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Kahane-Khinthine inequalities and funtionalentral limit theorem for random �eldsMohamed EL MACHKOURI,Laboratoire de Mathématiques Raphaël SalemUMR CNRS 6085, Université de Rouenmohamed.elmahkouri�univ-rouen.fr01 Juin 2002AbstratWe establish new Kahane-Khinthine inequalities in Orliz spaes indued byexponential Young funtions for stationary real random �elds whih are boundedor satisfy some �nite exponential moment ondition. Next, we give su�ientonditions for partial sum proesses indexed by lasses of sets satisfying somemetri entropy ondition to onverge in distribution to a set-indexed Brownianmotion. Moreover, the lass of random �elds that we study inludes φ-mixingand martingale di�erene random �elds.AMS Classi�ations (2000) : 60 F 05, 60 F 17, 60 G 60Key words and phrases : Kahane-Khinthine inequalities, funtional entral limittheorem, invariane priniple, martingale di�erene random �elds, mixing random�elds, Orliz spaes, metri entropy.1 IntrodutionLet (Xk)k∈Zd be a stationary �eld of zero mean real-valued random variables. If Ais a olletion of Borel subsets of [0, 1]d, de�ne the smoothed partial sum proess
{Sn(A) ; A ∈ A} by

Sn(A) =
∑

i∈{1,...,n}d

λ(nA ∩ Ri)Xi (1)



where Ri =]i1 − 1, i1] × ...×]id − 1, id] is the unit ube with upper orner at i and λ isthe Lebesgue measure on R
d.The main aim of this paper is to study the asymptoti behaviour of the sequene ofproesses {Sn(A) ; A ∈ A} in terms of the validity of the funtional entral limit theo-rem (FCLT) using new Kahane-Khinthine inequalities (f. setion 3). More preisely,we derive the following property: the sequene {n−d/2Sn(A) ; A ∈ A} onverges indistribution to a mixture of Brownian motions in the spae C(A) of ontinuous realfuntions on A equipped with the metri of uniform onvergene.To measure the size of the olletion A one usually onsiders the metri entropy withrespet to the Lebesgue measure. Dudley [9℄ proved the existene of a standard Brow-nian motion with sample paths in the spae C(A) if A has �nite entropy integral (i.e.Condition (5) in setion 4 holds).The �rst weak onvergene results for Qd-indexed partial sum proesses were estab-lished in the iid ase for the olletionQd of lower-left quadrants in [0, 1]d, that is to saythe olletion {[0, t1]× . . .× [0, td] ; (t1, . . . , td) ∈ [0, 1]d}. They were proved by Wihura[26℄ under a �nite variane ondition and earlier by Kuelbs [17℄ under additional mo-ment restritions. When the dimension d is redued to one, these results oinide withthe original invariane priniple of Donsker [7℄. In 1983, Pyke [22℄ derived a weakonvergene result for the proess {Sn(A) ; A ∈ A} in the iid ase provided that theolletion A satis�es an entropy ondition with inlusion (i.e. Condition (6) in setion4 holds). However, this FCLT required moment onditions whih beome more strit asthe size of A inreases. Bass [2℄ and simultaneously Alexander and Pyke [1℄ extendedPyke's result to iid random �elds with �nite variane.For uniform φ-mixing and β-mixing random �elds, Goldie and Greenwood [12℄ adaptedBass's approah whih is mainly based on Bernstein's inequality for iid random �elds.In 1991, Chen [3℄ proved a FCLT for Qd-indexed partial sum of non-uniform φ-mixingrandom �elds (the non-uniform φ-mixing oe�ients was introdued by Dobrushin andNahapetian [6℄). Reently, Dedeker [5℄ gave an L∞-projetive riterion for the partialsum proess {n−d/2Sn(A) ; A ∈ A} to onverge to an A-indexed Brownian motion whenthe olletion A satis�es only the entropy ondition (5) of Dudley. This new riterionis valid for martingale di�erene bounded random �elds and provides a new riterionfor non-uniform φ-mixing bounded random �elds. In the unbounded ase, Dedekergave an Lp-version (p > 1) of his L∞-projetive riterion for Qd-indexed partial sum ofrandom �elds with moments stritly greater than 2. Next, for non-uniform φ-mixingrandom �elds, using the haining method of Bass [2℄ and establishing Bernstein type2



