N
N

N

HAL

open science

Gestion efficace de séries temporelles en P2P:
Application a ’analyse technique et I’étude des objets
mobiles

Georges Gardarin, Benjamin Nguyen, Laurent Yeh, Karine Zeitouni, Bogdan

Butnaru, Iulian Sandu-Popa

» To cite this version:

Georges Gardarin, Benjamin Nguyen, Laurent Yeh, Karine Zeitouni, Bogdan Butnaru, et al.. Gestion
efficace de séries temporelles en P2P: Application a 'analyse technique et I’étude des objets mobiles.

Bases de Données Avancées, Oct 2009, Namur, Belgium. hal-00488660

HAL Id: hal-00488660
https://hal.science/hal-00488660

Submitted on 2 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00488660
https://hal.archives-ouvertes.fr

Gestion efficace de séries temporelles en P2P:

Application a I'analyse technique et I'étude des gbts mobiles

GEORGESGARDARIN, BENJAMIN NGUYEN, LAURENT YEH,
KARINE ZEITOUNI, BoGDAN BUTNARU, luLIAN SANDU-POPA

Laboratoire PRiSM, 45 avenue des Etats-Unis, 78@85ailles Cedex
firstname.lastname@prism.uvsq.fr

Résumé.Dans cet article, nous proposons un modele siepggnérique pour la gestion des
séries temporelles. Une série temporelle est coggpdaun calendrier avec une valeur typée
attribuée a chacune des dates. Bien que le modpleoge n’'importe quelle sorte de valeur
XML typée, nous nous intéressons dans cet artichke @ombres réels, qui sont le cas
d’applications pratiques rencontrées le plus souwous définissons des opérations classiques
d’'espace vectoriel (plus, moins, multiplication laga) et également des opérateurs de type
relationnel ou métier pour la gestion des sériespteelles. Nous montrons l'intérét de ce
modéle générique sur deux applications : (i) urtésyge d’analyse technique des cours de
bourse, (ii) un systeme d'évaluation de conduitdogique. Ces deux applications présentent
des particularités différentes : l'analyse techmigdemande des opérations de fenétrage
poussées, tandis que la gestion des transporteregles requétes complexes. Notre modele a
été implémenté et testé en PHP, Java et XQuerys donnons dans cet article des résultats
illustrant des temps de calcul de plus de 500@séfé plus de 100.000 valeurs, ce qui est un
cas d'utilisation courant pour ce genre d’applimasi. Les résultats montrent que ce calcul est
laborieux sur un seul PC unique, méme tres puisgdnsi, dans le cas d’une communauté
d'utilisateurs qui partagent les calculs sur lesiesétemporelles, nous introduisons une
implémentation P2P Java de ces séries temporetieese divisant en segments, et nous
proposons des algorithmes optimisés pour le cdlewertains opérateurs.

Abstract. In this paper, we propose a simple generic madeianage time series. A time series
is composed of a calendar with a typed value fohealendar entry. Although the model could
support any kind of XML typed values, in this paper focus on real numbers, which are the
usual application. We define basic vector spaceratipes (plus, minus, scale), and also
relational-like and application oriented operatorsnanage time series. We show the interest of
this generic model on two applications: (i) a stovkestment helper; (ii) an ecological transport
management system. Stock investment requires widmssd operations while trip
management requires complex queries. The modebéas implemented and tested in PHP,
Java, and XQuery. We show benchmark results ilitisgy that the computing of 5000 series of
over 100.000 entries in length — common requiremémt both applications — is difficult on
classical centralized PCs. In order to serve a comityn of users sharing time series, we
propose a P2P implementation of time series byduigi them in segments and providing
optimized algorithms for operator expression corapoin.

1. Introduction

Research in time serfe@oted TS for short) [12][14as been very prolific in the last decade.
Several domains of applications such as medicimgnée, economy, climate evolution,
transport control have emerged. Time series cansee to model temporal, or even spatio-
temporal data. Several tasks have been considerddding query by content, pattern
discovery, trend computation, summarization, din@radity reduction, classification,
segmentation, etc.

Many authors have proposed distance computatidmigges for mining series and indexing
time series based on distances. As a consequencggrous summarization methods for
dimensionality reduction and efficient distance mgas have been introduced. Thus,
dimensionality reduction has focused attention ypgl techniques such as Discrete Fourier
Transform, Discrete Wavelet Transform, Singular WalDecomposition, Piecewise Linear
Approximation, etc. Common benchmarks are requitecvaluate these methods. See for
example [7] for a comparative analysis of represtions and distance measures.

In most approaches, a time series is a sequengtad, value) pairs. The problem when
comparing time series and computing distances legtwwlgem is that the sequence can be very
long and somehow biased by missing values, norsether phenomena. From a practical point
of view, it is unrealistic that mapping time seriws smaller spaces will be sufficient for
detecting and correcting these biases. We claimt gwaforming basic operations and
transformations on time series in parallel is aaptpproach that has not been fully explored
yet. This might be due to the fact that no commoodeh including standard operations
(somehow similar to relational algebra) has emefgeg@rocessing time series. Several DBMSs
include them as an SQL3 data type, but with diffeeend non standard functions.

Our contributions in this paper are the followifigywe propose a basic model for time series as
a sequence of (time, value) pairs with an exteasbt of operations and a finite (but extensible)
calendar. The basic set of operations are vectarespperations (+, -, scalar multiplication) plus
relational operations (filter, join, union, intectien) adapted to time series. Time is discrete and
known time values are shared between various s#riesigh a common calendar giving all
considered values in time (which is itself a tinegies). The model is extensible in the sense
that application oriented operators can be defamad included in the model. (i) We illustrate
the use of this model on stock market quotes wivardow sliding operations are common, and
logs of vehicle on-board sensors where complexgratebased operations are frequent. (iii) We
have experimented several main memory implememigtion application data from both
examples. (iv) Based on these experiments, we shatvan efficient way for processing long
time series (e.g., with more than 100.000 entig$) divide them and distribute them in a P2P
network. We describe our P2P implementation witieaeric optimizer currently in progress,
and show some first performance measures. Thensysi@ parallelize both the basic model
and the application-oriented operators.

The unigueness and novelty of our contributiondesiin the fact that (i) we provide an
extensible model with functional operators easilgorporable in XQuery 1.1 or to be used in a
specific implementation. (i) We propose a P2P pnpntation with comparative

experimentation of our prototype on real applicatidata. To our knowledge, no P2P
implementation of a time series engine has beealdpgd so far.

! Time series considered in this article shouldb®tonfused with data streams [3][17][18][11], altgh
some similarities and common applications exist Section 6). The main difference is that a Timéese

is persistentdata queried bpn demanctlient requests while data streams @mamsientdata queried by
continuous queries. The former are OLAP oriented while th@etaare real time oriented (event
detection). Time series manage historical dataeniidita streams manage data fluxes. There is ancerta
overlap at the frontier between time series and daeams that we do not consider here.

