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COUNTING PERMUTATIONS

WITH NO LONG MONOTONE SUBSEQUENCE

VIA GENERATING TREES

MIREILLE BOUSQUET-MÉLOU

Abstract. We recover Gessel’s determinantal formula for the generating function of permu-
tations with no ascending subsequence of length m + 1. The starting point of our proof is
the recursive construction of these permutations by insertion of the largest entry. This con-
struction is of course extremely simple. The cost of this simplicity is that we need to take
into account in the enumeration m− 1 additional parameters — namely, the positions of the
leftmost increasing subsequences of length i, for i = 2, . . . ,m. This yields for the generating
function a functional equation with m− 1 “catalytic” variables, and the heart of the paper is
the solution of this equation.

We perform a similar task for involutions with no descending subsequence of length m+1,
constructed recursively by adding a cycle containing the largest entry. We refine this result
by keeping track of the number of fixed points.

In passing, we prove that the ordinary generating functions of these families of permuta-
tions can be expressed as constant terms of rational series.

1. Introduction

Let τ = τ(1) · · · τ(n) be a permutation in the symmetric group Sn. We denote by |τ | := n
the length of τ . An ascending (resp. descending) subsequence of τ of length k is a k-tuple
(τ(i1), . . . , τ(ik)) such that i1 < · · · < ik and τ(i1) < · · · < τ(ik) (resp. τ(i1) > · · · > τ(ik)).
For m ≥ 1, the set of permutations in which all ascending subsequences have length at most
m is denoted by S

(m). In pattern-avoidance terms, the permutations of S(m) are those that
avoid the increasing pattern 12 · · ·m(m + 1), and an ascending subsequence of length k is an
occurrence of the pattern 12 · · ·k. The set of 12 · · ·m(m+ 1)-avoiding permutations of length n

is denoted S
(m)
n .

In 1990, Gessel proved a beautiful determinantal formula for what could be called the Bessel
generating function of permutations of S(m). This formula was the starting point of Baik, Deift
and Johansson’s study of the distribution of the longest ascending subsequence in a random
permutation [2].

Theorem 1 ([13]). The Bessel generating function of permutations avoiding 12 · · ·m(m+ 1) is

∑

τ∈S(m)

t2|τ |

|τ |!2 = det (Ii−j)1≤i,j≤m
,

where

Ii =
∑

n≥max(0,−i)

t2n+i

n!(n+ i)!
. (1)

Note that Ii = I−i, and that we can more loosely write

Ii =
∑

n≥0

t2n+i

n!(n+ i)!
=
∑

n≥0

t2n−i

n!(n− i)!
,
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2 M. BOUSQUET-MÉLOU

provided we interpret factorials as Gamma functions (in particular, 1/i! = 1/Γ(i + 1) = 0 if
i < 0).

Gessel’s original proof was algebraic in nature [13]. He first established a determinantal
identity dealing with Schur functions (and hence with semi-standard Young tableaux, whereas
the above theorem deals, via Schensted’s correspondence, with standard tableaux). He then
applied to this identity an operator θ that extracts certain coefficients, and this led to Theorem 1.
A bit later, in collaboration with Weinstein andWilf, he gave two bijective proofs of this theorem,
involving sign-reversing involutions [14]. Another proof was found by Xin, starting from the
hook-length formula [35].

For small values of m, other proofs of Theorem 1 have been given. In particular, there exists a

wealth of ways of proving that the number of 123-avoiding permutations of Sn is the nth Catalan
number

(

2n
n

)

/(n+1), and numerous refinements of this result [6, 7, 11, 19, 21, 27, 28, 29, 33]. The
laziest proof (combinatorially speaking) is based on the following observation: a permutation π

of S
(2)
n+1 is obtained by inserting n+ 1 in a permutation τ of S

(2)
n . To avoid the creation of an

ascending subsequence of length 3, the insertion must not take place to the right of the leftmost
ascent of τ . Hence, in order to exploit this simple recursive description of permutations of S(2),
one must keep track of the position of the first ascent. Let us denote

a(τ) =

{

n+ 1, if τ avoids 12;
min {i : τ(i − 1) < τ(i)}, otherwise,

and define the bivariate generating function

F (u; t) :=
∑

τ∈S(2)

ua(τ)−1t|τ |.

