
HAL Id: hal-00488576
https://hal.science/hal-00488576v1

Submitted on 2 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Multicore Scheduling for the LTE Uplink
Maxime Pelcat, Jean François Nezan, Slaheddine Aridhi

To cite this version:
Maxime Pelcat, Jean François Nezan, Slaheddine Aridhi. Adaptive Multicore Scheduling for the LTE
Uplink. NASA/ESA Conference on Adaptive Hardware and Systems (Ahs 2010), Jun 2010, Anaheim,
United States. �hal-00488576�

https://hal.science/hal-00488576v1
https://hal.archives-ouvertes.fr

Adaptive Multicore Scheduling for the LTE Uplink

Maxime Pelcat, Jean-Francois Nezan
IETR, INSA Rennes, CNRS UMR 6164, UEB,

20, Av. des Buttes de Coesmes,
F 35708 Rennes Cedex 7,

{mpelcat, jnezan}@insa-rennes.fr

Slaheddine Aridhi
Texas Instruments, HPMP Division,
06271 Villeneuve Loubet, France,

saridhi@ti.com

Abstract

The next generation cellular system of 3GPP is named
Long Term Evolution (LTE). Each millisecond, a LTE base
station receives information from up to one hundred users.
Multicore heterogeneous embedded systems with Digital
Signal Processors (DSP) and coprocessors are power ef-
ficient solutions to decode the LTE uplink signals in base
stations. The LTE uplink is a highly variable algorithm. Its
multicore scheduling must be adapted every millisecond to
the number of connected users and to the data rate they re-
quire.

To solve the issue of the dynamic deployment while main-
taining low latency, one approach would be to find efficient
on-the-fly solutions using techniques such as graph gener-
ation and scheduling. This approach is opposed to a static
scheduling of predefined cases. We show that the static ap-
proach is not suitable for the LTE uplink and that present
DSP cores are powerful enough to recompute an efficient
adaptive schedule for the LTE uplink most complex cases in
real-time.

1 Introduction

The 3rd Generation Partnership Project (3GPP) telecom-
munication standards, namely GSM and 3G, are now used
by billions of people over the world. The new 3GPP Long
Term Evolution telecommunication standard (LTE) enables
peak downlink data rates over 100Mbit/s, peak uplink data
rates over 50Mbit/s, cells with radius over 100km and re-
liability in unfavorable transmission conditions. More-
over, up to one hundred users can share simultaneously
the available bandwidth. This high performance is enabled
by advanced techniques including Multiple Input Multiple
Output (MIMO), Orthogonal Frequency-Division Multiple
Access (OFDMA) and Single-Carrier Frequency-Division
Multiple Access (SC-FDMA) [5] [16]. These techniques
must be implemented in the Open System Interconnec-

tion (OSI) Layer 1, also named physical layer, of the LTE
base stations (called evolved NodeB or eNodeB) and User
Equipments (UEs). They come at the expense of compu-
tational power in both eNodeBs and UEs. The processor
frequencies are nowadays limited in order to limit system
power consumption. One power efficient solution to im-
plement complex algorithms in real-time is to use multicore
Digital Signal Processor (DSP) platforms with hardware co-
processors. This paper deals with the efficient implemen-
tation of the LTE physical layer onto such heterogeneous
embedded systems.

Decoding the LTE uplink physical layer in the eNodeB
consists in receiving the multiplexed data from connected
UEs, decoding it and transmitting it to the upper layers of
the standard. Depending on the number of active UEs and
on their instant data rate, the decoding load varies dramati-
cally. We propose in this paper a multicore adaptive sched-
uler with the capacity to recompute every millisecond the
multicore mapping of the algorithm. It uses dataflow graph
transformation and scheduling techniques, usually executed
offline. The adaptive scheduler is in charge of keeping a
low uplink completion time. LTE has strict constraints in
terms of response time, limiting the available time for up-
link and downlink. The scheduler disposes of a graph mod-
eling the execution and the Deterministic-Actor-Execution-
Time (DAET) of each function, i.e. the time needed to exe-
cute each function on each processing element (core or co-
processor). The mapping is chosen after an online simula-
tion of the application execution.