The rest of this paper is organized as followstiBe@ reviews the concept of time series, and
gives an overview of our basic model, includingecalar, null values, vector space and
relational operators. Section 3 introduces two iptessapplications of this work: stock market
investing and ecological transport analysis. Sactb briefly describes three centralized
implementations in PHP, Java, and XQuery. We comffam with a simple application-driven
benchmark. Section 5 describes the P2P time sengse and an experimentation of its
performance and gains over the centralized systdntise previous section. In Section 6, we
review recent work geared specifically towards tseeies models and P2P processing. Section
7 concludes the paper and discusses possible ftteasions of our work.

2. Time Series Model

Our basic model is derived from the Roses proj28f pdapted and extended for our needs.
The model is composed of a vector space of timessequipped with relational-like operations

mapping one, two or more time series to one. Thdehalso includes aggregate operators to
change the time unit of a series that we do nohilddue lack of space. The model also

encompasses window-based operations similar t@ thiagposed in the current working draft of

XQuery 1.1 [28].

2.1 Vectors and Vector Space

We define aime seriesas a potentially infinite vector of values. In tiest of the article, we
usen to denote the length of the time series. The vastassociated with @alendar giving for
each point in timethe index of the entry. Time can be of differerargilarities (e.g., second,
day, hour, and week). While in general any kindKbfL type, in this article, due to application
requirements, values ad®uble precision floats The calendar starts at a given time which
corresponds to the first entry in the associatetseall time units from start to end (the last
recorded entry) correspond to an entry. An itema isouple (time, value), i.e., a row in the
vector. There exists two possible and distinct nalues, the empty (or non-exist) value
(denoted) meaning that there is no value for the given tand the unknown value (denoted
“?"); the first appears for instance after filteringeaies while the second one may appear when
the series is not totally computed yet or when astaipon leads to a division by O.

Time series constitute Bnear vector spacei.e., a mathematical structure formed by a
collection of vectors that may be added (additisndenoted +) together and multiplied
(multiplication is denoted *) by numbers, callelses in this context. Scalars are real numbers
in our case. Multiplication and addition of nulllwas are defined as follows, s being a real:

141!
SE
() {+2=? (ii) {S*?:?
2%42="7

Time series can be combined linearly in expressguth asTS +s* TS, whereTS andTS

are time series (in practice of same calendar andrsions). They have all properties of vector
spaces: addition is associative and commutative,anaidentity element and existence of null
and identity vectors. Scalar multiplication is distitive with respect to vector addition, etc.
These properties are interesting for query optitiona

The time series linear vector space is alsoeadric spaceThus, in the last decade, there has
been an increasing amount of interest in time serapresentation methods and distance
measures. Many dimension reduction methods and aw®zen distance measures have been

% There are various possibilities to implement titder P2P Java implementation is based on 1SO 8601,
with arbitrary precision. XML for instance demands at leastprecision. Due to lack of space we can
not detail further.

proposed. Most of them are nicely compared in THe most popular are Euclidian distance
[10] and Dynamic Time Warping [25]. Representatioethods preserving distance ranking are
very important for similarity search and miningkasuch as classification or clustering. In this
paper, we do not focus on distance computationpagih we have implemented some. We plan
to integrate in our query processing engine vediarensionality reduction operations and

complex distance functions in the near future theeoapplications.

2.2 Relational Operators

Logical operators are derived from relational atgedpperators specialized for time series. First,
the model includes the counterpart of the selectind projection relational operations (also
called filter and map). The result of a selectippleed to a time series is a time series, keeping
the original value if the predicate is satisfied aeplacing it by the empty value (!) if not. More
formally, denoting [t,v] the entry t of value v tife processed time series :

SELyedS) = {[t, V] | [t, val] O SOv = predval)}
wherepredval) = val if val satisfies the predicgbeed and! otherwise.

T | Walue T | Value T | Walue
110 1)1 11

> | 14 SELjar-1a 2] 14 PROJ -, 5| 28
3|18 3|18 3| 36
41z 401 411
5110 511 501

Fig. 1 - Examples of Selection and Projection

A projection applies a similar transformation definby a function to each value of the time
series it is applied on. More formally:

PROJ(S) ={[t, m] | [t, val] O SOm =fun(val)} Q)
Examples of Selection and Projection of time searesgiven in Fig. 1. Note that operators can
be composed as with relational algebra to form kakaje expressions. This is true for all
operations of our time series algebra. Furthermitve,map function must be defined on null
values (giving null simply by default).

The model also includes some adaptation of thdiwak outer union and intersection, simply
calledunion andintersection. They are formally defined as follows, and illased in Fig. 2:

SO0S={t V][t Vv]OSO[v U S} 2
SinS={tL V][tV OSO[v US} 3

| means no value

Val
alus 14 7 means unknown value

10
14
18
12
10

| e w | | e |

| -a|ov|w | B fw||—|[d
(3%

Value

12
14
18

co ||| w|=]| A

12

Fig. 2 - Example of Union and Intersection

Finally, we introduce a k-arjpin operation for time series based on the same calemtis
operation performs a join on the time attributek ¢dfime series using the same calendar, and
then applies a mapping function to the tuple obigalof thek time series. More formally:

JOINu(Sy, ..) ={It, m] | [t, vak] 0 S, O ... [t, vak] 0 ScOm = fun(val, ...val)}. (4)

This operation is very useful for applications caniipg derived data from several time series.
Notice that it can be computed in linear time sitieetime series have the same calendar, thus
entryi corresponds to timeeverywher& Joins on values are also possible, but so farave

not see their uses in the considered applications.

3. Application Oriented Extensions

We provide a time series server for processing serees imported from relational databases or
XML format. The time series server implements thsit extensible model as described above,
which includes operations useful for all applicatio In this section we discuss application
specific extensions.

3.1 Stock Selection and Strategy Evaluation

Stock investing is a quite difficult task, as sholnthe recent crisis. Time series can be very
useful for implementing and testing investmenttstyges on past data. Stock investing covers a
broad range of stock analysis techniques. Expeiginguish fundamental and technical
analysis. Fundamental analysis involves the stddympany business and earnings. Technical
analysis attempts to consider stock prices andmweuas temporal signals and to analyze these
signals based on indicators, patterns, or events. Sélected technical analysis as a first
application for our time series model.

Most indicators used in technical analysis are wimdhased, i.e., compute a summary of a
sliding window of values. That means that théndicator value is a function of thve previous
ones,w being the window size. In the rest of the artiele, usew to denote the length of a
window. Thus, guided by our applications requirements, mek the space of time series with
a generic window-based operation:

% This is the main reason behind explicitly indingtinon-existent values using theymbol. Of course,
non-existent values could simply have their datmoveed altogether, but with a slight increase in
computational time. These considerations are soratwult of the scope of the paper.