inequalities, Dedeker proved the FCLT for the partial sum proess {Sn(A) ; A ∈ A}provided that the olletion A satis�es the more strit entropy ondition with inlu-sion (6) and under both �nite fourth moments and an algebrai deay of the mixingoe�ients.In a previous work (see [10℄), it is shown that the FCLTmay be not valid for p-integrable(0 ≤ p < +∞) martingale di�erene random �elds. More preisely, the following resultis proved.Theorem (El Mahkouri, Volný) Let (Ω,F , µ, T ) be an ergodi dynamial systemwith positive entropy where Ω is a Lebesgue spae, µ is a probability measure and T isa Z
d-ation. For any nonnegative real p, there exist a real funtion f ∈ Lp(Ω) and aolletion A of regular Borel subsets of [0, 1]d suh that1) For any k in Z

d, E (f ◦ T k|σ(f ◦ T i ; i 6= k)
)

= 0. We say that the random �eld
(f ◦ T k)k∈Zd is a strong martingale di�erene random �eld.2) The olletion A satis�es the entropy ondition with inlusion (6).3) The partial sum proess {n−d/2Sn(f, A) ; A ∈ A} is not tight in the spae C(A)where

Sn(f, A) :=
∑

i∈{1,...,n}d

λ(nA ∩Ri)f ◦ T i.The above theorem shows that not only Dedeker's FCLT for bounded random �elds(see [5℄) annot be extended to p-integrable (0 ≤ p < +∞) random �elds but also itlays emphasis on that Bass, Alexander and Pyke's result (see [1℄, [2℄) for iid random�elds annot hold for martingale di�erene random �elds.In the present work, under a projetive ondition similar to Dedeker's one, we estab-lish some so-alled Kahane-Khinthine inequalities for stationary real random �elds inOrliz spaes indued by exponential Young funtions (f. setion 3). We require therandom �eld to be bounded or to satisfy some �nite exponential moment ondition (f.Assumption (2) in setion 3). These inequalities extend previous ones for sequenes ofiid bounded random variables (see for example [14℄, [15℄, [20℄). With the help of theabove inequalities, we are in position to prove the tightness of the sequene of proesses
{n−d/2Sn(A) ; A ∈ A} in the spae C(A) when the olletion A satis�es an entropyondition related to the moments of the random �eld (i.e. Condition (8) in setion 4holds). The onvergene of the �nite-dimensional laws is a simple onsequene of a3



entral limit theorem (CLT) for stationary real random �elds with �nite variane (see[4℄, Theorem 2.2).Before presenting our results in more details, let us explain the main di�erene ofour approah in tightness's proof of the sequene of proesses {n−d/2Sn(A) ; A ∈ A}with Dedeker's one. In fat, Dedeker's proof is based on an exponential inequal-ity of Hoe�ding type derived from a Marinkiewiz-Zygmund type inequality for p-integrable real random �elds (f. Inequality (11) in setion 5) by optimizing in p. Thatis the reason why the boundedness ondition is neessary. Our approah ombines thisMarinkiewiz-Zygmund type inequality with a property of the norm in Orliz spaesindued by exponential Young funtions (f. Lemma 1) whih allows us to derive theannouned Kahane-Khinthine inequalities under only the assumption of some �niteexponential moment.2 NotationsBy a stationary real random �eld we mean any family (Xk)k∈Zd of real-valued randomvariables de�ned on a probability spae (Ω,F ,P) suh that for any (k, n) ∈ Z
d × N

∗and any (i1, ..., in) ∈ Z
nd, the random vetors (Xi1 , ..., Xin) and (Xi1+k, ..., Xin+k) havethe same law.Let µ be the law of the stationary real random �eld (Xk)k∈Zd and onsider the projetion

f from R
Zd to R de�ned by f(ω) = ω0 and the family of translation operators (T k)k∈Zdfrom R

Z
d to R

Z
d de�ned by (T k(ω))i = ωi+k for any k ∈ Z

d and any ω in R
Z

d . Denoteby B the Borel σ-algebra of R. The random �eld (f ◦T k)k∈Zd de�ned on the probabilityspae (RZ
d