It is not hard to see (and this will be explained in details in Section 2) that the recursive
description of permutations of S(2) translates into the following equation:

(

1− t
u2

u− 1

)

F (u; t) = 1− t
u

u− 1
F (1; t). (2)

The variable u is said to be catalytic for this equation. This means that one cannot simply set
u = 1 to solve for F (1; t) first. However, this equation can be solved using the so-called kernel
method (see, e.g., [4, 10, 26]): one specializes u to the unique power series U that cancels the
kernel of the equation (that is, the coefficient of F (u; t)):

U :=
1−

√
1− 4t

2t
.

This choice cancels the left-hand side of the equation, and thus its right-hand side, yielding the
(ordinary) length generating function of 123-avoiding permutations:

F (1; t) =
U − 1

tU
= U =

1−
√
1− 4t

2t
=
∑

n≥0

tn

n+ 1

(

2n

n

)

.

It is natural to ask whether this approach can be generalized to a generic value of m: after

all, a permutation π of S
(m)
n+1 is still obtained by inserting n + 1 in a permutation τ of S

(m)
n .

However, to avoid creating an ascending subsequence of length m+1, the insertion must not take
place to the right of the leftmost ascending subsequence of length m of τ . In order to keep track
recursively of the position of this subsequence, one must also keep track of the position of the
leftmost ascending subsequence of length m− 1. And so on! Hence this recursive construction
(often called the generating tree construction [33, 34]) translates into a functional equation
involving m − 1 catalytic variables u2, . . . , um. The whole point is to solve this equation, and
this is what we do in this paper. Our method combines three ingredients: an appropriate change
of variables, followed by what is essentially the reflection principle [15], but performed at the level
of power series, and finally a coefficient extraction. To warm up, we illustrate these ingredients
in Section 3 by two simple examples: we first give another solution of the equation (2) obtained
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when m = 2, and then a generating function proof of MacMahon’s formula for the number of
standard tableaux of a given shape.

What is the interest of this exercise? Firstly, we believe it answers a natural question: we
have in one hand a simple recursive construction of certain permutations, in the other hand a
nice expression for their generating function, and it would be frustrating not to be able to derive
the expression from the construction. Secondly, the combinatorial literature abunds in objects
that can be described recursively by keeping track of an arbitrary (but bounded) number of
additional (or: catalytic) parameters: permutations of course, but also lattice paths, tableaux,
matchings, plane partitions, set partitions... Some, but not all, can be solved by the reflection
principle, and we hope that this first solution of an equation with m catalytic variables will be
followed by others.

In fact, we provide in this paper another application of our approach, still in the field of
permutations: We recover a determinantal formula for the enumeration of involutions with no

long descending subsequence [13]. Let I
(m) (resp. I

(m)
n ) denote the set of involutions (resp.

involutions of length n) avoiding the decreasing pattern (m+ 1)m · · · 21.
Theorem 2. The exponential generating function of involutions avoiding (m+ 1)m · · · 21 is

∑

τ∈I(m)

t|τ |

|τ |! =
{

et det (Ii−j − Ii+j)1≤i,j≤ℓ
, if m = 2ℓ+ 1;

det (Ii−j + Ii+j−1)1≤i,j≤ℓ
, if m = 2ℓ,

where Ii is defined by (1).

This result is obtained by applying Gessel’s θ operator to a Schur function identity due to
Bender and Knuth [5]. The latter identity has been refined by taking into account the number
of columns of odd size in the tableaux (Goulden [16]). Using the operator θ, and the properties
of Schensted’s correspondence [31, Exercise 7.28], this translates into a refinement of Theorem 2
that takes into account the number f(τ) of fixed points in τ . We shall also recover this result.