The problem of LTE uplink scheduling is described in
Section 2 and a model of the algorithm is proposed. Sec-
tion 3 explains the limits of precalculated schedules, gives
some related works and presents the adaptive scheduler. Ex-
perimental results are given in Section 4 that show the suit-
ability of the technique in terms of computational power,
memory and schedule quality, even in the LTE most com-
plex cases. They prove that new DSP hardware architec-
tures including several powerful cores bring new multicore
scheduling challenges as well as an enhanced processing

power to solve them.

2 Implementing the LTE Uplink Physical
Layer onto a Multicore Architecture

In this Section, we analyze the problem of LTE uplink
decoding and divide it into a static and a dynamic part.

2.1 The Uplink Decoding

Shared
bandwidth

(1.4 - 20MHz)

A CB

A
B
C

C

15 kHz =
1 subcarrier

RB

1 subframe (1ms)

12
 su

bc
ar

rie
rs

LTE Base Station
= eNodeB

User
Equipments

(UE)

RB

slot slot

ex
am

pl
e:

24

 su
bc

ar
rie

rs
 =

 2
RB

s/
slo

t

Figure 1. The LTE uplink transmission.

The LTE uplink is symbolized in Figure 1. Each UE
sends data to a base station in its own preallocated band-
width. The technology used to multiplex the UE pieces of
data is SC-FDMA [16]. It can possibly be enhanced by
MIMO, as the UEs and eNodeBs have respectively up to
2 and 4 antennas. The available bandwidth is divided into
subcarriers separated by 15 kHz. The eNodeB Medium Ac-
cess Control (MAC) scheduler is a decision module of the
OSI layer 2 that chooses how to distribute the resources be-
tween UEs. It assigns resource elements of 180 kHz (12
sub-carriers) by 1ms (a subframe) to the connected UEs.
Such an element contains a couple of Resource Blocks (RB)
as shown in Figure 1.

Rem. CP
Freq. Shift

FFT

Rem. CP
Freq. Shift

FFT

Rem. CP
Freq. Shift

FFT

SC-FDMA and MIMO decoding (static)

Combine
and

Subcarrier
demapping

RF/
ADC

Equali-
zation

IDFT

Constellation demapping and bit processing (dynamic)

RF/
ADC

Equali-
zationRF/

ADC
Equali-
zationRF/

ADC

Rem. CP
Freq. Shift

FFT

Equali-
zation

Symbol to bit Bit processing CRC

Figure 2. The uplink decoding static and dy-
namic parts.

The physical layer decoding operation can be roughly
divided in two parts as shown in Figure 2 :

1. The static SC-FDMA and MIMO decoding. The pa-
rameters of this part are fixed during runtime (num-
ber of receiving antennas, Frequency Division Duplex
(FDD) or Time Division Duplex (TDD), chosen band-
width...). It removes the Cyclic Prefix (CP), shifts fre-
quency to compensate the Doppler effect due to UE
movements, converts the symbols into frequency do-
main (FFT) and equalizes them using received refer-
ence signals. The data from up to 4 antennas are then
combined and the subcarriers reordered. Finally, an
IDFT brings back the data into time domain.

2. The dynamic constellation demapping and bit process-
ing. The parameters of this part are highly variable
at runtime: number of connected UEs, number of al-
located Resource Blocks, symbol constellation... The
multicore scheduling of this dynamic part must be
adaptive. A graph description of this part will be de-
tailed in Section 2.3.

The first static part can be represented as a Synchronous
Dataflow graph (SDF [12]) and is quite parallel. Conse-
quently, a rapid prototyping tool like PREESM [15] can
efficiently parallelize it at compile time. The multicore
scheduling of the second dynamic part needs to be adapted
to the varying parameters. The constraints on these varying
parameters are detailed in the next Section.

2.2 Application Constraints

Figure 3 shows the different bandwidth configuration of
the LTE physical layer. While the bandwidth varies be-
tween 1.4 and 20 MHz, the number of resource blocks in
one slot NRBMAX

varies between 6 and 100. The larger the
bandwidth is, the more manifold allocation cases are and
the more complex the adaptive scheduling becomes.

BW (MHz) 1.4 3 5 10 15 20
Data Sub-

carriers
72 144 300 600 900 1200

Resource
Blocks

6 12 25 50 75 100

Figure 3. The LTE bandwidth configurations.

In the 20MHz case, the MAC scheduler assigns every
millisecond up to 100 couples of Resource Blocks to a max-
imum of 100 UEs. Depending on its choices, the uplink
physical layer dynamic part needs to be rescheduled onto
the multicore architecture. Next Section explains the model
used to represent the uplink physical layer dynamic part.