WINun(S) = {[t, val] | val = fun([t-1, val, [t-2,val], ...[t-w,val,])} (5)

Let us recall that [t-i, vdl designates the entry t-i of the time series Saltie va] ; if t-i is
negative, valis set to val

Popular window-based operations in stock analygsttze Moving Average (MAVG) and the
Relative Strength Index (RSI). The MAVG computes thassical moving average series of a
series S with a sliding window of size w. Let V MAVG,(S). The value V[t] of entry tis
defined by the equatién

VIt = Ztl s\g] _(w=2)* VIt —1]V; gt —w] + t] ©)

A variation is the exponential moving averagéere value [t-i] is moderated by a weight (1-
alpha). The RSI is a popular technical momentum indicdéitat compares the magnitude of
recent gains to recent losses in an attempt tardigte overbought and oversold conditions of
an asset. R = RSI(S) is calculated using the faligviormula: Hi] =100*% where

| |
GJi] is the sum of the gains in the window from-&{ji to S[i] and L[i] is the absolute sum of the
losses in the same window.

There exist several similar indicators, as for ex@nthe Moving Standard Deviation, the
Moving Maximum, the Moving Linear Regression Gradjghe Momentum (MOM), the ADX,
and many others [15]. Let us stress that the censitoperators generateesult time series
from the initial time series based on the samencke giving for each time the relevant
indicator. This is useful for developing strategassntroduced below.

We note Cg; the cost of computing operatop on a window of sizew. Cg; is usually
polynomial inw. Most common complexities are O(1) andwp(We note Cg,f’the cost of

computing the whole time series. In gene Tps U cg; xn. Computation time experimental

results are given in Section 4.

Other operators can be computed by combining lbgieatorial, and windowing operators. For
example, a common indicator in stocks investment tise Moving Average
Convergence/Divergence (MACD). It is one of the@mst indicators used by some investors.
A usual formula for the MACBis the difference between a stocks 26-day anday2rabving
averages. Usually, a 9-day moving average of MA€DBomputed to act as a signal line to buy
or sell when crossing 0. The following expressiomputes the MACD of a series S, then the
signal line from the MACD, and finally gives a nempty value supporting a buy decision:

BUY = SEL.o(MAVG o(MAVG 1S)- MAVG »(S))) 7)

If you are interested in stocks investment, itdsammended to use a (good) strategy, i.e., a
condition for buying and a condition for sellingyr beneral, strategies are based on both
fundamental analysis and technical analysis, artdnofmore. In this application, we are
interested irevaluating many different strategiapplied tathousandf different stocks over a
minute-by-minute sampling of ten years of ddtased on technical analysis only. Most
technical strategies are expressed as events mieators, e.g., the moving average 9 crosses

* As you can see with the equatiomaiveimplementation would be @j but it is of course possible to
compute V[t] in O(1) time.

® Exponential moving average can also be computedusing bit-shifting. However our focus in this
paper is not the specific optimization of operatmusglobal optimization.

® Note that depending on the sampling granularit9,day moving average could be an average over 9
values for day granularity, 72 values for hour gtanty (markets open 8:30 hours per day) or 4590
values for minute granularity.

over the MACD 12/26. With time series, strategiaa be simulated and evaluated on the past
for given time intervals (i.e., periods). A buyategy leads to a time series giving the buy
events while a sell strategy leads to a time sgjiigng the sell events. In general, a strategy can
be expressed as two queries (a buy and a sell yjoaryhe time series associated with the
considered stock. The queries include the quotestiofie interval (e.g., several years) which is
a subset of the calendar. The calendar may be assdb(each open day is an entry) or minute-
based (each open minute is an entry), dependingetype of analysis. A quote can comprise
several time series (for instance a daily quotehinigave open, close, low, high, and volume
values). For example, a sell strategy for the MA€DId be to sell when the MAVdgbecomes
higher than the MAV @ by a factor of 10%:

SELL =SEL.; (MAVG 2(S)/MAVG 14S))) (8)

In summary, the application requires in additiomhi® basic model window-based operators and
the ability to run efficient complex expressionghwétats operators on long series: a (non-leap)
year of quotes at minute resolution makes seri€x6D8 entries. Queries are functional
expressions to compute during a time interval, geample the French stock exchange from
2000/01/01 to 2009/01/01, i.e. 1.653.930 entries.

3.2 Ecological Driving Evaluation

Many studies and surveys use sensors to college4srale data, which results in huge time
series databases. One application that we havieedt[&#}], callednhaturalistic driving surveys
related to ecological driving in transportatione@sh. It consists of collecting a large amount
of data (e.g., location, speed, acceleration amicelof gears) from a large number of drivers
over an extended period of time in a natural sibmatThen, various indicators are computed in
order to describe drivers’ behavior. Based on tliredieators, exploratory data analysis, such as
factorial analysis, is performed to evaluate tleemrelation or their influence on gas emissions.
This may help, for instance, in establishing edehdg instructions or more accurate traffic
emission models and predictions.

Driving behavior can be described using many irtdica average speed being the most
common. Ten standardized driving parameters are tseest vehicle emissions and fuel
consumption in automotive laboratories, and marherst (sixty two) have been used in [9].
Most of them require advanced filtering, and corapahs on time series. For example, average
driving speed (excluding stops), or Relative PwsitAcceleration RPA that represents the
power demand, and combines speed and positiveeaatieh. RPA is defined as:

RPA= 1 j va'dt (9)
X

wherev denotes the vehicle speexits acceleration at a given tinhga” restricts it to positive
acceleration), angthe total duration of the trip.

Another important parameter is Positive Kinetic iEygPKE), which reflects the oscillations
of speed curves. It increases with many local mehraax of the speed curve. It is computed as:

D Vi Ve
PKE =40 withv, =final speed v, =start speed (10)
X

Many other indicators are of interest, among whibk:Proportion of Standstill Tim&gT), i.e.
when the speed is < 2 km/h; mean duration of sttps;number of brakes per km; mean
number of gear-shift per km; average engine speeBRM); average braking distance before a
traffic light or a road curve; etc. Previous stisdi@ve found thaRPA PKE, andPSTare the
main impacting factors of driving behaviour thapewet gas emissions.

Let us stress that in the context of Ecologicalidg, many of the results produced are scalar
functions, i.e. functions that take as an inpuheetseries and produce a scalar as result. Again,
the complexity of the calculation of such functiaasusually polynomial with regards to the
length of the time series.

In this paper, we have implemented part of thedeators in order to assess the impact of an
Intelligent Speed Adaptation (ISA) system on drivliehavior and fuel saving. The ISA device
is called LAVIA (from the French acronym “speed ilien that adapts to the legal speed limit”).
Our tested dataset is related to a complementady sh the LAVIA project [8], and consists of
eight trips of two drivers. Each person did the sarnp four times. The duration of a trip is
approximately 45mins and its length is approximatetkm. Environmental conditions (traffic
congestion, weather, vehicle weight, engine temperaetc.) were similar for each trip. For
each driver, the four trips correspond to four itigvstyles: normal, nervous, economical and
LAVIA. For a normal driving style, there are no sffie recommendations. This style
corresponds to a week-end leisure drive, when tiverdis not in a hurry. For a nervous style,
the driver should drive like when he is rushing aodsider time factor as a priority, of course
without taking any risk. The economical style irderto minimize the fuel consumption by
pursuing the following recommendations: change sw@erior gear as soon as possible (e.g. at
2500 rpm with a petrol engine); maintain a constspéed at the highest possible gear;
anticipate the decelerations in order to avoidngtrboreaking; decelerate softly by releasing the
gas pedal; cut the engine for all stops longer thamnute. Finally, LAVIA style corresponds to
normal style with the LAVIA system active.

