
HAL Id: hal-00488791
https://hal.science/hal-00488791

Submitted on 2 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting Statically Schedulable Regions in Dataflow
Programs

Ruirui Gu, Jörn W. Janneck, Mickaël Raulet, Shuvra S. Bhattacharyya

To cite this version:
Ruirui Gu, Jörn W. Janneck, Mickaël Raulet, Shuvra S. Bhattacharyya. Exploiting Statically Schedu-
lable Regions in Dataflow Programs. Journal of Signal Processing Systems, 2011, 63 (1), pp.129-142.
�10.1007/s11265-009-0445-1�. �hal-00488791�

https://hal.science/hal-00488791
https://hal.archives-ouvertes.fr

J Sign Process Syst
DOI 10.1007/s11265-009-0445-1

Exploiting Statically Schedulable Regions
in Dataflow Programs

Ruirui Gu · Jörn W. Janneck · Mickaël Raulet ·
Shuvra S. Bhattacharyya

Received: 23 June 2009 / Revised: 16 December 2009 / Accepted: 22 December 2009
© 2010 Springer Science+Business Media, LLC. Manufactured in The United States

Abstract Dataflow descriptions have been used in
a wide range of Digital Signal Processing (DSP)
applications, such as multi-media processing, and
wireless communications. Among various forms of
dataflow modeling, Synchronous Dataflow (SDF) is
geared towards static scheduling of computational
modules, which improves system performance and
predictability. However, many DSP applications
do not fully conform to the restrictions of SDF
modeling. More general dataflow models, such
as CAL (Eker and Janneck 2003), have been
developed to describe dynamically-structured DSP
applications. Such generalized models can express
dynamically changing functionality, but lose the
powerful static scheduling capabilities provided by
SDF. This paper focuses on the detection of SDF-
like regions in dynamic dataflow descriptions—
in particular, in the generalized specification
framework of CAL. This is an important step for
applying static scheduling techniques within a dynamic
dataflow framework. Our techniques combine the

R. Gu (B) · S. S. Bhattacharyya
Department of ECE and UMIACS, University of Maryland,
College Park, MD 20742, USA
e-mail: rgu@umd.com

S. S. Bhattacharyya
e-mail: ssb@umd.com

J. W. Janneck
Xilinx Research Labs, San Jose, CA 95124, USA
e-mail: jorn.janneck@xilinx.com

M. Raulet
IETR/INSA Rennes, 35043, Rennes, France
e-mail: mickael.raulet@insa-rennes.fr

advantages of different dataflow languages and tools,
including CAL (Eker and Janneck 2003), DIF (Hsu
et al. 2005) and CAL2C (Roquier et al. 2008). In
addition to detecting SDF-like regions, we apply
existing SDF scheduling techniques to exploit the
static properties of these regions within enclosing
dynamic dataflow models. Furthermore, we propose
an optimized approach for mapping SDF-like regions
onto parallel processing platforms such as multi-core
processors.

Keywords Cal · DIF · Dataflow · Quasi-static
scheduling · Multicore processors

1 Introduction

Dataflow-based programming is employed in a wide va-
riety of commercial and research-oriented tools related
to DSP system design. Synchronous dataflow (SDF)
is a specialized form of dataflow that is streamlined
for efficient representation of DSP systems [4]. SDF
is a restricted model that handles a limited sub-class
of DSP applications, but in exchange for this limited
expressive power, SDF provides increased potential for
static (compile-time) optimization of DSP hardware
and software (e.g., see [5]).

Since the introduction of SDF, a variety of more
general dataflow models of computation have been
proposed to handle broader classes of DSP applica-
tions. These alternative modeling approaches provide
different trade-offs among expressive power, optimiza-
tion potential, and intuitive appeal. In general, they
provide enhanced expressive power, but cannot directly

J Sign Process Syst

utilize static scheduling techniques, such as those that
have been developed for SDF.

A variety of dataflow-based languages and tools
have been developed for design and implementation
of embedded DSP systems. For example, CAL [1] is a
language for specifying dataflow actors in a way that
is fully general (in terms of expressive power), while
clearly exposing functional structures that are useful
in detecting important special cases of actor behaviors
(e.g., SDF or SDF-like actor behaviors). The CAL
language, in terms of its high level of abstraction, is
similar to the Stream-Based Functions (SBF) model of
computation [6]. Both models share common points to
describe dynamic systems, such as input/output ports in
CAL and read/write ports in SBF, actions in CAL and
functions in SBF, and internal states in both models.
However, SBF combines the sematics of both dataflow
models and process network models, while CAL ex-
tends the dataflow model by enriching the properties
of single actors. In general, CAL is a fully-featured
programming language, providing both an abstract,
dataflow model of computation as well as a compre-
hensive set of operators and other semantic features for
completely specifying the internal behavior of dataflow
components.

DIF [2] is a language for specifying dataflow graphs
in terms of subsystems that conform to different kinds
of specialized dataflow modeling techniques, and The
DIF Package (TDP) is a tool for analyzing DIF lan-
guage specifications, with emphasis on scheduling- and
memory-management-related analysis techniques [2].
CAL2C [3, 7] is a tool that performs automatic gener-
ation of C code from CAL networks, thereby providing
a direct bridge between CAL and off-the-shelf embed-
ded processing platforms. CAL2C is now part of Open
RVC CAL Compiler (Orcc). Orcc is described in [8]
and can be downloaded from [9].

In this paper, we explore an integration of CAL,
TDP, and CAL2C, including the introduction of new
models and analysis methods to formally link these
tools. Through this linkage, we develop novel methods
for quasi-static scheduling of dynamic dataflow graphs.
Here, by quasi-static scheduling, we mean scheduling
techniques in which a significant proportion of schedul-
ing decisions are fixed at compile time—thereby pro-
moting predictability and optimization—and integrated
with a relatively small proportion of dynamic schedul-
ing decisions, which provide for increased general-
ity and run-time adaptibility compared to fully static
scheduling.

More specifically, in this paper we introduce the
concept of a Statically Schedulable Region (SSR) in
a dataflow graph, and demonstrate the utility of this

concept in quasi-static scheduling. We also propose
an automated method to detect SSRs, using the TDP
tool, in DSP applications that are modeled by the
CAL language. The efficiency of quasi-static schedules
built from SSRs is demonstrated by evaluating synthe-
sized C-code implementations that are generated using
CAL2C.

