
HAL Id: hal-00488527
https://hal.science/hal-00488527v1

Submitted on 22 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rapid application development on multi-processor
reconfigurable systems

Linfeng Ye, Jean-Philippe Diguet, Guy Gogniat

To cite this version:
Linfeng Ye, Jean-Philippe Diguet, Guy Gogniat. Rapid application development on multi-processor
reconfigurable systems. The International Conference on Field Programmable Logic and Applications
(FPL), Aug 2010, Milan, Italy. �10.1109/FPL.2010.65�. �hal-00488527�

https://hal.science/hal-00488527v1
https://hal.archives-ouvertes.fr

Rapid application development on multi-processor reconfigurable systems

Linfeng Ye, Jean-Philippe Diguet, Guy Gogniat
Lab-STICC, CNRS - European University of Brittany / UBS

Lorient, France
{linfeng.ye, jean-philippe.diguet, guy.gogniat}@univ-ubs.fr

Abstract—Considering the ability to perform multi-processor
architecture systems on FPGA, partial reconguration is an
opportunity to improve weak soft-core performances by spe-
cializing coprocessors according to context-dependent applica-
tion needs. But at the application level, there is a need for
straightforward programming models that allow applications
to be easily mapped on an ad hoc architecture without tedious
rewriting, while at the same time ensuring efcient production
code. In this paper we describe two programming libraries
XTask and XFunc, which are written in C and rely on a
recongurable MPSoC architecture model (XPSoC) and on
HW/SW libraries of standard functions that can be easily used
by means of HW independent API. Finally, we demonstrate the
XPSoC methodology, with the design of a self-adaptive image
encoding system including runtime conguration decisions.

Keywords-Reconfigurable computing; MPSoC; Rapid appli-
cation development; XPSoC; Run-time partial reconfiguration.

I. INTRODUCTION

The emergence of high-capacity FPGA provides the abil-
ity to design heterogeneous multi-processor architecture
systems, and when the software (SW) can configure the
hardware (HW) at run-time, we must admit that the dividing
line between SW and HW domains is blurring. Reconfig-
urable architectures provide relevant solutions for designing
ad hoc embedded systems that can reach high performances
and HW efficiency with low clock frequencies. They are also
appropriate for long-life products where HW updates and
evolutions, based on reconfiguration, make sense. Dynamic
and partial reconfiguration capabilities are not really widely
used today out of research laboratories, mainly because of
prohibitive design and programing efforts. Thought there is
a real interest to dynamically specialize MPSoC architecture
according to context-dependent application needs. So a
specific focus is needed to propose relevant and standard
solutions for online configuration decisions.

However, FPGA-based solutions also mean important HW
design efforts. Indeed, performances of such embedded
systems are usually related to the exploitation of spatial par-
allelism and heterogeneous architectures, which mean signif-
icant design cost overheads. Contrary to other solutions such
as GPP and DSP, widely used in embedded systems, FPGA
suffers from a lack of standard solutions that limits design
reuse. For instance the popularity of TI (Texas Instrument)
devices in the domain of embedded systems, relies on the
definition of API (VISA, xDM [1]) for coprocessors access

and on binaries for direct implementation of standard appli-
cations. We also notice that the development of complex
multi-core architectures is supported by specific libraries
for efficient implementation of standard applications and
functions. Intel IPP primitives for instance target different
application domains (image, security etc.). We believe that
such approaches are also relevant for reconfigurable devices,
but architecture models must be defined first.

So, we focus our work on three points. First, we consider
an intensive reuse of standard functions based on open
libraries to be used by developers through API within legacy
application code. These API are architecture independent
and can rely on HW or SW implementations. Secondly,
we define scalable architecture models that fit with API
and dynamic and partial reconfiguration capabilities. Finally,
we introduce on-the-fly reconfiguration based on an online
decision algorithm and offline application profiles. The ob-
jective is to dynamically adapt HW resources to optimize
architecture efficiency according to variable application re-
quirements in terms of standard functions use. The rest of the
paper is organized as follows. We discuss the related work in
section II. Then we present our architecture model in section
III and our APIs in section IV. Our flow, for rapid appli-
cation development based on XTask/XFunc APIs libraries,
is described in section V. Finally, we demonstrate its effi-
ciency with results for a representative network/multimedia
application in section VI.