,BZ
d

, µ) is stationary with the same law as (Xk)k∈Zd. Consequently, withoutloss of generality, one an suppose that
(Ω,F ,P) = (RZd

,BZd

, µ) and Xk = f ◦ T k, k ∈ Z
d.An element A of F is said to be invariant if T k(A) = A for any k ∈ Z
d. We denote by

I the σ-algebra of all measurable invariant sets.On the lattie Z
d we de�ne the lexiographi order as follows: if i = (i1, ..., id) and

j = (j1, ..., jd) are distint elements of Z
d, the notation i <lex j means that either

i1 < j1 or for some p in {2, 3, ..., d}, ip < jp and iq = jq for 1 ≤ q < p. Let the sets
{V k

i ; i ∈ Z
d , k ∈ N

∗} be de�ned as follows:
V 1
i = {j ∈ Z

d ; j <lex i},4



and for k ≥ 2

V k
i = V 1

i ∩ {j ∈ Z
d ; |i− j| ≥ k} where |i− j| = max

1≤k≤d
|ik − jk|.For any subset Γ of Z

d, de�ne FΓ = σ(Xi ; i ∈ Γ). If Xi belongs to L1(P), set
Ek(Xi) = E(Xi|FV k

i
).

Mixing coefficients for random fields. Given two σ-algebras U and V of F , dif-ferent measures of their dependene have been onsidered in the literature. We areinterested by one of them. The φ-mixing oe�ient has been introdued by Ibragimov[13℄ and an be de�ned by
φ(U ,V) = sup{‖P(V |U) − P(V )‖∞ , V ∈ V}.Now, let (Xk)k∈Zd be a real random �eld and denote by |Γ| the ardinality of any subset

Γ of Z
d. In the sequel, we shall use the following non-uniform φ-mixing oe�ientsde�ned for any (k, l, n) in (N∗ ∪ {∞})2 × N by

φk,l(n) = sup {φ(FΓ1,FΓ2), |Γ1| ≤ k, |Γ2| ≤ l, d(Γ1,Γ2) ≥ n},where the distane d is de�ned by d(Γ1,Γ2) = min{|i − j|, i ∈ Γ1, j ∈ Γ2}. We saythat the random �eld (Xk)k∈Zd is φ-mixing if there exists a pair (k, l) in (N∗ ∪ {∞})2suh that limn→+∞ φk,l(n) = 0.For more about mixing oe�ients one an refer to Doukhan [8℄ or Rio [23℄.
Y oung functions and Orlicz spaces. Reall that a Young funtion ψ is a real on-vex nondereasing funtion de�ned on R

+ whih satis�es
lim
t→+∞

ψ(t) = +∞ and ψ(0) = 0.We de�ne the Orliz spae Lψ as the spae of real random variables Z de�ned onthe probability spae (Ω,F ,P) suh that E[ψ(|Z|/c)] < +∞ for some c > 0. TheOrliz spae Lψ equipped with the so-alled Luxemburg norm ‖.‖ψ de�ned for any realrandom variable Z by
‖Z‖ψ = inf{ c > 0 ; E[ψ(|Z|/c)] ≤ 1 }is a Banah spae. For more about Young funtions and Orliz spaes one an refer toKrasnosel'skii and Rutikii [16℄. 5



3 Kahane-Khinthine inequalitiesA real random �eld (Xk)k∈Zd is said to be a martingale di�erene random �eld if itsatis�es the following ondition: for any m in Z
d

E(Xm | σ(Xk ; k <lex m ) ) = 0 a.s.Let β > 0. We denote by ψβ the Young funtion de�ned for any x ∈ R
+ by

ψβ(x) = exp((x+ hβ)
β) − exp(hββ) where hβ = ((1 − β)/β)1/β 11{0<β<1}.We are interested in Kahane-Khinthine inequalities for a large lass of random �elds.In fat, we shall give a projetive ondition (that is to say a ondition expressed in termsof a series of onditional expetations) omparable to that introdued by Dedeker toprove a entral limit theorem for stationary square-integrable random �elds (see [4℄)and a funtional entral limit theorem for stationary bounded random �elds (see [5℄).Consider the following assumption :