Theorem 3. If m = 2ℓ + 1, the exponential generating function of involutions avoiding (m +
1)m · · · 21 and having p fixed points is

∑

τ∈I(m),f(τ)=p

t|τ |

|τ |! =
tp

p!
det (Ii−j − Ii+j)1≤i,j≤ℓ

.

If m = 2ℓ, this generating function is

∑

τ∈I
(m)

f(τ)=p

t|τ |

|τ |! = det

(

(Ip+ℓ−j − Ip+ℓ+j)1≤j≤ℓ

(Ii+j−1 − Ii−j−1)2≤i≤ℓ,1≤j≤ℓ,

)

where we have described separately the first row of the determinant and the next ℓ − 1 rows
(i = 2, . . . , ℓ).

The first result of Theorem 3 can be restated as follows: if m = 2ℓ+1, the generating function
of involutions avoiding (m+ 1)m · · · 21, counted by the length and number of fixed points is

∑

τ∈I(m)

t|τ |

|τ |!s
f(τ) = est det (Ii−j − Ii+j)1≤i,j≤ℓ

. (3)

It thus appears as a very simple extension of the first part of Theorem 2, and indeed, the
connection between these two formulas is easy to justify combinatorially (the fixed points play
no role when one forbids a decreasing pattern of even length).

Let us now outline the structure of the paper. In Section 2, we describe how the “catalytic”
parameters change in the recursive construction of permutations of S(m) and I

(m). We do not
give the proofs, as this was done by Guibert and Jaggard & Marincel, respectively [17, 18]. We
then convert these descriptions into the functional equations that are at the heart of this paper
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(Propositions 5 and 7). In Section 3, we illustrate our approach by two simple examples, namely
the enumeration of permutations of S(2) and of standard Young tableaux. Next we return to
permutations: we first address in Section 4 the solution of the equation obtained for involutions
of I(m), and finally, we solve in Section 5 the equation obtained for permutations of S(m). The
reason why we address involutions first is that the solution is really elementary in this case. One
step of the solution turns out to be more difficult in the case of permutations, although the basic
ingredients are the same.

Let us finish with some standard definitions and notation. Let A be a commutative ring and x
an indeterminate. We denote by A[x] (resp. A[[x]]) the ring of polynomials (resp. formal power
series) in x with coefficients in A. If A is a field, then A(x) denotes the field of rational functions
in x (with coefficients in A). This notation is generalized to polynomials, fractions and series in
several indeterminates. We denote x̄ = 1/x, so that A[x, x̄] is the ring of Laurent polynomials
in x with coefficients in A. The coefficient of xn in a Laurent series F (x) is denoted [xn]F (x).

Most of the series that we use in this paper are power series in t with coefficients in A[x, x̄],
that is, series of the form

F (x; t) =
∑

n≥0,i∈Z

f(i;n)xitn,

where for all n, almost all coefficients f(i;n) are zero. The positive part of F (x; t) in x is the
following series, which has coefficients in xA[x]:

[x>]F (x; t) :=
∑

n≥0,i>0

f(i;n)xitn.

We define similarly the negative, non-negative and non-positive parts of F (x; t) in x, which we
denote respectively by [x<]F (x; t), [x≥]F (x; t) and [x≤]F (x; t).

2. Generating trees and functional equations

2.1. Permutations avoiding 12 · · ·m(m+ 1)

Take a permutation π of S
(m)
n+1, written as the word π(1) · · ·π(n + 1). Erase from this word

the value n + 1: this gives a permutation τ of S
(m)
n . This property allows us to display the

permutations of S(m) as the nodes of a generating tree. At the root of this tree sits the unique

permutation of length 0, and the children of a node indexed by τ ∈ S
(m)
n are the permutations

of S
(m)
n+1 obtained by inserting the value n+1 in τ . In how many ways is this insertion possible?

If τ avoids 12 · · ·m, then all insertion positions are admissible, that is, give a permutation of

S
(m)
n+1. There are n + 1 such positions. Otherwise, only the a leftmost insertion positions are

admissible, where a is the position of the leftmost occurrence of 12 · · ·m in τ . More precisely:

a = min {im : ∃ i1 < i2 < · · · < im s.t. τ(i1) < · · · < τ(im)}.