II. RELATED WORK

Numerous experiences have been carried out in the do-
main of reconfigurable architectures. A new taxonomy is
introduced by Göhringer [2], that shows the complexity of
the new degrees of freedom in terms of run-time adaptivity
and presents a solution to classify the different approaches
provided by academics and industry. This evolution of
Flynn’s taxonomy [3] is quite complex because it takes into
account static and reconfigurable Single- and Multiprocessor
SoC. Hereafter, we present our simplified taxonomy for
reconfigurable SoC (RSOC) in section III.

The RAMSoC [4] is an interesting project, where are
addressed the two main drawbacks of traditional approaches.
The first one is the necessity to find a trade-off between
homogeneous and application-specific MPSoC. The second
one is a meet-in-the-middle methodology that offers runtime

configuration capabilities. As ours, this work is related to
an architecture model with various processor types. The
proposed solution is based on soft-processor (µBlaze) with
configurable accelerators that can communicate through a
configurable network on chip. The MOLEN [5] reconfig-
urable processor uses microcode and custom configured HW
to improve performance, which allows the programmer to
modify the processor functionality and HW without archi-
tectural and design modifications. However the focus is not
the design flow but the platform. In both previous projects,
there are no references to a programming model with stan-
dard API, which are nevertheless required to transparently
use processor, HW accelerators or co-processors. Moreover,
there is no solution given for self-adaptivity, actually runtime
reconfiguration is possible but no decision algorithm and
synchronization techniques are provided.

The hArtes Approach [6] addresses the development
of an holistic tool-chain for reconfigurable heterogeneous
platforms. The entire tool-chain consists of three phases:
Algorithm Exploration and Translation, Design Space Ex-
ploration and System Synthesis. The objective of the hArtes
design flow is to automate the rapid design of heterogeneous
embedded systems. But from the reconfigurable application
designer’s point of view, it’s rarely necessary to design a
specific reconfigurable MPSoC platform, that is why we
propose a rapid application development based on multi-
processor reconfigurable systems.

The link with an OS is an important point regarding
standard application reuse. In parallel with our work, we ob-
served that extension of current OS for simultaneously man-
aging HW and SW threads have been proposed. Bergmann
et al. [7] present a solution based on µcLinux implemented
on the µBlaze soft-core processor. In this approach HW
modules are considered as usual processes with their own
address space. This work mainly focuses on HW/SW inter-
process communications (IPC) and provides a transparent
use of UNIX pipes which are implemented with µBlaze
FIFO (FSL). So et al. present the BORPH project in [8],
which introduces a unified interface for SW and HW threads
that extends a standard Linux environment. BORPH is
also based on the use of Linux pipes for implementing
inter-process communication no matter their HW or SW
implementations. Another approach has been chosen in [9]
but also relies on standard POSIX interfaces.

We use Petalinux [10] as an available Linux distribution
for µBlaze, but our view is different since our approach
relies on communication between master processors run-
ning Linux and specialized slaves, without OS, executing
computation intensive applications. Thus, our objective is to
decide configuration online and to provide synchronization
solutions between master and slaves and to execute programs
where registered functions are called. So our contribution,
regarding this aspect, is independent from the OS choice
and mainly related to the way a master can specialize and

fire slaves with specific computing intensive tasks. From an
OS point of view, it means that we use available synchro-
nization mechanisms. From a SW perspective, application
are designed by means of standard libraries called through
API independent from implementation. Finally, system ob-
servation and decision of specialization are implemented as
new threads running on the master. Thus our solution is
closer to TI approach, used for instance for the Da Vinci
SoC to implement video codec on coprocessor through
standard API. However we adapt this approach to the domain
of dynamically and partially reconfigurable architectures,
where a master processor can dynamically assign tasks to
slave processors which are configured at run-time.

III. ARCHITECTURE MODEL

A. Taxonomy

We propose a new taxonomy for the classification of
RSoC as shown in Fig.1. This classification scheme is based
on three streams: Instruction, Data and Configuration. We
consider that a configuration stream, in a RSoC, is a special
data stream, which supports instruction execution. Thus, to
the Flynn Single / Multiple taxonomy regarding instruction
and data streams, we add a new layer according to configura-
tion stream management. Thus the classification is divided
into Single (SC) and Multiple (MC) Configuration stream
systems. A representative system for this new taxonomy is
the XPSoC that fits the MCMIMD class. Indeed, XPSoC
can manage multiple instructions and multiple data and can
be reconfigured at run-time.

