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Curved Voronoi Diagrams

Jean-Daniel Boissonnat?, Camille Wormser, and Mariette Yvinec

INRIA

Abstract

Voronoi diagrams are fundamental data structures that have been extensively
studied in Computational Geometry. A Voronoi diagram can be defined as the
minimization diagram of a finite set of continuous functions. Usually, each of
those functions is interpreted as the distance function to an object. The as-
sociated Voronoi diagram subdivides the embedding space into regions, each
region consisting of the points that are closer to a given object than to the
others. We may define many variants of Voronoi diagrams depending on the
class of objects, the distance functions and the embedding space. Affine di-
agrams, i.e. diagrams whose cells are convex polytopes, are well understood.
Their properties can be deduced from the properties of polytopes and they
can be constructed efficiently. The situation is very different for Voronoi dia-
grams with curved regions. Curved Voronoi diagrams arise in various contexts
where the objects are not punctual or the distance is not the Euclidean dis-
tance. We survey the main results on curved Voronoi diagrams. We describe
in some detail two general mechanisms to obtain effective algorithms for some
classes of curved Voronoi diagrams. The first one consists in linearizing the
diagram and applies, in particular, to diagrams whose bisectors are algebraic
hypersurfaces. The second one is a randomized incremental paradigm that
can construct affine and several planar non-affine diagrams.

We finally introduce the concept of Medial Axis which generalizes the
concept of Voronoi diagram to infinite sets. Interestingly, it is possible to
efficiently construct a certified approximation of the medial axis of a bounded
set from the Voronoi diagram of a sample of points on the boundary of the
set.

? Coordinator
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1.1 Introduction

Voronoi diagrams are fundamental data structures that have been extensively
studied in Computational Geometry. Given n objects, the associated Voronoi
diagram subdivides R

d into regions, each region consisting of the points that
are closer to a given object than to any other object. We may define many
variants of Voronoi diagrams depending on the class of objects, the distance
function and the embedding space. Although Voronoi diagrams are most of-
ten defined in a metric setting, they can be defined in a more abstract way.
In Sect. 1.2, we define them as minimization diagrams of any finite set of
continuous functions without referring to a set of objects.

Given a finite set of objects and associated distance functions, we call bi-
sector the locus of the points that are at equal distance from two objects.
Voronoi diagrams can be classified according to the nature of the bisectors of
the pairs of objects, called the bisectors of the diagram for short. An impor-
tant class of Voronoi diagrams is the class of affine diagrams, whose bisectors
are hyperplanes. Euclidean Voronoi diagrams of finite point sets are affine
diagrams. Other examples of affine diagrams are the so-called power (or La-
guerre) diagrams, where the objects are no longer points but hyperspheres and
the Euclidean distance is replaced by the power of a point to a hypersphere.
In Sect. 1.3, we recall well-known facts about affine diagrams. In particular,
we characterize affine diagrams and establish a connection between affine dia-
grams and polytopes. As a consequence, we obtain tight combinatorial bounds
and efficient algorithms. We also obtain a dual structure that is a triangulation
under a general position assumption.

Non-affine diagrams are by far less well understood. Non-affine diagrams
are obtained if one changes the distance function: additively and multiplica-
tively weighted distances are typical examples. Such diagrams allow to model
growing processes and have important applications in biology, ecology, chem-
istry and other fields (see Sect. 1.9). Euclidean Voronoi diagrams of non-
punctual objects are also non-affine diagrams. They are of particular interest
in robotics, CAD and molecular biology. Even for the simplest diagrams, e.g.
Euclidean Voronoi diagrams of lines, triangles or spheres in 3-space, obtaining
tight combinatorial bounds, efficient algorithms and effective implementations
are difficult research questions.

A first class of non-affine diagrams to be discussed in Sect. 1.4 is the
case of diagrams whose bisectors are algebraic hypersurfaces. We first con-
sider the case of Möbius diagrams whose bisectors are hyperspheres and the
case of anisotropic diagrams whose bisectors are quadratic hypersurfaces (see
Sect. 1.4.2). The related case of Apollonius (or Johnson-Mehl) diagrams is
also described in Sect. 1.4.

The key to obtaining effective algorithms for computing those non-affine
diagrams is a linearization procedure that reduces the construction of a non-
affine diagram to intersecting an affine diagram with a manifold in some higher
dimensional space. This mechanism is studied in full generality in Sect. 1.5.
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In this section, we introduce abstract diagrams, which are diagrams defined
in terms of their bisectors. By imposing suitable conditions on these bisectors,
any abstract diagram can be built as the minimization diagram of some dis-
tance functions, thus showing that the class of abstract diagrams is the same
as the class of Voronoi diagrams. Furthermore, the linearization technique in-
troduced in Sect. 1.5 allows to prove that if the bisectors of a diagram belong
to a certain class of bisectors, the distance functions defining the diagram can
be chosen among a precise class of functions. For instance, affine diagrams are
identified with power diagrams, spherical diagrams are identified with Möbius
diagrams, and quadratic diagrams with anisotropic diagrams.

In Sect. 1.6, we introduce the incremental paradigm for constructing var-
ious diagrams. Under some topological conditions to be satisfied by the dia-
gram, the incremental construction is efficient. The algorithm can be further
improved by using a randomized data structure called the Voronoi hierarchy
that allows fast localization of new objects. We then obtain fast randomized
incremental algorithms for affine diagrams in any dimension and several non-
affine diagrams in the plane. Going beyond those simple cases is difficult.
As mentioned above, tight combinatorial bounds and efficient algorithms are
lacking even for simple cases. Moreover, the numerical issues are delicate and
robust implementations are still far ahead of the state of the art. This moti-
vates the quest for approximate solutions.

In Sect. 1.7, we introduce the concept of Medial Axis of a bounded set Ω,
which can be seen as an extension of the notion of Voronoi diagram to infinite
sets. Interestingly, it is possible to construct certified approximations of the
medial axis of quite general sets efficiently. One approach to be described
consists in sampling the boundary of Ω and then computing an appropriate
subset of the Voronoi diagram of the sample that approximates the medial
axis. Hence the problem of approximating the medial axis of Ω boils down
to sampling the boundary of Ω, a problem that is closely related to mesh
generation (see Chap. ??).

Sect. 1.8 is devoted to the main Cgal software packages for computing
Voronoi diagrams. Sect. 1.9 discusses some applications of curved Voronoi
diagrams.

This chapter focuses on curved Voronoi diagrams defined in R
d and aims

at providing useful background and effective algorithms. Additional material
can be found in surveys on Voronoi diagrams [41, 7] and in text books on
Computational Geometry [17, 13]. This chapter does not consider Voronoi
diagrams defined in more general spaces. Voronoi diagrams can be defined in
hyperbolic geometry without much difficulty [9, 13]. In the Poincaré model of
hyperbolic geometry, the bisectors are hyperspheres and hyperbolic diagrams
of finite point sets are a special case of Möbius diagrams. Computing Voronoi
diagrams on Riemannian manifolds is much more involved and very few is
known about such diagrams and their construction [38].
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Notation: We identify a point x ∈ R
d and the vector of its coordinates.

We note x · y the dot product of x and y, x2 = x · x = ‖x‖2 the squared
Euclidean norm of x, and ‖x − y‖ the Euclidean distance between points x
and y.

We call hypersurface a manifold of codimension 1. Examples to be used in
this chapter are hyperplanes, hyperspheres and quadratic hypersurfaces.

1.2 Lower Envelopes and Minimization Diagrams

Let F = {f1, . . . , fn} be a set of d-variate continuous functions defined over
R

d. The lower envelope of F is defined as

F− = min
1≤i≤n

fi.

From F and F−, we define a natural partition of R
d called the minimization

diagram of F . For a point x ∈ R
d, we define the index set I(x) of x as the set

of all indices i such that F−(x) = fi(x). An equivalence relation noted ≡ can
then be defined between two points of R

d if they have the same index set:

x ≡ y ⇔ I(x) = I(y).

The equivalence classes R
d/ ≡ are relatively open sets that cover R

d. Their
closures are called the faces of the minimization diagram of F (see Fig. 1.1).
The index set of a face is defined as the largest subset of indices common to
all the points of the face. Conversely, the face of index set I is the set of all
points x such that I ⊂ I(x).

Observe that the faces of this diagram are not necessarily contractible
nor even connected. In particular, a 0-dimensional face may consist of several
distinct points.

Lower envelopes and minimization diagrams have been well studied. We
recall an important result due to Sharir [45] which provides an almost optimal
result when the fi are supposed to be multivariate polynomials of constant
maximum degree.

Theorem 1 (Sharir). The number of faces of the minimization diagram of a
set F of n multivariate polynomials of constant maximum degree η is O(nd+ε)
for any ε > 0, where the constant of proportionality depends on ε, d and η.
The vertices, edges and 2-faces of the diagram can be computed in randomized
expected time O(nd+ε) for any ε > 0.

This general result is close to optimal in the worst-case (see Exercise 2).
It has been improved in some special cases. For more information and other
related results, one should consult the book by Sharir and Agarwal [46].

Voronoi diagrams, in their general setting, are just minimization diagrams
of a finite set of continuous functions. This general definition encompasses
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Fig. 1.1. The lower envelope of a set of univariate functions. The minimization
diagram is drawn on the horizontal line with the corresponding indices. The face of
index {1} consists of two components.

the more traditional definition of Voronoi diagrams where the functions are
defined as distance functions to a finite set of objects. Consider a set of objects
O = {o1, . . . , on}. To each object oi is attached a continuous function δi that
measures the distance from a point x of R

d to oi. In the simplest case, O
is a finite set of points and δi(x) is the Euclidean distance from x to oi.
The Voronoi diagram of O is defined as the minimization diagram of ∆ =
{δ1, . . . , δn}. The concept of Voronoi diagram has been generalized and various
other diagrams have been defined by considering more general objects and
other distance functions. Distance is then not to be taken with too much
rigor. The function δi is only supposed to be continuous.

Theorem 1 provides very general bounds on the complexity of Voronoi
diagrams. However, this result calls for improvement. First, in some special
cases, much better bounds can be obtained by other approaches to be dis-
cussed later in this chapter. In particular, we will see that the most popular
Euclidean Voronoi diagram of points has a much smaller combinatorial com-
plexity than the one given in the theorem.

A second issue is the algorithmic complexity. The algorithm mentioned in
the theorem fails to provide a complete description of the diagram since only
faces of dimensions up to 2 are computed.

Moreover, the implementation of such an algorithm remains a critical is-
sue. As evidenced in Chap. ??, computing lower envelopes of algebraic func-
tions is a formidable task, even in the simplest cases, e.g. quadratic bi-variate
functions. We do not know of any implementation for higher degrees and
dimensions.

The main goal of the following sections is to present effective algorithms
for a variety of Voronoi diagrams for which some additional structure can be
exhibited.
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Exercise 1. Show that the combinatorial complexity of the lower envelope of
n univariate functions whose graphs intersect pairwise in at most two points
is O(n). Show that the envelope can be computed in optimal time Θ(n logn).

Exercise 2. Show that the convex hull of n ellipsoids of R
d may haveΩ(nd−1)

faces. Since the non-bounded faces of the Euclidean Voronoi diagram of n
objects are in 1-1 correspondence with the faces of their convex hull, we get
a lower bound on the size of the Voronoi diagram of n ellipsoids of R

d. (Hint:
consider n ellipsoids inscribed in a (d− 1)-sphere S and intersecting S along
great n (d − 2)-spheres σ1, . . . , σn. The arrangement of the σi has Θ(nd−1)
faces.)

1.3 Affine Voronoi Diagrams

We first introduce Euclidean Voronoi diagrams of points and establish a cor-
respondence between those diagrams and convex polyhedra in one dimension
higher. Polarity allows to associate to a Voronoi diagram its dual cell complex,
called a Delaunay triangulation.

Almost identical results can be obtained for power (or Laguerre) diagrams
where points are replaced by hyperspheres and the Euclidean distance by
the power of a point to a hypersphere. Power diagrams constitute a natural
extension of Euclidean Voronoi diagrams and are still affine diagrams. In fact,
we will see that any affine diagram is the power diagram of a finite set of
hyperspheres.

1.3.1 Euclidean Voronoi Diagrams of Points

Let P = {p1, . . . , pn} be a set of points of R
d. To each pi, we associate its

Voronoi region V (pi)

V (pi) = {x ∈ R
d : ‖x− pi‖ ≤ ‖x− pj‖, ∀j ≤ n}.

The region V (pi) is the intersection of n− 1 half-spaces. Each such half-space
contains pi and is bounded by the bisector of pi and some other point of P .
Since the bisectors are hyperplanes, V (pi) is a convex polyhedron, possibly
unbounded.

The Euclidean Voronoi diagram of P , noted Vor(P), is the cell complex
whose cells are the Voronoi regions and their faces. Equivalently, the Euclidean
Voronoi diagram of P can be defined as the minimization diagram of the
distance functions δi, . . . , δn, where

δi(x) = ‖x− pi‖.
In other words, the Euclidean Voronoi diagram of P is the minimization di-
agram of a set of functions whose graphs are vertical1 cones of revolution of

1By vertical, we mean that the axis of revolution is perpendicular to R
d.
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R
d+1. Since minimizing ‖x−pi‖ over i is the same as minimizing (x−pi)

2, the
Euclidean Voronoi diagram of P can alternatively be defined as the mimiza-
tion diagram of the smooth functions (x − pi)

2 whose graphs are translated
copies of a vertical paraboloid of revolution of R

d+1.