The time series studied in this paper contain dileving information: road identifier, position
(GPS provided latitude and longitude), legal speeshicle speed, acceleration and fuel
consumption. The size efachtime series is about 4000 measures; therefora fven trip we
had about 24.000 elements. It is important to tiwethe whole survey will contain many more
attributes and thousands of different trips. Eficly and scalability of the data management
system are therefore crucial. We show in Sectiosome brief results concerning these
calculations.

4. Centralized Implementations and Evaluations

In this section, we describe our centralized imm@etations of the model that we have done for
evaluating the feasibility and comparing performgnand we also compare results with the
Qizx XQuery engine, that we have also experimentedVe have chosen to use both our PHP
and Java systems since all the operators haveshbegn implemented in Java.

Time series are converted to the following simpMLXformat using XSLT, then loaded into
the server.

<document>(<timeseries><date/><value/></timesejfegdocument>

The date element is of type xs:date (ISO 8601)thad/alue element is an xs:anySimpleType.,
values used here were all xs:double. In practiceeans no entry for that given point in time
and ? is encoded as NaN. In principle, it would &lave been possible to encode them as -NaN
and +NaN.

We produced our data using various financial g8[B0][31], for our stock application and the
Eco Transport relational database for our drivipgligation.

4.1 Centralized testing environment

All centralized tests have been executed on a X&60@3.00GHz with 4GB RAM (process
RAM settings are indicated below) running Vista-64ing only a single processor core. We
have also run tests using multiple cores that ay@iid the scope of this paper (approximate
gain when using 4 cores of a factor 2.5). Our Jaygementation (and also Qizx) is running on
version 1.6.0_14 (32 bit) with 1GB heap space (jgaysnaximum when running 32 bit Java on
Windows is 1.5GB).

4.1 Implementing the Model in PHP 3.0

Historically, our first implementation was doneRiP 3.0. A time series is a vector giving for
each entry its value. The time series is desciiyeheta-data including its functional name (the
data source for a base time series or the treparfations with parameters computing the series
for a derived one) and the calendar. We could saparated the functional expression from the
name, but we found convenient to integrate botbrder to produce a unique DHT key (see
Section 5). The calendar is a vector of time irtsta@alendars are shared by time series with
common time scale. Other meta-data is the lenbthtitne unit, etc. Vectors are simply one-
dimensional array of floats. Time series are cadiethe PHP engine. The size of the cache is a
PHP parameter (set to 1GB for benchmarks). Theeémephtation of window operations was
particularly simplified using dynamic arrays. Thesulting library is simple and efficient as
shown by the benchmark results.

4.2 Implementing the Model in Java

Our newer implementation is done in Java, in otdeplug it into our P2P framework called
[5]. This implementation is very generic and candmgiched simply by programming new
classes that compute aggregate functions over engmindow of a time series. The cost of
using a generic model reduces its efficiency, tltoeeewe have also implemented specifically
optimized functions, that may need more informatimem just the window values. We show for
instance the difference in time between computisgpgi our generic function approach vs.
specific implementation for WAVG.

4.3 Implementing the model in XQuery 1.1

W3C-XQuery 1.1, which is currently in public workirdraft status [28] introduces advanced
support for time-series based on windows, baseti@work of [4] who first proposed a generic
construct (forseq) to query window sequences amdiragous streams. Performance should be
comparable to the performance of SQL with sequelata type operations: There should not be
a performance penalty for using XQuery, as statgd]i Note that Qizx runs in multithreaded
mode, therefore test times are less slightly mispeaised.

Concerning our data, we use directly time serigsveded to the schema show in Section 4.
The functions that we have written in XQuery usis gthema as a basis for the time series
algebra and implement some of the operators ofi@e& One main difficulty is that math
functions (such as exp) are absent from basic XYQ@erd need therefore to be implemented as
external functions, which is somewhat sub-optimal.

Our centralized tests have been run using QizxoB® of the only XQuery processors that
already supports some 1.1 features. We are cuyneotlking on our P2P XQuery 1.1 processor
(see [27] for information on it advancement) thatl wirectly implement many missing
functionalities for math oriented computing. To whioow code is written in XQuery, we give
as an example the MAVG operator computed in naineat complexity:

declare function ts:mavg($ts as ts:docunent, $i as xs:integer) as
ts: docunent {

<t s: docunent >{

for sliding window $w in $ts//ts:val ue

start at $s when fn:true()

only end at $e when $e - $s eq $i -1

return

<ts:tineseries>

<ts: date>{(data($wn/ preceding-sibling::date))[$i]}</ts:date>
<ts:val ue>{avg(data($wn))}</ts:val ue>

</ts:timeseries>

}</ts:docunent >

I
4.4 The benchmark

To evaluate the performance of the three implentiemis and determine the limits of these

clever but straightforward main-memory implememtagi, we defined a simple benchmark

composed of four queries, three dealing with siogkstment and one with transport. We used
the CAC40 quotations (called PX1) from 1990 to 2@8%ata source, constructing time series
of various lengths. We experiment with differentnddw sizes, which are current in stock

indicators: 10, 50, and 100. The queries are é3vsl

(Q1) computes the moving averages, i.e., MAVG(PX)1 where w is the window size.

(Q2) computes the RSI, i.e., RSI(PX),

(Q3) computes the MACD, which is a difference betwea short and a long exponential
moving averages, more precisely MINUS(XAVG(PX18AVG(PX1, w));

(Q4) computes the positive kinetics energy of@#eC; this is indeed an eco-transport indicator
that we apply to the CAC seen as a series of spiadsjuite complex as given by the formula
MINUS(MULT(MULT(PX1, SEL(MOM(PX1,2),>0)), MULT(PX1, SEL(MOM(PX1,2),>0))),
MULT(MULT(SHIFT(PX1), SEL(MOM(PX1,2), >0)), MULT(SHIFT(PX1),
SEL(MOM(PX1,2),>0)))).