As we wish to describe recursively the shape of the generating tree, we now need to find the
position of the leftmost occurrence of 12 · · ·m in the children of τ . But it is easily seen that this
depends on the position of the leftmost occurrence of 12 · · · (m − 1) in τ . And so on! We are

thus led to define the following m parameters: for 1 ≤ j ≤ m, and τ ∈ S
(m)
n , let

aj(τ) =

{

n+ 1, if τ avoids 12 · · · j;
min {ij : ∃ i1 < i2 < · · · < ij s.t. τ(i1) < · · · < τ(ij)}, otherwise.

(4)

Note that a1(τ) = 1, and that a1(τ) ≤ · · · ≤ am(τ). We call the sequence L(τ) := (a2(τ), . . . , am(τ))
the label of τ . The empty permutation has label (1, . . . , 1).

We can now describe the labels of the children of τ in terms of L(τ) (Guibert [17, Prop. 4.47]).
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Proposition 4. Let τ ∈ S
(m)
n with L(τ) = (a2, . . . , am). Denote a1 = 1. The labels of the am

permutations of S
(m)
n+1 obtained by inserting n+ 1 in τ are

{

(a2 + 1, a3 + 1, . . . , am + 1)
(a2, . . . , aj−1, α, aj+1 + 1, . . . , am + 1) for 2 ≤ j ≤ m and aj−1 + 1 ≤ α ≤ aj .

The first label corresponds to an insertion in position 1, while the label involving α corresponds
to an insertion in position α. We refer the reader to Figure 1 for an example.

Figure 1. The permutation τ = 8 5 9 6 1 3 4 7 2 ∈ S
(3)
9 . One has a1(τ) = 1,

a2(τ) = 3, a3(τ) = 7. There are 7 admissible ways to insert the value 10.
Inserting 10 to the right of τ(7) would create an occurrence of 1234.

Let us now translate the recursive construction of permutations of S(m) in terms of generating
functions. Let F̃ (u2, . . . , um; t) be the (ordinary) generating function of permutations of S(m),
counted by the statistics a2, . . . , am and by the length:

F̃ (u2, . . . , um; t) =
∑

τ∈S(m)

u
a2(τ)
2 · · ·uam(τ)

m t|τ |

=
∑

a2,...,am

F̃a2,...,am
(t)ua2

2 · · ·uam
m

where F̃a2,...,am
(t) is the length generating function of permutations ofS(m) having label (a2, . . . , am).

We still denote a1 = 1. The above proposition gives

F̃ (u2, . . . , um; t) = u2 · · ·um + tu2 · · ·umF̃ (u2, . . . , um; t)

+ t
∑

a2,...,am

F̃a2,...,am
(t)

m
∑

j=2

aj
∑

α=aj−1+1

ua2
2 · · ·uaj−1

j−1 uα
j u

aj+1+1
j+1 · · ·uam+1

m .

Using
aj
∑

α=aj−1+1

uα
j =

u
aj+1
j − u

aj−1+1
j

uj − 1
,

we obtain (given that a1 = 1):

F̃ (u; t) = u2,m + tu2,mF̃ (u; t) + tu2,m
F̃ (u; t)− u2F̃ (1, u3, . . . , um; t)

u2 − 1

+ t

m
∑

j=3

uj,m

F̃ (u; t)− F̃ (u2, . . . , uj−2, uj−1uj, 1, uj+1, . . . , um; t)

uj − 1
(5)

where F̃ (u; t) ≡ F̃ (u2, . . . , um; t) and uj,k = ujuj+1 · · ·uk.
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To finish, let us perform an elementary transformation on the series F̃ (u; t). Define