Fig. 1.2. The Voronoi diagram of a set of 9 points.

Observing further that, for any x, argmini(x− pi)
2 = arg mini(−2pi · x+

p2
i ), we obtain that the Euclidean Voronoi diagram of P is the minimization

diagram of a set of affine functions, namely the functions

di(x) = −2pi · x+ p2
i

whose graphs are hyperplanes of R
d+1. Let us call hpi

, i = 1, . . . , n, those hy-
perplanes and let h−pi

denote the half-space lying below hpi
. The minimization

diagram of the di is obtained by projecting the polyhedron

V(P) = h−p1
∩ · · · ∩ h−pn

.

vertically onto R
d. See Fig. 1.3.

We have therefore proved the following theorem:

Theorem 2. The faces of the Euclidean Voronoi diagram Vor(P) of a set
of points P are the vertical projections of the faces of the convex polyhedron
V(P).

Exercise 3. Consider the maximization diagram obtained by projecting the
faces of h+

p1
∩· · ·∩h+

pn
vertically. Characterize the points that belong to a face

of this diagram in terms of the distance to the points of P .
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Fig. 1.3. The polyhedron V(P), with one of its faces projected onto R
d.

1.3.2 Delaunay Triangulation

Two cell complexes V and D are said to be dual if there exists an involutive
correspondence between the faces of V and the faces of D that reverses the
inclusions, i.e. for any two faces f and g of V , their dual faces f ∗ and g∗

satisfy: f ⊂ g ⇒ g∗ ⊂ f∗. We introduce now a cell complex that is dual to
the Voronoi diagram of a finite set of points P .

We assume for now that the set of points P is in general position, which
means that no subset of d+2 points of P lie on a same hypersphere. Let f be
a face of dimension k of the Voronoi diagram of P . All points in the interior
of f have the same subset Pf of closest points in P . The face dual to f is the
convex hull of Pf . The Delaunay triangulation of P , noted Del(P), is the cell
complex consisting of all the dual faces. Because points of P are assumed to be
in general position, |Pf | = d− k+ 1, all the faces of Del(P) are simplices and
Del(P) is a simplicial complex. The fact that Del(P) is indeed a triangulation,
i.e. a simplicial complex embedded in R

d and covering the convex hull of P ,
will be proved now using a duality between points and hyperplanes in the
so-called space of spheres.

Polarity

Let σ be the hypersphere of R
d of equation

σ(x) = (x− c)2 − r2 = x2 − 2c · x+ s = 0,

where c is the center of σ, r its radius and s = σ(0) = c2 − r2.
We define the following bijective mapping
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Fig. 1.4. The Delaunay triangulation of a point set (in bold) and its dual Voronoi
diagram (thin lines).

φ : σ ∈ R
d −→ φ(σ) = (c,−s) ∈ R

d+1

that maps a hypersphere of R
d to a point of R

d+1. We thus consider R
d+1

as the images by φ of the hyperspheres of R
d and call R

d+1 the space of
spheres. We note φ(p) = (p,−p2) the image by φ of a point, considered as
a hypersphere of radius 0. Observe that φ(p) is a point of the paraboloid Q
of R

d+1 of equation x2 + xd+1 = 0. The points of R
d+1 that lie above Q

are images of imaginary hyperspheres whose squared radii are negative. The
points below Q are images of real hyperspheres.

We now introduced a mapping between points and hyperplanes of the space
of spheres, known as polarity. Polarity associates to the point φ(σ) its polar
hyperplane hσ which is the hyperplane of R

d+1 of equation 2c·x+xd+1−s = 0.
Observe that the intersection of hσ with Q projects vertically onto σ, and that
hσ is the affine hull of the image by φ of the points of σ. If p is a point of R

d,
the polar hyperplane hp of φ(p) is the hyperplane tangent to Q at φ(p).

We deduce the remarkable following property: x ∈ σ if and only if φ(x) =
(x,−x2) ∈ hσ and σ encloses x if and only if φ(x) ∈ h+

σ , where h+
σ (resp. h−σ )

denotes the closed half-space above (resp. below) hσ. Indeed

σ(x) = 0⇐⇒ x2 − 2c · x+ s = 0⇐⇒ φ(x) ∈ hσ

σ(x) < 0⇐⇒ x2 − 2c · x+ s < 0⇐⇒ φ(x) ∈ inth+
σ ,

where inth+
σ denotes the open half-space above hσ .

Polarity is an involution that preserves incidences and reverses inclusions.
Indeed, if σ and σ′ are two hyperspheres, we have
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σ

h(σ)

Q

Fig. 1.5. The polar hyperplane of a sphere.

φ(σ) ∈ hσ′ ⇐⇒ 2c′ · c− s− s′ = 0⇐⇒ φ(σ′) ∈ hσ

φ(σ) ∈ h+
σ′ ⇐⇒ 2c′ · c− s− s′ > 0⇐⇒ φ(σ′) ∈ inth+

σ .

Consider now a set P = {p1, . . . , pn} of n points and let V(P) denote, as
in Sect. 1.3.1, the convex polyhedron defined as the intersection of the n half-
spaces below the n polar hyperplanes hp1 , . . . , hpn

. Let f be a face of V(P)
and assume that f is contained in k+ 1 hyperplanes among the hpi

. Without
loss of generality, we denote those hyperplanes hp1 , . . . , hpk+1

. Let σ denote a

hypersphere of R
d such that φ(σ) belongs to the relative interior of f . From

the above discussion, we have

∀i, 1 ≤ i ≤ k + 1, φ(σ) ∈ hpi
⇐⇒ φ(pi) ∈ hσ (1.1)

∀i, k + 1 < i ≤ n, φ(σ) ∈ inth−pi
⇐⇒ φ(pi) ∈ inth−σ (1.2)

Given a convex polyhedron D, we say that a hyperplane h supports D if
D ∩ h is non-empty and D is included in one of the two halfspaces, h+ or h−,
bounded by h. If h is a supporting hyperplane of D, g = D ∩ h is a face of D.
If D ⊂ h−, g is called an upper face of D. The collection of all upper faces of
D constitutes the upper hull of D, which we denote by ∂+D.

Let D(P) = conv(φ(P)) be the convex hull of the set φ(P) and consider
again the face f of V(P) defined above. Write Pf = {p1, . . . , pk+1}. We deduce
from (1.1) and (1.2) that, for any φ(σ) in the relative interior of f :
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1. The hyperplane hσ is a supporting hyperplane of D(P).
2. hσ supports D(P) along the face f∗ = hσ ∩ D(P) = conv(φ((Pf )).
3. D(P) ⊂ h−σ and f∗ is a face of ∂+D(P).

To each face f of ∂V(P), we associate the face f ∗ of ∂+D obtained as de-
scribed above. This correspondence between the faces of ∂V(P) and the faces
of ∂+D(P) is bijective, preserves incidences and reverses inclusions, hence it
is a duality.

The upper hull ∂+D(P) projects vertically onto a cell complex of R
d whose

vertices are the points of P . Because the projection is 1-1, this projected cell
complex is properly embedded in R

d and, since the projection preserves con-
vexity, it covers the convex hull of P . Under the general position assumption,
the convex polyhedron D(P) is simplicial and the projected complex is a tri-
angulation of P . The duality between the faces of ∂V(P) and the faces of
∂+D(P) implies that the projection of ∂+D(P) is the Delaunay triangulation
Del(P) of P introduced at the beginning of this section. This concludes the
proof that, under the general position assumption, the Delaunay triangulation
Del(P) is a triangulation of P . We have the following diagram:

∂V(P) = ∂
(

h−p1
∩ · · · ∩ h−pn

)

←→ ∂+D(P) = ∂+ (conv(φ(P)))
l l

Voronoi Diagram Vor(P) ←→ Delaunay Triangulation Del(P)

It follows from the above correspondence that the combinatorial complex-
ity of the Delaunay triangulation of n points is the same as the combinatorial
complexity of its dual Voronoi diagram. Moreover, the Delaunay triangulation
of n points of R

d can be deduced from the dual Voronoi diagram or vice versa
in time proportional to its size. We also deduce from what precedes that com-
puting the Delaunay triangulation of n points of R

d reduces to constructing
the convex hull of n points of R

d+1. The following theorem is then a direct
consequence of known results on convex hulls [15].

Theorem 3. The combinatorial complexity of the Voronoi diagram of n points

of R
d and of their Delaunay triangulation is Θ

(

nb d+1
2 c

)

. Both structures can

be computed in optimal time Θ
(

n logn+ nbd+1
2 c

)

.

The bounds in this theorem are tight. In particular, the Voronoi diagram of
n points of R

3 may be quadratic (see Exercise 4). These bounds are worst-case
bounds. Under some assumptions on the point distribution, better bounds can
be obtained. For a set P of n points uniformly distributed in a ball of R

d,
the combinatorial complexity of the Voronoi diagram of P is O(n) where the
constant depends on the dimension d [20]. Other results are known for other
point distributions [3, 5, 23].

In the discussion above, we have assumed that the points of P were in
general position. If this is not the case, some faces of D(P) are not simplices,
and the complex ∂+D(P) projects vertically onto a cell complex, dual to the
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Voronoi diagram and called the Delaunay complex. The faces of the Delau-
nay complex are convex and any triangulation obtained by triangulating those
faces is called a Delaunay triangulation. Since there are several ways of trian-
gulating the faces of the Delaunay complex, the Delaunay triangulation of P
is no longer unique.

Exercise 4. Show that if we take points on two non coplanar lines of R
3, say

n1 + 1 on one of the lines and n2 + 1 on the other, their Voronoi diagram has
n1n2 vertices.

Exercise 5. Let S be a hypersphere of R
d passing through d + 1 points

p0, . . . , pd. Show that a point pd+1 of R
d lies on S, in the interior of the

ball BS bounded by S or outside BS , depending whether the determinant of
the (d+ 2)× (d+ 2) matrix

in sphere(p0, . . . , pd+1) =

∣

∣

∣

∣

∣

∣

1 · · · 1
p0 · · · pd+1

p2
0 · · · p2

d+1

∣

∣

∣

∣

∣

∣

is 0, negative or positive. This predicate is the only numerical operation that
is required to check if a triangulation is a Delaunay triangulation.

Exercise 6. What are the preimages by φ of the points of R
d+1 that lie on a

line? (Distinguish the cases where the line intersects Q in 0, 1 or 2 points.)

Exercise 7. Project vertically the faces of the lower hull ∂−(D(P). Show
that we obtain a triangulation of the vertices of conv(P) such that each ball
circumscribing a simplex contains all the points of P . Define a dual and make
a link with Exercise 3.

Exercise 8 (Empty sphere property). Let s be any k-simplex with ver-
tices in P that can be circumscribed by a a hypersphere that does not enclose
any point of P . Show that s is a face of a Delaunay triangulation of P . More-
over, let P be a set of points and T a triangulation of P with the property
that any hypersphere circumscribing a d-simplex of T does not enclose any
point of P . Show that T is a Delaunay triangulation of P .

1.3.3 Power Diagrams

A construction similar to what we did for the Euclidean Voronoi diagrams of
points and their dual Delaunay triangulations can be done for the so-called
power or Laguerre diagrams. Here we take as our finite set of objects a set of
hyperspheres (instead of points) and consider as distance function of a point
x to a hypersphere σ the power of x to σ. As we will see, the class of power
diagrams is identical to the class of affine diagrams, i.e. the diagrams whose
bisectors are hyperplanes.
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Definition of Power Diagrams

We call power of a point x to a hypersphere σ of center c and radius r the
real number

σ(x) = (x− c)2 − r2.
Let S = {σ1, . . . , σn} be a set of hyperspheres of R

d. We denote by ci the
center of σi, ri its radius, σi(x) = (x− ci)2− r2i the power function to σi, and
si = c2i − r2i the power of the origin. To each σi, we associate the region L(σi)
consisting of the points of R

d whose power to σi is not larger than their power
to the other hyperspheres of S:

L(σi) = {x ∈ R
d : σi(x) ≤ σj(x), 1 ≤ j ≤ n}.

The set of points that have equal power to two hyperspheres σi and σj is a
hyperplane, noted πij , called the radical hyperplane of σi and σj . Hyperplane
πij is orthogonal to the line joining the centers of σi and σj . We denote by πi

ij

the half-space bounded by πij consisting of the points whose power to σi is
smaller than their power to σj . The region L(σi) is the intersection of all half-
spaces πi

ij , j 6= i. If this intersection is not empty, it is a convex polyhedron,
possibly not bounded. We call power regions the non empty regions L(σi).

We define the power diagram of S, noted Pow(S), as the cell complex
whose cells are the power regions and their faces. When all hyperspheres have
the same radius, their power diagram is identical to the Voronoi diagram of
their centers.

Fig. 1.6. A power diagram.

Equivalently, the power diagram of S can be defined as the minimization
diagram of the functions σi, . . . , σn. Observing that for any x
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argmin
i
σi(x) = arg min

i
(−2ci · x+ si),

we obtain that the power diagram of S is the minimization diagram of the set
of affine functions

di(x) = −2pi · x+ si

whose graphs are hyperplanes of R
d+1. Let us call hσi

, i = 1, . . . , n, those hy-
perplanes and let h−σi

denote the half-space lying below hσi
. The minimization

diagram of the δi is obtained by projecting vertically the convex polyhedron

L(S) = h−p1
∩ · · · ∩ h−pn

.

Theorem 4. The faces of the power diagram Pow(S) of S are the vertical
projections of the faces of the convex polyhedron L(S).

