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Abstract

In a previous paper we showed that the phase space of loop quantum gravity on a fixed
graph can be parametrized in terms of twisted geometries, quantities describing the intrinsic
and extrinsic discrete geometry of a cellular decomposition dual to the graph. Here we
unravel the origin of the phase space from a geometric interpretation of twistors.

1 Introduction

The phase space of loop gravity on a fixed graph is given by holonomies of the gravitational
connection and fluxes of the triad field. In [1], we introduced a parametrization of this phase
space in terms of quantities describing the intrinsic and extrinsic discrete geometry of a cellular
decomposition dual to the graph. The description provides a natural extension of Regge geome-
tries allowing for discontinuous metrics [1] (See also [2, 3]). The name twisted was meant to
stress this discontinuous nature, but also to imply the existence of a relation to twistors. In fact,
as we show explicitly in this brief note, the parametrization can be derived from a geometric
interpretation of twistors.

2 Twisted geometries from phase space reduction

Our starting point is the twistor space

T ≡ C2 ×C2, (1)

with coordinates (zA, z̃A), A = 0, 1. We equip T with the standard Poisson algebra,

{zA, z̄B} = −iδAB , {z̃A, ¯̃zB} = −iδAB . (2)

In each C2 space we introduce the 2-dimensional spinors |z〉 ≡ (z0, z1) and |z] = (−z̄1, z̄0). Both
spinors can be used to construct a 4-dimensional future-pointing null vector Xµ = (X0,Xi).
Choosing the first one, we have

|z〉〈z| = X0
1+Xiσi, (3)
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where σi are the Pauli matrices. In components,

X0 =
1

2
(|z0|

2 + |z1|
2) ≡

1

2
〈z|z〉, X+ = z̄0z1, X− = z0z̄1, X3 =

1

2
(|z0|

2 − |z1|
2), (4)

with Xi ≡ Tr(Xσi), and1 σ± = σ1 ± iσ2. Notice that (4) is nothing but the classical version of
the well-known Schwinger representation of the angular momentum in terms of two harmonic
oscillators. We can then parametrize C2

∗ = C

2\{〈z|z〉 = 0} in terms of the null vector Xµ and
a phase, ϕ ≡ arg(z0) + arg(z1) (which is well defined provided 〈z|z〉 6= 0),

C

2
∗ = {(Xi, ϕ)}. (5)

The induced algebra reads
{Xi,Xj} = ǫijkX

k, (6a)

{X0, ϕ} = 1, {X3, ϕ} = 0, {X±, ϕ} =
X0

X∓
. (6b)

Similarly, we denote X̃µ the null vector built from z̃A as |z̃〉〈z̃| = X̃0
1 + X̃iσi, and ϕ̃ the left

over phase. This leads to parametrize T∗ = C
2
∗ ×C

2
∗ as

T∗ = {(Xi, X̃i, ϕ, ϕ̃)}, (7)

where both (Xi, ϕ) and (X̃i, ϕ̃) satisfy the same algebra (6), while they commute with each
other.

Consider now the constraint
H ≡ X0 − X̃0 = 0, (8)

imposing the two spatial vectors to have the same norm. This constraint generates the following
U(1) action on T,

{H, zA} =
i

2
zA, {H, z̃A} = −

i

2
z̃A, (|z〉, |z̃〉) 7→ (ei

θ

2 |z〉, e−i θ
2 |z̃〉), (9)

which leaves Xi and X̃i invariant, while it translates the angles,

ϕ → ϕ+ θ, ϕ̃ → ϕ̃− θ. (10)

We claim that the symplectic reduction of the eight-dimensional twistor space T∗ by the con-
straint (8) gives the six-dimensional phase space of twisted geometries

P∗ ≡ S2
j ×S2

j ×T ∗S1 = {(N, Ñ , j, ξ)}\{j = 0}, (11)

where N and Ñ are unit vectors parametrizing the two spheres of radius j ∈ R\{0}, and ξ is
an angle.