After extracting SSRs from a dynamic CAL net-
work, we can take advantage of existing SDF schedul-
ing methods to schedule the different SSRs. More
specifically, in this paper, we introduce the concept
of an SSR actor, which is a subsystem within an SSR
that can be treated as an SDF actor for purposes of
scheduling. In terms of the components in the original
CAL specification, an SSR actor may correspond to a
single CAL actor or part of (a subset of the function-
ality within) a CAL actor. Scheduling based on SSR
actors is thus of significantly more general applicabil-
ity compared to conventional SDF scheduling, where
SDF actors in the original specification are treated as
indivisible “black boxes”.

SSRs, together with their application to static and
quasi-static scheduling, benefit not only sequential
implementations, but also implementations on paral-
lel processing systems, such as multi-core processors.
Along with our method for automatically deriving
SSRs, we propose an SSR-based transformation tech-
nique for mapping dynamic CAL networks onto multi-
core platforms. We demonstrate that our techniques
result in significant improvements in system perfor-
mance compared to conventional actor-based mapping
approaches.

A preliminary, partial summary of this paper was
presented in [10]. This paper incorporates the following
further developments compared to the earlier presen-
tation of [10]. First, we develop a precise and compre-
hensive formulation of our SSR detection methods in
terms of relevant graph-theoretic concepts. Second, we
discuss how capabilities of TDP can be exploited in new
ways to achieve efficient scheduling of SSRs. We also
discuss how integrating our methods for SSR detec-
tion and TDP-based scheduling into CAL2C provides
capabilities for efficient, automated implementation
of video processing systems. Third, we explore novel
techniques for mapping CAL networks into multi-core
systems by grouping dynamic ports with SSRs into a
form of subsystem that we call weakly connected SSRs.
Our transformation techniques are demonstrated on
the IDCT module of an MPEG Reconfigurable Video
Coding (RVC) system and an MPEG-4 RVC simple
profile (SP) decoder.

This paper is organized as follows. Section 2 intro-
duces previous work related to dataflow models, the

J Sign Process Syst

CAL language, and related efforts on extracting SDF-
like parts from dynamic dataflow models. Section 3
outlines our methods and notations for translation and
analysis across different modeling languages. In Sec-
tion 4, we introduce the concept of SSRs, and develop
a detailed procedure for deriving SSRs from CAL net-
works. Section 5 defines the concept of SSR actors,
and describes how this special class of SSRs can help
in exploiting existing SDF scheduling techniques and
tools within a dynamic dataflow context. Simulation
results on an IDCT module are also presented in this
section. Section 6 explores methods to implement CAL
networks based on the concept of weakly-connected
SSRs. Simulation results on an MPEG-4 RVC SP de-
coder are presented in this section. Conclusions and
directions for future work are discussed in Section 7.

2 Related Work

2.1 Dataflow

Since the mid 1980s, a class of graphical program
representations has been evolving steadily, and gain-
ing increasing acceptance among designers of digi-
tal signal processing (DSP) systems. Foundations for
such dataflow representations have been provided by
computation graphs [11], Kahn process networks [12],
dataflow architectures [13], and dataflow process net-
works [14]. Synchronous dataflow (SDF) is a special-
ized form of dataflow that is streamlined for efficient
representation of DSP systems [4].

Since the introduction of SDF, a variety of such
DSP-oriented dataf low models of computation have
been proposed, and DSP-oriented models have been
incorporated into many commercial design tools, in-
cluding Agilent ADS, Cadence SPW (later acquired by
CoWare), National Instruments LabVIEW, and Synop-
sys CoCentric. Useful relationships between dataflow
and synchronous languages have also been developed,
which helps to connect DSP-oriented dataflow meth-
ods to other popular tools, such as Simulink by The
MathWorks (e.g., see [15]). Model dataflow-based tools
for embedded system design use a variety of model-
ing techniques, and are not necessarily restricted to
SDF. These alternative modeling approaches provide
different trade-offs among expressive power (the range
of DSP applications that can be represented), analysis
potential (the rigor with which implementations can
be automatically validated or optimized), and intuitive
appeal (e.g., see [16]) .

In DSP-oriented dataflow graphs, vertices (actors)
represent computations of arbitrary complexity, and an

edge represents the flow of data as values are passed
from the output of one computation to the input of
another. Each data value is encapsulated in an object
called a token as it is passed across an edge. Actors
are assumed to execute iteratively, over and over again,
as the graph processes data from one or more data
streams. These data streams are typically assumed to
be of unbounded length (e.g., derived implementations
are not dependent on any pre-defined duration for the
input signals). In dataflow graphs, interfaces to input
data streams are typically represented as source actors
(actors that have no input edges). An important task
when mapping dataflow graphs into implementations
is that of sequencing and coordinating among actors
based on the resource constraints of the target plat-
form. This task is referred to as scheduling.

A simple example is illustrated in Fig. 1. Here, A and
B represent two actors, and the numbers shown above
the edges represent the rates at which actors produce
and consume tokens. For example, A produces two
tokens every time it executes and B consumes three
tokens during each execution. How token production
and consumption rates are represented, and underly-
ing restrictions imposed on such rates are key distin-
guishing characteristics of many DSP-oriented dataflow
models. In SDF, all data production and consumption
rates are restricted to be constant values that are known
at design time. The example of Fig. 1 conforms to the
SDF model.

A limitation of SDF and related models, such
as cyclo-static dataflow [17] and homogeneous SDF
(HSDF) [4], is that dynamic dataflow relationships
among computations cannot be described. To express
applications that involve such relationships, one must
employ models that are more expressive than such
static dataf low models. Earlier work on DSP-oriented
dataflow models has focused heavily on static dataflow
techniques, especially SDF. As designers seek to de-
velop more and more complex embedded DSP systems,
incorporating more flexible sets of features, and more
powerful forms of adaptivity, exploration of dynamic
dataflow models is becoming increasingly important.

A variety of dynamic dataflow modeling techniques
have been developed previously, including the token

Figure 1 A simple example of a dataflow (SDF) model.

J Sign Process Syst

flow model [18], stream-based functions [6], enable-
invoke dataflow (EIDF) [19], and the CAL actor
language [1].

2.2 DIF

The dataflow interchange format (DIF) is proposed
as a standard approach for specifying and integrating
arbitrary dataflow-based semantics for DSP system de-
sign [20]. The DIF package (TDP) [2, 19] is a software
tool, developed in conjunction with DIF, for modeling
and analyzing DSP-oriented dataflow graphs. The DIF
language (TDL) is an accompanying textual design lan-
guage for high-level specification of signal-processing-
oriented dataflow graphs. The TDL syntax for dataflow
graph specification is designed based on dataflow the-
ory and is independent of any specific design tool. For
a DSP application, the dataflow semantic specification
is unique in TDL regardless of the design tool used to
originally enter the specification.