Power diagrams are very similar to Voronoi diagrams: the only difference is
that the hyperplanes supporting the faces of L(S) are not necessarily tangent
to the paraboloid Q and that some hyperplane may not contribute a face. In
other words, some hypersphere σi may have an empty power region (see the
small circle in the upper left corner of Fig. 1.6).

By proceeding as in Sect. 1.3.2, we can define a convex polyhedron R(S)
whose upper hull ∂+R(S) is dual to ∂L(S). The vertical projection of the
faces of ∂+R(S) constitute the faces of a cell complex which, in general, is a
simplicial complex. We call such a complex the regular triangulation of S and
denote it by Reg(S). We have the following diagram :

∂L(S) = ∂
(

h−σ1
∩ · · · ∩ h−σn

)

←→ ∂+R(S) = ∂+conv(φ(S))
l l

Power diagram Pow(S) ←→ Regular triangulation Reg(S)

We deduce the following theorem that states that computing the power
diagram of n hyperspheres of R

d (or equivalently its dual regular triangula-
tion) has the same asymptotic complexity as computing the Euclidean Voronoi
diagram or the Delaunay triangulation of n points of R

d.

Theorem 5. The combinatorial complexity of the power diagram of n hy-

perspheres of R
d and of its dual regular triangulation are Θ

(

nb d+1
2 c

)

. Both

structures can be computed in optimal time Θ
(

n logn+ nbd+1
2 c

)

.

Affine Voronoi Diagrams

Euclidean Voronoi diagrams of points and power diagrams of hyperspheres
are two examples of minimization diagrams whose bisectors are hyperplanes.
It is interesting to classify Voronoi diagrams with respect to their bisectors. A
first important class of Voronoi diagrams is the class of affine diagrams which
consists of all Voronoi diagrams whose bisectors are hyperplanes.
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In Sect. 1.5, we will prove that any affine Voronoi diagram of R
d is iden-

tical to the power diagram of some set of hyperspheres of R
d (Theorem 13),

therefore showing that the class of affine Voronoi diagrams is identical to the
class of power diagrams.

Exercise 9. Show that the intersection of a power diagram with an affine
subspace is still a power diagram and compute the corresponding spheres.

Exercise 10. Show that any power diagram of R
d is the intersection of a

Voronoi diagram of R
d+1 by a hyperplane.

Exercise 11. Show that the only numerical operation that is required to
check if a triangulation is the regular triangulation of a set of hyperspheres σi

is the evaluation of the sign of the determinant of the (d+2)× (d+2) matrix

power test(σ0, . . . , σd+1) =

∣

∣

∣

∣

∣

∣

1 · · · 1
c0 · · · cd+1

c20 − r20 · · · c2d+1 − r2d+1

∣

∣

∣

∣

∣

∣

where ci and ri are respectively the center and the radius of σi.

1.4 Voronoi Diagrams with Algebraic Bisectors

In this section, we introduce a first class of non-affine diagrams, namely the
class of diagrams whose bisectors are algebraic hypersurfaces. We first consider
the case of Möbius diagrams whose bisectors are hyperspheres and the case of
anisotropic diagrams whose bisectors are quadratic hypersurfaces. These dia-
grams can be computed through linearization, a technique to be described in
full generality in Sect. 1.5. Apollonius (or Johnson-Mehl) diagrams, although
semi-algebraic and not algebraic, are also described in this section since they
are closely related to Möbius diagrams and can also be linearized.

1.4.1 Möbius Diagrams

In this section, we introduce a class of non-affine Voronoi diagrams, the so-
called Möbius diagrams, introduced by Boissonnat and Karavelas [11].

The class of Möbius diagrams includes affine diagrams. In fact, as we will
see, the class of Möbius diagrams is identical to the class of diagrams whose
bisectors are hyperspheres (or hyperplanes).

Definition of Möbius Diagrams

Let ω= {ω1, . . . , ωn} be a set of so-called Möbius sites of R
d, where ωi is a

triple (pi, λi, µi) formed of a point pi of R
d, and two real numbers λi and µi.



16 J-D. Boissonnat, C. Wormser, M. Yvinec

For a point x ∈ R
d, the distance δi(x) from x to the Möbius site ωi is defined

as
δi(x) = λi(x− pi)

2 − µi.

Observe that the graph of δi is a paraboloid of revolution whose axis is vertical.
The Möbius region of the Möbius site ωi, i = 1, . . . , n, is

M(ωi) = {x ∈ R
d : δi(x) ≤ δj(x), 1 ≤ j ≤ n}.

Observe that a Möbius region may be non-contractible and even disconnected.
The minimization diagram of the δi is called the Möbius diagram of ω and

noted Möb (ω) (see Fig. 1.4.1).

Fig. 1.7. A Möbius diagram.

Möbius diagrams are generalizations of Euclidean Voronoi and power dia-
grams. In particular, if all λi are equal to some positive λ, the Möbius diagram
coincides with the power diagram of a set of spheres {σi, i = 1, . . . , n}, where
σi is the sphere centered at pi of squared radius µi/λ. If all µi are equal
and all λi are positive, then the Möbius diagram coincides with the so-called
multiplicatively weighted Voronoi diagram of the weighted points (pi,

√
λi).

The following lemma states that the bisector of two Möbius sites is a
hypersphere (possibly degenerated in a point or in a hyperplane). Its proof is
straightforward.
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Lemma 1. Let ωi = {pi, λi, µi} and ωj = {pj , λj , µj}, ωi 6= ωj be two Möbius
sites. The bisector σij of ωi and ωj is the empty set, a single point, a hyper-
sphere or a hyperplane.

Möbius Diagrams and Power Diagrams

We now present an equivalence between Möbius diagrams in R
d and power

diagrams in R
d+1. This result is a direct generalization of a similar result

for multiplicatively weighted diagrams [6]. Given a cell complex C covering a
subspace X , we call restriction of C to X the subdivision of X whose faces
are the intersections of the faces of C with X . The restriction of C to X is
denoted by CX . Note that the restriction CX is not, in general, a cell complex
and that its faces may be non-contractible and even non-connected.

We associate to ω= {ω1, . . . , ωn} the set of hyperspheresΣ = {Σ1, . . . , Σn}
of R

d+1 of equations

Σi(X) = X2 − 2Ci ·X + si = 0,

where Ci = (λipi,−λi

2 ) and si = λi p
2
i − µi. We denote by Q the paraboloid

of R
d+1 of equation xd+1 − x2 = 0 .

Theorem 6 (Linearization). The Möbius diagram Möb(ω) of ω is ob-
tained by projecting vertically the faces of the restriction PowQ(Σ) of the
power diagram of Σ to Q.

Proof. If x ∈ R
d is closer to ωi than to ωj with respect to δM , we have for all

j = 1, . . . , n,

λi(x − pi)
2 − µi ≤ λj(x− pj)

2 − µj

⇐⇒ λix
2 − 2λipi · x+ λip

2
i − µi ≤ λjx

2 − 2λjpj · x+ λjp
2
j − µj

⇐⇒ (x2 + λi

2 )2 + (x − λipi)
2 − λ2

i

4 − λ2
i p

2
i + λip

2
i − µi

≤ (x2 +
λj

2 )2 + (x− λjpj)
2 − λ2

j

4 − λ2
jp

2
j + λjp

2
j − µj

⇐⇒ (X − Ci)
2 − r2i ≤ (X − Cj)

2 − r2j
⇐⇒ Σi(X) ≤ Σj(X)

where X = (x, x2) ∈ Q ⊂ R
d+1, Ci = (λipi,−λi

2 ) ∈ R
d+1 and r2i = λ2

i p
2
i +

λ2
i

4 − λip
2
i + µi. The above inequality shows that x is closer to ωi than to ωj

if and only if X belongs to the power region of Σi in the power diagram of
the hyperspheres Σj , j = 1, . . . , n. As X belongs to Q and projects vertically
onto x, we have proved the result.

Corollary 1. Let Σ be a finite set of hyperspheres of R
d+1, Pow(Σ) its power

diagram and PowQ(Σ) the restriction of Pow(Σ) to Q. The vertical projection
of PowQ(Σ) is the Möbius diagram Möb(ω) of a set of Möbius sites of R

d.

Easy computations give ω.
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Combinatorial and Algorithmic Properties

It follows from Theorem 6 that the combinatorial complexity of the Möbius
diagram of n Möbius sites in R

d is O(nb d
2 c+1). This bound is tight since Au-

renhammer [6] has shown that it is tight for multiplicatively weighted Voronoi
diagrams.

We easily deduce from the proof of the Linearization Theorem 6 an algo-
rithm for constructing Möbius diagrams. First, we compute the power diagram
of the hyperspheresΣi of R

d+1, intersect each of the faces of this diagram with
the paraboloid Q and then project the result on R

d.

Theorem 7. Let ω be a set of n Möbius sites in R
d, d ≥ 2. The Möbius dia-

gram Möb(ω) of ω can be constructed in worst-case optimal time Θ(n log n+

nb d
2 c+1).

Another consequence of the linearization theorem is the fact that any
Möbius diagram can be represented as a simplicial complex TQ embedded in
R

d+1. TQ is a sub-complex of the regular triangulation T dual to the power
diagram Pow(Σi) of the hyperspheres Σi. Since T is embedded in R

d+1, TQ
is a simplicial complex of R

d+1. More precisely, TQ consists of the faces of T
that are dual to the faces of PowQ(Σ), i.e. the faces of the power diagram
that intersect Q. We will call TQ the dual of PowQ(Σ). Observe that since,
in general, no vertex of Pow(Σ) lies on Q, TQ is a d-dimensional simplicial
complex (embedded in R

d+1).
Moreover, if the faces of Pow(Σ) intersect Q transversally and along topo-

logical balls, then, by a result of Edelsbrunner and Shah [21], TQ is homeo-
morphic to Q and therefore to R

d. It should be noted that this result states
that the simplicial complex TQ has the topology of R

d. This result, however,
is mainly combinatorial, and does not imply that the embedding of TQ into
R

d+1 as a sub-complex of the regular triangulation T may be projected in a
1-1 manner onto R

d.

Spherical Voronoi Diagrams

Lemma 1 states that the bisectors of two Möbius sites is a hypersphere
(possibly degenerated in a hyperplane). More generally, let us consider the
Voronoi diagrams such that, for any two objects oi and oj of O, the bisector

σij = {x ∈ R
d, δi(x) = δj(x)} is a hypersphere. Such a diagram is called a

spherical Voronoi diagram.
In Sect. 1.5, we will prove that any spherical Voronoi diagram of R

d is a
Möbius diagram (Theorem 15).

Möbius transformations are the transformations that preserve hyper-
spheres. An example of a Möbius transformation is the inversion with respect
to a hypersphere. If the hypersphere is centered at c and has radius r, the
inversion associates to a point x ∈ R

d its image
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x′ = c+
r(x − c)
(x − c)2 .

Moreover, it is known that any Möbius transformation is the composition of
up to four inversions [16]. An immediate consequence of Theorem 15 is that
the set of Möbius diagrams in R

d is stable under Möbius transformations,
hence their name.

Möbius Diagrams on Spheres

Given a set ω of n Möbius sites of R
d+1, the restriction of their Möbius

diagram to a hypersphere S
d is called a Möbius diagram on S

d. It can be shown
that such a diagram is also the restriction of a power diagram of hyperspheres
of R

d+1 to S
d (Exercise 14) .

We define spherical diagrams on S
d as the diagrams on S

d whose bisectors
are hyperspheres of S

d and that satisfy two properties detailed in Sect. 1.5.1
and 1.5.2. See Exercise 16 for more details on these conditions. This exercise
proves that the restriction of a Möbius diagram, i.e. a Möbius diagram on S

d,
is a spherical diagram.

Let us now prove the converse: any spherical diagram on S
d is a Möbius

diagram on S
d. Let h be a hyperplane of R

d+1. The stereographic projection
that maps S

d to h maps any spherical diagram D on S
d to some spherical

diagram D′ on h. Theorem 15 implies that this D′ is in fact a Möbius diagram.
Exercise 12 shows that D, which is the image of D′ by the inverse of the
stereographic projection, is the restriction of some power diagram of R

d+1 to
S

d. Exercise 14 then proves that it is indeed a Möbius diagram.

Exercise 12. Show that the linearization theorem and its corollary still hold
if one replaces the paraboloid Q by any hypersphere of R

d+1 and the vertical
projection by the corresponding stereographic projection.

Exercise 13. Show that the intersection of a Möbius diagram in R
d with a

k-flat or a k-sphere σ is a Möbius diagram in σ.

Exercise 14. Show that the restriction of a Möbius diagram of n Möbius
sites to a hypersphere Σ ⊂ R

d (i.e. a Möbius diagram on Σ) is identical to
the restriction of a power diagram of n hyperspheres of R

d with Σ, and vice
versa.

Exercise 15. The predicates needed for constructing a Möbius diagram are
those needed to construct Pow(Σ) and those that decide whether a face of
Pow(Σ) intersects Q or not. Write the corresponding algebraic expressions.

Exercise 16. Explain how the two conditions A.C. and L.C.C. presented in
Sect. 1.5.1 and 1.5.2 are to be adapted to the case of spherical diagrams on a
sphere (Hint: consider the L.C.C. condition as a pencil condition, and define
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a pencil of circles on a sphere as the intersection of a pencil of hyperplanes
with this sphere).

Note that the restriction of a Voronoi diagram (affine or not) to S
d always

satisfies this adapted version of A.C. and prove that the restriction of an affine
Voronoi diagram to S

d satisfies L.C.C. so that Exercise 14 allows to conclude
that the restriction of a Möbius diagram to S

d, i.e. Möbius diagram on S
d, is

a spherical diagram.