∃q ∈]0, 2[ ∃θ > 0 E[exp(θ|X0|β(q))] < +∞ (2)where β(q) = 2q/(2 − q) for any 0 < q < 2. Our �rst result is the following.Theorem 1 Let (Xi)i∈Zd be a zero mean stationary real random �eld whih satis�esthe assumption (2) for some 0 < q < 2. There exists a positive universal onstant
M1(q) depending only on q suh that for any family (ai)i∈Zd of real numbers and any�nite subset Γ of Z

d,
∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤M1(q)

(
∑

i∈Γ

|ai| bi,q(X)

)1/2 (3)where
bi,q(X) := |ai| ‖X0‖2

ψβ(q)
+
∑

k∈V 1
0

|ak+i|
∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

ψβ(q)

.If (Xi)i∈Zd is bounded then for any 0 < q ≤ 2, there exists a universal positive onstant
M2(q) depending only on q suh that for any family (ai)i∈Zd of real numbers and any�nite subset Γ of Z

d,
∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤M2(q)

(
∑

i∈Γ

|ai| bi,∞(X)

)1/2 (4)6



where
bi,∞(X) := |ai| ‖X0‖2

∞ +
∑

k∈V 1
0

|ak+i| ‖XkE|k|(X0)‖∞.Remark 1 If (Xi)i∈Zd is a martingale di�erene random �eld then
bi,q(X) = |ai| ‖X0‖2

ψβ(q)
and bi,∞(X) = |ai| ‖X0‖2

∞.Thus, the inequalities (3) and (4) extend previous ones established for sequenes ofbounded i.i.d. random variables (see [14℄, [15℄, [20℄).Using Ser�ing's inequality (see [19℄ or [24℄), we dedue from Theorem 1 the followingresult for stationary φ-mixing real random �elds.Corollary 1 Let (Xi)i∈Zd be a zero mean stationary real random �eld whih satis�esthe assumption (2) for some 0 < q < 2. For any family (ai)i∈Zd of real numbers andany �nite subset Γ of Z
d,

∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤M1(q) ‖X0‖ψβ(q)

(
∑

i∈Γ

|ai| b̃i,q(X)

)1/2where
b̃i,q(X) := |ai| + C(q)

∑

k∈V 1
0

|ak+i|
√
φ∞,1(|k|),

M1(q) is the positive onstant introdued in Theorem 1 and C(q) is a positive universalonstant depending only on q.If (Xi)i∈Zd is bounded then for any 0 < q ≤ 2, any family (ai)i∈Zd of real numbers andany �nite subset Γ of Z
d,

∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤M2(q) ‖X0‖∞
(
∑

i∈Γ

|ai| b̃i,∞(X)

)1/2where
b̃i,∞(X) := |ai| + 2

∑

k∈V 1
0

|ak+i|φ∞,1(|k|),One an notie that in the unbounded ase we were able to give Kahane-Khinthineinequalities only in Orliz spaes Lψq
when 0 < q < 2 but for bounded random �eld weestablished these inequalities even in the spae Lψ2 . That is the reason why we annotgive a proof of the FCLT for random �elds with �nite exponential moments (Theorem

2) under Dudley's entropy ondition (5) unlike as in the ase of bounded random �elds(see [5℄). 7



4 Funtional entral limit theoremLet A be a olletion of Borel subsets of [0, 1]d. We fous on the sequene of proesses
{Sn(A) ; A ∈ A} de�ned by (1). As a funtion of A, this proess is ontinuous withrespet to the pseudo-metri ρ(A,B) =

√
λ(A∆B).To measure the size of A one onsiders the metri entropy: denote by H(A, ρ, ǫ) thelogarithm of the smallest number of open balls of radius ǫ with respet to ρ whihform a overing of A. The funtion H(A, ρ, .) is the entropy of the lass A. A morestrit tool is the metri entropy with inlusion: assume that A is totally bounded withinlusion i.e. for eah positive ǫ there exists a �nite olletion A(ǫ) of Borel subsets of