N w PHP | JAVA [Q zZX N w PHP JAVA [Q zZX

1000 10 4 <1 16 1000 10 10 17 402

1000 50 11 <1 45 1000 50 29 31 401

1000 100 19 <1 91 1000 100 |53 56 405

2000 10 7 <1 28 2000 10 22 15 1559

2000 50 22 <1 90 2000 50 62 60 1561

2000 100 38 <1 178 2000 100 (114 114 1558

4000 10 15 <1 53 4000 10 45 43 6282

4000 50 44 <1 179 4000 50 127 123 6259

4000 100 79 <1 357 4000 100 | 230 241 6334

16000 10 60 4 212 16000 |10 198 141 97807

16000 50 176 |4 765 16000 |50 526 490 99864

16000 100 316 |4 1404 16000 [100 | 934 917 96759

100000 |10 375 |25 1914 100000 | 10 1238 |902 out of menory
100000 |50 1097 | 25 5026 100000 | 50 3291 [3074 |out of nenory
100000 |100 1974 125 9251 100000 | 100 [5838 |5516 |out of nenory
500000 |10 1875|128 9862 500000 | 10 6196 |4251 |out of nenory
500000 |50 5510|130 28259 500000 |50 16457 | 14501 | out of nenory
500000 | 100 9888 | 129 49347 500000 [100 |29209 | 27393 |out of nenory

Tab. 1 WAVG computation time (in ms) Tab. 2 RSI computation time (in ms)

70000
60000

70000 50000

60000 40000

50000 30000
Time in ms 40000 20000
30000
10000

20000

10000

100

0 Window size (w)
100000

200000 300000
400000

500000 50000

700000

800000

900000 10

TS length (n) .

Fig. 3a Java MACD computation time (z) functionld length (x) and window size (y)

30000 T T T T T T T T T 70000
"D ursefjavaOutput/java-rsi 100.txt"

"D:/Recherche/BoursedjavaOutput/php-rsi 100.txt"

60000
25000 [T

50000
20000 [q

40000

15000 |- T

Time in ms

30000

10000 [T
20000

5000 [T
10000

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

TS length (n)

Fig. 3b Java-RSI (+) vs. PHP-RSI (x)

N W |PHP JAVA | Qzx

1000 |10 |25 15 N A N W |PHP
1000 |50 |78 40 N A 1000 |10 |1
1000 | 100 |142 70 N A 1000 |50 |1
2000 |10 |51 30 N A 1000 |100 |oO
2000 |50 |157 80 N A 2000 |10 |2
2000 |100 |295 142 N A 2000 |50 |1
4000 |10 103 62 N A 2000 |100 |2
4000 |50 |319 164 N A 4000 |10 |4
4000 |100 |591 287 N A 4000 |50 |3
16000 |10 |412 238 N A 4000 |100 |3
16000 [50 |1276 |630 N A Tab. 4 PKE computation time (PHP only, in ms)
16000 |100 |2364 |1122 |NA

100000 |10 |2576 1402 |NA

100000 |50 |7977 3822 |NA

100000 | 100 |14781 |6885 |NA

500000 [10 |12879 [7203 [N A

500000 |50 |39876 |19156 [N A

500000 | 100 | 73901 |34106 |N A

Tab. 3 MACD Computation Time (in ms)

Results of the four queries are given in Tables Dde to space limitations we have not
included many graphics, but we give an exampleost assessment with Java MACD in Fig. 3a
and PHP-RSI vs Java-RSl in Fig. 3b. Other figuresaaailable on demand.

Results distribution

Each PHP and Java test was run 1000 times, anliisresare averaged out. Due to their longer
execution time, Qizx queries were only tested bies. Note that for readability reasons we
have not shown measure deviation in Table 1, Hative error in most measures is about 1%
for PHP and Java (i.e. for a measure of 30ms we kalues ranging from 27 to 33 ms). There
was much more deviation using Qizx, since we cértatally control the application, which is
also running with muti-processor support. To tryathieve regular benchmarking, we chose to
take the minimum time spent processing the quergr the course of 10 distinct runs. Let us
stress that time to load the data from disk intonoiy is not taken into account.

The point of this section is to show that despitiécient programming and optimizing, a
centralized system reaches its limits when computime series in the contexts mentioned
earlier.

Results analysis

On the whole, our results show that our PHP and Jmplementations are more or less
equivalent, and that efficient programming, sucl apecific implementation of WAVG in Java
leads to up to 1000% speed increase. Qizx on ther dtand performs badly, and is much
slower, and does not implement many maths functioreking some tests impossible to run.
Also note for instance for RSI calculation that tQuery implementation behaves
independently to thes factor, due to the algorithm used. This is onse@aavhy we have chosen
to implement specific TS support in our upcomind®PQuery prototype [27]. Nevertheless,
except for the most basic of operators, compuiimg series of 500.000 elements takes around
a minute, which is too long for an efficient fuktade analysis of the CAC40 for instance.
Processing such information with XQuery is for thement unfeasible.

RSI and MACD of TS of a length of 4000 are caloedatvith our tests in under a second.
Behaviour is in general linear with regards to paetersn andw. We feel that these results
show that there is much to gain by dividing all 8o small (approx. 4000) parts and
processing them in a P2P network. We will dischgsimprovement in Section 5.

Main memory limitation

We received “out of heap space” errors when pracgs®ng time series (over 1.000.000
values) with a total heap space allocated of 1@Breffore centralized processing reaches its
limits for long TS.

5. P2P Implementation

In this section, we introduce a method for effithgrevaluating operators on time series in a
distributed query processing way. In the followings refer togpeerwhen talking about a single,
stand-alone computer running our application.

5.1 Motivations

The motivations behind the P2P implementation lameet fold.

(i) As shown above, due tmain memory limitation, a peer reaches serious difficulties when
computing operations on combinations of lengthyetigeries Reducing time processings
also a problem for complex statistical operatiorgssg.(moving exponential average).
Distributing data to multiple peers is highly desie when queries on long time series are
submitted to a server. We expect main memory and processing gains. Streaming of time
series could be another approach to save memosyp@er, but it is not the goal of this study
which deals with historical data.

(i) Sharing base and derived time serieds highly desirable, for example in a trading
company. Many users can be interested in the sasuds, or want to reuse results of operation
trees or sub-trees to conduct their own analysisrdfore, every client may need to download a
large number of shared time series, which coststeartime and main memory. For example,
supposeP users want to maintain 1000 different shares tystb the minute resolution. Each
shared time series is composed of ten years ofnafoon, at 360 days per year, 8:30 hours a
day, and for every day we need to store five diffiervalues every minute (open, max, min,
close, volume) using a real (4 bytes). The da&seeded to store all this information will be:

S=1000x10x360x60x 85x5x4 = 34GB (11)

Transferring all data from a server Boclients is very costly. Storing@ duplicates wastes
storage availability.

(iif) Processing in parallel operation treesusing data partitioning in the P2P network is a
promising way for improving response time. The iddaour P2P implementation is to pool
storage and computing capacity of the peers iméteork. By distributing the storage of time
series on multiple peers, parallel execution ofrajpes is possible. Thus, real-time evaluation
of financial strategies can be provided using ooiginary personal computers or laptops
available in the network. This might powerfully tape streaming approaches for real time
decision. Moreover, the global storage of the comityus optimized. Note that such pooling
makes complex calculations availableatoy person in the network, even using a simple laptop
PC, and no longer restricts use to expensive chisté PCs, available only to trading
companies.

