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Abstract

Let H be a real separable Hilbert space and (ag)rez a sequence of bounded linear
operators from H to H. We consider the linear process X defined for any k in Z by
Xy =3 jez aj(ex—j) where (g )kez is a sequence of i.i.d. centered H-valued random
variables. We investigate the rate of convergence in the CLT for X and in particular
we obtain the usual Berry-Esseen’s bound provided that . 7 |jlllajll ) < +o0

and g9 belongs to L% .

Short title: Berry-Esseen’s CLT for Hilbertian linear processes.
Key words: Central limit theorem, Berry-Esseen bound, linear process, Hilbert

space.

1 Introduction and notations

Let (H,||.||u) be a separable real Hilbert space and (L, ||.||z(m)) be the class of bounded
linear operators from H to H with its usual uniform norm. Consider a sequence (gx)iez
of i.i.d. centered random variables, defined on a probability space (£2,.4,P), with values
in H. If (ag)rez is a sequence in L, we define the (non-causal) linear process X = (Xj)rez
in H by

X = Zaj(&?k,j), ke Z. (1)

jez

If > czllajllcer < oo and Elleo|lm < +oo then the series in (1) converges almost surely
and in Ly (Q, A,P) (see Bosq [2]). The condition Y, [la;|| () < oo is know to be sharp



for the y/n-normalized partial sums of X to satisfies a CLT provided that (e)gez are
i.i.d. centered having finite second moments (see Merlevede et al. [6]). In this work, we

investigate the rate of convergence in the CLT for X under the condition

YLl llagll e < oo (2)

jez
with 7 = 1 when (e )kez are assumed to be i.i.d. centered and such that £y belongs to Lg
and 7 = 1/2 when (gy,)rez are i.i.d. centered and such that € belongs to some Orlicz space
Ly (see section 2). This problem was previously studied (with 7 = 1 in Condition (2))
by Bosq [3] for (causal) Hilbert linear processes but a mistake in his proof was pointed
out by V. Paulauskas [7]. However, in the particular case of Hilbertian autoregressive
processes of order 1, Bosq [4] obtained the usual Berry-Esseen inequality provided that

(ex)rez are ii.d. centered with ¢ in L3Y

2 Main result

In the sequel, C., is the autocovariance operator of £g, A := ZjeZ a; and A* is the adjoint
of A. For any sequence Z = (Zy)kez of random variables with values in H we denote

(Hfzz’f

An(Z) = sup
teR

<t> P(INa <)
where N ~ N (0, AC., A*).

For any j € Z, denote ¢;, = > ., b;_; where b; = a; for any i # 0 and by = ag — A.

Lemma 1 For any positive integer n,

k=1 k=1

where Q, =Y 1_, D ljisn Gh—j(€5) and Ry =370 o cin(E)).

Recall that a Young function 1 is a real convex nondecreasing function defined on R*
which satisfies lim;_, o ¥(t) = +oo and ¢(0) = 0. We define the Orlicz space Ly, as
the space of H-valued random variables Z defined on the probability space (2, F,P) such
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that E[Y(||Z]||n/c)] < +oo for some ¢ > 0. The Orlicz space Ly, equipped with the

so-called Luxemburg norm ||.||, defined for any H-valued random variable Z by
1Z]ly = inf{ e > 05 E[([|2]lu/c)] < 1}

is a Banach space. In the sequel, ¢(N) denotes a bound of the density of AV (0, AC.,A*)

(see Davydov et al. [5]). Our main result is the following.

Theorem 1 Let (¢;)kez be a sequence of i.i.d. centered H-valued random variables and
let X be the Hilbertian linear process defined by (1).

i) If eo belongs to Ly and 3 ey |illlajllccmy < oo then

An(X) < % (3)

where ¢1 = ¢y + 14c(N)|leolloo D ez il lajll ey and ey is a positive constant which

depend only on the distribution of €.

ii) If ¢ is a Young function then

800 < A (a(e)) + (ALl (4

where p(z) = zh™(1/x) and h(z) = x(x) for any real x > 0.
The inequality (4) ensures a rate of convergence to zero for A, (X) as n goes to infinity

provided that A, (A(eg)) goes to zero as n goes to infinity and a bound for ||Q,, + R,||

exists. As just an illustration, we have the following corollary.

Corollary 1 Assume that (eg)gez are i.i.d. centered H-valued random variables and that
the condition (2) holds with T = 1/2.

i) Ifeg belongs to Ly, then A, (X) = O (E’%") where 1y is the Young function defined
by Y1 (z) = exp(x) — 1.

ii) If g9 belongs to Ly for r >3 then A, (X) =0 (n_%"crl)).