Because dataflow-oriented design tools in the signal
processing domain are fundamentally based on actor-
oriented design, TDL provides a syntax to specify tool-
specific actor information, which ensures that TDP can
extract all relevant information from a given design
tool [20].

TDL is designed as a standard approach for spec-
ifying DSP-oriented dataflow graphs at a high level
of abstraction that is suitable for both programming
and interchange. TDL provides a unique set of se-
mantic features for specifying graph topologies, hi-
erarchical design structure, dataflow-related design
properties, and actor-specific information. TDP accom-
panies TDL, and provides a variety of intermediate
representations, analysis techniques, and graph trans-
formations that are useful for working with dataflow
graphs that have been captured by TDL. Mocgraph
is a companion tool that is provided along with TDP.
Mocgraph can be viewed as a library of algorithms
and representations for working with generic graphs,
whereas TDP is a specialized package for working with
dataflow graphs. For more details on TDL, TDP, and
Mocgraph, we refer the reader to [2, 19].

For example, TDP includes a transformation that
converts SDF representations into equivalent homo-
geneous SDF (HSDF) representations based on the
algorithm introduced in [4]. Such a transformation can
in general expose additional concurrency [21] that is
not represented explicitly in the original SDF graph. In
this paper, we make use of both generic-graph-based
(via Mocgraph) and model-based (via TDP) analysis
methods to automatically derive and exploit SSRs from
within CAL networks. As we will demonstrate later in

this paper, such extraction and exploitation of SSRs
provides a powerful new methodology for optimized
implementation of dataflow graphs. In comparison, [21]
presents in-depth dataflow based analysis and exploita-
tion of parallelism in the design and implementation of
an MPEG RVC decoder, while this paper focuses on
detailed description of the SSR detection algorithm.

Compared to other design tools for representa-
tion and transformation of dataflow graphs—such as
SysteMoC [22], PeaCE [23], and stream-based func-
tions [6]—a distinguishing feature of TDP is its support
for representing and manipulating different specialized
forms of dataflow semantics. This arises from the em-
phasis in TDL on recognizing a wide variety of impor-
tant forms of dataflow semantics along with relevant
modeling details that are required to meaningfully an-
alyze those semantics. Due to this feature of TDP, its
capabilities are highly complementary to those of exist-
ing dataflow-based frameworks. In particular, TDL and
TDP can be used to capture and analyze, respectively,
representations from many of these frameworks.

2.3 CAL and Scheduling of CAL Systems

CAL is a dataflow- and actor-oriented language that
describes algorithms in terms of networks of commu-
nicating dataflow-actor components. A CAL actor is
a modular component that encapsulates its own state.
The state of an actor is not shareable with other actors,
and thus, an actor cannot modify the state of another
actor.

The behavior of an actor is defined in terms of a set
of actions. The operations an action can perform are
consumption (reading) of input tokens, modification
of internal state, and production (writing) of output
tokens. The topology of the connections among ac-
tor input and output ports constitutes what is called
a CAL network. Compared to the complexity of ac-
tors, edges—connections between pairs of actors—are
rather simple. The only interaction an actor can have
with another actor is through input and output ports
that connect the actors. Such connections are repre-
sented as edges in a CAL network.

Each action of an actor defines the kinds of transi-
tions that internal states can undergo, and the specific
conditions under which the action can be executed
(f ired). The conditions for firing actions in general
involve (1) the availability of input tokens, (2) values
of input tokens, (3) state of the actor, and (4) pri-
ority of the action. In an actor, actions are executed
sequentially—i.e., at most one action can be executing
at any given time.

J Sign Process Syst

CAL is supported by a portable interpreter in-
frastructure that can simulate a hierarchical network of
actors. In addition to the strong encapsulation afforded
by the actor description, the dataflow model also makes
much more algorithmic parallelism explicit. This al-
lows application of the wide range of dataflow graph
transformations to the realization of signal process-
ing systems on a variety of platforms. In particular,
platforms will differ in their degree of parallelism,
which gives rise to the challenging problem of match-
ing the concurrency of the application representation
with the parallelism of the computing machine that is
executing it. The newly developed MPEG video coding
standard, Reconfigurable Video Coding (RVC) [24],
uses the CAL actor language [1] for specifying func-
tional components, and dataflow as the composition
formalism [25].

An integrated set of tools related to CAL are pre-
sented in OpenDF [26]. Among these, we are espe-
cially interested in the available code generators that
translate CAL into C or hardware description language
(HDL) code.

However CAL models themselves are too general
to be scheduled efficiently through any sort of direct
mapping. In a direct mapping from CAL semantics, the
scheduling of actor functions is resolved only at run-
time, such as through the SystemC-based scheduling
approach that is used in CAL2C. A number of related
efforts are underway to develop efficient scheduling
techniques for CAL networks. The approach of Platen
and Eker [27] sketches a method to classify CAL actors
into different dataflow classes for efficient scheduling.
Boutellier et al. [28] propose an approach to quasi-
static multiprocessor scheduling of CAL-based RVC
applications. The approach involves the dynamic se-
lection and execution of “piecewise static schedules”
based on novel extensions of flow shop scheduling
techniques.

Many previous research efforts have focused on task
mapping for multiprocessor systems from other kinds
of specification models or languages (e.g., see [16]). For
example, Li et al. [29] provide a method for allocating
and scheduling tasks using a hybrid combination of
genetic algorithm and ant colony optimization. The
approach involves consideration of both global and
local memory spaces across the targeted multiprocessor
system. Ennals et al. [30] develop a method for parti-
tioning tasks on multi-core network processors.

Compared to prior work on dataflow techniques and
multiprocessor system design, major unique aspects
of our approach in this paper are the capability to
decompose CAL actors based on their formal action-
and port-based semantics, and to construct and sub-

sequently transform SSRs and SSR actors from these
decomposed representations. As a result, our method-
ology has access to and is capable of exploiting the de-
tailed formal modeling semantics of the CAL language,
which includes formal modeling of both communica-
tion between actors, as well as computations and state
transitions within actors. Additionally, our methods
provide a novel framework of quasi-static scheduling in
terms of SSR actors.

3 Analysis Framework

Our method to optimize implementation of DSP ap-
plications combines the advantages of three comple-
mentary tools, as shown in Fig. 2. The given DSP
application is initially described as a CAL network
that is composed of CAL actors. The CAL-based
dataflow representation is then translated into a DIF-
based intermediate representation for analysis by TDP.
This TDP-driven analysis produces a set of SSRs,
and an associated quasi-static schedule, which is then
translated into a reformulated CAL specification. This
transformed CAL code is then translated to a C code
implementation using CAL2C. The generated CAL2C
implementation is optimized to exploit the static struc-
ture provided by the SSRs and their enclosing quasi-
static schedule.