[0, 1]d suh that for any A ∈ A, there exist A− and A+ in A(ǫ) with A− ⊆ A ⊆ A+ and
ρ(A−, A+) ≤ ǫ. Denote by H(A, ρ, ǫ) the logarithm of the ardinality of the smallestolletion A(ǫ). The funtion H(A, ρ, .) is the entropy with inlusion (or braketingentropy) of the lass A. Let C(A) be the spae of ontinuous real funtions on A,equipped with the norm ‖.‖A de�ned by

‖f‖A = sup
A∈A

|f(A)|.A standard Brownian motion indexed by A is a mean zero Gaussian proess W withsample paths in C(A) and Cov(W(A),W(B))= λ(A ∩ B). From Dudley [9℄ we knowthat suh a proess exists if
∫ 1

0

√
H(A, ρ, ǫ) dǫ < +∞. (5)Sine H(A, ρ, .) ≤ H(A, ρ, .), the standard Brownian motion W is well de�ned if

∫ 1

0

√
H(A, ρ, ǫ) dǫ < +∞. (6)We say that the sequene {n−d/2Sn(A) ; A ∈ A} satis�es the funtional entral limittheorem (FCLT) if it onverges in distribution to a mixture of A-indexed Brownianmotions in the spae C(A) (whih means that the limiting proess is of the form ηW ,where W is a standard Brownian motion indexed by A and η is a nonnegative randomvariable independent of W ).In the sequel, we shall give a projetive riterion whih implies the tightness of thesequene {n−d/2Sn(A) ; A ∈ A} in C(A) under the assumption (2) of �nite exponentialmoments and provided that the lass A satis�es an entropy ondition related to the8



moments of the random �eld (i.e. Condition (8) holds). The ase of bounded station-ary real random �elds was studied by Dedeker in [5℄ where he proved that the FCLTholds under the L∞-projetive riterion
∑

k∈V 1
0

‖XkE|k|(X0)‖∞ < +∞and for any olletion A satisfying only Dudley's entropy ondition (5). For any Borelset A in [0, 1]d, let ∂A be the boundary of A. We say that A is regular if λ(∂A) = 0.Theorem 2 Let (Xi)i∈Zd be a zero mean stationary real random �eld whih satis�esthe assumption (2) for some 0 < q < 2 and assume that
∑

k∈V 1
0

∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

ψβ(q)

< +∞. (7)Let A be a olletion of regular Borel subsets of [0, 1]d satisfying the following entropyondition ∫ 1

0

(H(A, ρ, ǫ))1/q dǫ < +∞. (8)Then1) For the σ-algebra I of invariant sets de�ned in setion 2, we have
∑

k∈Zd

∥∥∥
√
|E(X0Xk|I)|

∥∥∥
2

ψβ(q)

< +∞. (9)Denote by η the nonnegative and I-measurable random variable
η =

∑

k∈Zd

E(X0Xk|I).2) The sequene of proesses {n−d/2Sn(A) ; A ∈ A} onverges in distribution in
C(A) to √

ηW where W is a standard Brownian motion indexed by A and inde-pendent of I.In Theorem 2, one an see that we ontrol the size of the lass A via the lassial metrientropy (without inlusion). In fat, all the earlier results we know (in partiular [1℄,[2℄, [5℄) about the FCLT for unbounded proesses indexed by large lasses of sets dealwith the more strit braketing entropy.Using Ser�ing's inequality (see [19℄ or [24℄), we derive from Theorem 2 the followingresult for stationary φ-mixing real random �elds.9



Corollary 2 Theorem 2 still holds if we replae the ondition (7) by
∑

k∈Zd

√
φ∞,1(|k|) < +∞. (10)5 ProofsWe need the following lemma whih an be obtained using the expansion of the expo-nential funtion (see [25℄).Lemma 1 Let β be a positive real number and Z be a real random variable. Thereexist positive universal onstants Aβ and Bβ depending only on β suh that

Aβ sup
p>2

‖Z‖p
p1/β

≤ ‖Z‖ψβ
≤ Bβ sup

p>2

‖Z‖p
p1/β

.Reall that in [5℄, Dedeker established the following Marinkiewiz-Zygmund type in-equality for nonstationary real random �elds.Proposition (Dedeker, 2001) Let (Xi)i∈Zd be a zero mean real random �eld and
Γ be a �nite subset of Z

d. For any p > 2,
∥∥∥∥∥
∑

i∈Γ

Xi

∥∥∥∥∥
p

≤
(

2 p
∑

i∈Γ

ci(X)