F (v; t) = F (v1, . . . , vm; t) =
∑

τ∈S(m)

va2−1
1 va3−a2

2 · · · v|τ |+1−am
m t|τ |, (6)

where (a2, . . . , am) = L(τ). We have eliminated the dependency a2 ≤ · · · ≤ am between the

exponents of u2, . . . , um in F̃ (u; t). As will be seen below, another effect of this change of series
is that the cases j = 2 and j = 3, . . . ,m now play the same role. We also note that the variable
t is now redundant in F (v; t), but it is our main variable, and we find convenient to keep it. The

series F̃ and F are related by

F (v1, . . . , vm; t) =
vm
v1

F̃

(

v1
v2

, . . . ,
vm−1

vm
; vmt

)

and conversely

F̃ (u2, . . . , um; vmt) = u2,mF (u2,mvm, u3,mvm, . . . , umvm, vm; t)

where as above uj,k = ujuj+1 · · ·uk. The functional equation (5) satisfied by F̃ (u; t) translates
into an equation of a slightly simpler form satisfied by F (v; t).

Proposition 5. The generating function F (v; t) ≡ F (v1, . . . , vm; t) of permutations of S(m),
defined by (6), satisfies

F (v; t) = 1 + tv1F (v; t) + t

m
∑

j=2

vj−1vj
F (v; t)− F (v1, . . . , vj−2, vj , vj , vj+1, . . . , vm; t)

vj−1 − vj
.

The series F (1, . . . , 1; t) counts permutations of S(m) by their length.

In Section 5, we derive from this equation the Bessel generating function of permutations of
S

(m), as given by Theorem 1.

2.2. Involutions avoiding (m+ 1)m · · · 21
It follows from the properties of Schensted’s correspondence [30] that the number of involutions

of length n avoiding 12 · · ·m(m + 1) equals the number of involutions of length n avoiding
(m+1)m · · ·21. However, this correspondence is not a simple symmetry, and the generating trees
that describe 12 · · ·m(m+ 1)-avoiding involutions and (m+ 1)m · · · 21-avoiding involutions are
not isomorphic. Both trees are defined by the same principle: the root is the empty permutation
and the parent of an involution π is obtained by deleting the cycle containing the largest entry,
and normalizing the resulting sequence. For instance, if π = 426153, the deletion of the 2-cycle
(3, 6) first gives 4215, and, after normalization, 3214.

The tree that generates 12 · · ·m(m+ 1)-avoiding involutions is similar to the tree generating
12 · · ·m(m + 1)-avoiding permutations. Its description involves m catalytic parameters (Gui-
bert [17, Prop. 4.52]). The tree that generates (m + 1)m · · · 21-avoiding involutions requires
⌊m/2⌋ catalytic parameters only (Jaggard & Marincel [18]). The source of this compactness
is easy to understand: an involution τ contains the pattern k · · · 21 if and only if it contains a
symmetric occurrence of this pattern (by this, we mean that the corresponding set of points in
the diagram of τ is symmetric with respect to the first diagonal, see Figure 2). Equivalently, this
means that a decreasing subsequence of length ⌈k/2⌉ occurs in the points of the diagram lying
on or above the first diagonal. Thus we only need to keep track of descending subsequences of
length at most m/2 (in the top part of the diagram), and we can expect to have about m/2
catalytic parameters.

Let us now describe in details the tree generating (m+ 1)m · · · 21-avoiding involutions. The

example of Figure 2 illustrates the argument. Let τ be an involution of I
(m)
n . Inserting n + 1

as a fixed point in τ always gives an involution of I(m). For 1 ≤ i ≤ n+ 1, let us now consider
the permutation π obtained by adding 1 to all values larger than or equal to i, and inserting
the 2-cycle (i, n + 2). How many of these insertions are admissible, that is, give an involution
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Figure 2. The involution τ = 3 2 1 12 7 9 5 8 6 11 10 4 ∈ I
(5)
12 . One has

a1(τ) = 3, a2(τ) = 9. There are 9 admissible ways to insert a 2-cycle.

of I(m)? If τ avoids (m− 1) · · · 21, then all insertions are admissible, including the most “risky”
one, corresponding to i = 1. Otherwise, the only admissible values of i are n+1, n, . . . , n−a+2,
where n− a+1 is the position of the rightmost symmetric occurrence of (m− 1) · · · 21. In other
words, if we denote m = 2ℓ+ ǫ with ǫ ∈ {0, 1},

n− a+ 1 = max {i1 : ∃ i1 < i2 < · · · < iℓ s.t. τ(i1) > · · · > τ(iℓ) ≥ iℓ + ǫ}.