SCSISD SCSIMD

MCSISD MCSIMD

SCMISD SCMIMD

MCMISD MCMIMD

Flynn’s taxonomy

SISD SIMD MISD MIMD

Single
Configuraiton

Multiple
Configuraiton

Figure 1: Taxonomy of reconfigurable architectures

B. XPSoC multiprocessor architecture model

The XPSoC is based on a master processor (XManager)
and possibly multiple slave processors (XWorker) and mul-
tiple reconfigurable resources (XModules). An XModule
can be implemented within a standalone HW accelerator
(XAccelerator) connected to the system bus or as a HW co-
processor directly connected to a XWorker. This model has
been designed for data-flow applications. Communications
between processors, for data and control, are implemented
with shared memories (data) and message passing (control).

XManager runs Petalinux [10], it is in charge of I/O
communications and process management. XWorker exe-
cutes one task at a time, this task is decided by XManager.
When a XWorker is in a sleep mode, it pends on its shared
memory waiting for some new tasks to execute. A general

XManager
(Linux)

XWorker-1
(µKernel)

XWorker-n
(µKernel)

ETH

GPIO

UART

ICAP

TIM

INT

TIM

INT

TIM

INT

System Memory
(XManager, DDR)

Shared Memory-1 Shared Memory-2

C11

C12

Cn1

Cn2
Cn3 XAccelerator

XModule XModule

MUTEX

XModule

Application Profiles

Application A
-List of STD critical
functions
-Fi (Ti_sw, gi', Ni')

XWorker-1 model
XTask queue: I/O buffer
@, pgm @, synchro bits
C11-status (FUID, Synchro
bits)
C12-status
XWorker-1 feedbacks (Ti)
XWorker-1
- I/O Data buffers
- XTask Binaries

XWorker-2 model

XTask queue: I/O buffer
@, pgm @, synchro bits

C21-status (FUID, Synchro
bits)

C22-status

XWorker-2 feedbacks (Ti)
XWorker-2
- I/O Data buffers
- XTask Binaries

C23-status

Architecture Model
M0W2W3A1

Figure 2: XPSoC: Architecture Model and Synchronization

definition of the XPSoC is defined by the following string:
MaWbWc...Ad, where Ma is a XManager with a places
for reconfigurable coprocessors, W means a XWorker with b
and c reconfigurable coprocessors and A is a single-block
XAccelerator with d reconfigurable places. .

Fig.2 shows an example of a given architecture model
(M0W2W3A1) composed of one XManager, two XWork-
ers and one XAccelerator. The two XWorkers have
two and three reconfigurable coprocessors (C11,C12) and
(C21,C22,C23) respectively. These coprocessors, which
are accessed through FSL links when the softcores are
µblazes, are configured by the XManager at run-time.
Note that Xilinx partial reconfiguration flow enables execu-
tion/reconfiguration overlapping. Thus, the XManager can
reconfigure an unused co-processor without freezing the
XWorker. So, the XManager can optimize performances by
anticipating application requirements according to upcoming
function calls.

C. Software architecture and synchronization

A data-flow application is specified with a profile in sys-
tem memory. This profile is downloaded with execution files
(binaries, bitstreams), and provides XManager with a list
of standard functions identified as critical during an offline
profiling step. An application is modeled as a set of tasks to
be executed in four different ways. The first one is a pure
SW execution by XManager as a Linux thread. The second
one is an execution by XManager with a standard function
fully implemented on a HW XAccelerator. The third solution
is a SW execution of the thread on a XWorker. The fourth
method consists in running the thread on a XWorker with a
standard function implemented on co-processors. For each
version, a SW binary file is required. Considering that
most connected embedded systems are based on standard
functions, we assume they can be available in the system
memory or loaded from remote configuration servers.