2.3 Dataflow Description of the LTE Up-
link Dynamic part

In order to schedule every millisecond the decoding of
one LTE uplink subframe, we need a parameterized model
of the algorithm. The chosen model is a dataflow graph be-
cause dataflow graphs (SDF [12], CSDF for Cyclo-Static
Dataflow [13]...) have proven to be efficient representa-
tions for signal processing applications, in particular due
to the Ptolemy II project [11]. The vertices of dataflow
graphs are called actors. They consume data on their input
edges, process them and produce the results on their output
edges. They exchange data exclusively via edges. An ac-
tor is called (or fired) as long as there is data to consume
on its input edges. Actors can migrate from one processing
element to another with no side effects on shared data.

We call the graph model used to represent the dynamic
part of the LTE uplink physical layer the Parameterized
Cyclo-Static Directed Acyclic Graph (PCSDAG). It is a
subset of the CSDF model. It presents two main advan-
tages:

• As a subset of CSDF, it can compactly model an al-
gorithm with complex production or consumption pat-
terns. It is the case of our algorithm because the num-
ber of resource blocks assigned to each user varies
much.

• The simplifications enable an fast transformation into
an Homogeneous Directed Acyclic Graph (HDAG)
ready to be scheduled.

The simplifications comparing to CSDF are that:

• a PCSDAG has no cycle,

• it contains only one vertex without input edge,

• the number of firings of this first actor is fixed to 1.

An HDAG is also a graph with no cycle and in which
each edge have equal data production and consumption.
The HDAG actors are instances of PCSDAG actors. Each
HDAG actor is fired only once.

The data token production and consumption of each
PCSDAG edge are set by the MAC scheduler. They can
either be a single integer value or a pattern of integer val-
ues. For example, a consumption of the number of resource
blocks per UE can contain the pattern {10, 5, 3, 1, 1}, mean-
ing that the actor will consume 10 data on the first firing, 5
on the second and so on. 1 millisecond before each sub-
frame, all the production and consumption patterns are set
by the MAC scheduler. We can then expand the PCSDAG
into an HDAG and schedule the HDAG.

Figure 4 shows a simplified view of the LTE uplink PCS-
DAG description. The shape of the graph depends on the
following parameters:

• the current number of UEs: nb UE,

• A pattern of parameters giving the num-
ber of couples of resource blocks allocated
in each subframe to each UE: RBs UE =
{RBs UE1, RBs UE2, RBs UE3...}. This
pattern has a maximum length of 100.

• the maximum number of resource blocks allocated in
each slot to one UE: max RBs UE.

1
1

max_RBs_UE

(max_RBs_UE * nb_UE)

RBs_UE

RBs_UE

1

RBs_UE RBs_UE

1
1

1

(static part)
1 rep

nb_UE reps nb_RB reps nb_UE
reps

MIMO decoding Symbol to bit Bit processing CRC

Figure 4. PCSDAG description of the LTE
uplink dynamic part with data productions
and consumptions recomputed every mil-
lisecond.

The Deterministic-Actor-Execution-Times of the LTE
uplink graph actors also depend on parameters set by the
MAC scheduler. The MIMO decoding part in Figure 4 cor-
respond to the expanded static part in Figure 2. The next
vertices successively convert the symbols in bits and then
process those bits to prepare a data frame for the OSI Layer
2.

2.4 Target Architectures

C64x+

Switched Central Resources

EDMA3
RapidIO

DDR2 External Memory

Gem0
C64x+

L2

TMS320TCI6488 (1GHz max) TMS320TCI6486
(700MHz max)C64x+Gem1

C64x+

L2

C64x+Gem2
C64x+

L2

Gem0
C64x+

L2

Gem1
C64x+

L2

Gem2
C64x+

L2

Gem3
C64x+

L2

Gem4
C64x+

L2

Gem5
C64x+

L2

Switched Central Resources

DDR2 External Memory

EDMA3RapidIO

Shared
L2

TCP2

Core or Coprocessor Memory Communication Element

Figure 5. Target architecture example: two
multicore DSPs connected with a RapidIO se-
rial link.