Again, in order to keep track of this parameter recursively, we are led to define, for 1 ≤ j ≤ ℓ,
the following ℓ catalytic parameters:

aj(τ) =

{

n+ 1, if τ avoids (2j − 1 + ǫ) · · · 21;
n+ 1−max {i1 : ∃ i1 < i2 < · · · < ij s.t. τ(i1) > · · · > τ(ij) ≥ ij + ǫ}, otherwise.

In particular, aℓ(τ) is the parameter that was denoted a above, and it is also the number of
admissible insertions of a 2-cycle in τ . We call the sequence L(τ) := (a1(τ), . . . , aℓ(τ)) the label
of τ . Note that a1(τ) ≤ · · · ≤ aℓ(τ). The empty permutation has label (1, . . . , 1).

We can now describe the labels of the children of τ in terms of L(τ).

Proposition 6 (Jaggard &Marincel [18]). Let τ be an involution in I
(m) with L(τ) = (a1, . . . , aℓ).

Denote a0 = 0. The labels of the aℓ involutions of I(m) obtained by inserting a cycle in τ are






(a1 + 1, a2 + 1, . . . , aℓ + 1), if m is odd;
(1, a2 + 1, . . . , aℓ + 1), if m is even;
(a1 + 1, . . . , aj−1 + 1, α, aj+1 + 2, . . . , aℓ + 2) for 1 ≤ j ≤ ℓ and aj−1 + 2 ≤ α ≤ aj + 1.

The first two labels correspond to the insertion of a fixed point, the other ones to the insertion
of a 2-cycle.

We refer again the reader to Figure 2 for an example.

Let us now translate the recursive construction of involutions of I(m) in terms of generating
functions. Let G̃(u1, . . . , uℓ; t) be the (ordinary) generating function of involutions of I

(m),
counted by the statistics a1, . . . , aℓ and by the length:

G̃(u1, . . . , uℓ; t) =
∑

τ∈I(m)

u
a1(τ)
1 · · ·uaℓ(τ)

ℓ t|τ |

=
∑

a1,...,aℓ

G̃a1,...,aℓ
(t)ua1

1 · · ·uaℓ

ℓ
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where G̃a1,...,aℓ
(t) is the length generating function of permutations of I(m) having label (a1, . . . , aℓ).

We still denote a0 = 0. The above proposition gives

G̃(u1, . . . , uℓ; t) = u1 · · ·uℓ + tu1 · · ·uℓG̃(u1, . . . , uℓ; t)χm≡1 + tu1 · · ·uℓG̃(1, u2, . . . , uℓ; t)χm≡0

+ t2
∑

a1,...,aℓ

G̃a1,...,aℓ
(t)

ℓ
∑

j=1

aj+1
∑

α=aj−1+2

ua1+1
1 · · ·uaj−1+1

j−1 uα
j u

aj+1+2
j+1 · · ·uaℓ+2

ℓ ,

where χm≡i equals 1 if m equals i modulo 2, and 0 otherwise. Using

aj+1
∑

α=aj−1+2

uα
j =

u
aj+2
j − u

aj−1+2
j

uj − 1
,

we finally obtain (given that a0 = 0):

G̃(u; t) = u1,ℓ + tu1,ℓG̃(u; t)χm≡1 + tu1,ℓG̃(1, u2, . . . , uℓ; t)χm≡0

+ t2u1,ℓ

ℓ
∑

j=1

uj,ℓ

G̃(u; t)− G̃(u1, . . . , uj−2, uj−1uj, 1, uj+1, . . . , uℓ; t)

uj − 1
(7)

where G̃(u; t) ≡ G̃(u1, . . . , uℓ; t) and uj,k = ujuj+1 · · ·uk.

