_{d+1}(R) \) is also called the derived \((d + 1)\)-preprojective algebra and its 0-th cohomology is isomorphic to the \((d + 1)\)-preprojective algebra \(\Pi_{d+1}(R) \) of \(R \) which is defined by \(\Pi_{d+1}(R) = T_R(\text{Ext}^d_R(DR, R)) \) ([21]).

Proposition 6.2.1. Assume setting 6.1.
(1) G acts on the derived $d+1$-preprojective algebra $\mathbf{P}_{d+1}(A)$ by dg automorphisms and $\mathbf{P}_{d+1}(A) \ast G$ is quasi-isomorphic to the derived $d+1$-preprojective algebra $\mathbf{P}_{d+1}(A \ast G)$.

(2) G acts on the $d+1$-preprojective algebra $\mathbf{P}_{d+1}(A)$ by algebra automorphisms and the skew group algebra $\mathbf{P}_{d+1}(A) \ast G$ is isomorphic to the derived $d+1$-preprojective algebra $\mathbf{P}_{d+1}(A \ast G)$.

(3) The following assertions are equivalent.

(i) A is d-representation infinite.

(ii) $A \ast G$ is d-representation infinite.

Proof. (1) is a rephrasing of Theorem 1.3 (2) and (3) follow from (1). \qed

Note that subsection 3.5 applies here. Since A has global dimension to d, there exists a bounded complex P of finitely generated projective A-bimodules endowed with a compatible action of G and with G-equivariant differential, and there exists a G-equivariant quasi-isomorphism $P \to A$ in $\text{mod}(A^r)$. Then, there is a compatible action of G on $\text{Hom}_{A^r}(P, A^e)$ such that $(gf)(p) = g(f(g^{-1}p))$ for all $p \in P$, $g \in G$ and $f \in \text{Hom}_{A^r}(P, A^e)$. Hence, there is an isomorphism $\text{Hom}_{A^r}(P, A^e) \cong R\text{Hom}_{A^r}(A, A^e)$ in $\mathcal{D}(\Delta)$ and, since P is bounded, $\text{Hom}_{A^r}(P, A^e)$ is cofibrant in $\text{mod}(A^r)$. Therefore, one may assume that

- $\mathbf{P}_{d+1}(A) = T_A(\Sigma^d \text{Hom}_{A^r}(P, A^e))$ as dg algebras respectively endowed with an action of G by dg automorphisms, and $\mathbf{P}_{d+1}(A \ast G) \cong T_A(\Sigma^d \text{Hom}_{A^r}(P, A^e)) \ast G$, and, applying $H^0(-)$, that

- $\mathbf{P}_{d+1}(A) \cong T_A(H^d \text{Hom}_{A^r}(P, A^e))$ as dg algebras respectively endowed with an action of G by algebra automorphisms, and $\mathbf{P}_{d+1}(A \ast G) \cong T_A(H^d \text{Hom}_{A^r}(P, A^e)) \ast G$.

7. ACKNOWLEDGEMENTS

I thank Yann Palu for helpful discussions on cluster tilting theory.

REFERENCES

CMLA, ENS CACHAN, CNRS, UNIVERSITé, 61 AVENUE DU PRESIDENT WILSON, F-94230 CACHAN
Current address: Université de Paris, Sorbonne Université, CNRS, Institut de Mathématiques de Jussieu-Paris Rive Gauche, F-75013 Paris, France

Email address: patrick.le-meur@imj-prg.fr