)1/2 (11)where
ci(X) := ‖X2

i ‖ p

2
+
∑

k∈V 1
i

‖XkE|k−i|(Xi)‖ p

2
.Now, reall that β(q) = 2q/(2−q) for any 0 < q < 2 and de�ne 1/β(2) = 0. CombiningLemma 1 and Inequality (11), we derive the following estimation.Lemma 2 Let (Xi)i∈Zd be a zero mean real random �eld. For any 0 < q ≤ 2 thereexists a positive universal onstant Bq depending only on q suh that for any family

(ai)i∈Zd of real numbers and any �nite subset Γ of Z
d,

∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤
√

2Bq sup
p>2

1

p1/β(q)

(
∑

i∈Γ

ci(aX)

)1/2 (12)where
ci(aX) := a2

i ‖Xi‖2
p + |ai|

∑

k∈V 1
i

|ak| ‖XkE|k−i|(Xi)‖ p

2
.10



5.1 Proof of Theorem 1Assume that (Xi)i∈Zd is a zero mean stationary real random �eld satisfying the on-dition (2) for some 0 < q < 2 and (ai)i∈Zd is a family of real numbers. Let i in Γ be�xed. We have
ci(aX) := a2

i ‖Xi‖2
p + |ai|

∑

k∈V 1
i

|ak| ‖XkE|k−i|(Xi)‖ p

2

= a2
i ‖Xi‖2

p + |ai|
∑

k∈V 1
i

|ak|
∥∥∥
√
|XkE|k−i|(Xi)|

∥∥∥
2

p

= a2
i ‖X0‖2

p + |ai|
∑

k∈V 1
0

|ak+i|
∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

p
.Moreover, by Lemma 1, there exists a positive universal onstant Aβ(q) depending onlyon q suh that

sup
p>2

‖X0‖p
p1/β(q)

≤ A−1
β(q) ‖X0‖ψβ(q)

(13)and for any k in V 1
0 ,

sup
p>2

1

p1/β(q)

∥∥∥
√

|XkE|k|(X0)|
∥∥∥
p
≤ A−1

β(q)

∥∥∥
√

|XkE|k|(X0)|
∥∥∥
ψβ(q)

. (14)Combining (12), (13) and (14), we derive the following estimation
∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤M1(q)

(
∑

i∈Γ

|ai| bi,q(X)

)1/2where
bi,q(X) := |ai| ‖X0‖2

ψβ(q)
+
∑

k∈V 1
0

|ak+i|
∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

ψβ(q)and M1(q) denotes the onstant √2BqA
−1
β(q). The �rst part of Theorem 1 is proved.Now, assume that the random �eld (Xi)i∈Zd is bounded, let 0 < q ≤ 2 be �xed andreall that 1/β(2) = 0. For any i in Γ,

ci(aX) ≤ a2
i ‖X0‖2

∞ + |ai|
∑

k∈V 1
0

|ak+i| ‖XkE|k|(X0)‖∞.So, using Inequality (12), we infer that
∥∥∥∥∥
∑

i∈Γ

aiXi

∥∥∥∥∥
ψq

≤M2(q)

(
∑

i∈Γ

|ai| bi,∞(X)

)1/211



where
bi,∞(X) := |ai| ‖X0‖2

∞ +
∑

k∈V 1
0

|ak+i| ‖XkE|k|(X0)‖∞and M2(q) denotes the onstant √
2Bq2

−1/β(q). The proof of Theorem 1 is omplete.
�5.2 Proof of Corollary 1Let i in Γ be �xed. Consider

b̃i,q(X) := |ai| + C(q)
∑

k∈V 1
0

|ak+i|
√
φ∞,1(|k|)and

b̃i,∞(X) := |ai| + 2
∑

k∈V 1
0

|ak+i|φ∞,1(|k|)where C(q) is a positive universal onstant depending only on q that we will de�nelater. It is su�ient to prove that
bi,q(X) ≤ ‖X0‖2