Let us make this statement more precise. Recall [1] that (11) is a symplectic space locally
isomorphic to the cotangent bundle of SU(2),2

P∗/Z2
∼= T ∗SU(2)\{|X| = 0}, (12)

1Our conventions imply that σ3 = σ3, σ− = σ+/2, σ+ = σ−/2, so that the scalar product in these components
reads X3Y 3 +X+Y −/2 +X−Y +/2.

2We parametrize T ∗SU(2) ∼= su(2) × SU(2) with a pair (X, g). The isomorphism can be made global, i.e.
including the configurations j = 0 and |X| = 0, taking an appropriate closure of P∗, see [1] for details.
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where the quotient by Z2 corresponds to the identification

(N, Ñ, j, ξ) ↔ (−N,−Ñ ,−j,−ξ). (13)

We can now make the following
Proposition 1:

T∗//U(1) ∼= P∗. (14)

Proof. To prove it, it suffices to consider one of the two branches j ≷ 0 identified by (13).
We consider j > 0, but the proof is analogous for j < 0. Let us denote by j > 0 the common
norm of the vectors Xi and X̃j ,

j ≡
1

2
(X0 + X̃0), (15a)

and introduce the unit vectors

N i =
Xi

j
, Ñ i =

X̃i

j
. (15b)

In order to make contact between the original variables zA and (15b), we need to parametrize the
vectors on the sphere as N(z) in terms of the stereographic complex coordinate z. For instance
using the conventions of [1],

N i(z) =
1

(1 + |z|2)

(

(1− |z|2),−2z,−2z̄
)

, i = (3,−,+)

and the same for Ñ(z̃). Then taking (4), we see that (15b) is achieved through the Hopf maps
z ≡ −z̄1/z̄0, z̃ ≡ −¯̃z1/¯̃z0.

The variables j, N i and Ñ i span a 5-dimensional subspace commuting with the constraint
(8). Hence, it only remains to identify the sixth and last variable spanning the reduced phase
space. To do so, we evaluate

{i ln
zA
z̄A

,H} = 1, {i ln
z̃A
¯̃zA

,H} = −1, {i ln
zA
z̄A

, j} =
1

2
, {i ln

z̃A
¯̃zA

, j} =
1

2
.

From these brackets it follows that if we define

ξA ≡ i

(

ln
zA
z̄A

+ ln
z̃A
¯̃zA

)

, (15c)

we have
{ξA,H} = 0, {ξA, j} = 1. (16)

That is, both ξ0 and ξ1 commute with the constraint, and furthermore are conjugated to j. They
are thus equally valid choices for the reduced space, related by the canonical transformation
ξ1 = ξ0 + 2arg(z) + 2 arg(z̃).

We conclude that the reduced phase space is spanned by (N(z), Ñ (z̃), j, ξA). Concerning its
Poisson algebra, we have the right bracket of (16), as well as the brackets (6a) written in terms
of (15b). It is also immediate to see that j commutes with both N and Ñ . The only remaining
brackets to evaluate are

{ξA, jN
i} ≡ Li

A(N), (17)
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which give, in cylindrical components (i = 3,−,+),

Li
0

(

N(z)
)

= (1,−z,−z̄), Li
1

(

N(z)
)

= (1, 1/z̄, 1/z). (18)

Here L(N) ≡ L0(N(z)) is precisely the Lagrangian introduced in [1], and L1(N) = L(N(−1/z̄)) =
L(−N(z)). From now on, we take ξ ≡ ξ0 as the reduced variable. As explained in [1], the exis-
tence of canonical transformations which shift the ξ variable and the Lagrangian are related to
changes of section in the Hopf map.