A CAL actor can in general have two kinds of
interfaces—input ports and output ports. A CAL actor
performs computations in sequences of steps, where
each step is called an action. There are one or more
actions associated with a given actor, and an invocation
of an actor corresponds to exactly one action. In each
action, the actor may consume tokens from its input
ports, and may produce tokens on its output ports.
Also, there can be one or more state variables asso-
ciated with an actor, and these state variables can be
modified by any action.

We introduce some notation to allow for more de-
tailed discussion of CAL semantics. For simplicity, we
assume here that there is exactly one state variable
associated with a given CAL actor, but this is not a
general restriction of the CAL language—CAL actors
can have no state variable or multiple state variables.

A CAL actor A can be represented as a four-tuple
< σ0, �(A), �(A), �>, where �(A) is the set of all
possible values for the state variable; σ0 ∈ �(A) is the
initial state; �(A) is the set of all possible actions for
actor A; and � is a non-reflexive, anti-symmetric and
transitive partial order relation on �(A) called the
priority relation of A. Intuitively, if l, m ∈ �(A), then

J Sign Process Syst

Figure 2 Outline of method
for optimizing dataflow graph
implementation.

l � m means that l has priority over m if both are
“competing” for the next invocation A.

We refer to the set of ports in A as the port set
of A, denoted as ports(A). For a given action l ∈
�(A), the set of ports that can be affected by the
action is denoted (allowing a minor abuse of no-
tation) by ports(A)l. In CAL, different actors can
have identically-named ports. To distinguish between
identically-named ports in different actors, we prefix
the name of the port with the containing actor, as in
A.a and B.a. Given a CAL actor A, inputs(A) denotes
the set of input ports of A, and outputs(A) denotes
the set of output ports of A. Furthermore, given an
action l ∈ �(A), we again employ a minor abuse of no-
tation, and define inputs(A)l = inputs(A) ∩ ports(A)l,
and outputs(A)l = outputs(A) ∩ ports(A)l. These rep-
resent, respectively, the sets of actor input and output
ports that appear in the action l.

A guard is a condition that must be satisfied before
the next action in a CAL actor can proceed to execute.
In general, a guard condition can involve the actor
inputs and actor state. If execution of an action has
an associated guard condition, we say that the action
is guarded. Intuitively, an action that is not guarded
executes unconditionally as soon as it is the next action
visited during the execution of the enclosing actor A.
Also, we say that an action is a state-modifying action
if the action may, depending on the current state and
actor inputs, change the value of the actor state. Given
a guarded action m of an actor A, we say that m is
state-guarded if the guard condition associated with m
depends on the value of the state variable associated
with A.

Describing an actor in CAL involves describing not
only its ports, but also the structure of its internal

state, the actions it can perform, what these actions
do (such as token production and token consumption,
and updating of actor state), and how to determine the
action that the actor will perform next.

4 Derivation of Statically Schedulable Regions

Our approach for deriving statically schedulable re-
gions involves partitioning and grouping actor ports
based on relationships that pertain to various kinds of
interactions between ports.

This overall process of partitioning and grouping
begins at the level of individual actors. Ports inside an
actor can be viewed as having different kinds of associ-
ations with one another. Some ports can be viewed as
related because they are involved in the same action,
while some are related because they affect the same
state variable. In this paper, we apply the following two
kinds of port associations:

1. ∃(l ∈ �(A)) such that a, b ∈ ports(A)l;
2. ∃l, m ∈ �(A) such that a ∈ ports(A)l, b ∈

ports(A)m, l is a state-changing action, and m
is a state-guarded action.

We define these two conditions as the coupling rela-
tionships, and we observe that in general, two distinct
ports can satisfy zero, one or both of the coupling rela-
tionships. Intuitively, if neither of these two conditions
is satisfied by two given ports, we separate the two
ports into different partitions. If one or both of these
conditions is satisfied by two ports of the same actor,
then we include the ports in the same partition.

J Sign Process Syst

Given two distinct ports a and b of a CAL actor A,
we say that a and b are coupled ports if they satisfy
exactly one or both of the coupling relationships.

Partitioning across ports from different actors is
based on connections in the enclosing CAL network. If
ports of distinct actors are connected in the CAL net-
work, then they are combined into the same partition,
including any other subsets of ports within the same
actors that satisfy coupling relationships with respect to
the ports.

After partitioning is performed on actor ports, we
perform the grouping phase of our transformation
methodology. The sets of ports obtained from parti-
tions are grouped together in an attempt to build larger
subsets of computations that can be scheduled statically
with respect to one another. In general, static schedul-
ing methods can be used to schedule the computations
within such groups, while coordination of each group
with the rest of the CAL network can be scheduled
dynamically.

There are three kinds of intermediate graphs that
are constructed and analyzed during the process of SSR
derivation. Two of these are constructed separately for
individual actors, and the third intermediate graph is a
representation on the overall CAL network.

Partitioning begins from individual actors. The CAL
actor is originally represented as a CAL file. The nec-
essary information is translated into a TDL file. From
the resulting TDL file, we construct the coupling rela-
tionship graph (CRG) of an actor A by instantiating a
vertex vp for each port p of A, and an edge (va, vb) for
each pair of coupled ports a and b .

Figure 3 shows an illustration of coupled ports and
CRGs. Here the CRGs for two actors A and B are
superimposed in the same graph along with edges
between communicating ports of A and B. From the il-
lustration, we see, for example, that the following port-
pairs are coupled: {A.a, A.x}, {A.b , A.y}, {B.a, B.x},
{B.b , B.x}, and {B.c, B.y}.

Figure 3 An illustration of coupled ports and CRGs.

The weakly connected components of the CRG for an
actor A are called coupled groups. Weakly connected
components are a form of graph structure that can
be derived efficiently using well-known graph analysis
techniques (e.g., see [31]). Intuitively, in an undirected
graph, two actors are in the same weakly connected
component if there is a path connecting the two actors.
In a directed graph G, two actors are in the same weakly
connected component if there is a path that connects
the actors in the undirected version of G (i.e., the
undirected graph that is derived from G by replacing
each directed edge in G with an undirected edge that
connects the same pair of actors).

Figure 4 shows an example of a directed graph, the
undirected version of that graph, the associated weakly
connected components.

Figure 5 shows an illustration of coupled groups
using a similar kind of overall diagram (but based on
different actors A and B) as that shown in Fig. 3.

Once we have partitioned the ports of each actor
A into its set C of coupled groups, we examine each
coupled group c ∈ C, and we try to extract from c a
more specialized kind of port-subset called a statically-
related group (SRG). In particular, a set of ports Z =
{p1, p2, . . . , pn} within a given coupled group of A is a
statically-related group if it satisfies the following three
conditions.