5.2 P2P Network Architecture

We have implemented the time series server on ftopeo [5] using CHORD and our Java TS
implementation. Future work involves testing tinexies on our P2P XQuery database [27].
From a network communication perspective, DHT-baseztlays have gained much popularity
in both research projects and real-world P2P agiitios [16]. DHT networks have proven to be
efficient and scalable (most of them guarantee g)Joscalability) in volatile world area
network environments [22]. The infrastructure of ®2P system is provided by the P2PTester.
Local data management can be done using a relationaXML DBMS, but in our
benchmarking we have loaded all documents into mm&mory.

is a real-scale P2P performance measurement iphatfois able to monitor time costs in a P2P
environment. We use the infrastructure to caleu(a) time spent rooting the queries, (b) time
spent locally by the time series processor andét)york time. Note that (b) corresponds to the
time measured in Section 4. (c) of course is higldgendant on network traffic. 's architecture
is shown in Fig. 4. The module circled in red is time series specific module. We focus in this
experimentation on query evaluation. Note that e#0 monitor the cost of document

indexing, but this is out of the scope of the paper

Master Tester

[Test GUI J [Result Visualizer]
e S i
_Testing Interface
s Taster
[Peer]
hManager
J— - S
<_Peer Interface > (&) Protocol Pear
B
. v
Query Processing
Madule |
(2] 5
Routing Indexing
Module | Module
e X =
< Communication nterface > i)
= _}§ Network

Communication |
[Biiiclcne == — ey

Fig. 4 — architecture
5.3 Distributing Time Series to Peers

As time series may be long (e.g., 30 GBs), a paerdling an entire TS might be overloaded, in
particular for popular TSs. To avoid this kind aftteeneck, we introduce a method to distribute
long TSs into slices on a ring-like addressing spé¢ loading time, the system distributes time
series over the network based on a random hashidand.ong time series are split into a
sequence of segments. Segments are assigned $o Peaversely, peers maintain in cache TS
segments either imported or calculated. Peers glubiie segments they have in cache to other
peers by inserting a record in a network DHT. Evegment has the same length (e.g., 1024
entries for stocks). The last segment is in gernacamplete and padded wit"null values.

To enable local computation of window-based indicstwe introduce some overlap between
segments (e.g., 128 at segment beginning and 12&ghent end for stocks). With such
overlap, the local computation of windowing for e of the series is possible (see Fig. 5).

‘ TiME SEHIES ‘
Peer Pk
peer Pt I
Peer P2
Peer P1
me R0 SEGMENTS

Fig. 5 Distributing time series in segments witledaps

As explained above, time series reference a catef@a simplicity, we assume that all time

series involved in an application have the sambajloalendar. This calendar is known by each
peer. A calendar is itself a time series giving dageTimefor each entry and as such could be
distributed in the P2P network. We plan to studg thtter. Calendars can be expanded and
reduced according to a change of unit (e.g., gbmg minutes to days). This is done by special

operations. This allows changing calendars in qespressions, but not in source time series.
Queries are associated to a time interval [<stamekz], where <start> and <end> are indices in
the calendar.

A derived time series is described by the attributeme, start, and end. Recall that the name is
the functional computation tree of the series. &mmple, CAC40 could be the name of the
base time series representing 20.000 days of teachr CAC. MAVG(CAC40,10) is the
derived time series obtained by computing the npamerage with a window of 10 days.
JOIN(MAVG(CACA40,10),SCALE(MOM(CACA40,5), 100), SUM) is the join of the previous
MAVG and the scaling by 100 of the momentum of @&C40 with a sliding window of 5,
using the SUM mapping function. Thus, the name @é@ved series with time interval gives all
elements to compute the series but also to retpeves of the functional tree computing sub-
series. This helps us manage a distributed “senfiargche of time series as explained below.

A problem is that several functional expressionsy mampute the same TS, for example
SCALE(MOM(CAC40,5),100) gives the same result thstOM(SCALE (CAC40, 100), 5).
This is the classical problem of semantic queryritevg. We define a canonical form of queries
to avoid different names for the same derived quehys can be done by introducing rewriting
rules useful both for unique functional naming guéry optimization; the rules have to include
not only basic operations but application operatitmo. A system of rules shall be convergent
towards a unique logical tree in canonical formwewger, we leave this for the moment as
future work.

Every peer shall retrieve relevant segments of @ffi@ently given a name and a time interval.
To reach this goal, a DHT-based index is used. HRPTester provides a Chord
implementation; as required by Chord, the keyshaished tan-bit values in an identifier ring
of 2™ positions. The P2PTester makes possible to map keyidentifiers in a ring-like
addressing space using a specific or a standatdnigainction. We select a standard hashing
function giving approximately the same probabilitiyhit for each ring node (SHAQ). The TS
name is selected as a key for the DHT and the ghibly peers with associated time intervals
are recorded in the DHT entry. Thus, publishingneetseries in the network is done by the
operationput(key=<name>, content=(<peerld><start><end>)*)Keys are unique, but at each
publication of the same key, the list is extend®ther more sophisticated approaches are
possible.

To avoid re-computing derived time series, we cawheeers the results of expressions for next
uses. We assume each peer has a main memory ceblereplacement policy (e.g., FIFO). A
peer loading a base time series segment or praglaciderived one keeps the series segment in
memory cache if possible. For making it availalol@ther peers, it must publish it on the P2P
network. This is simply done by performingpat in the Chord network as explained above.
Notice that all series computed to materialize acfional tree shall be published if kept in
cache. Moreover, when a peer removes a TS segmamt ifs cache, it must remove the
corresponding entry from the DHT. Thus, all in alé introduce a cache-based method for time
series query processing in a P2P system descriltbe next subsection.

5.4 Query Processing

At client level, the queries are transformed intndtional trees (i.e., logical execution plans) of
time series operators. We distinguish atomic sudriga processing a unique time series (i.e.,
functional trees composed of SCALE, SEL, PROJ, WMAVG, RSI, etc.) and binary sub-
queries (i.e., including PLUS, MINUS, DIVIDE, UNIQNNTERSECT, JOIN ...). For the time
being, N-ary joins are simply translated into ausggre of binary ones; N-ary joins should be
supported later for better efficiency. The mediatzeiving a query decomposes it into atomic
sub-queries followed by binary operations, whickegia primitive canonical form (with a more
elaborated canonical form, more hits will be founBinary operations are processed by the
client peer. Atomic sub-queries are searched in rtbvork using the Chord DHT. The
lookup(<name>)operation of Chord is used for searching availaelgments published on the
peer network. Time intervals have to be assemlolesdtisfy the query. As base and derived TS
can be kept in cache at multiple peers, we neexptore the functional query tree to look for
selecting the “best” sub-queries in cache somewhere

To determine the best set of relevant peers focgasing a sub-query, the mediator uses the
functional query tree and the time interval askad &t worst the full calendar, in general a sub-
series). To maximize the use of already computdédssehe algorithm starts from the functional
tree leaves. To each leaf, using the Diddkup(key)function, it determines the relevant peers
for computing it. Then, it moves up the tree, tgyio find relevant peers for the parent node; if
peers caching the functional expression correspgntb the node exist, the children of the
leaves are removed. For example, the functionae trcalculating the query
JOIN(MAVG(CAC40,10), SCALE(RSI(CAC40, 14), 100), B is represented in Fig. 6. A
possible selection of peer numbers for the requssiks is given in brackets, assuming for
example that SCALE node is already available ad a®lthe MAVG node. Thus, the two
CAC40 nodes and the RSI node can be pruned, abM#\¢G and SCALE time series are
available on peers [7 and15] and [7] respectiviiytice that, when matching node names, the
full name (i.e., the full functional tree with cdasts if any, encoded as a string), has to be
checked. In other words, the $ in Fig. 6 represéinés name of the child node, and this
recursively. Also note that the query time intesvhlve to be fully covered. If some parts are
missing, they should be recomputed; in other wotlis,tree has to be inspected segment by
segment for all the segments overlapping with itlhe interval of the query.