For each XWorker, a configuration table is defined in a
memory space shared with the XManager as shown partially
in Fig.2, this table contains records used for XWorker /
XManager synchronization. The first record provides global
parameters such as architecture model ID (XMID), XWorker
status and input and output addresses and sizes. The second
record is the queue of tasks to be executed. Each task is
specified with addresses pointing on HW and SW versions
of task binaries, with input and output data buffer addresses
and sizes. Then a new record is added for each co-processor,
it mainly contains the standard function ID (FUID) that
also indicates I/O data formats. At this level, there are two
synchronization bits. The ”ENable” bit is written by the
XManager, it indicates to the XWorker that a hardwired
function is ready and can be used for next task execution.
The ”Done” bit is written by the XWorker, it indicates to the
XManager that the coprocessor is no more used by current
task.

Although, such a dynamically reconfigurable hardware
environment is not sufficient from a SW designer point of
view. Indeed, there is still a need, at the application level,
for programming models and communications APIs. These
APIs must enable designers to easily map applications over
many different possible reconfigurable architectures without
tedious rewriting, while at the same time ensuring efficient
production code. To cope with this issue and improve
XPSoC reuse of reconfigurable IPs (XModule), we propose
two API libraries: XTask and XFunc. A SW architecture
overview for XPSoC is shown in Fig.3.

XWorker-1

Mini-Kernel

XManager

Linux

XPSoC-V2 Hardware

XTask API

XTask
API

Application (e.g. Audio, Image, Video, networking)

XFunc
API

XFunc
API XWorker-n

XModules XModules

Drivers Drivers

Figure 3: Software architecture based on XTask/XFunc APIs

IV. APIS FOR RECONFIGURABLE APPLICATION

A. Principle

Based on our development experience on XPSoC, we
observe common software developments in all applications.
They are related to Task management, Synchronization,
Runtime configuration decision and Reconfiguration. More-
over considering productivity constraints and debugging
overhead, the SW engineer cannot and must not spend too
much time to understand details about configurable copro-
cessors and accelerators or on-the-fly partial reconfiguration
steps. So at the application level, there is a need for a

clear separation of concepts, this is the objective that has
motivated the development of XFunc/XTask API libraries.

B. XFunc API

XFunc is a set of generic functions that can be special-
ized to handle various application domains (Video, Audio,
Network, etc), and to provide a unified programming pro-
totype for both HW and SW versions. XFunc is specified
as XFuncClass of Applications(parameters), where the list
of parameters includes in-buffer size and in / out buffer
addresses.

The objective of the XFunc API is first to offer SW
designers a solution to develop applications without a strong
understanding of the complexity of DSP algorithms or
underlying hardware. Secondly it gives the possibility to
change critical functions (e.g. SW or HW Audio / Video
codecs), within the involved class of applications, without
modifying the code at application level. And finally, it
enables the adaptation of any application code to a recon-
figurable MPSoC system.

Various implementations of a given XFunc, corresponding
to various performance/area trade-offs, may be available.
However the API for function calls must remain unchanged
for a given application domain. Fig.4 illustrates a simple
example of a XFunc API for decoding encrypted PGM
images [11]. XFuncImageProcessing is a generic API for
image processing to be executed in HW or SW with the
following parameters. PGM FUID is the function ID of
PGM image processing in this example, inSize is the size
of the input buffer inAddr, and outAddr the output buffer,
finally desc is a pointer to a specific structure used in this
case to get the key chosen for image encryption.

XFuncImageProcessing
(PGM_FUNCTIOND, inAddr,
inSize, outAddr, desc)

/***
 * Decryption
***/
void D (gmap *in, gmap *out, unsigned int key)
{
unsigned int data, bit, i, res, size;
unsigned int *temp, *datain;

temp=(unsigned int*)(out->raster);
datain=(unsigned int*)(in->raster);
size=(in->width*in->height)/4;
for (i=0; i<size; i++)
{
 data=*(datain+i);
 for (bit=0; bit<32; bit++)
 {
 if (bit%2 == 0) {

res |= ((((data >> bit) ^ (key >> bit)) & 0x1UL) << bit);
 } else {

res |= (((~((data >> bit) ^ (key >> bit))) & 0x1UL) << bit);
 } }
 *(temp+i)=res;
 res=0;
} }

(Software version)

XFuncImageProcessing
(PGM_FUNCTIOND, inAddr,
inSize, outAddr, desc)

(Hardware version)