To finish, let us perform an elementary transformation on the series G̃(u; t). Define

G(v; t) = G(v1, . . . , vℓ; t) =
∑

τ∈I(m)

va1
1 va2−a1

2 · · · vaℓ−aℓ−1

ℓ t|τ |, (8)

where (a1, . . . , aℓ) = ℓ(τ). We have eliminated the dependency a1 ≤ · · · ≤ aℓ between the

exponents of u1, . . . , uℓ in G̃(u; t). The series G̃ and G are related by

G(v1, . . . , vℓ; t) = G̃

(

v1
v2

, . . . ,
vℓ−1

vℓ
, vℓ; t

)

,

and conversely

G̃(u1, . . . , uℓ; t) = G(u1,ℓ, u2,ℓ, . . . , uℓ; t)

where as above uj,k = ujuj+1 · · ·uk. The functional equation (7) satisfied by G̃(u; t) translates
as follows.

Proposition 7. The generating function G(v; t) ≡ G(v1, . . . , vℓ; t) of involutions of I
(m), defined

by (8), satisfies

G(v; t) = v1 + tv1G(v; t)χm≡1 + tv1G(v2, v2, v3, . . . , vℓ; t)χm≡0

+ t2v1

ℓ
∑

j=1

vjvj+1
G(v; t)−G(v1, . . . , vj−1, vj+1, vj+1, vj+2, . . . , vℓ; t)

vj − vj+1
.

The series G(1, . . . , 1; t) counts involutions of I(m) by their length.

In Section 4, we derive from this equation the exponential generating function of involutions
of I(m), as given by Theorem 2. We then refine the result to take into account the number of
fixed points.

3. Two examples

In this section, we illustrate the ingredients of our solution of the equations of Propositions 5
and 7 by taking two examples. The first one deals with the enumeration of 123-avoiding permu-
tations. The second one is a generating function proof of MacMahon’s formula for the number
of standard tableaux of a given shape, and should clarify what we meant in the introduction by
“the reflection principle performed at the level of power series”.
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3.1. Permutations avoiding 123

In the introduction, we wrote the following equation for the bivariate generating function of
123-avoiding permutations, counted by the position of the first ascent and the length:

(

1− t
u2

u− 1

)

F (u; t) = 1− t
u

u− 1
F (1; t).

This is the case m = 2 of Proposition 5, with v1 = u and v2 = 1.
As explained in Section 1, this equation can be solved by an appropriate choice of u that

cancels the kernel, and thus eliminates the unknown series F (u; t). This is the standard kernel
method. We present here an alternative solution, sometimes called the algebraic kernel method [8,
9], where instead F (1; t) is eliminated. This elimination is obtained by exploiting a certain
symmetry of the kernel. This symmetry appears clearly if we set u = 1 + x. The equation then
reads:

(1− t (1 + x)(1 + x̄))F (1 + x; t) = 1− t(1 + x̄)F (1; t)

with x̄ = 1/x. The kernel is now invariant by x 7→ x̄. Replace x by x̄:

(1− t (1 + x)(1 + x̄))F (1 + x̄; t) = 1− t(1 + x)F (1; t).

We now eliminate F (1; t) by taking a linear combination of these two equations. This leaves:

(1− t (1 + x)(1 + x̄)) (F (1 + x; t)− x̄F (1 + x̄; t)) = 1− x̄, (9)

or

F (1 + x; t)− x̄F (1 + x̄; t) =
1− x̄

1− t(1 + x)(1 + x̄)
:= R(x; t).

In this equation,

– F (1 + x; t) is a series in t with coefficients in Q[x],
– x̄F (1 + x̄; t) is a series in t with coefficients in x̄Q[x̄],
– the right-hand side R(x; t) is a series in t with coefficients in Q[x, x̄].

Consequently, F (1 + x; t) is the non-negative part of R(x; t) in x. In particular, the length
generating function of 123-avoiding permutations is

F (1; t) = [x0]R(x; t) =
∑

n≥0

[x0](1 − x̄)x̄n(1 + x)2ntn (10)

=
∑

n≥0

((

2n

n

)

−
(

2n

n+ 1

))

tn

=
∑

n≥0

tn

n+ 1

(

2n

n

)

.