Collecting the brackets (6a), (16) and (17), we find

{jN i, jN j} = ǫijk jN
k, {jÑ i, jÑ j} = ǫijk jÑ

k, {N i, Ñ j} = 0, (19a)

{ξ, j} = 1, {N i, j} = 0, {Ñ i, j} = 0, (19b)

{ξ, jN i} ≡ Li(N), {ξ, jÑ i} ≡ Li(Ñ), (19c)

which can be recognized as the algebra of twisted geometries, with both spheres positively
oriented.3 �

The proof shows how the algebra (19) descends in a simple way from the canonical Poisson
brackets on twistor space. We remark also that in the spirit of the Guillemin-Sternberg theorem
[4], the symplectic quotient P∗ can be written as a complex quotient without imposing the
constraints:

T∗//U(1) ∼= P∗
∼= T∗/C, (20)

where the C action is given by:

(|z〉, |z̃〉) 7→ (λ|z〉, λ−1|z̃〉).

It is indeed trivial to show that we can always reach the constraint surface by choosing
λ =

√

〈z̃|z̃〉/
√

〈z|z〉.
Let us go back to the symplectomorphism (12), and notice that together with (14), it implies

the symplectic reduction from twistor space to the cotangent bundle of SU(2). For completeness,
we now give explicitly this alternative reduction.

Proposition 2:

T∗//U(1) ∼= T ∗SU(2)\{|X| = 0}. (21)

Proof. Recall [1] that if we trivialize T ∗SU(2) ∼= su(2)×SU(2) as (X, g) with right-invariant
vector fields X, we have that

X̃ ≡ −g−1Xg (22)

is a left-invariant vector field and that the Poisson algebra on linear functions reads

{Xi,Xj} = ǫijkX
k, {X̃i, X̃j} = ǫijkX̃

k, {Xi, g} = −τ ig, {X̃i, g} = gτ i. (23)

3With respect to the opposite orientation taken in [1], this different choice affects the isomorphism with
T ∗SU(2) in a minor way, see (34b) below.
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The first two brackets hold automatically in the reduction of T∗, since X
i and X̃i commute with

H and satisfy (6a). It thus suffices to find g(zA, z̃A) in T∗ such that (i) it is an SU(2) group
element, (ii) it commutes with H, and (iii) it satisfies (22) and (23). It is not hard to see that

g(zA, z̃A) ≡
|z〉[z̃| − |z]〈z̃|
√

〈z|z〉〈z̃|z̃〉
, (24)

fulfills (i− iii). Indeed, thanks to 〈z̄|z] = 0, one can check that this map satisfies

g|z̃] = |z〉, g|z̃〉 = −|z], gg† = g†g = 1. (25)

The commutation with H is straightforward. A less trivial calculation shows also that the
matrix elements commute among themselves when H = 0 is satisfied. Finally, (22) follows from
g|z̃][z̃|g† = |z〉〈z|, and (23) from the brackets (2) and the parametrization (4). �

3 Null twistors

Thus far, we have connected the twisted geometries to pairs of spinors in C4. We now show that
our construction is effectively related to twistors, in particular to null twistors. To that end,
let us briefly review some basic facts about twistors, refering the reader to the literature [5] for
details. A twistor Zα ∈ C4 can be viewed as a pair of spinors Zα = (|ω〉, |π〉), where |π〉 defines
a null direction pπ = |π][π| in Minkowski space, while |ω〉 defines a point x in complexified
Minkowski space via |ω〉 = ix|π〉. On twistor space there is a natural hermitian pairing given by

Z̄αZ
α = 〈ω|π〉+ 〈π|ω〉,

and the quantity s = Z̄αZ
α/2 is called the helicity of the twistor. When a twistor is null, i.e.

s = 0, the matrix x is Hermitian and thus identifies a point in real Minkowski space. However,
x is defined only up to the addition of a null momentum pπ, since pπ|π〉 = 0. The resulting null
ray x+ λpπ can be explicitly reconstructed as

x(λ) =
|ω〉〈ω|

i〈ω|π〉
+ λ|π][π|, λ ∈ R. (26)

Hence, a null twistor defines a null generator pπ and a null ray in Minkowski space. We call
these data a “ruled” null ray, since the ray has a specific generator.