 ...
 key = XTaskGetNextDesc (desc);
 for (i=0; i<size; i++)
 { data=*(datain+i);
 microblaze_nbwrite_datafsl (data, 0);
 microblaze_nbwrite_datafsl (key, 0);
 microblaze_nbread_datafsl (res, 0);
 *(temp+i)=res;}

key = XTaskGetNextDesc (desc);
void D (in, out, key){ ... }

Figure 4: XFunc API: a generic prototype to implement
reconfigurable functions

C. XTask API

XTask is an API that supports reconfigurable application
programming in C on XPSoC. It consists of a set of library
routines and environment variables that create and manage
task to be executed on XWorkers. The main services offered
by XTask APIs are:

• Creation, suspension, kill of XTasks.
• Synchronization between XManager and XWorkers.
• Management of XModules (reconfigurable resources).
• On-the-fly reconfiguration decision.
• Control of dynamic partial reconfiguration.
The XManager creates a specified number of XWorker

tasks (XTask), an application can be composed of none,
one or multiple XTasks. An XTask runs concurrently, with
the runtime environment allocating hardware accelerators
to different XModules. In order to manage reconfigurable
resources and XTasks, we define a set of functions. The
following is a brief description of XTask main APIs:
• XTaskReadFunctionList gets the reconfigurable func-

tion list issued from the application analysis.
• XTaskXModuleInit does initialization of XPSoC with a

profile-based solution.
• XTaskCreate creates a XTask for FUID function in

main memory.
• XTaskRunNonBlocking copies XTask to shared memory

and launches a non blocking task (resp. blocking task).
• XTaskUpdateFunctionList updates the function list by

order of priority.
• XTaskUpdateSystem updates the XPSoC architecture by

running dynamic partial reconfiguration if necessary.

V. RAPID APPLICATION DEVELOPMENT

A. Design flow

Our goal is to improve and simplify the design of re-
configurable and self-adaptive architectures by considering
predefined architectural models. Given these models, we
can define HW independent API to call registered stan-
dard functions. Then we consider open and evolutionary
networked data-bases, where SW and HW configuration files
can be retrieved for each function identified with a unique
FUID. Function data-bases are organized according to rele-
vant parameters such as HW reference (ML410, ML505,...),
architecture model (M0W2, M0W2W3,...), XWorker ID,
Interface protocol (FSL, OPB, PLB, ...), reconfigurable IP
place (XCop-1, XCop-2, ...), Algorithm family (Video, Net-
work, ...), Function version, Input / Output Format (e.g. 32b
/ 32b), Initialization / Input / Output data rates (e.g. DCT:
0/8/8) and Clock frequency. So, we propose the following
design flow for XPSoC users:

1) Application analysis: profiling-based identification of
critical functions for XTask implementation.

2) Selection of an XPSoC model from library of models.
3) Application development and migration based on

XTask APIs.
4) Implementation based on XFunc APIs.
5) XModules implementation from design reuse or devel-

opment with HLS tools according to XFunc standard.
6) Generation of binary and partial configuration bit-

streams if unavailable from servers.

B. Application analysis

The objective of this step is to create a critical function
list of the target application with classical analysis tools (e.g.
GNU). There are many methods available for application
profiling, in case of strongly data-dependent applications the
best choice, regarding hardware coprocessor to be imple-
mented, may vary at run-time. This is the job of the decision
algorithm to adapt and update the hardware configuration
based on the predefined list of critical functions identified
offline.

C. Application development and migration

Fig.5 illustrates a simple example for application migra-
tion by using XTask API. XTaskReadFunctionList creates
a list of functions that can be potentially and relevantly
speeded up with dedicated implementations on XWorkers.
XTaskXModuleInit creates a map of XModules from XPSoC
configuration file. XTaskFindSolution looks for acceleration
solutions before calling a critical function, if there is any
available computing resources (XWorker + XModule or
XAccelerator) for this function, XTaskCreate will create a
XTask and runs this XTask through a message passing via
a shared memory.

int main (argc, argv)
{
XTask_t *xt;
XDesc_t *xdesc;
XFunction_t *fl = XTaskReadFunctionList (funclist);
XPSoC_t *xp = XTaskXModuleInit (conflist);
...
 switch (operation)
 {
 case D:
 /* Decryption */
 fuid = PGM_FUNCTIOND;
 XTaskAddDescription (xdesc, VALUE, key);
 sol = XTaskFindSolution (fuid, in->width*in->height);
 if (sol > 0)
 {
 xt = XTaskCreate (fuid, inAddr, inSize, outAddr, xdesc);
 xtime = XTaskSendBlocking (xt);
 XTaskDelete (xt);
 XTaskUpdateFunctionList (fuid, x_size*y_size, xtime);
 }
 else {
 xtime = XFuncImageProcessing (fuid, inAddr, inSize, outAddr, xdesc);
 }
 XtaskUpdateSystem (xt);
 break;
 ... } ...}