1. ∀l ∈ �(A), either Z ⊆ ports(A)l, or Z
⋂

ports(A)l = ∅, where ∅ denotes the empty set.
2. Each input port pi ∈ Z is a static rate input port—

that is, there exists a fixed positive integer cns(pi)

that characterizes the number of tokens consumed
from pi. In other words, for any l such that pi ∈
ports(A)l, we have that exactly cns(pi) tokens are
consumed from pi during l.

3. Similarly, each output port pj ∈ Z is a static rate
output port, which means that there exists a fixed
positive integer prd(pj) that characterizes the num-
ber of tokens produced onto pj, regardless of which
“containing action” is being executed.

Figure 4 An illustration of weakly connected components.

J Sign Process Syst

Figure 5 An illustration of coupled groups.

We say that a port is a static rate port if it is either a
static rate input port or a static rate output port.

SRGs (statically-related groups) can be derived by
constructing and analyzing an intermediate graph rep-
resentation that we call the static relationship graph.
Given a coupled group R = a1, a2, . . . , an, we construct
the static relationship graph of R by first instantiating
a vertex xai for each ai ∈ R such that ai is a static rate
port, and a vertex vz for every action z in the actor.
We then instantiate an edge (xai , vz) for every ordered
pair (ai, z) such that ai ∈ ports(z). By definition, the
static relationship graph is a bipartite graph. Figure 6
shows an example of a static relationship graph and the
statically-related groups derived from Fig. 5.

The SRGs of an actor can be derived by computing
the weakly connected components of the static relation-
ship graph—each weakly connected component of the
static relationship graph is an SRG.

Once the SRGs have been determined, we construct
another intermediate graphical representation, which
we call the SRG graph. SSR detection then operates
directly on the SRG graph.

Before defining the SRG graph, however, it is useful
to define the concept of connectivity between SRGs.
Given two SRGs A1 and A2, we say that A1 and A2

are connected if there exist ports p1 and p2 such that

Figure 6 An illustration of statically-related groups.

p1 ∈ A1, p2 ∈ A2, and p1 and p2 are connected by an
edge in the enclosing CAL network (i.e., p1 and p2 are
communicating ports in the overall CAL specification).

The process of SRG graph construction can now be
described as follows. We construct the SRG graph of a
given CAL network by instantiating a vertex vS for each
SRG S in the graph, and instantiating an edge vS, vT for
every pair S, T of SRGs that are connected.

Once the SRG graph has been constructed, the SSRs
(statically schedulable regions) can be derived through
another computation of weakly connected components.
In particular, suppose that X1, X2, . . . , Xn are the
weakly connected components of the SRG graph. Thus,
from the definitions of the SRG graph and weakly
connected components, each Xi can be expressed as a
set

Xi = {xi,1, xi,2, . . . , xi,mi}, (1)

where each xi, j represents the jth SRG within the ith
weakly connected component of the SRG graph.

The SSRs of the given CAL network can then be
expressed formally as the set R = {r1, r2, . . . , rn}, where
for each i, ri is defined by

ri =
mi⋃

j=1

xi, j. (2)

Each r ∈ R is called a statically schedulable region
(SSR) of the given CAL network.

Figure 7 shows an example of an SRG graph and the
obtained statically schedulable region.

5 Scheduling of SSRs

After deriving the SSRs from a given CAL network,
a natural next step is scheduling the SSRs—i.e., de-
termining the execution order of the computations in
each SSR. Since, by construction, each SSR is statically
schedulable, we can efficiently adapt SDF scheduling
techniques for this step in our proposed design flow.

In order to apply SDF scheduling techniques to an
SSR, we first construct a set of one or more SDF actors
from the ports in the SSR. In particular, all of the ports
of a given actor A within an SSR s are combined to
form a corresponding SSR actor σ(s, A). Note that in
general, σ(s, A) may contain all of the ports in A or a
proper subset of the ports, depending on whether all of
the ports of A are in s.

J Sign Process Syst

Figure 7 An illustration of a statically schedulable region.

After decomposition of an SSR into SSR actors, an
SDF graph representation of the SSR emerges natu-
rally, and SDF scheduling techniques can be applied
to this SDF graph representation to derive a static
schedule for the SSR.

Note that in general, an SSR actor can correspond to
the full functionality of a single actor in the overall CAL
network, or it can correspond to only part of the func-
tionality. Typically, the latter applies. Furthermore, the
same CAL actor can have associated SSR actors in
different SSRs.

5.1 IDCT Example

Figure 8 illustrates SSRs within an IDCT (inverse dis-
crete cosine transform) subsystem. Here, the main body
of the IDCT is composed of the actors row, tran, col,
retran, and clip. The dataGen and print actors are used
to provide a testbench for the network—dataGen is
responsible for generating input data, and print for
displaying the output from the IDCT computation. The
shaded regions shown in the figure correspond to the
different SSRs, which are unique to the application.

Each SSR can be scheduled quasi-statically, which
means a significant portion of the schedule structure
can be fixed at compile time. When we map the enclos-
ing application onto a multi-core platform, each SSR
can be allocated to a single core, and the scheduling for
each SSR can be controlled on the core that is allocated

to the SSR. If the granularity of some SSRs is so large
that allocating them as single-processor subsystems re-
sults in poor load balancing, the SSR detection process
can be post-processed with a load-balancing phase
that optionally adjusts SSR granularity to improve
overall schedule performance. Such refinement of SSRs
before allocation is a useful direction for further
investigation.

If we map the IDCT onto a dual-core system based
on SSR analysis, a straightforward mapping for this
case is shown in Fig. 8. In this case, the connections
between the cores are connections inside both the data-
Gen and clip actors. These weak connections can be im-
plemented using semaphore primitives. Furthermore,
inside each core, the actions can be statically sched-
uled in terms of checks on an appropriately defined
semaphore. Here, we can easily take advantage of
well known SDF scheduling techniques, such as AP-
GAN [32, 33], which provides a framework for incre-
mental schedule construction that can be adapted to a
variety of objectives.

An example of SSR scheduling for the IDCT exam-
ple is shown in Fig. 9. Here the schedule for a single
SSR is represented in the form of a schedule tree. This
schedule tree representation corresponds to a nested
loop schedule where the internal nodes of the tree
correspond to loops; the iteration counts of these loops
are given by the labels of the corresponding internal
nodes; and leaf nodes of the tree correspond to SSR
actors. More details on and applications of this kind of
schedule tree representation can be found in [34].