The architectures targeted by this study are the Texas
Instruments high performance architectures based on the

c64x+ core. The 6-core TMS320TCI6486 DSP (tci6486)
and the 3-core TMS320TCI6488 DSP (tci6488) are exam-
ples of such architectures. Any combination these DSPs
(interconnected with RapidIO [2] serial links for instance)
are also targeted architectures. The dataflow graph schedul-
ing techniques naturally handle heterogeneity in data links
and processing element, enabling targets with coprocessors,
different DSP frequencies and different communication me-
dia. The tci6488, for instance, includes a turbo decoding co-
processor that can help decoding the uplink physical layer.
Figure 5 gives a simplified view of an architecture example
with a tci6486 connected to a tci6488 by a RapidIO link.
The tci6488 has only distributed on-chip memory, local to
each c64x+ core, while the tci6486 also includes a shared
on-chip memory of 768 KBytes. They both contain an En-
hanced Direct Memory Access (EDMA [7]) to transfer data
in parallel with calculation.

3 Adaptive Multicore Scheduling of the LTE
Uplink Physical Layer

An obvious solution to efficiently schedule a variable al-
gorithm onto such a heterogeneous architecture is to sched-
ule it offline in all its configurations and switch between the
pre-computed schedules online. We will now analyze the
limits of such an approach.

3.1 The Limits of Pre-computed Schedul-
ing

Assigning a given number of resource blocks to UEs is
a problem equivalent to partitioning the number of resource
blocks into a sum of integers. The problem of integer par-
tition is illustrated by Ferrer diagrams in Figure 6. Given a
numberNRB of resource blocks to assign, it gives the num-
ber of different allocation configurations p(NRB), i.e. the
possible number of different graphs to schedule and map
for a given amount of resource blocks. The number of re-
source blocks NRB allocated every millisecond also varies
between 0 and NRBMAX

. In Section 2.2, NRBMAX
was

shown to be a constant for each eNodeB fixed between 6
and 100 depending on the LTE uplink bandwidth. The total
number of different graphs for a given eNodeB uplink is:

P (NRBMAX
) =

NRBMAX∑
i=1

p(i). (1)

For the simplest case of a 1.4MHz uplink bandwidth with
only 6 RBs to allocate, the number of graphs is 29. It is
possible to precompute and store the scheduling of these
29 graphs. However, the number of graphs increases ex-
ponentially with NRB and the 3MHz case with 12 RBs al-
ready generates 271 cases. As a consequence, the schedul-

ing of all the LTE uplink cases with bandwidth higher than
3MHz can not be statically scheduled. As an example,
P (50) = 1.295.970.

Many papers have detailed multicore scheduling of static
applications onto heterogeneous architectures. Next Sec-
tion will explain the differences between some related
works and the current study.

3.2 Some Related Works on Dataflow
Scheduling

The multicore scheduling of dataflow actors is composed
of two operations:

• Mapping consists in choosing a processing element to
execute each actor.

• Scheduling consists in finding an order of execution for
all the actors mapped on a given processing element.

Both operations must be executed jointly for the multi-
core scheduling decisions to be appropriate. The main prob-
lem in LTE uplink scheduling is the fast variability of the
graph size and shape over time. In [9], quasi-static schedul-
ing techniques are cited and developed that schedule dy-
namic graphs at compile time. All possible combinations of
parameters are scheduled, which would be impossible here
because the number of cases is very high (see Section 3.1).
These techniques are more adapted to Boolean conditions
than to parameters that can switch anytime between as much
as 100 possibilities. This problem justifies the use of online
scheduling instead of quasi-static offline scheduling.

Another dataflow online scheduling method is developed
in [4]. However, it focuses on image processing algorithms
that can be modeled by a flow-shop problem, i.e. several
independent jobs each composed of sequential actors. The
LTE uplink can not be modeled that way. The technique is
thus not applicable here.

In [10], many static scheduling techniques are tested and
some efficient ones proposed. We use, in this paper, a sim-
plified version of the list scheduler described in [10]. It
shows efficiency for the current application scheduling and
stays feasible with strict timing scheduling time constraints.
The adaptive scheduler, presented in next Section, is the
combination of a graph expansion and this list scheduler.