1.4.2 Anisotropic Diagrams

The definition of anisotropic Voronoi diagrams presented in this section is a
slight extension of the definition proposed by Labelle and Shewchuk [36]. The
objects are points and the distance to a point is a quadratic form with an
additive weight.

Anisotropic diagrams appear to be a natural generalization of Möbius
diagrams and reduce to Möbius diagrams when the matrices are taken to be
a scalar times the identity matrix. As will be shown, the class of anisotropic
diagrams is identical to the class of diagrams whose bisectors are quadratic
hypersurfaces.

Definition and linearization

Consider a finite set of anisotropic sites S = {s1, . . . , sn}. Each site si, i =
1, . . . , n, is a triple (pi,Mi, πi) formed by a point pi ∈ R

d, a d× d symmetric
positive definite matrix Mi and a scalar weight πi. The distance δi(x) of point
x ∈ R

d to site si is defined by

δi(x) = (x− pi)
t
Mi(x − pi)− πi.

The anisotropic Voronoi region of site s is then defined as

AV (si) = {x ∈ R
d, δi(x) ≤ δj(x), ∀1 ≤ j ≤ n},

The anisotropic Voronoi diagram is the minimization diagram of the functions
δi(x).

Let D = d(d+3)
2 . To each point x = (x1, . . . , xd) ∈ R

d , we associate the
two points

φ̃(x) = (xrxi, 1 ≤ r ≤ s ≤ d) ∈ R
d(d+1)

2

φ̂(x) = (x, φ̃(x)) ∈ R
D,

and we denote by Q the d-manifold of R
D defined as

Q =
{

φ̂(x), x ∈ R
d
}

.

To each site si = (pi,Mi, πi) ∈ S, we associate:
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1. the point m̃i ∈ R
d(d+1)

2 defined as

m̃u,u
i = −1

2
Mu,u

i , for 1 ≤ u ≤ d;
m̃u,v

i = −Mu,v
i , for 1 ≤ u < v ≤ d,

2. the point p̂i = (Mipi, m̃i),
3. the sphere σi of center p̂i and radius

√

‖p̂i‖2 − pt
iMipi − πi.

Let Π be the projection ŷ = (y, ỹ) ∈ R
D 7→ y ∈ R

d and let Σ be the set
of spheres σi, i = 1, . . . , n.

Theorem 8 (Linearization). The anisotropic diagram of S is the image by
Π of the restriction of the power diagram Pow(Σ) to the d-manifold Q.

Proof. We have

δi(x) = (x− pi)
tM(x− pi)− πi

= xtMix− 2pt
iMix+ pt

iMipi − πi

= −2p̂t
iφ̂(x) + pt

iMipi − πi

This implies that δi(x) < δj(x) if and only if

(φ̂(x)− p̂i)
2 − (p̂2

i − pt
iMipi − πi) < (φ̂(x) − p̂j)

2 − (p̂2
j − pt

jMjpj − πj)

Hence, x is closer to si than to sj if and only if the power of φ̂(x) to σi is

smaller than its power to σj . Equivalently, a point φ̂(x) ∈ Q belongs to the

power cell of σ(si) if and only if its projection x = Π(φ̂(x)) belongs to the
anisotropic Voronoi region AV (si).

We easily deduce the following theorem.

Theorem 9. The Voronoi diagram of n anisotropic sites of R
d can be com-

puted in time O(nb D+1
2 c) where D = d(d+3)

2 .

This result is to be compared to Theorem 1 which provides a better com-
binatorial bound. We let as an open question to fill the gap between those
two bounds.

Quadratic Voronoi Diagrams

The bisectors of anisotropic diagrams, as defined in the previous section, are
quadratic hypersurfaces. A minimization diagram whose bisectors are hyper-
quadrics is called a quadratic Voronoi diagram. In Sect. 1.5, we will prove that
any quadratic Voronoi diagram is the anisotropic Voronoi diagram of a set of
anisotropic sites (Theorem 16).
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1.4.3 Apollonius Diagrams

In this section, we present diagrams that are closely related to Möbius dia-
grams: namely, the Euclidean Voronoi diagrams of hyperspheres, also called
Apollonius or Johnson-Mehl diagrams. Contrary to Möbius and anisotropic
diagrams, the bisectors of Apollonius diagrams are not algebraic hypersur-
faces since the bisector between two hyperspheres is only one sheet of a hy-
perboloid. As a consequence, Apollonius diagrams cannot be linearized in
the same way as Möbius and anisotropic diagrams. Nevertheless, another lin-
earization scheme can be applied, leading to interesting combinatorial and
algorithmic results.

Definition of Apollonius Diagrams

Let us consider a finite set of weighted points S = {σ0, σ1, . . . , σn} where
σi = (pi, ri), pi ∈ R

d and ri ∈ R. We define the distance from x to σi as

δi(x) = ‖x− pi‖ − ri.

This distance is also called the additively weighted distance from x to the
weighted point σi. The minimization diagram of the distance functions δi, i =
1, . . . , n, is called the additively weighted Voronoi diagram, or the Apollonius
diagram of S. We denote it by Apo(S) (see Fig. 1.8).

The Apollonius region A(σi) of σi is defined as

A(σi) = {x ∈ R
d, δi(x) ≤ δj(x)}.

It is easy to see that A(σi) is either empty or star-shaped from pi. The bound-
ary of A(σi) may have a complicated structure. In fact, as we will see, the
boundary of A(σi) has the same combinatorial structure as a Möbius diagram
in R

d−1.
Since the diagram is not changed if we replace all ri by ri+r for any r ∈ R,

we can assume, without loss of generality, that all ri are non negative. The
weighted points are then hyperspheres and the distance to a weighted point
is the signed Euclidean distance to the corresponding hypersphere, counted
positively outside the hypersphere and negatively inside the hypersphere.

Observe that, in the plane, a vertex of an Apollonius diagram is the center
of a circle tangent to three circles of S (assuming all ri non negative). Com-
puting such a point is known as Apollonius’ Tenth Problem, hence the name
of the diagram.

Apollonius Diagrams and Power Diagrams

The graph of the distance function δi(x) is the half-cone of revolution Ci of
equation

Ci : xd+1 = ‖x− pi‖ − ri, xd+1 + ri ≥ 0



1 Curved Voronoi Diagrams 23

Fig. 1.8. The Apollonius diagram of a set of circles. Compare with the power
diagram of the same set of circles in Fig. 1.6.

The bisector of two hyperspheres of S is thus the projection of the intersection
of two half-cones. This intersection is a quadratic hypersurface (in fact, a sheet
of a two sheet hyperboloid) contained in a hyperplane. Indeed, we have

C1 : (xd+1 + r1)
2 = (x− p1)

2, xd+1 + r1 > 0,

C2 : (xd+1 + r2)
2 = (x− p2)

2, xd+1 + r2 > 0.

The intersection of the two half-cones is contained in the hyperplane h12 whose
equation is obtained by subtracting the two sides of the above equations:

h12 : −2(p1 − p2) · x− 2(r1 − r2)xd+1 + p2
1 − r21 − p2

2 + r22 = 0.

This shows that there exists a correspondence between the diagram Apo(S)
and the power diagram of the hyperspheres Σi in R

d+1 (i = 1, . . . , n), where
Σi is centered at (pi, ri) and has radius ri

√
2. More precisely, A(σi) is the

projection of the intersection of the half-cone Ci with the power region L(Σi).
Indeed, x is in A(σi) if and only if the projection Xi of x onto Ci has a smaller
xd+1-coordinate than the projections of x onto the other half-cones Cj , j 6= i.
In other words, the coordinates (x, xd+1) of Xi must obey

(xd+1 + ri)
2 = (x− pi)

2

(xd+1 + rj)
2 ≤ (x− pj)

2 for any j 6= i,

and by subtracting both sides, it follows that Σi(Xi) ≤ Σj(Xi) for all j.
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Algorithm 1 Construction of Apollonius diagrams

Input: a set of hyperspheres S

1. Compute Σi, for i = 1, . . . , n;
2. Compute the power diagram of the Σi’s;
3. For all i = 1, . . . , n, project vertically the intersection of the power region L(Σi)

with the half-cone Ci.

Output: the Apollonius diagram of S.

The Apollonius diagram of S can be computed using the following algo-
rithm:

The power diagram of the Σi can be computed in time O(nb d
2c+1 logn).

The intersection involved in Step 3 can be computed in time proportional to

the number of faces of the power diagram of the Σi’s, which is O(nb d
2 c+1).

We have thus proved the following theorem due to Aurenhammer [6]:

Theorem 10. The Apollonius diagram of a set of n hyperspheres in R
d has

complexity O(nb d
2 c+1) and can be computed in time O(nb d

2 c+1 logn).

This result is optimal in odd dimensions, since the bounds above coincide
with the corresponding bounds for the Voronoi diagram of points under the
Euclidean distance. It is not optimal in dimension 2 (see Exercise 20). We also
conjecture that it is not optimal in any even dimension.

Computing a Single Apollonius Region

We now establish a correspondence, due to Boissonnat and Karavelas [11],
between a single Apollonius region and a Möbius diagram on a hypersphere.

To give the intuition behind the result, we consider first the case where
one of the hyperspheres, say σ0, is a hyperplane, i.e. a hypersphere of infinite
radius. We take for σ0 the hyperplane xd = 0, and assume that all the other
hyperspheres lie the half-space xd > 0. The distance δ0(x) from a point x ∈ R

d

to σ0 is defined as the Euclidean distance.
The points that are at equal distance from σ0 and σi, i > 0, belong to

a paraboloid of revolution with vertical axis. Consider such a paraboloid as
the graph of a (d − 1)-variate function ϑi defined over R

d−1. If follows from
Sect. 1.4.1 that the minimization diagram of the ϑi, i = 1, . . . , n, is a Möbius
diagram (see Fig. 1.9).

Easy computations give the associated weighted points. Write pi = (p′i, p
′′
i ),

p′i ∈ R
d−1, p′′i ∈ R, i > 0 and let ω= {ω1, . . . , ωn} be the set of Möbius sites

of R
d where ωi = {p′i, λi, µi}, and

λi =
1

ri + p′′i
, µi = ri − p′′i , i > 0.
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Fig. 1.9. A cell in an Apollonius diagram of hyperspheres projects vertically onto
a Möbius diagram in σ0.

We let as an exercise to verify that the vertical projection of the boundary of
the Apollonius region A(σ0) of σ0 onto σ0 is the Möbius diagram of ω.

We have assumed that one of the hyperspheres was a hyperplane. We now
consider the case of hyperspheres of finite radii. The crucial observation is
that the radial projection of A(σ0) ∩ A(σi) ∩ A(σj) onto σ0, if not empty, is
a hypersphere. It follows that the radial projection of the boundary of A(σ0)
onto σ0 is a Möbius diagram on σ0.

Such a Möbius diagram on σ0 can be computed by constructing the re-
striction of the power diagram of n hyperspheres of R

d with the hypersphere
σ0 (see Exercise 14).

Theorem 11. Let S be a set of n hyperspheres in R
d. The worst-case com-

plexity of a single Apollonius region in the diagram of n hyperspheres of R
d is

Θ(nb d+1
2 c). Such a region can be computed in optimal time Θ(n log n+nbd+1

2 c).

Exercise 17. Show that the cell of hypersphere σi in the Apollonius diagram
of S is empty if and only if σi is inside another hypersphere σj .

Exercise 18. The predicates required to construct an Apollonius region are
multivariate polynomials of degree at most 8 and 16 when d = 2 and 3 re-
spectively. Detail these predicates [10].

Exercise 19. Show that the convex hull of a finite number of hyperspheres
can be deduced from the restriction of a power diagram to a unit hypersphere
[10].

Exercise 20. Prove that the combinatorial complexity of the Apollonius di-
agram of n circles in the plane has linear size.
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Exercise 21 (Open problem). Give a tight bound on the combinatorial
complexity of the Apollonius diagram of n hyperspheres of R

d when d is even.

1.5 Linearization

In this section, we introduce abstract diagrams, which are diagrams defined
in terms of their bisectors. We impose suitable conditions on these bisectors
so that any abstract diagram can be built as the minimization diagram of
some distance functions, thus showing that the class of abstract diagrams is
the same as the class of Voronoi diagrams.

Given a class of bisectors, such as affine or spherical bisectors, we then
consider the inverse problem of determining a small class of distance functions
that allows to build any diagram having such bisectors. We use a linearization
technique to study this question.

1.5.1 Abstract Diagrams

Voronoi diagrams have been defined (see Sect. 1.2) as the minimization dia-
gram of a finite set of continuous functions {δ1, . . . , δn}. It is convenient to
interpret each δi as the distance function to an abstract object oi, i = 1, . . . , n.
We define the bisector of two objects oi and oj of O = {o1, . . . , on} as

bij = {x ∈ R
d, δi(x) = δj(x)}.

The bisector bij subdivides R
d into two open regions: one, biij , consisting of the

points of R
d that are closer to oi than to oj , and the other one, bjij , consisting

of the points of R
d that are closer to oj than to oi. We can then define the

Voronoi region of oi as the intersection of the regions biij for all j 6= i. The

union of the closures of these Voronoi regions covers R
d. Furthermore, if we

assume that the bisectors are (d − 1)-manifolds, the Voronoi regions then
have disjoint interiors and we can define the closed region associated to bi

ij as

b̄iij = biij ∪ bij .
In a way similar to Klein [34], we now define diagrams in terms of bisectors

instead of distance functions. Let B = {bij , i 6= j} be a set of closed (d − 1)-
manifolds without boundary. We always assume in the following that bij = bji

for all i 6= j. We assume further that, for all distinct i, j, k, the following
incidence condition (I.C.) holds:

bij ∩ bjk = bjk ∩ bki (I.C.)