(JOIN($1, $2) J
|

‘ SCALE($,100) } (7] [7, 15] ‘ MAVG($,10) ’
‘ RSW$H4) J [7.8] [15] ‘ QACHO ’
‘ CAC40 } [7. 8, 9]

Fig. 6 : Functional tree with annotations (peers) pruning (lines).

Let us describe the query processing algorithm liaatto be executed for each time-segment
overlapping with the query time interval. The aifon performs a depth first traversal of the
tree searching for the required time series segatestich node by a DHT lookup(). If the node
computation expression (i.e., the TS name) has pablished, then the tree node is annotated
with the peers handling the relevant TS segmerits. % gives a sketch of the annotation
algorithm. The algorithm also prunes the tree feeless nodes that are replaced by cached
nodes. There are several possible choices to sabelets to prune. For the time being, having
not developed a cost model, we remove the descewndamy annotated node. When several
nodes maintain the searched segment, we seleet@andom. Here too, the cost model should
be helpful.

1. Al gorithm Annot at ed(node)

2. Input : node a functional tree or a sinple |eaf.

3. Qutput: a functional tree with pruned node.

4. node. assign <{}

5. res <& DHT. | ookup(NaneConposedPat h(node))

6. if (res not enpty)

7. then node.assign [peer interval] < res
8
9

i f node.left exist [l if unary node

then del ete node.left /1 renove all descendants
10. i f node.right exist
11. then del ete node.right /1 same for right side
12. return
13.
14. if node.left exist then Annotated(node.left)
15. i f node.right exist then Annotated(node.right)

Fig. 7 : Tree annotation and pruning algorithm

5.5 Performance Evaluation

In our test setting, we are running on 4 differghysical machines, each simulating a certain
number of peer®. The target time series is split inodifferent sections, distributed over the
peers. We measurB.qex the time to find one segment of the Tig,the total time to find all
segments,Tp the time spent processing the query on each peleich is found by the
experimentation of Section 4.4 (see Tab 3). We glse a calculated estimate of the lower
bound ofTq the time to ship the query, afider the time spent for network transfer of results
(1GB intranet), which we assume constant givennge tseries. Note that with a slower
connection, time spent in transfer is of courseea@r bottleneck. We are running a 500.000
long TS (approx 40 MB) calculating MAGE. It is important to note that we consider that the
time series is already loaded into the P2P network.

Global cost is equal tof,,, =T, +T, + T, + T rassuming that a peer only has to compute a
single segment. Results are shown in Tab. 5. Alllts are ims

P T NDEX Tr Tp To Tner | Trop
8 7.1 56, 8 4473 <1| 400 4930
16 6, 3 100, 8 2176 <1| 400 2677
32 7.4 236, 8 1106 <1| 400 1743
64 8, 4 537, 6 580 <1| 400 1518
128 8,9 1139, 2 286 <1| 400 1825
256 9,7 2483, 2 140 <1| 400 3023

Tab 5. P2P Computation of MAGE of for n=500.000

We can see that computation time has a minimumevidu 324€<128. This value depends on
the length of the query, and on the calculationraipen, therefore we have not tried to
specifically calculate it.

In a centralized client/server environment, toitalet would simply bel., s =T, + T ;. If we
assume thafp=A.n, Tx=B.p.log p andTres=C.n we see that :

B x pxlog(p)+ Ax£+an
P :K1x£x|og(p)+&+}(3:i
n p Gain

TPZP —
TCS
We plot in Fig. 8 a simulation of this gain functjowith fitted factors, using GnuPlot. As we

saw from the results of Tab.5, observe that theimamx gain forn=500.000is obtained for
P =100. Indeed, this function can be used to predichiimaber of peers to use for a given TS.

60

(12)
Axn+Cxn

50
40
30

20

0 0

100000

200000

TS length (n)
300000

400000

50 100 150 200

250 300 350 200 450 500000

500

MNumber of peers (p)

Fig. 8 Relative Gain using P2P, function of numbigpeers P) and TS lengthn)

6. Related Work

6.1 Time Series Functionality

As pointed out in the introduction, a lot of work dime series has focused on efficient
representations for distance computation [7]. P@Rwdce computation could be an interesting
new topic that we plan to study. However, as TSaare of the most frequently encountered
forms of data, some efforts have been done toiefiiy integrate and standardize them in
relational DBMSs. The common approach is to intoedthe support for sequences as a new
ADT. The authors of [21] show the weakness of #pproach and propose sorted relations to
model sequences, along with a generic algebra ameeey optimizer. SQL3 OLAP provides
some complex SQL extensions to deal with ordered dad windows. Our approach is more
functional, application driven, and extensible. discussed above, we are geared towards
introducing time series in XQuery [28] which alrgadtandardizes powerful windowing
construct. [17] proposes a complete framework toimdate and optimize queries on ordered
data. The authors develop a new query languagarfay-tables called AQuery. AQuery could
be a good basis for developing a high level quengliage with a centralized optimizer on top
of our TS library. It has to be extended for P2&cpssing of complex operators, as we propose.

6.2 Stream Data Processing

In this article, time series are stored in main menand not processed on the fly. In contrast to
stream data processing [3], we focus on main memmanyagement rather than on real time and
continuous queries. Some problems are however conamaupport of sliding window queries,
but the solutions are different. We propose a ibisted P2P approach, based on distributed
caches. Some papers discuss distributed approachstseam query processing [6][13]. In
particular, [13] proposes parallel execution okatn query functions by partitioning the data
stream and processing each partition in paraleh tombining the results. We share with them
the idea that to compute efficiently large TS oar slice them. But, the authors of [13] address
the problem of continuous queries and do not Idakan memory distributed caches in a P2P
environment as we do.

6.3 P2P DBMS

The vast majority of research on P2P DBMS has aurated on processing queries on
distributed data sources [20][2][19]. Each datareseus produced independently by different
partners and the role of the P2P networks in a PBMS is to be able to localise relevant
collections of data. As data sources are produeddpendently, many works have addressed
the issue of data integration due to the heteragewé schemas [26]. In contrast our P2P
DBMS works on a horizontal partitioning of time igsraccording to temporality. We do not
have the problem of schema integration but oungtteis to find every pre-computed node of a
functional computation tree on a P2P network. Wgimize the use of already computed series
that are kept in cache at multiple peers. Compa&oedther works, such as [19] where the
parallelism for query processing is done betweévaat collections of data (each collection is
located on a given peer), we propose an inner atale (i.e. time series) parallelism. The
combination of parallelism inside of a collectiamdan a set of collections of data may improve
the query processing performance.