3.3 Structure of the adaptive Scheduler

The adaptive multicore scheduler is illustrated in Fig-
ure 7. It contains an initialization phase that generates the
PCSDAG and precomputes the graph parameters expres-
sions. The rest of the processing is called each millisecond
when the MAC scheduler changes the resource block allo-
cation. The scheduler consists in 2 steps:

3 RBs
2 RBs

5 RBs
4 RBs

7 RBs
6 RBs

8 RBs

1 RB 1 allocation pattern; 1 UE max

3 allocation patterns; 3 UEs max

7 allocation patterns; 5 UEs max
11 allocation patterns; 6 UEs max

15 allocation patterns; 7 UEs max
22 allocation patterns
; 8 UEs max

100 RBs
50 RBs
25 RBs 1.958 allocation patterns; 25 UEs max

204.226 allocation patterns; 50 UEs max
190.569.292 allocation patterns; 100 UEs max

RB per user

UEs

2 allocation patterns; 2 UEs max

5 allocation patterns; 4 UEs max

Figure 6. The problem of allocating resource blocks to UEs is equivalent to integer partitions repre-
sented here in Ferrer diagrams.

• The graph expansion step transforms the PCSDAG
into a HDAG with a shape depending on the PCSDAG
parameters.

• The list scheduling maps each actor in the graph to a
processing element (core or coprocessor) in the archi-
tecture.

The architecture model is a simplified version of the one
in [14]. It specifies the data rates between each pair of
processing elements, mapping constraints and DAET, i.e.
which actors can be executed by each processing element
and the time necessary for each computation. The goal of
the initialization step is to reduce as much as possible the
loop complexity. It parses the expressions of the PCSDAG
edges productions and consumptions and converts them into
a Reverse Polish Notation (RPN) stack using the Shunting
yard algorithm [6]. RPN specifies in a bracket-less expres-
sion the order of expression evaluation.

Graph
Expansion

List
Scheduling

Initialization

from LTE Layer 2

PCSDAG
HDAG Schedule

to Runtime

PCSDAG parameters
Adaptive Scheduler

< 1ms

archi

Figure 7. Adaptive multicore scheduling
steps: graph expansion and list scheduling
are called in a loop every millisecond.

The output of the adaptive scheduler feeds a runtime.
This runtime can for instance implement a multicore API
(OpenCL [1], Multicore Association [3]...). The sum of
graph expansion and list scheduling execution times must
stay under 1ms for the scheduler to be usable in the LTE
uplink. These two operations are detailed in next Sections.

3.4 Adaptive expansion of PCSDAG into
Homogeneous Directed Acyclic Graph

Figure 8 gives 4 examples of HDAG graphs generated
from expansion with different allocation schemes of the
PCSDAG in Figure 4. The number of vertices in the HDAG
is:

V = 2 + 3 ∗ nb UE + 2 ∗NRB . (2)

The maximal size of the HDAG is thus 502 vertices.
To generate the second case (2 UEs - 5 RBs), we have
nb UE = 2, RBs UE = {2, 3} ,and max RBs UE = 3
in the PCSDAG graph.

1
10

10

3

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 10 1 1 1 1

1

10

10

10

1

1

1

1

1

1

1

1

1

1

1

1

1
10

10

9

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

1 UE - 1 RB

2 UEs - 5 RBs

3 UEs - 3 RBs

2 UEs - 10 RBs

Figure 8. Examples of HDAG graphs gener-
ated from the PCSDAG description in Fig-
ure 4.

The PCSDAG graph model has been chosen to simplify
and fasten the expansion step. The adaptive scheduler cal-
culates the number of firings of each actor, gathered in the
so-called Basis Repetition Vector (BRV [17]), using only
the firings of the preceding actors and the productions and
consumptions of the incoming edges. Productions and con-
sumption are computed from RPN expression stacks. The
fact that there is no loop in the graph and that there is only
one source vector with a firing of 1 enables this greedy

method. There is no schedulability checking in the expan-
sion step. The graph schedulability can be verified offline
using rapid prototyping tools like PREESM [15]. Once
the BRV has been calculated and the HDAG vertices have
been created, the appropriate edges are added to intercon-
nect them.

By comparison with SDF, SDF schedulability checking
and expansion into HSDF requires to study the null space of
an M-by-N matrix called topology matrix [17] with M the
number of vertices and N the number of edges. This kind of
operation is too costly to be executed in an online scheduler.

When the PCSDAG graph has been expanded, the result-
ing HDAG is ready for the list scheduling explained in the
next Section.

3.5 List scheduling of the Homogeneous
Directed Acyclic Graph

The list scheduling used is a simplified version of the
greedy algorithm described in [10]. It is greedy in that it
never questions one of its previous mapping choices. The
list scheduling process is illustrated in Figure 9.