ψβ(q)
b̃i,q(X) (15)and

bi,∞(X) ≤ ‖X0‖2
∞ b̃i,∞(X). (16)Let k in V 1

0 be �xed. By Lemma 1, there exists a positive universal onstant Bβ(q)depending only on q suh that
∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

ψβ(q)

≤ B2
β(q) sup

p>2

1

p2/β(q)

∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

p

= B2
β(q) sup

p>2

1

p2/β(q)
‖XkE|k|(X0)‖ p

2

≤ B2
β(q) sup

p>2

1

p2/β(q)
‖X0‖p ‖E|k|(X0)‖p.Using Ser�ing's inequality (see [19℄ or [24℄), we derive for any p > 2,

‖E|k|(X0)‖p ≤ 2 ‖X0‖p φ∞,1(|k|)
p−1

p

≤ 2 ‖X0‖p
√
φ∞,1(|k|).Consequently,

∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

ψβ(q)

≤ 2B2
β(q)

(
sup
p>2

1

p1/β(q)
‖X0‖p

)2√
φ∞,1(|k|).12



Using Inequality (13) and putting C(q) = 2B2
β(q)A

−2
β(q), we obtain

∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

ψβ(q)

≤ C(q) ‖X0‖2
ψβ(q)

√
φ∞,1(|k|). (17)Finally, Inequality (15) is a simple onsequene of (17). The �rst part of Corollary 1is proved.Now, assume that the random �eld (Xi)i∈Zd is bounded. Ser�ing's inequality (see [19℄or [24℄) implies

‖E|k|(X0)‖∞ ≤ 2 ‖X0‖∞ φ∞,1(|k|).Consequently, we obtain for any k in V 1
0 ,

‖XkE|k|(X0)‖∞ ≤ 2 ‖X0‖2
∞ φ∞,1(|k|)whih implies Inequality (16). The proof of Corollary 1 is omplete. �5.3 Proof of Theorem 2Let k in V 1

0 be �xed. Consider the tail σ-algebra F−∞ = ∩i∈N∗FV i
0
. Using the sameargument as in Georgii ([11℄, Proposition 14.9), we derive that the σ-algebra I ofinvariant sets is inluded in the P-ompletion of F−∞. So, for any nonnegative real p,we have

‖E(X0Xk|I)‖p ≤ ‖E(X0Xk|F−∞)‖p ≤ ‖XkE|k|(X0)‖p. (18)By Lemma 1, there exists a positive universal onstant Aβ(q) depending only on q suhthat ∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

ψβ(q)

≥ A2
β(q) sup

p>2

1

p2/β(q)

∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

p
(19)Sine ∥∥∥

√
|XkE|k|(X0)|

∥∥∥
2

p
= ‖XkE|k|(X0)‖ p

2
, (20)the inequality (19) implies

∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

ψβ(q)

≥ A2
β(q) sup

p>2

1

p2/β(q)
‖XkE|k|(X0)‖ p

2and the inequality (18) gives
∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

ψβ(q)

≥ A2
β(q) sup

p>2

1

p2/β(q)
‖E(X0Xk|I)‖ p

2

= A2
β(q) sup

p>2

1

p2/β(q)

∥∥∥
√

|E(X0Xk|I)|
∥∥∥

2

p

≥ A2
β(q)B

−2
β(q)

∥∥∥
√

|E(X0Xk|I)|
∥∥∥

2

ψβ(q)

(by Lemma 1)13



where Bβ(q) is the positive universal onstant in Lemma 1.So, using the stationarity of the random �eld and the assumption (7), we derive theassertion (9).Now, if ǫ is a positive real number, (19) and (20) imply that
∥∥∥
√
|XkE|k|(X0)|

∥∥∥
2

ψβ(q)

≥ (2 + ǫ)−2/β(q) A2
β(q) ‖XkE|k|(X0)‖1.Consequently, the ondition (7) is more strit than the projetive riterion

∑

k∈V 1
0

‖XkE|k|(X0)‖1 < +∞initially introdued by Dedeker [4℄ as a su�ient ondition for the entral limit theo-rem (CLT) for stationary real random �elds with �nite variane. Therefore, the randomvariable η is nonnegative (see [4℄, Proposition 3).As usual, we have to prove the onvergene of the �nite-dimensional laws and thetightness of the partial sum proess {n−d/2Sn(A) ; A ∈ A} in C(A). The onvergeneof the �nite-dimensional laws is a simple onsequene of both the CLT for random�elds ([4℄, Theorem 2.2) and the following lemma (see [5℄).For any subset Γ of Z
d we onsider
∂Γ =