7. Conclusion

In this paper, we have proposed a “stand-aloneéresible model for time series processing.
The model is geared towards a main memory impleatient of time series. We have compared
several implementations, including an integratiothim an XQuey DBMS. For large time

series that do not fit in main memory and/or ameeticonsuming for complex operations, we
propose a solution based on slicing time seriesshadng slices in a main memory P2P Time

Series Management System (TSMS), and to this enchawe developed an initial query
optimizer based on functional query plan annotadiod distribution.

Two meta-questions may now be considered:

() Is the slicing approach efficient enough foraatizing the global overhead of dividing the
TS query and assembling the results? We beliewghisaquestion can be answered positively.
Our benchmark shows that this is possible althabgloverhead introduced by the network has
to be minimized, since it is the greatest bottl&nec

(if) Is there more into effective P2P time serigstems than conventional parallel database
technology? We believe that this question can tssvared positively. P2P networking brings
new problems as DHT indexing and distributed canh@agement. We provide first solutions
to these problems.

To strengthen the affirmative answers to the twestjons, we plan to extend our TSMS with
more functionality such as support for autoregrkessmodels (ARIMA) and distance
computation. These methods require heavy compuatgtiohich is a good point for justifying
P2P computation and parallelism in general. We plaa to develop a more efficient optimizer
for TS queries. We believe that the functional gaya of our model is well suited for efficient
query optimization with efficient cache selectioh.cost model to select the best plan is
required.

Acknowledgements

We would like to acknowledge the ROSES project mensitior many ideas, in particular on the
time series model, and the LIVIC Laboratory in \éltes, for the transportation data.

Bibliography

[1] S. Abiteboul, T. Allard, P. Chatalic, G. Gardaun,Ghitescu, F. Goasdoué, |I. Manolescu,
B. Nguyen, M. Ouazara, A. Somani, N. Travers, Gsiaand S. Zoupanog/ebContent:
Efficient P2P Warehousing of Web Data VLDB 20081428-1431

[21 S. Abiteboul, O. Benjelloun, and T. Mildhe Active XML project: an overviethe VLDB
Journall17, 5 (Aug. 2008), 1019-1040.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and Jd&kh, Models and issues in data
stream system#n Proceedings of the ACM SIGACT-SIGMOD-SIGART Symiposi
Principles of Database Systenis—16, 2002.

[4] |. Botan, P. M. Fischer, D. Florescu, D. KossmahnrKraska, and R. Tamosevicius,
Extending XQuery with Window Functioms VLDB 2007 75-86

[5] B. Butnaru, F. Dragan, G. Gardarin, . ManolescuNBuyen, R. Pop, N. Preda, and L.
Yeh, : atool for measuring P2P platform performandeICDE 20071501 — 1502

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. WahiiggaraCQ: a scalable continuous query
system for Internet databaséis SIGMOD May 15 - 18, 2000

[71 H. Ding, G. Trajcevski, P. Scheuermann, X. Wangl&ogh,Querying and Mining of Time
Series Data: Experimental Comparison of Represimtatand Distance Measurds
VLDB 20081542-1552

[8] J. Ehrlich, F. Saad, S. Lassarre, S. Ronrd@sessment of LAVIA systems: experimental
design and first results on system use and spdeaitmg, 13thWorld Congress and
Exhibition on Intelligent Transport Systems andvides London, October 2006, 8-12

[9] E. Ericsson|ndependent driving pattern factors and their ieftice on fuel-use and exhaust
emission factordn Transportations Research part Blsevier 6 (2001), 325-345

[10] E. Frentzos, K. Gratsias, Y. Theodoridigjex-based Most Similar Trajectory Searth
ICDE 2007816-825

[11] L. Golab, T. Ozsulssues in data stream managemémACM SIGMOD Recordvol:32 ,
Issue 2 (June 2003) : 5 - 14

[12] J. Han and M. KambeBata Mining: Concepts and Techniquésorgan Kaufmann
Publishers, CA, 2005.

[13] M. Ivanova, and T. RisclGustomizable parallel execution of scientific strequeriesin
VLDB 2005 157-168.

[14] E. Keogh A Decade of Progress in Indexing and Mining Largred Series Database
VLDB, 2006

[15] A. Khan and V. ZuberiStock Investing for Everyongohn Wiley &Sons, 1999

[16] G. Koloniari and E. Pitourd&eer-to-peer management of XML data: issues arehrel
challengesSIGMOD Record34, 2 (Jun. 2005), 6-17.

[17] A. Lerner and D. ShashaQuery: Query Language for Ordered Data, Optimizati
Techniques, and Experimenbs VLDB 2003 345-356

[18] A. Lerner, D. Shasha, Z. Wang, X. Zhao, Y. ZRast Algorithms for Time Series with
applications to Finance, Physics, Music, Biologyd ather Suspectén SIGMOD 965-
968, 2004.

[19] B.C. Ooi, K. Tan, A. Zhou, C. H. Goh, Y. Li, C.Yidu, B. Ling, W.S. Ng, Y. Shu, X.
Wang, X., and M. ZhangPeerDB: peering into personal databastsSIGMOD 2003
ACM, New York, NY, 659-659.

[20] V. Papadimos, D. Maier, K. TufteDistributed Query Processing and Catalogs for Peer-
Peer System€onference on Innovative Data Systems ResearchR}zHD03, Asilomar,
USA

[21] R. Ramakrishnan, D. Donjerkovic, A. Ranganathar KBeyer, and M. Krishnaprasad,
1998. SRQL: Sorted Relational Query Languagérisceedings of the 10th international
Conference on Scientific and Statistical Databass&dyjemen(July 01 - 03, 1998). M.
Rafanelli and M. Jarke, Eds. SSDBM. IEEE Computei&y, Washington, DC, 84-95.

[22] J. Risson, and T. MoorSurvey of research towards robust peer-to-peer odsv search
methodsComput. Netw50, 17 (Dec. 2006), 3485-3521.

[23] RoSeS Projedtttp://www-bd.lip6.fr/roses/doku.php

[24] I. Sandu Popa and K. Zeitouhipplementation and Optimization of a Mobile Locatio
Sensor Databaseavailable at
http://www.prism.uvsq.fr/rapports/2008/document_&0B.pdf

[25] J. Shieh, E. KeoghSAX: Indexing and mining terabyte sized time seteSIGKDD,
2008: 623-631

[26] XLive, An XML Light Integration Virtual Engine
http://www.prism.uvsd.fr/index.php?id=xlivye2007

[27] XQ2P, a P2P XQuery Database, feature progressableaht :
http://cassiopee.prism.uvsq.fr/ XQ2P/

[28] XQuery 1.1 working draft, available http://www.w3.org/TR/xquery-11{dec. 2008)
[29] http://www.boursorama.com/

[30] http://www.abcbourse.com/
[31] http://stockcharts.org/