Figure 5: XTask API: management of reconfigurable tasks

D. XModule development

The XModules are developed by algorithm or hardware
engineers in this step. Typically, a designer starts the spec-
ification of an application, that is to be implemented as a
coprocessor or any other custom hardware unit, with a high-
level description. The availability of High Level Synthesis
(HLS) tools, mostly based on C specification, simplifies this
step. One can use our own HLS[12] tool that can be set
in order to automatically provide coprocessors with FSL
interfaces, which are compliant on the one hand with µBlaze
architecture and on the other hand with XFunc API.

VI. SELF-ADAPTIVE SYSTEM CASE STUDY

A. System design

The case study Fig.6 is a networked image encryp-
tion/decryption application based on bit manipulation func-
tions, which are typically representative of network protocol
and multimedia domains. It is also well known that GPPs
architecture are particularly inefficient for such bit-level
processing for which HW implementations make sense.

XPSoC

F
1

F
2

F
3

Server

CM
D
M1

M2
...

CMD
M2' M3'

...

N1

Frame
Acq

Header decod:
N1, N2, N3

F1 (bit
level)

F2 (Bit
level)

F3 (bit
level)

Frame
Storage

N2

N3

Figure 6: Application overview
The application flow sequentially calls four functions

by using the function prototype: XFuncImageProcessing.
It is composed of three critical bit manipulation functions
(F1, F2, F3) that can be efficiently accelerated with HW
coprocessors. The result of Application analysis is given in
Tab.I that presents the main features including speedup per
data for the three functions. T si is the average execution
time per data, when function i is executed by the XWorker
without co-processor. Thi is the average execution time per
data, when function i is executed by the XWorker with the
associated co-processor. Rtki is the reconfiguration time for
function i implemented on a co-processor k. gi = T si − Thi
is the speed-up per data, when the function i is implemented
with a co-processor.

Function Th
i T s

i gi Rt1i Rt2i Area
(Name/fuid/I:O) (µs) (µs) (ms) (ms) (LUT-FF)

bitShuffle32 F1 (2:1) 21 746 725 80 328 142
bitMuxMasking F2 (2:1) 21 1265 1244 80 328 74

BitInverse F3 (1:1) 20 304 284 80 328 170

Table I: Execution and reconfiguration times for critical
function with HW/SW implementations

The application has been developed with the design flow
described in section V. All these solutions have been im-
plemented with XTask/XFunc API, and the software code
are identical for all HW/SW versions of the application,
by following design flow as mentioned in the Section
V-A. We have also designed three hardware modules to
be implemented as a configurable coprocessor. The binaries
and partial configuration bitstreams have been obtained by
using Partial Reconfiguration Early Access Software Tools
(Xilinx ISE 9.2i SP4). Finally the application has been tested
with various images loaded from a remote server through an
Ethernet connection and with different application scenarios

XManager
(Microblaze)

OPB

Ethernet SDRAM Shared
OPB-BRAM Mutex HWICAP

Reconfigurable part

Coprocessor-0

Coprocessor-1

B
M

B
M

XWorker
(Microblaze)

UART
FSL

FSL

Figure 7: XPSoC MS2 architectural model

(CMD) where the amount of data to be processed by each
function can vary at run-time.

We have designed a XPSoC instance on a Xilinx ML410
(Virtex-4 FX60) FPGA, the architecture model (M0S2)
is based on a Master Processor with a two-coprocessor
XWorker (Fig. 7). The implementation leads to an area
occupation of 32% for logic block slices, 23% for RAM
blocks and 13% for DSP. The XManager runs a petalinux
OS. The area of coprocessors are not identical so reconfig-
uration times are different, it means that the choice of the
coprocessor location has an impact on the reconfiguration
initial penalty.