In the schedule tree shown in Fig. 9, SSR actors
that are labeled with purely alphabetic names (no
number in the name), such as tran and row, indicate
SSR actors that correspond to the entire computa-
tion of the associated CAL actor. On the other hand,
SSR actors whose names contain numbers correspond
to actors in the CAL network that map to multiple SSR
actors across multiple SSRs.

Note also that for this IDCT example, every actor
port is contained in an SSR actor. In general, some
ports may lie outside of all SSRs; we refer to such ports
as dynamic ports. However, for the IDCT example,
there are no dynamic ports.

Figure 8 SSRs in the IDCT
subsystem.

J Sign Process Syst

Figure 9 Schedule tree for an
SSR in the IDCT example.

5.2 Simulation Results

After integrating results of SSR analysis into CAL2C,
we obtained a modified version of CAL2C, which we
call CAL2C-SSR. To evaluate the effectiveness of our
SSR techniques, we conducted experiments on a dual-
core 2.5Ghz computer. We generated C code using
CAL2C and CAL2C-SSR for three different IDCT
versions. The first version (V1) does not employ any
SSR analysis, and can be viewed as being scheduled
purely through SystemC, which is used as the default
scheduling mechanism in CAL2C.

The second version (V2) uses CAL2C-SSR. This ver-
sion exploits the SSRs illustrated in Fig. 8, and employs
a quasi-static integration of static schedules for these
SSRs with top-level dynamic scheduling. In this version,
two SSRs are mapped onto two cores, and semaphore
primitives are used for inter-SSR communication.

The third version (V3) also uses CAL2C-SSR. This
version also uses a modified, more predictable version
of the clip actor that can be used when the input data
is known in advance. In the new version of clip, the
ports Signed and O are rewritten to become coupled
ports. Then the original two SSRs are combined as one
SSR through connections inside clip. In the illustration
of V3 shown in Fig. 10, the IDCT system becomes an
SDF model that runs as a single thread. Since entirely
static scheduling is used in this version, V3 is the most
efficient in terms of execution speed.

We experimented with all three IDCT versions us-
ing Microsoft Visual Studio. The results are shown in
Fig. 11. Here, V2 shows an improvement in perfor-

mance of 1.5 times compared to V1, whereas V3 shows
the best performance among all three versions.

Note that while V3 exhibits the best performance,
demonstrates that larger SSR regions can lead to sig-
nificant improvements in performance, and is generally
interesting as a kind of “limit study,” this version is
not of practical utility. This is because V3 requires
prior knowledge of input data, which is not a practical
assumption for real-time operations.

6 Grouping of Dynamic Ports and SSRs

In this section, we explore a new form of dataflow graph
analysis to help streamline the interaction between dy-
namic ports and SSRs. Such analysis helps to improve
the efficiency of SSR-based quasi-static schedules.

Recall that a port of a CAL network that is not
contained in an SSR is called a dynamic port. Given a
dynamic port p, an SSR s, and an action a in s (i.e., a
is part of one of the SSR actors within s), we say that
p is related to s if (1) p is referenced in the body of
a; (2) p is referenced in the action guard of a; or (3)
p outputs tokens to a (i.e., there is an input port that
consumes tokens produced from p whenever a fires).
We define the strength of the relationship between the
dynamic port p and the SSR s, denoted �(p, s), as
the total number of actions in s that p is related to.
Thus, in general, �(p, s) is a non-negative integer that
is bounded above by the total number of actions in s.

In this section, we explore a scheme by which dy-
namic ports are grouped together with SSRs based on

Figure 10 IDCT subsystem
with a single SSR.

J Sign Process Syst

Figure 11 Results: clock
cycles vs number of iterations.

the “strength” metric �. We refer to this scheme as
strength-based, iterative grouping (SBIG) of dynamic
ports and SSRs. To demonstrate this approach, we
select a port-SSR pair �(p1, s1) that maximizes the
strength value �(p, s) over the set of all port-SSR pairs.
Then we remove p1 from further consideration, and
select a port-SSR pair �(p2, s2) that maximizes the
strength value over all remaining dynamic ports and all
SSRs. Then we remove p2 from further consideration,
and continue this process of matching up SSRs succes-
sively with dynamic ports until every dynamic port has
been assigned to an SSR. This leads to a partitioning of
the set of dynamic ports across the set of SSRs.

At this point, each dynamic port is grouped with
exactly one SSR, and in general, each SSR is grouped
with zero or more dynamic ports. The dynamic ports
are then analyzed to conditionally schedule the SSRs
that are grouped with them. The results of these con-
ditional schedule constructions are then combined to
form the quasi-static schedule for the overall CAL
network.

We experimented with our strength-based, iterative
grouping approach on the MPEG-4 RVC SP decoder
system shown in Fig. 12. When applied to this sys-

tem, our tools for SSR detection derived a total of
30 SSRs. 32 ports are left outside the SSRs—these
are the dynamic ports. By applying our method of
strength-based, iterative grouping, we partitioned the
32 dynamic ports across the set of available SSRs. We
then used the resulting partitioning result to derive a
quasi-static schedule for the system.

For these experiments, we further modified the
scheduler in CAL2C [3] to better accommodate SSRs.
All of the SystemC primitives have been removed from
the current version of Cal2C. The current scheduler is a
round robin scheduler executing each actor in a loop; an
actor is fired until input tokens are available and output
FIFOs are not full. SSRs can easily be incorporated in
this fully software-based implementation, independent
from SystemC, by removing all of the tests on the
FIFOs.

A code generator that translates CAL-based
dataflow models to SystemC is presented in [3]. Such a
tool can be useful for simulation, but may lead to major
inefficiencies if targeted to actual implementations.
For example, in such a translation approach, each actor
in SystemC is executed in its own thread. Thus, context
switches can occur frequently during execution, and

Figure 12 A block diagram
of an MPEG RVC decoder.

J Sign Process Syst

Table 1 MPEG-4 SP decoder performance for 352 × 288 CIF
sequence.

SP decoder Speed (frame/s)

Monoprocessor with SystemC 8
scheduler

Monoprocessor with round 42
robin scheduler

Monoprocessor with round 44
robin scheduler and SSRs

Dualcore processor with round 50
robin scheduler and SBIG

this can lead to poor performance, especially if many
actors with low granularity are present.

Compared to a direct translation in SystemC [3], our
C mono-thread implementation is indeed 5 times faster.
For our multi-core implementation, we have statically
mapped the actors (each actor is assigned a priori to a
core). For each core, actors assigned on it are turned
into a single thread with its own dataflow process net-
work scheduler. Since only one thread is executed on
each core, threads are not executed concurrently but in
parallel.