This incidence condition is obviously needed for B to be the set of bisectors
of some distance functions.

By Jordan’s theorem, each element of B subdivides R
d into at least two

connected components and crossing a bisector bij implies moving into another
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connected component of R
d \ bij . Hence, once a connected component of R

d \
bij is declared to belong to i, the assignments of all the other connected

components of R
d \ bij to i or j are determined.

Given a set of bisectors B = {bij , i 6= j}, an assignment on B associates

to each connected component of R
d \ bij a label i or j so that two adjacent

connected components have different labels.
Once an assignment on B is defined, the elements of B are called oriented

bisectors.
Given B, let us now consider such an assignment and study whether it

may derive from some distance functions. In other words, we want to know
whether there exists a set ∆ = {δ1, . . . , δn} of distance functions such that

1. the set of bisectors of ∆ is B;
2. for all i 6= j, a connected component C of R

d \ bij is labeled by i if and
only if

∀x ∈ C, δi(x) ≤ δj(x).
We define the region of object oi as ∩j 6=i b̄

i
ij .

A necessary condition for the considered assignment to derive from some
distance functions is that the regions of any subdiagram cover R

d. We call
this condition the assignment condition (A.C.):

∀I ⊂ {1, . . . , n},∪i∈I ∩j∈I\{i} b̄
i
ij = R

d (A.C.)

Given a set of bisectors B = {bij , i 6= j} and an assignment satisfying I.C.

and A.C., the abstract diagram of O is the subdivision of R
d consisting of

the regions of the objects of O and of their faces. The name abstract Voronoi
diagram was coined by Klein [34], referring to similar objects in the plane.

For any set of distance functions δi, we can define the corresponding set of
oriented bisectors. Obviously, I.C. and A.C. are satisfied and the abstract dia-
gram defined by this set is exactly the minimization diagram for the distance
functions δi. Hence any Voronoi diagram allows us to define a corresponding
abstract diagram. Let us now prove the converse: any abstract diagram can
be constructed as a Voronoi diagram.

Specifically, we prove that I.C. and A.C. are sufficient conditions for an
abstract diagram to be the minimization diagram of some distance functions,
thus proving the equivalence between abstract diagrams and Voronoi dia-
grams. We need the following technical lemmas.

Lemma 2. The assignment condition implies that for any distinct i, j, k, we
have

bjij ∩ bkjk ∩ biki = ∅.

Proof. A.C. implies that R
d = ∪1≤i≤n ∩j 6=i b̄

i
ij ⊂ b̄iij ∪ b̄jjk ∪ b̄kki. Hence, b̄iij ∪

b̄jjk ∪ b̄kki = R
d. Taking the complementary sets, we obtain bjij ∩ bkjk ∩ biki = ∅.
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Lemma 3. For any distinct i, j, k, we have

bij ∩ bkjk ⊂ bkik and bij ∩ b̄kjk ⊂ b̄kik (1.3)

bij ∩ bjjk ⊂ biik and bij ∩ b̄jjk ⊂ b̄iik (1.4)

Proof. Let us first prove that bij ∩ bkjk ⊂ bkik:

Consider x ∈ bij ∩ bkjk . Assume, for a contradiction, that x 6∈ bkik. It follows

that x ∈ b̄iik, but x cannot lie on bik, because this would imply that x ∈ bik∩bij ,
which does not intersect bkjk . Hence, x ∈ biik and therefore, x ∈ bij ∩ bkjk ∩ biik.

We can then find x′ in the neighborhood of x such that x′ ∈ bjij ∩ bkjk ∩ biki,
contradicting Lemma 2.

Let us now prove that bij ∩ b̄kjk ⊂ b̄kik. We have proved the inclusion for

bij ∩ bkjk. It remains to prove that bij ∩ bjk ⊂ b̄kik which is trivially true, by I.C.
The two other inclusions are proved in a similar way.

We can now prove a lemma stating a transitivity relation:

Lemma 4. For any distinct i, j, k, we have biij ∩ bjjk ⊂ biik.

Proof. Let x ∈ biij ∩ bjjk . Assume, for a contradiction, that x 6∈ biik. If x ∈ bkik,

we have biij ∩ bjjk ∩ bkik 6= ∅, contradicting Lemma 2. Therefore, x has to belong

to bik, which implies that x ∈ biij ∩ bik ⊂ bkkj by Lemma 3. This contradicts

x ∈ bjjk. We deduce that x ∈ biik, as needed.

The following lemma states that at most two assignments are likely to
derive from some Voronoi diagram.

Lemma 5. For a given set B satisfying I.C. and assuming that we never
have bij ⊂ bik for j 6= k, there are at most two ways of labeling the connected

components of each R
d \ bij as biij and bjij such that A.C. is verified.

Proof. First assume that the sides b112 and b212 have been assigned. Consider
now the labeling of the sides of b1i, for some i > 2: let x be a point in the
non empty set b2i \ b12. First assume that x ∈ b112. Lemma 3 then implies that
x ∈ b11i. Conversely, if x ∈ b212, x ∈ bi1i. In both cases, the assignment of the
sides of b1i is determined.

All other assignments are determined in a similar way. One can easily see
that reversing the sides of b12 reverses all the assignments. Thus, we have at
most two possible global assignments.

Theorem 12. Given a set of bisectors B = {bij , 1 ≤ i 6= j ≤ n} that satisfies
the incidence condition (I.C.) and an assignment that satisfies the assignment
condition (A.C.), there exists a set of distance functions {δi, 1 ≤ i ≤ n}
defining the same bisectors and assignments.
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Proof. Let δ1 be any real continuous function over R
d. Let j > 1 and assume

the following induction property: for all i < j, the functions δi have already
been constructed so that

∀i, i′ < j, δi(x) ≤ δi′(x)⇔ x ∈ b̄iii′ .

Let us build δj . We consider the arrangement of all bisectors bij , for i < j:

for each I ⊂ J = {1, . . . , j − 1}, we define VI = (∩i∈I b̄
i
ij) ∩ (∩k∈J\I b̄

j
jk). The

set VI is a non necessarily connected region of the arrangement where we
need δj > δi if i ∈ I and δj < δi if i ∈ J \ I . This leads us to the following
construction.

The interior of VI is intVI = (∩i∈Ib
i
ij) ∩ (∩k∈J\Ib

j
jk). Lemma 4 and the

induction hypothesis imply that

∀i ∈ I, ∀k ∈ J \ I, ∀x ∈ intVI , δi(x) < δk(x).

In particular, if we define νI = mink∈J\I δk and µI = maxi∈I δi on VI , we
have µI < νI on intVI .

Let us now consider some point x on the boundary of VI . We distinguish
two cases. We can first assume that x ∈ bij for some i ∈ I . Then, by Lemma 3,

for any i′ ∈ I \ {i}, x ∈ bij ∩ b̄i
′

i′j ⊂ b̄i
′

i′i so that δi′(x) ≤ δi(x). It follows that
µI(x) = δi(x).

Consider now the case when x ∈ ∂VI ∩ bjk with k ∈ J \ I , we have
νI(x) = δk(x). Finally, if x ∈ ∂VI ∩ bij ∩ bjk with i ∈ I and k ∈ J \ I , we have
µI(x) = δi(x) and νI (x) = δk(x). By the induction hypothesis, δi(x) = δk(x),
which implies that µI(x) = νI(x).

It follows that we can define a continuous function ρ on ∂VI in the following
way:

ρI (x) = µI(x) if ∃i ∈ I, x ∈ bij
= νI(x) if ∃k ∈ J \ I, x ∈ bjk

Furthermore, on ∂VI ∩ bij = ∂VI\{i} ∩ bij , if i ∈ I , we have

ρI(x) = µI(x) = νI\{i}(x) = ρI\{i}(x). (1.5)

The definitions of the ρI are therefore consistent, and we can now use these
functions to prove that the following definition of δj satisfies the induction
property.

Finally, we require δj to be any continuous function verifying

µI < δj < νI

on each intVI . By continuity of δj , we deduce from 1.5 that if x ∈ ∂VI ∩ bjk =
∂VI\{i} ∩ bij with k ∈ J \ I , we have ρI(x) = µI(x) = νI\{i}(x) = ρI\{i}(x) =
δj(x).

It follows that on each VI , for all i < j, δi(x) < δj(x) iff x ∈ biij and
δi(x) = δj(x) iff x ∈ bij . The induction follows.
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One can prove that, in the proof of Lemma 5, the assignment we build
satisfies the consequences of A.C. stated in Lemmas 2, 3 and 4. The proof of
Theorem 12 does not need A.C. but only the consequences of A.C. stated in
those three lemmas. It follows that any of the two possible assignments deter-
mined in the proof of Lemma 5 allows the construction of distance functions,
as in Theorem 12, which implies that A.C. is indeed verified. We thus obtain
a stronger version of Lemma 5.

Lemma 6. For a given set B satisfying I.C. and assuming that we never
have bij ⊂ bik for j 6= k, there are exactly two ways of labeling the connected

components of each R
d \ bij as biij and bjij such that A.C. is verified.

Theorem 12 proves the equivalence between Voronoi diagrams and abstract
diagrams by constructing a suitable set of distance functions. In the case of
affine bisectors, the following result of Aurenhammer [6] allows us to choose
the distance functions in a smaller class than the class of continuous functions.

Theorem 13. Any abstract diagram of R
d with affine bisectors is identical to

the power diagram of some set of spheres of R
d.

Proof. In this proof, we first assume that the affine bisectors are in general
position, i.e. four of them cannot have a common subspace of co-dimension 2:
the general result easily follows by passing to the limit.

Let B = {bij , 1 ≤ i 6= j ≤ n} be such a set. We identify R
d with the

hyperplane xd+1 = 0 of R
d+1. Assume that we can find a set of hyperplanes

{Hi, 1 ≤ i ≤ n} of R
d+1 such that the intersection Hi ∩Hj projects onto bij .

Sect. 1.3 then shows that the power diagram of the set of spheres {σi, 1 ≤ i ≤
n} obtained by projecting the intersection of paraboloid Q with each Hi onto
R

d admits B as its set of bisectors2 (see Fig. 1.5).
Let us now construct such a set of hyperplanes, before considering the

question of the assignment condition.
Let H1 and H2 be two non-vertical hyperplanes of R

d such that H1 ∩H2

projects vertically onto b12. We now define the Hi for i > 2: let ∆1
i be the

maximal subspace of H1 that projects onto b1i and let ∆2
i be the maximal

subspace of H2 that projects onto b2i. Both ∆1
i and ∆2

i have dimension d− 1.
I.C. implies that b12 ∩ b2i ∩ bi1 has co-dimension 2 in R

d. Thus ∆1
i ∩ ∆2

i , its
preimage on H1 (or H2) by the vertical projection, has the same dimension
d−2. This proves that ∆1

i and∆2
i span a hyperplaneHi of R

d+1. The fact that
Hi 6= H1 and Hi 6= H2 easily follows from the general position assumption.

We still have to prove that Hi ∩ Hj projects onto bij for i 6= j > 2. I.C.
ensures that the projection of Hi∩Hj contains the projection of Hi∩Hj ∩H1

and the projection of Hi∩Hj∩H2, which are known to be bij∩b1i and bij∩b2i,
by construction. The general position assumption implies that there is only

2We may translate the hyperplanes vertically in order to have a non-empty in-
tersection, or we may consider imaginary spheres with negative squared radii.
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one hyperplane of R
d, namely bij , containing both bij ∩ b1i and bij ∩ b2i. This

is the projection of Hi ∩Hj .

As we have seen, building this set of hyperplanes of R
d+1 amounts to

building a family of spheres whose power diagram admits B as its set of
bisectors. At the beginning of the construction, while choosing H1 and H2, we
may obtain any of the two possible labellings of the sides of b12. Since there
is no other degree of freedom, this choice determines all the assignments.
Lemma 5 shows that there are at most two possible assignments satisfying
A.C., which proves we can build a set of spheres satisfying any of the possible
assignments. The result follows.

Exercise 22. Consider the diagram obtained from the Euclidean Voronoi dia-
gram of n points by taking the other assignment. Characterize a region in this
diagram in terms of distances to the points and make a link with Exercise 3.

1.5.2 Inverse Problem

We now assume that each bisector is defined as the zero-set of some real-valued
function over R

d, called a bisector-function in the following. Let us denote by
B the set of bisector-functions. By convention, for any bisector-function βij ,
we assume that

biij = {x ∈ R
d : βij(x) < 0} and bjij = {x ∈ R

d : βij(x) > 0}.

We now define an algebraic equivalent of the incidence relation in terms of
pencil of functions: we say that B satisfies the linear combination condition
(L.C.C.) if, for any distinct i, j, k, βki belongs to the pencil defined by βij and
βjk , i.e.

∃(λ, µ) ∈ R
2 βki = λβij + µβjk (L.C.C.)

Note that L.C.C. implies I.C. and that in the case of affine bisectors L.C.C. is
equivalent to I.C. Furthermore, it should be noted that, in the case of Voronoi
diagrams, the bisector-functions defined as βij = δi − δj obviously satisfy
L.C.C.

We now prove that we can view diagrams satisfying L.C.C. as diagrams
that can be linearized.