The relation between twistors and twisted geometries is established through the map

|ω〉 ≡ |z〉+ |z̃], |π〉 ≡ |z〉 − |z̃]. (27)

Under this map the twistor Hermitian pairing becomes

s =
1

2

(

〈ω|π〉+ 〈π|ω〉
)

= 〈z|z〉 − [z̃|z̃]. (28)

Then, the constraint H = 0 in (8) is equivalent to the statement that Zα(z, z̃) is a null twistor,
and the U(1) action (9) translates into a global rescaling of Zα:

Zα = (|ω〉, |π〉) → (ei
θ

2 |ω〉, ei
θ

2 |π〉) = ei
θ

2Zα. (29)
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Therefore P∗, which is the symplectic reduction of the space {(|z〉, |z̃〉)} by H = 0, can be
interpreted as a phase space of null twistors TN up to a global phase,

P∗ = TN/U(1). (30)

This is the connection between (null) twistors and twisted geometries. Notice that the U(1)
rescaling (29) leaves invariant the ruled null ray x+λpπ defined by Zα, thus (30) means that an
element of P∗ defines a ruled null ray. The reverse is also true: Given a null ray in Minkowski
space with a specific null generator, we can reconstruct uniquely a null twistor up to a global
phase, and hence an element of the phase space P∗.

This mathematical correspondence shows that we can think of an element of P∗, the edge
phase space of loop quantum gravity, as a ruled null ray in Minkowski space. Whether this is
just a mathematical correspondence, or it has a deeper geometrical origin, is still a mystery for
us, and a fascinating one.

4 Geometrical meaning of the constraints

To understand the geometrical meaning of the constraints He, consider a cellular decomposition
dual to the graph. A twisted geometry assigns to each face (dual to the edge e) its oriented
area je, the two unit normals Ne and Ñe as seen from the two vertex frames sharing it, and
an additional angle ξe related to the extrinsic curvature between the frames. Working with
C

4
e = {(zA, z̃A)}e = {(N, Ñ ,X0, X̃0, ϕ, ϕ̃)}e corresponds to relaxing the uniqueness of the area,

and assigning to each face two areas X0
e and X̃0

e (and their conjugate variables ϕe and ϕ̃e), one
for each polyhedral frame. The constraints He impose the matching of these areas (as well as
reducing ϕe and ϕ̃e to a single ξe).

This is the geometric meaning of the constraints He = 0. What we have shown is that the
phase space of loop quantum gravity on a fixed graph can be obtained starting from a geometric
intepretation of twistors and imposing an area matching condition equivalent to say that the
twistors are null.

5 Conclusions

Let us summarize. We unraveled a relation between the space P∗ of twisted geometries, isomor-
phic to T ∗SU(2), and null twistors in C4. Since the phase space of loop quantum gravity on a
fixed graph is just the Cartesian product ×e T

∗SU(2), our results imply that it can be derived
starting from the larger space ×eC

4, and then imposing the area matching constraint (8) at
each edge. The derivation can be done in both the usual holonomy-flux parametrization (ge,Xe)
(Proposition 2), or in the twisted geometries parametrization (Ne, Ñe, je, ξe) (Proposition 1).

An interesting aspect of the twistor description is that it admits a complete factorization
over the vertices, as opposed to the edges:

×
e

C

4 =×
v

C

2E(v), (31)

where E(v) is the valency of the vertex v. This result follows straighforwardly once we use the
orientation of the edges to uniquely assign |z〉 to say the source vertex, and |z̃〉 to the target
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one. The factorization over the vertices is an interesting spin-off of the twistor description, and
can lead to useful applications (e.g. [6]).