1
10

10

3

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 UEs - 5 RBs

PE1

PE2

1 2 3 5 7 9 11 13 15 17

4 6 8 10 12 14 16 18

Latency

Mapping each actor on each
processing element and

choosing the mapping with
earliest termination date

Figure 9. Example of the list scheduling of
HDAG actors.

2000 400 600 1000800 1200 1400

Figure 10. Example of a schedule Gantt chart:
case with 100 RBs and 100 UEs on the archi-
tecture from Figure 5 with one core reserved
for the scheduling.

There is no actor reordering process before executing the
list scheduling. In the LTE uplink case, this has no conse-
quence on the scheduling quality because all the paths from
the first actor to the actors without successors are equiva-
lent. In a more complex case, a suboptimal input list multi-
plies the completion time by a factor λ ≤ 2−1/n [8] where
n is the number of target cores. This result is an approxima-
tion because the data transmission latencies are ignored.

The next Section gives some implementation results of
the adaptive scheduler.

4 Implementation and Experimental results

A special care is given to the adaptive scheduler imple-
mentation genericity, compactness and speed. The whole
code is written in C++ with private members and inlined
accessors.

4.1 Memory footprint of the adaptive
scheduler

In order to reduce the execution time, the adaptive sched-
uler contains no dynamic allocation. Its memory footprint
(Figure 11) is only 126 KBytes. Each c64x+ core of the
tci6486 and tci6488 processors presented in Section 2.4 re-
spectively has an internal local memory of 608 KBytes and
500 to 1500 KBytes. The footprint is small enough to fit in
the internal local L2 memory of any of these cores.

Half of the memory footprint is taken by the graphs. The
PCSDAG great size is due to the variable patterns stored in
RPN. The HDAG graph has a sufficient size to contain any
LTE uplink configuration. One third of the footprint is taken
by the code. Compilation is optimized for speed; the code
size could be reduced by optimizing for code size.

HDAG G raph 28.680

Expansion and S c heduler 2.488
P ars er 11.328

S tac k 1.024

P attern
initializ ation
4.000

Code 40.800

O ther 2.836
A rc hitec ture 88

PCSDAG G raph
37.292

Total 128.536 Bytes

Figure 11. Memory footprint, in Bytes, of the
statically allocated adaptive scheduler.

4.2 Impact of the Graph and Architec-
ture Sizes on the Adaptive Scheduler
Speed

Figure 12 shows that the execution time increases lin-
early when the graph size increases. The graph expansion
time for very small HDAGs is due to the complex RPN vari-
ables evaluation. The worst case execution time is less than
950.000 cycles, enabling real-time on a c64x+ at 1GHz.
One core of a tci6488 can thus reach real-time with this
code.

Total
Graph Expansion
List Scheduling

Time in cycles

Number of vertices in the HDAG
0

100.000
200.000
300.000
400.000
500.000
600.000
700.000
800.000
900.000

1.000.000

0 50 100 150 200 250 300 350 400 450 500 550

Figure 12. Impact of the HDAG graph size on
the execution time of the LTE uplink schedul-
ing on the architecture in Figure 5 with one
core reserved for the scheduling.

In Figure 13, we can see that increasing the number of
cores of the architecture also augments the adaptive sched-
uler execution time linearly. The maximum number of tar-
get cores with the present implementation and a DSP at
1GHz is 9 (including one for scheduling). Specific Texas In-
struments optimizations with intrinsic and pragma can im-
prove this result.

4.3 Evaluating the Limits of the Target
Architecture

Depending on the current number of decoded RBs and
the current number of communicating UEs, the completion
time of the LTE uplink dynamic part changes. Figure 14
shows the speedup obtained due to the use of multicore in-
stead of a single c64x+ at 700MHz. It approaches the the-
oretical maximum of 8.8 as soon as the graph becomes big
enough. We can see in Figure 15 that the architecture in
Figure 5 with one core of the tci6488 kept for scheduling
and no coprocessor is sufficient to decode the LTE uplink in
1 millisecond for 50 RBs and 50 UEs, i.e. for the 10MHz
bandwidth case. The static part of the algorithm is not taken

Total
Graph Expansion
List Scheduling

Time in cycles

Number of processing elements
in the architecture0

100000
200000
300000
400000
500000
600000
700000
800000
900000
1000000

0 1 2 3 4 5 6 7 8

Figure 13. Impact of the number of process-
ing elements on the LTE uplink scheduling
execution time with a LTE uplink worst case.

into account in this simulation. The problem of the multi-
core partitioning of the static part is easier because it can be
solved offline. It will need to be pipelined with the dynamic
part in order to respect the 1ms execution time limit.