Definition 1. A diagram D of n objects in some space E is said to be a
pullback of a diagram D′ of m objects in space F by a function φ : E → F if
m = n and if, for any distinct i, j, we have

biij = φ−1(ciij)

where biij denotes the set of points closer to i than to j in D and ci
ij denotes

the set of points closer to i than to j in D′.
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Theorem 14. Let B = {βij} be a set of real-valued bisector-functions over

R
d satisfying L.C.C. and A.C. Let V be any vector space of real functions

over R
d that contains B and constant functions.

If N is the dimension of V , the diagram defined by B is the pullback by
some continuous function of an affine diagram in dimension N − 1.

More explicitly, there exist a set C = {ψij · X + cij} of oriented affine

hyperplanes of R
N−1 satisfying I.C. and A.C. and a continuous function φ :

R
d → R

N−1 such that for all i 6= j,

b̄iij = {x ∈ R
d, βij(x) ≤ 0} = φ−1{y ∈ R

N−1, ψij(x) ≤ cij}.

Proof. Let (γ0, . . . , γN−1) be a basis of V such that γ0 is the constant function
equal to 1.

Consider the evaluation application,

φ : x ∈ R
d 7→ (γ1(x), . . . , γN−1(x)) ∈ R

N−1.

If point x belongs to some biij , we have βij(x) < 0. Furthermore, there exists

real coefficients λ0
ij , . . . , λ

N−1
ij such that βij =

∑N−1
k=0 λk

ijγk. The image φ(x)

of x thus belongs to the affine half-space Bi
ij of R

N−1 of equation

N−1
∑

k=1

λk
ijXk < −λ0

ij .

In this way, we can define all the affine half-spaces Bi
ij of R

N−1 for i 6= j:

Bij is an oriented affine hyperplane with normal vector (λ1
ij , . . . , λ

N−1
ij ) and

constant term λ0
ij . Plainly, L.C.C. on the βij translates into I.C. on the Bij ,

and we have

b̄iij = {x ∈ R
d, βij(x) ≤ 0} = φ−1{y ∈ R

N−1, Bij(x) ≤ −λn
ij} (1.6)

Finally, let us prove that A.C. is also satisfied. Lemma 6 states that the
Bij have exactly two inverse assignments satisfying A.C. Furthermore, Equa-
tion 1.6 implies that any of these two assignments defines an assignment for
the bij that also satisfies A.C. It follows that if the current assignment did
not satisfy A.C., there would be more than two assignments for the bij that
satisfy A.C. This proves that A.C. is also satisfied by the Bij and concludes
the proof.

We can now use Theorem 13 and specialize Theorem 14 to the specific
case of diagrams whose bisectors are hyperspheres or hyperquadrics, or, more
generally, to the case of diagrams whose class of bisectors spans a finite di-
mensional vector space.
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Theorem 15. Any abstract diagram of R
d with spherical bisectors such that

the corresponding degree 2 polynomials satisfy L.C.C. is a Möbius diagram.

Proof. Since the spherical bisectors satisfy L.C.C., we can apply Theorem 14
and Theorem 13. Function φ of Theorem 14 is simply the lifting mapping
x 7→ (x, x2), and we know from Theorem 13 that our diagram can be obtained
as a power diagram pulled-back by φ. That is to say δi(x) = Σi(φ(x)), where
Σi is a hypersphere in R

d+1.
Another way to state this transformation is to consider the diagram with

spherical bisectors in R
d as the projection by φ−1 of the restriction of the

power diagram of the hyperspheres Σi to the paraboloid φ(Rd) ⊂ R
d+1 of

equation xd+1 = x2.
Assume that the center of Σj is (uj

1, . . . , u
j
d+1), and that the squared radius

of Σj is wj . We denote by Σj the power to Σj . Distance δj can be expressed
in terms of these parameters:

δj(x) = Σj(φ(x)) =
∑

1≤i≤d

(xi − uj
i )

2 + ((
∑

1≤i≤d

x2
i )− uj

d+1)
2 − wj .

Subtracting from each δj the same term (
∑

1≤i≤D x2
i )

2 leads to a new set of
distance functions that define the same minimization diagram as the δj . In
this way, we obtain new distance functions which are exactly the ones defining
Möbius diagrams.

This proves that any diagram whose bisectors are hyperspheres can be
constructed as a Möbius diagram.

The proof of the following theorem is similar to the previous one:

Theorem 16. Any abstract diagram of R
d with quadratic bisectors such

that the corresponding degree 2 polynomials satisfy L.C.C. is an anisotropic
Voronoi diagram.

Exercise 23. Explain why, in Theorem 15, it is important to specify which
bisector-functions satisfy L.C.C. instead of mentioning only the bisectors
(Hint: Theorem 12 implies that there always exist some bisector-functions
with the same zero-sets that satisfy L.C.C.)

1.6 Incremental Voronoi Algorithms

Incremental constructions consist in adding the objects one by one in the
Voronoi diagram, updating the diagram at each insertion. Incremental algo-
rithms are well known and highly popular for constructing Euclidean Voronoi
diagrams of points and power diagrams of spheres in any dimension. Because
the whole diagram can have to be modified at each insertion, incremental al-
gorithms have a poor worst-case complexity. However most of the insertions
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result only in local modifications and the worst-case complexity does not re-
flect the actual complexity of the algorithm in most practical situations. To
provide more realistic results, incremental constructions are analyzed in the
randomized framework. This framework makes no assumption on the input
object set but analyzes the expected complexity of the algorithm assuming
that the objects are inserted in random order, each ordering sequence being
equally likely. The following theorem, whose proof can be found in many text-
books (see e.g. [13]) recalls that state-of-the-art incremental constructions of
Voronoi diagrams of points and power diagrams have an optimal randomized
complexity.

Theorem 17. The Euclidean Voronoi diagram of n points in R
d and the

power diagram of n spheres in R
d can be constructed by an incremental algo-

rithm in randomized time O
(

n logn+ nd d+1
2 e

)

.

Owing to the linearization techniques of Sec. 1.5, this theorem yields com-
plexity bounds for the construction of linearizable diagrams such as Möbius,
anisotropic or Apollonius diagrams. Incremental constructions also apply to
the construction of Voronoi diagrams for which no linearization scheme ex-
ists. This is for instance the case for the 2-dimensional Euclidean Voronoi
diagrams of line segments. The efficiency of the incremental approach merely
relies on the fact that the cells of the diagram are simply connected and that
the 1-skeleton of the diagram, (i. e. the union of its edges and vertices) is a
connected set. Unfortunately, these two conditions are seldom met except for
planar Euclidean diagrams. Let us take Apollonius diagrams as an illustra-
tion. Each cell of an Apollonius diagram is star shaped with respect to the
center of the associated sphere and is thus simply connected. In the planar
case, Apollonius bisectors are unbounded hyperbolic arcs and the 1-skeleton
can easily be made connected by adding a curve at infinity. The added curve
can be seen as the bisector separating any input object from an added ficti-
tious object. In 3-dimensional space, the skeleton of Apollonius diagrams is
not connected: indeed, we know from Sect. 1.4.3 that the faces of a single cell
are in 1-1 correspondence with the faces of a 2-dimensional Möbius diagram
and therefore may include isolated loops.

As a consequence, the rest of this section focuses on planar Euclidean
diagrams. After some definitions, the section recalls the incremental construc-
tion of Voronoi diagrams, outlines the topological conditions under which this
approach is efficient and gives some examples. The efficiency of incremental
algorithms also greatly relies on the availability of some point location data
structure to answer nearest neighbor queries. A general data structure, the
Voronoi hierarchy, is described at the end of the section. The last subsection
lists the main predicates involved in the incremental construction of Voronoi
diagrams.
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1.6.1 Planar Euclidean diagrams

To be able to handle planar objects that possibly intersect, the distance func-
tions that we consider in this section are signed Euclidean distance functions,
i.e. the distance δi(x) from a point x to an object oi is:

δi(x) =

{

miny∈ōi
‖y − x‖, if x 6∈ o

−miny∈ōc
i
‖y − x‖, if x ∈ o

where ōi is the closure of oi and ōc
i the closure of the complement of oi. Note

that the distance used to define Apollonius diagrams matches this definition.
Then, given a finite set O of planar objects and oi ∈ O, we define the Voronoi
region of oi as the locus of points closer to oi than to any other object in O

V (oi) = {x ∈ R
2 : δi(x) ≤ δj(x), ∀oj ∈ O}.

Voronoi edges are defined as the locus of points equidistant to two objects O
and closer to these two objects than to any other object in O, and Voronoi
vertices are the locus of points equidistant to three or more objects and closer
to these objects than to any other object in O. The Voronoi diagram Vor(O)
is the planar subdivision induced by the Voronoi regions, edges and vertices.

The incremental construction described below relies on the three following
topological properties of the diagram that are assumed to be met for any set
of input objects:

1. The diagram is assumed to be a nice diagram, i. e. a diagram in which
edges and vertices are respectively 0 and 1-dimensional sets.

2. The cells are assumed to be simply connected.
3. The 1-skeleton of the diagram is connected.

Owing to Euler formula, Properties 1 and 2 imply that the Voronoi diagram
of n objects is a planar map of complexity O(n). Property 3 is generally not
granted for any input set. Think for example of a set of points on a line.
However, in the planar case, this condition can be easily enforced as soon as
Properties 1 and 2 are met. Indeed, if the cells are simply connected, there is
no bounded bisector and the 1-skeleton can be connected by adding a curve
at infinity. The added curve can be seen as the bisector separating any input
object from an added fictitious object. The resulting diagram is called the
compactified version of the diagram.

1.6.2 Incremental Construction

We assume that the Voronoi diagram of any input set we consider is a nice
diagram with simply connected cells and a connected 1-skeleton. Each step of
the incremental construction takes as input the Voronoi diagram Vor(Oi−1) of
a current set of objects Oi−1 and an object oi 6∈ Oi−1, and aims to construct



36 J-D. Boissonnat, C. Wormser, M. Yvinec

the Voronoi diagram Vor(Oi) of the set Oi = Oi−1 ∪ {oi}. In the following,
we note V (o,Oi−1) the region of an object o in the diagram Vor(Oi−1) and
V (o,Oi) the region of o in Vor(Oi).

We note Skel(Oi−1) the 1-skeleton of Vor(Oi−1). Let x be a point of
Skel(Oi−1). We note N (x,Oi−1) the nearest neighbors of x in Oi−1, i.e. the
subset of objects of Oi−1 that are closest to x. The point x is said to be in
conflict with oi if x is closer to oi than to N (x,Oi−1). Hence, the part of the
skeleton that conflicts with oi, called the conflict skeleton for short, is exactly
the intersection of the skeleton Skel(Oi−1) with the region of oi in Vor(Oi).
See Fig. 1.11.

The conflict skeleton is a subgraph of Skel(Oi−1) and the endpoints of this
subgraph are the vertices of the region V (oi,Oi). If V (oi,Oi) is not empty,
the conflict skeleton is not empty either. Indeed, an empty conflict skeleton
would imply that V (oi,Oi) is included in a single region V (o,Oi−1) of the
diagram Vor(Oi−1) and the region V (o,Oi) would not be simply connected.
Furthermore, the following lemma, due to Klein et al. [35], proves that the
conflict skeleton is a connected subgraph of Skel(Oi−1).

Lemma 7. If, for any input set, the Voronoi diagram is a nice diagram with
simply connected regions and a connected 1-skeleton, the conflict skeleton of
an additional object is connected.

Proof. We use the above notation and assume, for a contradiction, that the
conflict skeleton of oi, which is Skel(Oi−1) ∩ V (oi,Oi), consists of several
disjoint connected components Sk1, Sk2, . . . , Sk`. Each connected component
Skj has to intersect the boundary of the new region V (oi,Oi), otherwise
Skel(Oi−1) would not be connected, a contradiction. Then, if ` ≥ 2, there
exists a path C in V (oi,Oi) connecting two points x and y on the boundary
of V (oi,Oi) and separating Sk1 and Sk2, see Fig. 1.10. The path C does
not intersect Skel(Oi−1) and is therefore included in the region V (o,Oi−1) of
some object o of Oi−1. Since, points arbitrarily close to x and y but outside
V (oi,Oi) belong to V (o,Oi−1), x and y can be joined by a simple path D
in V (o,Oi) ⊂ V (o,Oi−1). The simple closed curve C ∪ D is contained in
V (o,Oi−1) and encloses Sk1 or Sk2, which contradicts the fact that Skel(Oi−1)
is connected.

Once the conflict skeleton is known, the Voronoi diagram Vor(Oi−1) can
be updated, leading to Vor(Oi). This is done by Procedure 2.

Procedure 3 describes a step of the incremental construction.
In the sequel, the incremental construction is analyzed in the randomized

setting. It is assumed that each object has constant complexity, which implies
that each operation involving a constant number of objects is performed in
constant time. Because the conflict skeleton is connected, Substep 2 can be
performed by traversing the graph Skel(Oi−1) in time proportional to the
number of edges involved in the conflict skeleton. These edges will be either
deleted or shortened in the new diagram. Substep 3 takes time proportional
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y

D

C

Sk1 Sk2

Fig. 1.10. For the proof of Lemma 7.

Fig. 1.11. Incremental construction of the Voronoi diagram of disjoint line segments.
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Procedure 2 Updating the Voronoi diagram

Input: Vor(Oi−1), Skel(Oi−1)

1. Create a new vertex at each endpoint of the conflict skeleton;
2. Remove vertices, edges and portions of edges that belong to Skel(Oi−1) ∩

V (oi,Oi);
3. Connect the new vertices s as to form the boundary of the new region.