Twistors and twisted geometries form natural spaces that can be associated to a graph.
They admit simple geometric interpretations, and are related to loop gravity. Specifically, to the
kinematical (i.e. prior to imposing the Gauss law implementing gauge-invariance) phase space
of loop gravity on a fixed graph. For completeness, let us also recall [1] that gauge-invariance is
implemented reducing the space of twisted geometries by the closure conditions

Cv ≡
∑

e∈v

jeNe = 0 (32)

at each vertex. The resulting space of closed twisted geometries is isomorphic to the gauge-
invariant phase space of loop gravity, ×eT

∗SU(2)//SU(2)V . The variables parametrize it as

×e T
∗S1

e ×v S~v , where T ∗S1 is the cotangent bundle of a circle, and S~v is the space of shapes
of a polyhedron, introduced in [7] and studied in relation to loop gravity in [8, 9]. Closed twisted
geometries define a local flat metric on each polyhedron. However, this metric is discontinuous:
although each face has a unique area, it acquires a different shape when determined from the
variables associated to the two polyhedra sharing it, since there is nothing enforcing a consistent
matching of the faces. This discontinuity can be traced back to the fact that the normals carry
both intrinsic and extrinsic geometry.

Finally, for graphs dual to triangulations, the space of closed twisted geometries can be
related to the phase space of Regge calculus when one further imposes the gluing or shape
matching conditions [10]. For more discussions on the relation between loop gravity/twisted
geometries and discrete gravity, see discussions in [1, 2, 3].

The various phase spaces that can be associated to a graph, and their relations, are summa-
rized by the following scheme:

Twistor space

↓ area matching reduction

Twisted geometries ⇐⇒ loop gravity

↓ closure reduction

Closed twisted geometries ⇐⇒ gauge-invariant loop gravity

↓ shape matching reduction

Regge phase space ⇐⇒ Regge calculus

This scheme shows how twisted geometries fit into a larger hierarchy. From top to bottom,
we move from larger and simpler spaces, with less intuitive geometrical meaning, to smaller
and more constrained spaces, with clearer geometrical meaning. The results establish a path
between twistors and Regge geometries, via loop gravity.4 Furthermore, notice also that each
phase space but the twistor one is related to a well-known representation of general relativity

4For a different relation between twistors and (two-dimensional) Regge calculus, see [11].
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on a given graph, be it loop gravity or Regge calculus. This raises the intriguing question of
whether such a representation can be given directly in terms of twistors. The possibility of
defining a “twistor gravity” is a fascinating new direction opened by this new way of looking at
loop quantum gravity.

Appendix

In this Appendix we give a direct derivation of (24) that uses explicitly the symplectomorphism
(12). To that end, let us briefly review it, refering the reader to [1] for details. We first write
the unit vectors as N = nτ3n

−1, Ñ = ñτ3ñ
−1, where n ≡ n(z) ∈ SU(2) is the Hopf section

corresponding to the projection S3 7→ S2 : z ≡ −z̄1/z̄0,

n(z) ≡
1

√

1 + |z|2

(

1 z
−z̄ 1

)

. (33)

Then the (2-to-1) isomorphism is given by

(N, Ñ , j, ξ) → (X, g) : X = jN (34a)

g = neξτ3ǫñ−1 (34b)

where ǫ = iσ2 is the metric tensor in spinor space.5 The form of g guarantees that X̃ ≡ jÑ =
−g−1Xg.

The Hopf section defines two families of SU(2) coherent states in the fundamental represen-
tation, |n〉 = n(z)|−〉 and |n] = −n(z)|+〉, and allows us to bridge between these and spinors
through the map z = −z̄1/z̄0,

|z〉 =

(

z0
z1

)

= z0

(

1
−z̄

)

=
√

〈z|z〉ei arg(z0) n(z)|+〉, (35)

|z] =

(

−z̄1
z̄0

)

= z̄0

(

z
1

)

=
√

[z|z]e−i arg z0 n(z)|−〉. (36)

(37)

From these two expressions one immediately finds

g(zA, z̃A) = neξτ3ǫñ−1 = n
(

e−
i

2
ξ|+〉〈−| − e

i

2
ξ|−〉〈+|

)

ñ−1 =
|z〉[z̃| − |z]〈z̃|
√

〈z|z〉〈z̃|z̃〉
, (38)

where we used ξ ≡ ξ0 = −2(arg(z0) + arg(z̃0)), and ǫ = iσ2 = |+〉〈−| − |−〉〈+|.
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