00

0
10

20
30

40
50

60
70

80
90
100

0102030405060708090100
1
2
3
4
5
6
7
8

UEs
resource blocks

speedup using
8 cores instead
of one

Figure 14. Schedule speedup vs. number of
RBs and UEs using the architecture from Fig-
ure 5.

In order to solve the 20MHz case, some coprocessors
must be used or some cores added. As long as the number of
processing elements is kept under 9, the adaptive scheduler
executed on a c64x+ at 1GHz can solve the 20MHz problem
as is.

5 Conclusion

In this paper, we present a dataflow scheduling algo-
rithm applied to the LTE uplink physical layer decoding and

resource blocks
UEs

completion time (x1000 cycles)

0 20 40 60 80 100

020406080100
0

200

400

600

800

1000

1200

00

1400

1600

Figure 15. Impact of the number of RBs and
UEs on the completion time of the uplink dy-
namic part on the architecture in Figure 5; the
limit of 1ms is reached for a maximum of 50
RBs and 50 UEs, i.e. the 10MHz case.

executed on a heterogeneous multicore architecture. The
scheduling is executed on-line to adapt the multicore map-
ping choices to the application variations. We show that
off-line solutions are not suited for the current application.
Moreover, results prove that the scheduling execution time
and the results of the scheduling are compatible with the
strict time constraints of LTE.

The method is not limited to the LTE uplink algorithm.
The adaptive multicore scheduler targets any highly vari-
able algorithm that can be described with a Parameterized
Cyclo-Static Directed Acyclic Graph, including the LTE
downlink encoding.

References

[1] OpenCL. http://www.khronos.org/opencl/.
[2] RapidIO. http://www.rapidio.org/home/.
[3] The Multicore Association. http://www.multicore-

association.org/home.php.
[4] J. Boutellier, S. S. Bhattacharyya, and O. Silvn. A low-

overhead scheduling methodology for fine-grained acceler-
ation of signal processing systems. Journal of Signal Pro-
cessing Systems, 2009.

[5] E. Dahlman, S. Parkvall, J. Skold, and P. Beming. 3G Evo-
lution: HSPA and LTE for Mobile Broadband. Academic
Press Inc, June 2007.

[6] E. Dijkstra. Algol 60 translation. Supplement, Algol 60 Bul-
letin, 10, 1960.

[7] B. Feng and R. Salman. TMS320TCI6482 EDMA3 perfor-
mance, texas instrument technical document (SPRAAG8),
Nov. 2006.

[8] R. L. Graham. Bounds for certain multiprocessing anoma-
lies. Bell System Technical Journal, 45, 1966.

[9] S. Ha and E. A. Lee. Compile-time scheduling of dynamic
constructs in dataflow program graphs. IEEE Transactions
on Computers, 46, 1997.

[10] Y. Kwok. High-performance algorithms of compile-time
scheduling of parallel processors. PhD thesis, Hong Kong
University of Science and Technology (People’s Republic of
China), 1997.

[11] E. Lee. Overview of the ptolemy project. Technical mem-
orandum UCB/ERL M01/11, University of California at
Berkeley, 2001.

[12] E. A. Lee and D. G. Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal process-
ing. IEEE Transactions on computers, 36(1), 1987.

[13] T. M. Parks, J. L. Pino, and E. A. Lee. A comparison of syn-
chronous and cyclo-static dataflow. In Proc. of ASILOMAR,
page 204210, 1995.

[14] M. Pelcat, J. F. Nezan, J. Piat, J. Croizer, and S. Aridhi.
A System-Level architecture model for rapid prototyping of
heterogeneous multicore embedded systems, 2009.

[15] M. Pelcat, J. Piat, M. Wipliez, J. F. Nezan, and S. Aridhi.
An open framework for rapid prototyping of signal process-
ing applications. EURASIP Journal on Embedded Systems,
2009.

[16] S. Sesia, I. Toufik, and M. Baker. LTE, The UMTS Long
Term Evolution: From Theory to Practice. Wiley, 2009.

[17] S. Sriram and S. S. Bhattacharyya. Embedded Multiproces-
sors: Scheduling and Synchronization. CRC, 1 edition, Mar.
2000.