Output: Vor(Oi)

Procedure 3 A step of the incremental algorithm

Input: Vor(Oi−1) and a new object oi

1. Find a first point x of Skel(Oi−1) in conflict with oi ;
2. Compute the whole conflict skeleton ;
3. Update Vor(Oi−1) into Vor(Oi) using Procedure 2;
4. Update the location data structure.

Output: Vor(Oi)

to the number of edges involved in the conflict skeleton plus the number of
edges of V (oi,Oi). The latter are the new edges. Hence Substeps 2 and 3 take
time proportional to the number of changes in the 1-skeleton. Because each
edge in the skeleton is defined by four objects and because the complexity of
the Voronoi diagram of n objects is O(n), a standard probabilistic analysis
(see e.g. [13]) shows that the expected number of changes at each step of
the incremental algorithm is O(1). The overall randomized complexity of the
algorithm is O(n).

The costs of Substeps 1 and 4 depend of course on the type of the input
objects and of the location data structure. In Sect. 1.6.3, we described a
location data structure, called the Voronoi hierarchy, that can be used in
the case of disjoint convex objects. The Voronoi hierarchy allows to detect a
first conflict in randomized time O(log2 n). At each step, the data structure is
updated in time O(m log2 n) wherem is the number of changes in the diagram.
Because the expected number of changes at each step is O(1), the expected
cost for updating the hierarchy is O(log2 n). This yields the following theorem.

Theorem 18. The incremental construction of the planar Euclidean Voronoi
diagram of n disjoint convex objects with constant complexity takes O(n log2 n)
expected time.

Note that the incremental construction described here is on-line, meaning
that the algorithm does not need to know the whole set of objects right from
the beginning. If the whole set of objects is known in advance, localization
can be made easy and the maintenance of a location data structure is no
longer required [2]. The idea consists in picking one witness point inside each
object and in building first the Voronoi diagram of witness points. In a second
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phase, each witness point is replaced in turn by the corresponding object.
When replacing a witness point by the corresponding object, any point on
the boundary of the cell of the witness point belongs to the conflict skeleton.
The algorithm is no longer on-line but its randomized complexity is reduced
to O(n logn).

Voronoi Diagrams of Line Segments

The above incremental construction applies to the Voronoi diagram of disjoint
line segments. Indeed, in the case of disjoint line segments, the bisector curves
are unbounded simple curves, each composed of at most seven line segments
and parabolic arcs (see e.g. [13, Chap. 19]). Hence, Voronoi vertices and edges
are respectively 0 and 1-dimensional sets. Furthermore, each region in the
diagram is weakly star shaped with respect to its generating segment, meaning
that the segment joining any point in the region to its closest point on the
associated segment is included in the region. It follows that Voronoi regions
are simply connected.

If the segments are allowed to share endpoints, the Voronoi diagram ex-
hibits 2-dimensional Voronoi edges, hence violating the definition of nice
Voronoi diagrams. A way to circumvent this problem consists in considering
that each segment is composed of three distinct objects: the two endpoints
and the open segment. If the two endpoints of a segment are inserted in the
diagram prior to the open segment, the incremental construction encounters
no 2-dimensional bisecting region and the algorithm presented above can be
used.

Voronoi Diagrams of Curved Segments

Voronoi diagrams of disjoint curved segments have been studied by Alt,
Cheong and Vigneron [2]. Alt, Cheong and Vigneron introduce the notion
of harmless curved segments defined as follows. A curved segment is said to
be convex when the region bounded by the curved segment and the line seg-
ment joining its endpoints is convex. A spiral arc is a convex curved segment
with monotonously increasing curvature. A harmless curved segment is either
a line segment or a circular arc or a spiral arc. It can be shown that, if the
input curved segments are split into harmless sub-segments and if each open
curved sub-segment and its two endpoints are considered as three distinct
sites, the Voronoi diagram is a nice diagram with simply connected regions.
The incremental construction paradigm described above therefore applies.

Voronoi Diagrams of Convex Objects

The case of disjoint smooth convex objects is quite similar to the case of
disjoint segments. The bisecting curves between two such objects is a 1-
dimensional curve. Furthermore, each Voronoi region is weakly star shaped
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with respect to the medial axis of its object, hence simply connected. There-
fore, the Voronoi diagram can be built using the incremental algorithm. Note
that the Voronoi diagram of disjoint smooth convex objects could also be ob-
tained by applying the incremental algorithm to the curved segments forming
the boundaries of the objects. However, this approach requires the subdivi-
sion of the boundary of each object into harmless parts and yields a Voronoi
diagram which is a refinement of the diagram of the input objects.

If we still assume the objects to be smooth and convex but allow them to
intersect, things become more difficult. Karavelas and Yvinec [29] have shown
that the Voronoi regions remain simply connected if and only if the objects
of O are pseudo-disks, meaning that the boundaries of any two objects of
O intersect in at most two points. The above incremental algorithm can be
adapted to work in this case. However, since the distance is a signed distance,
some sites may have an empty region, which makes the algorithm slightly
more complicated. Note that this may only happen when some of the objects
are included in the union of others. The algorithm has to check that the new
object has a non-empty region and must handle the case where the insertion of
a new object causes the region of some other object to vanish. Karavelas and
Yvinec [29] showed that there is no use to maintain a location data structure
in this case because each insertion takes linear time anyway.

The algorithm can be generalized to the case of convex objects with piece-
wise smooth pseudo-circular boundaries. As in the case of segments, the main
problem comes from the fact that sharp corners on the boundaries of objects
yield 2-dimensional bisectors. This problem can be handled as in the case of
line segments and planar curves by considering each corner as an object on
its own.

1.6.3 The Voronoi Hierarchy

The first step when inserting a new object oi consists in finding one point
of the current skeleton Skel(Oi−1) in conflict with oi. If the objects do not
intersect, this is done by searching the object o of Oi−1 nearest to a point
x of oi. Indeed, if the objects do not intersect, x belongs to the region of o
in Vor(Oi−1) and to the region of oi in Vor(Oi). Therefore oi has to be a
neighbor of o in Vor(Oi) and some point on the boundary of V (o,Oi−1) is in
conflict with oi. If the objects intersect, things are slightly more complicated
but nearest object queries can still be used to find out whether the new object
is hidden and, if not, to find a first conflict (see [29]).

Let us describe now how to find the object o of a set O closest to a query
point x. A simple strategy is to perform a walk in the Voronoi diagram Vor(O).
The walk starts at any region of the diagram. When the walk visits the region
V (o) of an object o it considers in turn each of the neighboring regions. If one
of the neighbors of o, say o′, is closer to x than o, the walk steps to the region
V (o′). If none of the neighbors of o in Vor(O) is closer to x than o, then o is
the object closest to x and the walk ends. Because the distance between x and



1 Curved Voronoi Diagrams 41

the objects of the visited regions is decreasing, the walk cannot loop and is
bound to end. However, the walk may visit all the regions before ending. The
Voronoi hierarchy [29] is a randomized data structure that makes this strategy
more efficient. The Voronoi hierarchy can be considered as a 2-dimensional
version of the skip lists introduced by Pugh [44] and generalizes the Delaunay
hierarchy described in [18].

For a set of objects O, the Voronoi hierarchy HV(O) is a sequence of
Voronoi diagrams Vor(Θ`), ` = 0, . . . , L, built for subsets of O forming a
hierarchy, i.e, O = Θ0 ⊇ Θ1 ⊇ · · · ⊇ ΘL.

The hierarchy HV(O) is built together with the Voronoi diagram Vor(O)
according to the following rules:

1. Every object of O is inserted in Vor(Θ0) = Vor(O);
2. An object o that has been inserted in Vor(Θ`), is inserted in Vor(Θ`+1)

with probability β.

To answer nearest object queries, the Voronoi hierarchy works as follows.
Let us call θ` the object of Θ` closest to the query point x. First, a simple
walk is performed in the top-most diagram to find θL. Then, at each level
` = L− 1, . . . , 0, a simple walk is performed in Vor(Θ`) from θ`+1 to θ` (see
Fig. 1.12).

x

Fig. 1.12. Locating x using the Voronoi hierarchy.

It is easy to show that the expected size of HV(O) is O( n
1−β ), and that the

expected number of levels in HV(O) is O(log1/β n). Moreover, the following
lemma proves that the expected number of steps performed by the walk at
each level is constant.
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Lemma 8. Let x be a point in the plane. Let θ` (resp. θ`+1) be the object
closest to x in Θ` (resp. Θ`+1). Then the expected number of Voronoi regions
visited during the walk in Vor(Θ`) from θ`+1 to θ` is O(1/β).

Proof. The objects whose regions are visited at level ` are closer to x than
θ`+1. Consequently, if, among the objects of Θ`, θ`+1 is the k-th closest object
to x, the walk in Vor(Θ`) performs at most k steps.

Let us show that θ`+1 is the k-th closest object to x in Θ` with probability
β(1−β)k−1. Such a case occurs if and only if the two following conditions are
satisfied:

1. Object θ`+1 has been inserted in Θ`+1

2. None of the k − 1 objects of Θ` that are closer to x than θ`+1 has been
inserted in Θ`+1.

The first condition occurs with probability β and the second with probability
(1− β)k−1.

Let nl be the number of objects in Θ`. The expected number N` of objects
that are visited at level ` is bounded as follows:

N` ≤
n
∑̀

k=1

k(1− β)k−1β < β

∞
∑

k=1

k(1− β)k−1 =
1

β
,

We still have to bound the time spent in each of the visited regions. Let o
be the site of a visited region in Vor(Θ`). It is not efficient to consider in turn
each neighbor o′ of o in Vor(Θ`) and compare the distances from x to o and o′.
Indeed, since the complexity of each region in the Voronoi diagram Vor(Θ`)
may be Ω(n`), this would imply that the time spent at each level ` of the
hierarchy is O(n), yielding a total of O(n) time per insertion. To avoid this
cost, a balanced binary tree is attached to each Voronoi region in the Voronoi
hierarchy. The tree attached to the region V`(o) of o in Vor(Θ`) includes, for
each Voronoi vertex v of V`(oi), the ray [vo, v) issued from the projection of
v onto the boundary ∂o of o that passes through v. The rays are sorted by
directions. Similarly, we associate to the query point x the ray [xo, x) where
xo is the projection of x onto ∂o. When V`(o) is visited, ray [xo, x) is located
in the associated tree and we get the two rays [vo, v) and [wo, w) immediately
before and after [xo, x). Let o′ be the neighbor of o whose cell is incident to v
and w. We compare the distances from x to o and o′. If o′ is closer to x than o,
the walk steps to o′. Otherwise, we know that o is the object of Θ` closest to x
and the walk halts (see [29] for details). Hence, visiting the Voronoi region of
oi in Vor(Θ`) reduces to querying the tree and comparing the distances from
x to o and o′ which takes O(log n`) time.

Lemma 9. Using a hierarchy of Voronoi diagrams, nearest neighbor queries
can be answered in expected time O(log2 n).

It has been shown [29] that the expected cost of updating the Voronoi
hierarchy when inserting an object is O(log2 n).
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Exercise 24. Show that the planar Euclidean Voronoi diagram of n points
can be computed on line in O(n log n) time
(Hint: in the case of points, using a Delaunay hierarchy instead of the Voronoi
hierarchy, nearest neighbor queries can be answered in O(log n). Upon inser-
tion the structure is updated in randomized time O(log n). See [18])

Exercise 25. Show that the planar Euclidean Voronoi diagram of n line seg-
ments can be computed on line in O(n logn) time. See e.g.[13] for a solution.

Exercise 26. Show that the planar euclidean diagram of n disjoint convex
objects can be computed using predicates that involve only four objects.

Exercise 27. Provide a detailed description of the predicates of the incremen-
tal Voronoi diagram construction and a way to implement them efficiently for
various types of simple objects (e.g., line segments, circles). See [31, 30].

Exercise 28 (2D Abstract Voronoi diagrams). Klein et al. [35] have
defined abstract Voronoi diagrams in dimension 2 using bisecting curves. Each
bisecting curve bij is assumed to be an infinite curve separating the plane in
two regions affected respectively to oi and oj and the Voronoi regions are
defined as in Sect. 1.5.1. Klein et al. assume that the affectation fulfills the
assignment condition but they do not assume the incidence condition. Instead
they assume that each pair of bisecting curves intersect in only a finite number
of connected components and that the interior of Voronoi regions are path-
connected. Show that, under Klein et al. assumptions, the transitivity relation
of Lemma 4 is satisfied and that Voronoi regions are simply connected.

Exercise 29. Let O be a set of planar convex objects that may intersect and
may not form a pseudo-circle set. Show that the Voronoi diagram Vor(O) may
exhibit disconnected Voronoi regions. Propose an extension of the incremental
algorithm to build the restriction Vor(O)∩U c of the Voronoi diagram Vor(O)
to the region U c which is the complement of the union of the objects. The
solution can be found in [29].

Exercise 30. Describes the geometric predicates required to implement the
incremental algorithm. Provide algebraic expressions for the case of circles
and line segments [31, 22].

1.7 Medial Axis

In this section, we introduce the concept of Medial Axis of a bounded set Ω,
which can be seen as an extension of the notion of Voronoi diagram to infinite
sets. Interestingly, it is possible to construct certified approximations of the
medial axis of quite general sets efficiently. One approach to be described
consists in sampling the boundary of Ω and then computing an appropriate
subset of the Voronoi diagram of the sample which approximates the medial



44 J-D. Boissonnat, C. Wormser, M. Yvinec

axis. Hence the problem of approximating the medial axis of Ω boils down
to sampling the boundary of Ω, a problem that is closely related to mesh
generation (see Chap. ??). Other informations on the medial axis can be
found in Chap. ??.