We conducted experiments involving the applica-
tions of both CIF sequences with size 352 × 288 and
sequences with size 624 × 352. A CIF-size image (352 ×
288) corresponds to 22 × 18 macroblocks. As shown
in Tables 1 and 2, the experimental results demon-
strate that CAL2C with quasi-static scheduling using
strength-based, iterative grouping (SBIG) on the round
robin scheduler has the best performance in a multi-
core system. CAL2C with SBIG can be applied to
more applications besides MPEG, and this is a useful
direction for future work.

We note that the process of strength-based, iterative
grouping (SBIG) between dynamic ports and SSRs, as
well as the derivation of SSRs, are fully automated
processes in our experimental setup. However, the out-
put of SBIG is presently converted manually into a
corresponding quasi-static schedule for the given CAL
network. Automating the connection between SBIG
and quasi-static scheduling, as well as exploring new

Table 2 MPEG-4 SP decoder performance for 624 × 352
sequence.

SP decoder (with round robin scheduler) Speed (frame/s)

Monoprocessor 10
Monoprocessor with SSRs 11
Dualcore processor 15
Dualcore processor with SBIG 16

techniques to further optimize the resulting schedules
are useful directions for further study.

7 Conclusions

In this paper, we have developed a methodol-
ogy for quasi-static scheduling of dynamic dataflow
specifications in the CAL language. Our approach is
based on systematic construction of statically schedu-
lable regions, which are formally and uniquely defined
in terms of modeling concepts that underlie CAL. Our
approach is applied through a novel integration of three
complementary dataflow tools—the CAL parser, TDP,
and CAL2C—and demonstrated on an IDCT module
from a reconfigurable video decoder application. After
detecting statically schedulable regions (SSRs), we can
efficiently make use of available SDF techniques and
tools to schedule SSRs in terms of their respective sets
of SSR actors.

SSRs, with their amenability to static scheduling,
not only benefit sequential processing systems, but
also help to improve the use of parallel processing
platforms, such as multi-core processors. The concept
of strength-based, iterative grouping is proposed to
carefully integrate scheduling decisions across dynamic
ports and SSRs. Using this approach, we demonstrate
new techniques for optimized, quasi-static scheduling
of CAL networks on multi-core processors.

References

1. Eker, J., & Janneck, J. W. (2003). CAL language report, lan-
guage version 1.0—document edition 1. Electronics Research
Laboratory, University of California at Berkeley, Tech. Rep.
UCB/ERL M03/48.

2. Hsu, C., Ko, M., & Bhattacharyya, S. S. (2005). Software syn-
thesis from the dataflow interchange format. In Proceedings
of the international workshop on software and compilers for
embedded systems (pp. 37–49). Dallas, Texas.

3. Roquier, G., Wipliez, M., Raulet, M., Janneck, J. W., Miller,
I. D., & Parlour, D. B. (2008). Automatic software synthesis
of dataflow program: An MPEG-4 simple profile decoder
case study. In Proceedings of the IEEE workshop on signal
processing systems.

4. Lee, E. A., & Messerschmitt, D. G. (1987). Synchronous
dataflow. Proceedings of the IEEE, 75(9), 1235–1245.

5. Bhattacharyya, S. S., Leupers, R., & Marwedel, P. (2000).
Software synthesis and code generation for DSP. IEEE trans-
actions on circuits and systems—II: Analog and digital signal
processing, 47(9), 849–875.

6. Kienhuis, B., & Deprettere, E. F. (2003). Modeling stream-
based applications using the SBF model of computation.
Journal of Signal Processing Systems, 34(3), 291–300.

7. Wipliez, M., Roquier, G., Raulet, M., Nezan, J.-F., &
Deforges, O. (2008). Code generation for the MPEG

J Sign Process Syst

reconfigurable video coding framework: From CAL actions
to C functions. In Proceedings of the IEEE international con-
ference on multimedia and expo.

8. Wipliez, M., Roquier, G., & Nezan, J. (2009). Software code
generation for the RVC-CAL language. Journal of Signal
Processing Systems. doi:10.1007/s11265-009-0390-z.

9. Open RVC CAL compiler (2009). http://sourceforge.net/
apps/trac/orcc/.

10. Gu, R., Janneck, J., Raulet, M., & Bhattacharyya, S. S.
(2009). Exploiting statically schedulable regions in dataflow
programs. In Proceedings of the international conference on
acoustics, speech, and signal processing (pp. 565–568). Taipei,
Taiwan.

11. Karp, R. M., & Miller, R. E. (1966). Properties of a model for
parallel computations: Determinacy, termination, queuing.
SIAM Journal of Applied Math, 14(6), 1390–1411.

12. Kahn, G. (1974). The semantics of a simple language for
parallel programming. In Proceedings of the IFIP congress.

13. Dennis, J. B. (1975). First version of a data f low proce-
dure language. Tech. Rep., Laboratory for Computer Science,
Massachusetts Institute of Technology.

14. Lee, E. A., & Parks, T. M. (1995). Dataflow process networks.
Proceedings of the IEEE, 83, 773–799.

15. Lublinerman, R., & Tripakis, S. (2008). Translating data flow
to synchronous block diagrams. In Proceedings of the IEEE
workshop on embedded systems for real-time multimedia.

16. Sriram, S., & Bhattacharyya, S. S. (2009). Embedded multi-
processors: Scheduling and synchronization (2nd ed.). Boca
Raton: CRC.

17. Bilsen, G., Engels, M., Lauwereins, R., & Peperstraete, J. A.
(1996). Cyclo-static dataflow. IEEE Transactions on Signal
Processing, 44(2), 397–408.

18. Buck, J. T., & Lee, E. A. (1993). The token flow model.
In L. Bic, G. Gao, & J. Gaudiot (Eds.), Advanced topics in
dataf low computing and multithreading. Los Alamitos: IEEE
Computer Society.

19. Plishker, W., Sane, N., Kiemb, M., Anand, K., &
Bhattacharyya, S. S. (2008). Functional DIF for rapid
prototyping. In Proceedings of the international symposium
on rapid system prototyping (pp. 17–23). Monterey,
California.

20. Hsu, C., & Bhattacharyya, S. S. (2005). Porting DSP appli-
cations across design tools using the dataflow interchange
format. In Proceedings of the international workshop on rapid
system prototyping (pp. 40–46). Montreal, Canada.

21. Gu, R., Janneck, J. W., Bhattacharyya, S. S., Raulet, M.,
Wipliez, M., & Plishker, W. (2009). Exploring the concur-
rency of an MPEG RVC decoder based on dataflow pro-
gram analysis. IEEE Transactions on Circuits and Systems for
Video Technology, 19, 1646–1657.

22. Haubelt, C., Falk, J., Keinert, J., Schlichter, T., Streubühr, M.,
Deyhle, A., et al. (2007). A SystemC-based design methodol-
ogy for digital signal processing systems. EURASIP Journal
on Embedded Systems, 2007, Article ID 47580 (22 pp.).