B. Self-adaptation

Self-adaptation can be implemented as a thread on XMan-
ager, it can be specified with different strategies. In the
following example, we have tested four of them. ”All HW”
systematically configures the XWorker with the XTask asso-
ciated coprocessor. ”On-the-fly” decides at run time which
configuration fits with application needs. It is based on a
fast sort algorithm that updates the k (number of coproces-
sors) best solutions according to execution time recorded
by XWorkers. It takes into account the observed speed-up
and the amount of data (N) to be processed. N is filtered
(N ′(i) = aiN(i) + (1 − ai)N(i − 1)) in order to smooth
reconfiguration decisions. For evaluation purpose, ”All SW”
gives the execution time when all XTasks are implemented in
SW on the XWorker without any reconfiguration and ”PB”
is a solution with two fixed coprocessors, which have been
selected according to a profiling step performed off-line.

Fig.8 shows results obtained with these four configuration
strategies and various data granularities that represent the
amount of data to be processed during each task iteration.
”Fixed granularity” means that each XTask processes the
maximum number of data. ”Variable Granularity” means
that the input buffer size of tasks is data dependent with-
out exceeding the maximum value. Consequently the best
configuration solution may also change at runtime.

We observe that a strategy based on a systematic reconfig-
uration can only be efficient with very important granularity
values above 10240 bytes in this case study. The profile-
based solution is to be considered when offline estimates
are accurate and when the number of dominant critical
function is lower or equal to the number of processors. Our

Fixed granularity

Variable granularity

PB (F1+F3)

On-the-fly

ALL_HW

ALL_SW

ALL_SW

ALL_HW

PB (F1+F3)

On-the-fly

Figure 8: Granularity impact: Execution time depending on
task granularity and reconfiguration policy

solution presents a simple implementation to adapt perfor-
mance optimization with a controlled reconfiguration cost.
Actually our adaptation algorithm finds the best solution and
outperforms ”All HW” even with high input buffer, when
function granularity are stable on a short period.

VII. CONCLUSION

In this paper we have presented and demonstrated our
solution for rapid application development on reconfigurable
multiprocessor architectures. Our approach is based on a
scalable architecture model (XPSoC) and an extendable
set of API simplifying the programming flow of data-flow
applications. Considering the way DSP-based embedded
systems have been evolving, the massive use of standard
functions and the need for standardization in the domain
of embedded systems, we strongly believe that such an
approach is a promising solution to simplify and optimize
the design of reconfigurable MPSoC on FPGA. This is also
an opportunity to capitalize on design reuse by means of
bitstream servers, which can provide, on-demand, standard
function implementations. Given architecture models and
API, we are jointly working on CAD tools to automate SW
and HW code generation.

REFERENCES

[1] Accelerating innovation with the davinci SW code and programming model.
[2] D. Göhringer, T. Perschke, M. Hübner, and J. Becker, “A Taxonomy of

Reconfigurable Single-/Multiprocessor Systems-on-Chip,” 2009.
[3] V. Vyssotsky, F. Corbato, R. Graham et al., “Very High-speed Computing

Systems,” Commun. ACM, vol. 8, p. 786788, 1965.
[4] D. Göhringer et al., “Runtime adaptive multi-processor system-on-chip:

RAMPSoC,” in IPDPS, April 2008, pp. 1–7.
[5] S. Vassiliadis et al., “The molen polymorphic processor,” IEEE Trans. on

Computers, vol.53, no.11, Nov. 2004.
[6] M. Rashid, F. Ferrandi, K. Bertels, E. Informazione, and I. Milan, “hArtes

design flow for heterogeneous platforms,” in ISQED, 2009, pp. 330–338.
[7] N. Bergmann et al., “A process model for hardware modules in reconfigurable

system-on-chip,” in ARCS Workshops, 2006, pp. 205–214.
[8] H. So et al, “A unified HW/SW runtime environment for fpga-based reconfig-

urable computers using borph,” in 4th CODES-ISSS, Seoul, Korea, 2006.
[9] D. Andrews et al., “The case for high level programming models for reconfig-

urable computers,” in ERSA, Las Vegas, USA, Jun. 2006.
[10] Petalinux, http://developer.petalogix.com.
[11] Portable gray map, http://netpbm.sourceforge.net/doc/pgm.html.
[12] Gaut, http://www-labsticc.univ-ubs.fr/www-gaut.