1.7.1 Medial Axis and Lower Envelope

The medial axis of an open set Ω, denoted by M(Ω), is defined as the the
set of points of Ω that have more than one nearest neighbor on the boundary
of Ω. Nearest refers in this section to the Euclidean distance although the
results may be extended to other distance functions. A medial sphere σ is a
sphere centered at a point c of the medial axis and passing through the nearest
neighbors of c on ∂Ω. Those points where σ is tangent (in the sense that σ
does not enclose any point of ∂Ω) to ∂Ω are called the contact points of σ.

The concept of medial axis can be considered as an extension of the notion
of Voronoi diagram to infinite sets. Let o be a point of the boundary of Ω and
δo be the distance function to o defined over Ω

∀x ∈ Ω : δo(x) = ‖x− o‖.

The lower envelope of the infinite set of functions δo is defined as

∆− = inf
o∈∂Ω

δo.

Following what we did for Voronoi diagrams (Sect. 1.2), we define, for any
point x ∈ Ω, its index set I(x) as the set of all o such that ∆−(x) = δo(x).
The set of points x such that |I(x)| > 1 constitutes the medial axis of Ω.

Computing the medial axis is difficult in general. If Ω is defined as a semi-
algebraic set, i.e. a finite collection of algebraic equations and inequalities,
M(Ω) is also a semi-algebraic set that can therefore be computed using tech-
niques from real algebraic geometry [4, 8]. This general approach, however,
leads to algorithms of very high complexity. Theorem 1 can also be used but,
still, working out the algebraic issues is a formidable task. Effective imple-
mentations are currently limited to simple objects. If Ω is a planar domain
bounded by line segments and circular arcs, one can apply the results of
Sect. 1.6. Further results can be found in [24].

An alternative and more practical approach consists in departing from the
requirement to compute the medial axis exactly. In Sect. 1.7.2, we describe
a method that approximates the medial axis of an object by first sampling
its boundary, and then computing and pruning the Voronoi diagram of the
sample.

1.7.2 Approximation of the Medial Axis

Approximating the medial axis of a set is a non trivial issue since sets that are
close for the Hausdorff distance may have very different medial axes. This is
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illustrated in Fig. 1.13. Let S be a closed curve, Ω = R
2 \S and P be a finite

set of points approximating S. As can be seen on the figure, the skeleton
of the Voronoi diagram of P is far from the medial axis of Ω since there
are many long branches with no counterpart in M(Ω). These branches are
Voronoi edges whose dual Delaunay edges are small (their lengths tend to 0
when the sampling density increases). In other words, the medial axis is not
continuous under the Hausdorff distance. Notice however that if we remove
the long branches in Fig. 1.13, we obtain a good approximation of the medial
axis of S. This observation will be made precise in Lemma 10 below. It leads to
an approximate algorithm that first sample S and extract from the Euclidean
Voronoi diagram of the sample a sub-complex that approximates the medial
axis of S.

Fig. 1.13. On the left side, a closed curve S and the medial axis of Ω = R
2 \S. On

the right side, a dense sample E of points and its Voronoi diagram. The medial axis
of R

2 \ E (which is the 1-skeleton of Vor(E)) is very different from the medial axis
of Ω.

Given an open set Ω and a point x on the medial axis of Ω, we define
D(x) as the diameter of the smallest closed ball containing the contact points
of the medial sphere centered at x. We define the λ-medial axis of Ω, denoted
Mλ(Ω) as the subset of the medial axis of Ω consisting of points x such that
D(x) ≥ λ.

Let Ω and Ω′ be two open sets and let S and S ′ denote their boundaries.
We assume that S and S′ are compact and that their Hausdorff distance
dH(S, S′) is at most ε: any point of S is at distance at most ε from a point
of S′ and vice versa. Notice that we do not specify S nor S ′ to be finite or
infinite point sets. For convenience, we rename medial axis of S (resp. S ′) and
write M(S) (resp. M(S′)) the medial axis of R

3 \ S. Similarly, we rename
medial axis of S′ and writeM(S′)) the medial axis of R

3 \ S.
The following lemma says that the λ-medial axis of S is close to the medial

axis of S′, provided that λ is sufficiently large. It should be emphasized that
close here refers to the one-sided Hausdorff distance: the medial axis of S ′ is
not necessarily close to the λ-medial axis of S although, by exchanging the
roles of S and S′, the lemma states that the λ′-medial axis of S′ is close to
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the medial axis of S for a sufficiently large λ′. We will go back to this point
later.

We say that a ball is S-empty if its interior does not intersect S. The
sphere bounding a S-empty ball is called a S-empty sphere.

Lemma 10. Let σ be a S-empty sphere centered at c, of radius r, intersecting

S in two points x and y. If ε < r
2 and l

def
= ‖x−y‖

4 ≥
√

εr(1− ε
r ), there exists

an S′-empty sphere tangent to S ′ in two points whose center c′ and radius r′

are such that |1− r′

r | and ‖c′−c‖
r are at most δ = εr

l2−εr+ε2 .

Proof. Let σ′′ be the maximal S′-empty sphere centered at c and let r′′ be
its radius (see Fig. 1.14). The Hausdorff distance between S and S ′ being at
most ε, we have |r − r′′| ≤ ε. Let y′ be a point of σ′′ ∩ S′.

Let σ′ be the maximal S′-empty sphere tangent to σ′′ at y′. σ′ is tangent
to S′ at at least two points. Let c′ be its center and r′ its radius.

x

y

y′

c

c′

x′

σ

σ′

σ′′

h

r

S

S

Fig. 1.14. S is the continuous curve. x′ and y′ belong to S′

Noting h =
√

r2 − 1
4‖x− y‖2 =

√
r2 − 4l2 the distance from c to line xy,

we have

d(c′, S) ≤ min(‖c′ − x‖, ‖c′ − y‖)

≤
√

(‖c− c′‖+ h)2 +
1

4
‖x− y‖2

=
√

r2 + ‖c− c′‖2 + 2h‖c− c′‖.

On the other hand,
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d(c′, S′) = ‖c′ − y′‖ = ‖c− c′‖+ r′′ ≥ ‖c− c′‖+ r − ε.

From these two inequalities, we deduce

‖c− c′‖+ r − ε ≤ d(c′, S′) ≤ d(c′, S) + ε ≤
√

r2 + ‖c− c′‖2 + 2h‖c− c′‖+ ε.

and, since, by assumption, r > 2ε, we get ‖c − c′‖ (r − 2ε − h) ≤ 2ε(r − ε).
Moreover, by assumption, l ≥

√

εr(1− ε
r ) which implies r − 2ε − h ≥ 0.

Indeed,

h =
√

r2 − 4l2 ≤
√

r2 − 4εr + 4ε2 = r − 2ε.

We then deduce

‖c− c′‖ ≤ 2ε(r − ε)
r − h− 2ε

≤ 2εr

r −
√
r2 − 4l2 − 2ε

.

We then get

‖c− c′‖
r

≤ 2ε(r +
√
r2 − 4l2 − 2ε)

(r − 2ε)2 − (r2 − 4l2)
≤ εr

l2 − εr + ε2
.

The same bound plainly holds for |1− r′

r |.

We consider the case where S is a surface of R
3 and S′ is a finite set of

points on S at Hausdorff distance at most ε from S. To avoid confusion, we
rename S′ as P . As already noticed, M(P) is the 1-skeleton of the Voronoi
diagram Vor(P), called simply the Voronoi diagram of P in this section. The
set of contact points of a medial sphere centered at a point c ∈ M(P) is the
set of closest points of c in P . Any point in the relative interior of a face of
Vor(P) has the same closest points in P . It follows that the λ-medial axis of P
is the subset of the faces of Vor(P) whose contact points cannot be enclosed
in a ball of diameter λ.

Lemma 10 then says that any Delaunay sphere of Del(P) passing through
two sample points that are sufficiently far apart, is close to a medial sphere
of S (for the Hausdorff distance). We have therefore bounded the one-sided
Hausdorff distance from the λ-medial axis (Voronoi diagram) of an ε-sample
P of S to the medial axis of S, when λ is sufficiently large with respect to
ε. If we apply the lemma the other way around, we see that, for sufficiently
large λ′, Mλ′(S) is close to M(P). However, as observed above (Fig. 1.13),
we cannot hope to bound the two-sided Hausdorff distance between M(S)
andM(P).

The above lemma can be strengthened as recently shown by Chazal and
Lieutier [14, 4]. They proved that the λ-medial axis of S is close to the λ′-
medial axis of P for a sufficiently large λ and some positive λ′ that depends on
λ and ε. More precisely, let D be the diameter of S and k′′ a positive constant.
They showed that there exist three functions of ε, k(ε) = 15

√
2

4
√
D3ε, k′(ε) =

10
√

3
4
√
D3ε and k′′(ε) = k′′ 4

√
D3ε, such that
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Mk(ε)(S) ⊂Mk′(ε)(P)⊕B2
√

Dε ⊂Mk′′(ε)(S)⊕B4
√

Dε.

Here, Br denotes the ball centered at the origin of radius r, and ⊕ the
Minkowski sum.

Consider now a family of point sets Pε parametrized by ε such that
dH(S,Pε) ≤ ε and let ε tends to 0. Because Mη(S) tends to M(S) when
η tends to 0, we deduce from the above inequalities, that

lim
ε→0

dH(M(S),M
10

4√
9D3ε

(Pε)) = 0.

The above discussion provides an algorithm to approximate the medial
axis of S within any specified error (see Algorithm 4).

Algorithm 4 Approximation of the Medial Axis

Input: A surface S and a positive real ε

1. Sample S so as to obtain a sample P such that dH(S,P) ≤ ε;
2. Construct the Voronoi diagram of P;
3. Remove from the diagram the faces for which the diameter of the set of contact

points is smaller than 10
4
√

9D3ε.

Output: A PL approximation of M(S)

The main issue is therefore to compute a sample of points on S (step 1). If
S is a surface of R

3, one can use a surface mesh generator to mesh S and take
for P the vertices of the mesh. Various algorithms can be found in Chap. ??
and we refer to that chapter for a thorough description and analysis of these
algorithms. Especially attractive in the context of medial axis approximation,
are the algorithms that are based on the 3-dimensional Delaunay triangulation
since we get the Voronoi diagram of the sample points (step 2) at no additional
cost. An example obtained with the surface mesh generator of Boissonnat and
Oudot [12] is shown in Fig. 1.15.

Exercise 31. Let O be a bounded open set. Show that M(O) is a retract of
O (and therefore has the same homotopy type as O) [39].

1.8 Voronoi Diagrams in Cgal

The Computational Geometry Algorithms Library Cgal [1] offers severals
packages to compute Voronoi diagrams. Euclidean Voronoi diagrams of points
and power diagrams are represented through their dual Delaunay and regu-
lar triangulations. Cgal provides Delaunay and regular triangulations in R

2

and R
3. The implementation is based on a randomized incremental algorithm
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Fig. 1.15. Two λ-medial axes of the same shape, with λ increasing from left to
right, computed as a subset of the Voronoi diagram of a sample of the boundary
(courtesy of Steve Oudot).

using a variant of the Voronoi hierarchy described in Sect. 1.6. Delaunay tri-
angulations are also provided in higher dimensions.

The library also contains packages to compute Voronoi diagrams of line
segments [27] and Apollonius diagrams in R

2 [28]. Those packages implement
the incremental algorithm described in Sect. 1.6. A prototype implementation
of Möbius diagrams in R

2 also exists. This prototype computes the Möbius
diagram as the projection of the intersection of a 3-dimensional power diagram
with a paraboloid, as described in Sect. 1.4.1. This prototype also serves as the
basis for the developement of a Cgal package for 3-dimensional Apollonius
diagrams, where the boundary of each cell is computed as a 2-dimensional
Möbius diagram, following the results of Sect. 1.4.3 [10]. See Fig. 1.8.

1.9 Applications

Euclidean and affine Voronoi diagrams have numerous applications we do not
discuss here. The interested reader can consult other chapters of the book,
most notably Chap. ?? on surface meshing and Chap. ?? on reconstruction.
Other applications can be found in the surveys and the textbooks mentionned
in the introduction.

Additively and multiplicatively weighted distances arise when modeling
growing processes and have important applications in biology, ecology and
other fields. Consider a number of crystals, all growing at the same rate, and
all starting at the same time : one gets a number of growing circles. As these
circles meet, they draw a Euclidean Voronoi diagram. In reality, crystals start
growing at different times. If they still grow at the same rate, they will meet
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Fig. 1.16. A cell in an Apollonius diagram of spheres.

along an Apollonius diagram. This growth model is known as the Johnson-
Mehl model in cell biology. In other contexts, all the crystals start at the same
time, but grow at different rates. Now we get what is called the multiplicatively
weighted Voronoi diagram, a special case of Möbius diagrams.

Spheres are common models for a variety of objects such as particles, atoms
or beads. Hence, Apollonius diagrams have been used in physics, material
sciences, molecular biology and chemistry [48, 50, 32, 33]. They have also
been used for sphere packing [49] and shortest paths computations [40].

Euclidean Voronoi diagrams of non punctual objects find applications in
robot motion planning [37, 26]. Medial axes are used for shape analysis [25],
for computing offsets in Computer-Aided Design [19], and for mesh generation
[43, 42, 47]. Medial axes are also used in character recognition, road network
detection in geographic information systems, and other applications.
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