{
i ∈ Γ ; ∃j /∈ Γ suh that |i− j| = 1

}
.For any Borel set A of [0, 1]d, we denote by Γn(A) the �nite subset of Z

d de�ned by
Γn(A) = nA ∩ Z

d.Lemma 3 (Dedeker, 2001) Let A be a regular Borel set of [0, 1]d with λ(A) > 0.We have
(i) lim

n→+∞

|Γn(A)|
nd

= λ(A) (ii) lim
n→+∞

|∂Γn(A)|
|Γn(A)| = 0.Let (Xi)i∈Zd be a stationary random �eld with mean zero and �nite variane.Assume that ∑k∈Zd |E(X0Xk)| < +∞. Then

lim
n→+∞

n−d/2
∣∣∣∣Sn(A) −

∑

k∈Γn(A)

Xk

∣∣∣∣
2

= 0.Remark 2 The series ∑k∈Zd |E(X0Xk)| onverges under the assumption (7). In fat,one an hek that
∑

k∈Zd

|E(X0Xk)| ≤ E(X2
0 ) + 2

∑

k∈V 1
0

‖XkE|k|(X0)‖1.14



Now, using the Kahane-Khinthine inequalities established in setion 3, we shall seethat the partial sum proess {n−d/2Sn(A) ; A ∈ A} is tight in the spae C(A). It issu�ient (see [21℄) to hek the following property:
lim
δ→0

lim sup
n→+∞

E

(
sup

ρ(A,B)<δ

∣∣n−d/2Sn(A) − n−d/2Sn(B)
∣∣
)

= 0. (21)Reall that the random �eld (Xk)k∈Zd satis�es the assumption (2) for some 0 < q < 2.Let A and B be two elements of the lass A and let n be a positive integer. For any kin the set {1, ..., n}d, we onsider the element ak = λ(nA∩Rk)−λ(nB∩Rk) of [−1, 1].The Kahane-Khinthine inequality (3) stated in Theorem 1 provides the following
‖Sn(A) − Sn(B)‖ψq

=

∥∥∥∥∥∥

∑

k∈{1,...,n}d

akXk

∥∥∥∥∥∥
ψq

≤ Kq(X)




∑

k∈{1,...,n}d

|ak|




1/2

≤ Kq(X)




∑

k∈{1,...,n}d

λ(n(A∆B) ∩ Rk)




1/2

= Kq(X)
√
λ(n(A∆B))

= Kq(X)nd/2 ρ(A,B)where
Kq(X) = M1(q)


‖X0‖2

ψβ(q)
+
∑

k∈V 1
0

∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

ψβ(q)




1/2

.That is to say, for any positive integer n and any elements A and B of A,
‖n−d/2Sn(A) − n−d/2Sn(B)‖ψq

≤ Kq(X) ρ(A,B). (22)The inequality (22) means that the partial sum proess {n−d/2Sn(A) ; A ∈ A} is lip-shitzian uniformly in n. Now, suppose that the metri entropy ondition (8) holds.Applying Theorem 11.6 in Ledoux and Talagrand [18℄, we infer that the sequene
{n−d/2Sn(A) ; A ∈ A} satis�es the following property: for eah positive ǫ there exists apositive real δ, depending only on ǫ and on the value of the entropy integral (8), suhthat

E

(
sup

ρ(A,B)<δ

|n−d/2Sn(A) − n−d/2Sn(B)|
)
< ǫ.15



The ondition (21) is then satis�ed and the proess {n−d/2Sn(A) ; A ∈ A} is tight in
C(A). The proof of Theorem 2 is omplete. �5.4 Proof of Corollary 2From Inequality (17) in the proof of Corollary 1, we have

∑

k∈V 1
0

∥∥∥
√

|XkE|k|(X0)|
∥∥∥

2

ψβ(q)

≤ C(q) ‖X0‖2
ψβ(q)

∑

k∈V 1
0

√
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