3 Proofs

Proof of Lemma 1. For any positive integer n, we have

n n

Ry=> cinlen) =) biojle))

j=—n k=1 j=—n

= Z Z ak,j(&?j) -+ (ao — A) (Z 8k>

k=1 je[—n,n]\{k}

k=1 j=—m k=1
=—Qn+ ZXk - A <Z€k>
k=1 k=1

The proof of Lemma 1 is complete.

Proof of Theorem 1. Let A > 0 and ¢ > 0 be fixed and denote U = A (>_}_, ex/v/1)
and V = (Q,, + R,)/vn. SoU+V =37, Xi/+/n and

P(U+Vm <) <P([Ulln <t +A) + P([V[|ln > A) (5)
For A\g = 2[|V||~, We obtain
P(IU+Va <t) =P(|Nllz <t) <P(|Ullz < t+ Xo) —P(| Nz < 1)

If ¢(N) denotes a bound for the density of |||z (see Davydov et al. [5]) then

AnQX)ggAnpus»+2C“me¢ﬁ*fQHW.

Noting that

—n—1 n—j
Qu= > aj<z €k>+za]‘< 5k> (6)
>n+2 k=1—j §<0 k=n-+1
and

R,=R +R, (7)
where

j=—n j<—-n 7>0 k=n—j+1



and o ) )
n n n—j

R;;=zaj( > ) z(z)
j=1 k=—j+1 j=n+1 k=—n

we derive that [|Qn + Rulleo < 7ll€0lloo D ez 171lla;llcary and consequently

An(X) < An(A(e)) + 14C(N)||50||00§ﬁjez |j|||aj||£(H).

Combining the last inequality with the Berry-Esseen inequality for i.i.d. centered H-

valued random variables (see Yurinski [9] or Bosq [2]|, Theorem 2.9) we obtain (3).

In the other part, if ¢ is a Young function we have P(||V|y > \) < ——L— and

= (MIVIy)
keeping in mind inequality (5), we derive
1
v MV )
- o ey L Hemivi) -
Noting that ¢(N)\ = SOV if and only if A = ) where ¢ is defined by

o(x) = zh~Y(1/z) and h by h(z) = x¢(x), we conclude

C(N)HQn + Rn“lﬁ)
\/ﬁ .

Au(X) < AL(A(E)) + ¢ (

The proof of Theorem 1 is complete.

Proof of Corollary 1. Assume that [|eo|ly, < oo where 1 is the Young function
defined by ¢y (x) = exp(x) — 1. There exists a > 0 such that F (exp(al|eo]|x)) < 2. So,
there exist (see Arak and Zaizsev [1]) constants B and L such that

|
Elleo| < %B%’H, m=234, ..

Applying Pinelis-Sakhanenko inequality (see Pinelis and Sakhanenko [?] or Bosq [2]), we

xQ
P >x | <exp|— , x>0
( u )- p( 2(q—p+1)32+2xL)

and using Lemma 2.2.10 in Van Der Vaart and Wellner [?], there exists a universal constant
K such that

obtain
q

>

k=p

q

>

k=p

<K(L+BVa—p+1) (8)

(4
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Combining (6), (7) and (8), we derive |Qn + Rully, < C3_ s v/ illlajllcmy where the

constant C' does not depend on n. Keeping in mind the Berry-Esseen’s central limit the-
orem for i.i.d. centered H-valued random variables (see Yurinski [9] or Bosq [2]|, Theorem
2.9), we apply Theorem 1 with the Young function ;. Since the function ¢ defined by
o(z) = xh™*(1/z) with h(z) = 21, (x) satisfies

p(x)
v—0 zlog(1+ 1)

9

: logn
we derive A, (X) =0 ( NG )
Now, assume that ||gg]|, < oo for some r > 3. Applying Pinelis inequality (see Pinelis
[8]), there exists a universal constant K such that

q 1r q
<K r(zEnekn;{) w(zEneknz)
k=p k=p

q 1/2

>

k=p

T

and consequently

<2Kr|eolvVa—p+1. (9)

T

q
> e
k=p

Combining (6), (7) and (9), we derive [|Q, + R, < C ). Villlajllzery where the
constant C' does not depend on n. Again, applying Berry-Esseen’s CLT (see Yurinski
[9] or Bosq [2], Theorem 2.9) and Theorem 1 with the Young function ¢(x) = 2" and
the function ¢ given by ¢(z) = 27/ we obtain A,(X) = O <n_m> The proof of

Corollary 1 is complete.
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