23. Sung, W., Oh, M., Im, C., & Ha, S. (1997). Demonstration of
hardware software codesign workflow in PeaCE. In Proceed-
ings of the international conference on VLSI and CAD.

24. Bhattacharyya, S. S., Eker, J., Janneck, J. W., Lucarz, C.,
Mattavelli, M., & Raulet, M. (2009). Overview of the MPEG
reconfigurable video coding framework. Journal of Signal
Processing Systems. doi:10.1007/s11265-009-0399-3.

25. Lucarz, C., Mattavelli, M., Thomas-Kerr, J., & Janneck, J.
(2007). Reconfigurable media coding: A new specification
model for multimedia coders. In Proceedings of the IEEE
workshop on signal processing systems.

26. Bhattacharyya, S. S., Brebner, G., Eker, J., Janneck, J. W.,
Mattavelli, M., von Platen, C., et al. (2008). OpenDF—
a dataflow toolset for reconfigurable hardware and multi-
core systems. ACM SIGARCH Computer Architecture News,
36(5). http://hal.archives-ouvertes.fr/hal-00398827/en/.

27. Platen, C. V., & Eker, J. (2008). Efficient realization of a CAL
video decoder on a mobile terminal. In Proceedings of the
IEEE workshop on signal processing systems.

28. Boutellier, J., Sadhanala, V., Lucarz, C., Brisk, P., &
Mattavelli, M. (2008). Scheduling of dataflow models within
the reconfigurable video coding framework. In Proceedings
of the IEEE workshop on signal processing systems.

29. Li, M., Wang, H., & Li, P. (2003). Tasks mapping in multi-
core based system: Hybrid ACO&GA approach. In Proceed-
ings of the international conference on ASIC.

30. Ennals, R., Sharp, R., & Mycroft, A. (2005). Task partition-
ing for multi-core network processors. In Proceedings of the
international conference on compiler construction.

31. Cormen, T. H., Stein, C., Leiserson, C. E., & Rivest, R.
L. (2001). Introduction to algorithms (2nd ed.). Cambridge:
MIT.

32. Bhattacharyya, S. S., Murthy, P. K., & Lee, E. A. (1997).
APGAN and RPMC: Complementary heuristics for translat-
ing DSP block diagrams into efficient software implementa-
tions. Journal of Design Automation for Embedded Systems,
2(1), 33–60.

33. Plishker, W., Sane, N., & Bhattacharyya, S. S. (2009). A gen-
eralized scheduling approach for dynamic dataflow applica-
tions. In Proceedings of the design, automation and test in
Europe conference and exhibition (pp. 111–116). Nice,
France.

34. Ko, M., Zissulescu, C., Puthenpurayil, S., Bhattacharyya,
S. S., Kienhuis, B., & Deprettere, E. (2007). Parameter-
ized looped schedules for compact representation of execu-
tion sequences in DSP hardware and software implementa-
tion. IEEE Transactions on Signal Processing, 55(6), 3126–
3138.

Ruirui Gu is currently a Ph.D. student in the Department of
Electrical and Computer Engineering University of Maryland
at College Park. Her research interests include signal process-
ing systems, embedded software, hardware/software co-design,
parallel computing systems, architectures and software. She has
worked in a variety of applications, including audio and video
coding and processing, advanced control systems, reconfigurable
computing and wireless communications. She received the B.S.
degree and M.S. degree from Shanghai Jiao Tong University.

http://dx.doi.org/10.1007/s11265-009-0390-z
http://sourceforge.net/apps/trac/orcc/
http://sourceforge.net/apps/trac/orcc/
http://dx.doi.org/10.1007/s11265-009-0399-3
http://hal.archives-ouvertes.fr/hal-00398827/en/

J Sign Process Syst

Jörn W. Janneck graduated from the University of Bremen
in 1995, worked for the Fraunhofer Institute for Material Flow
and Logistics in 1996, and then pursued graduate studies at the
ETH Zurich, where he received his Dr. sc. techn. in 2000. From
2000 to 2003 he worked as a visiting scholar at the University of
California at Berkeley as a member of the Ptolemy group. In 2003
he joined the Xilinx Research Labs, where he focuses on high
level programming methodologies for FPGAs, and in particular
on dataflow. His research interests include concurrency, pro-
gramming languages, compilers, and the engineering of parallel
computing systems. He has worked in a variety of application
areas, including material flow modeling and simulation, image
and video coding and processing, wireless communications, dis-
tributed algorithms and simulation, and discrete-event modeling
of complex electro-mechanical systems.

Mickaël Raulet received his postgraduate certificate in signal,
telecommunications, images, and radar sciences from Rennes
University in 2002, and his Engineering degree in electronic and
computer engineering from National Institute of Applied Sci-
ences (INSA), Rennes Scientific and Technical University. Next
in 2006, he received a Ph.D. degree from INSA in electronic and
signal processing in collaboration with the software radio team
of Mitsubishi Electric ITE (Rennes - France). He is currently in
the Institute of Electronics and Telecommunications of Rennes
(IETR) where he is a research engineer in rapid prototyping of
standard video compression on embedded architectures (multi
DSP architecture). Since 2007, he is involved in the ISO/IEC
JTC1/SC29/WG11 standardization activities (better known as
MPEG) such as a Reconfigurable Video Coding Expert.

Shuvra S. Bhattacharyya is a Professor in the Department of
Electrical and Computer Engineering University of Maryland at
College Park. He holds a joint appointment in the University of
Maryland Institute for Advanced Computer Studies (UMIACS),
and an affiliate appointment in the Department of Computer
Science. Dr. Bhattacharyya is coauthor or coeditor of five books
and the author or coauthor of more than 150 refereed tech-
nical articles. His research interests include signal processing
systems, architectures, and software; biomedical circuits and sys-
tems; embedded software; and hardware/software co-design. He
received the B.S. degree from the University of Wisconsin at
Madison, and the Ph.D. degree from the University of California
at Berkeley. Dr. Bhattacharyya has held industrial positions as
a Researcher at the Hitachi America Semiconductor Research
Laboratory (San Jose, California), and Compiler Developer at
Kuck & Associates (Champaign, Illinois).

	Exploiting Statically Schedulable Regions in Dataflow Programs
	Abstract
	Introduction
	Related Work
	Dataflow
	DIF
	CAL and Scheduling of CAL Systems

	Analysis Framework
	Derivation of Statically Schedulable Regions
	Scheduling of SSRs
	IDCT Example
	Simulation Results

	Grouping of Dynamic Ports and SSRs
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