This small example contains all ingredients of what will be our solution for a generic value of m:

– a change of variables, which may not have a clear combinatorial meaning,
– a finite group G acting on power series that leaves the kernel unchanged (here, the group
has order 2, and replaces x by 1/x),

– a linear combination (9) of all the equations obtained by letting an element of G act
on the original functional equation; in this linear combination, called the orbit sum, the
left-hand side is a multiple of the kernel, and the right-hand side does not contain any
unknown series,

– finally, a coefficient extraction (10) that gives the generating function under interest.

Let us mention, however, that for a generic value of m, the change of variables used in Section 5
is not a direct extension of v 7→ 1 + x. But, on this small example, the latter choice is simpler.
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3.2. Standard Young tableaux

Let λ = (λ1, . . . , λm) ∈ Nm be an integer partition. That is, λ1 ≥ · · · ≥ λm ≥ 0. The weight

of λ is |λ| := λ1 + · · · + λm. We identify λ with its Ferrers shape, in which the ith row has λi

cells. A standard tableau of shape λ is a filling of the cells of λ with the integers 1, 2, . . . , |λ|,
that increases along rows and columns (Figure 3). The height of the tableau is the number of
non-empty rows, that is max(i : λi > 0). Let fλ denote the number of standard Young tableaux
of shape λ.

2 4 81

953

6 107

Figure 3. The Ferrers shape associated with the partition λ = (4, 3, 3) and a
standard tableau of shape λ.

Our objective here is to recover the hook-length formula, or, rather, an equivalent form due
to MacMahon [24, Sec. III, Chap. V].

Proposition 8. Let λ = (λ1, . . . , λm) be a partition of weight n. The number of standard Young
tableaux of shape λ is

fλ =
n!

∏m
i=1(λi − i+m)!

∏

1≤i<j≤m

(λi − λj − i+ j).

Proof. Let F (u) ≡ F (u1, . . . , um) be the generating function of standard tableaux of height at
most m:

F (u) :=
∑

λ1≥···≥λm≥0

fλ

m
∏

i=1

uλi

i .

For j = 2, . . . ,m, we denote by Fj(u1, . . . , uj−2, uj−1uj , uj+1, . . . , um) ≡ Fj(u) the generating
function of standard tableaux such that the parts λj−1 and λj are equal. This series is obtained
by extracting the corresponding terms from F (u) (it is also called the (j−1, j)-diagonal of F (u)).
In all terms of this series, uj−1 and uj appear with the same exponent, which allows us to write
this series in the above form.

Now a tableau of weight n+1 is obtained by adding a cell labelled n+1 to a tableau of weight

n. This cell can be added at the end of any row, unless this row, say the jth one, has the same
length as row j − 1. This gives directly the following equation:

F (u) = 1 + u1F (u) +

m
∑

j=2

uj (F (u)− Fj(u)) ,

that is,
(

1−
m
∑

j=1

uj

)

F (u) = 1−
m
∑

j=2

ujFj(u).

Observe that the kernel K(u) := 1 −∑ uj is left invariant by the symmetric group Sm, seen
as a group of transformations of polynomials in u1, . . . , um. This group is generated by m − 1
elements of order 2, denoted σ1, . . . , σm−1:

σj(P (u1, . . . , um)) = P (u1, . . . , uj−1, uj+1, uj , uj+2, . . . , um).

Let us multiply the equation by M(u) := um−1
1 · · ·u1

m−1u
0
m. This gives:

K(u)M(u)F (u) = M(u)−
m
∑

j=2

um−1
1 · · ·um−(j−1)

j−1 um−j+1
j · · ·u0

mFj(u). (11)
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Recall that Fj(u) stands for Fj(u1, . . . , uj−2, uj−1uj , uj+1, . . . , um). Hence the jth term in the
above sum is invariant by the generator σj−1 (which exchanges uj−1 and uj). Consequently,
forming the signed sum of (11) over the symmetric group Sm gives the following orbit sum,
which does not involve the series Fj :

∑

σ∈Sm

ε(σ) σ(K(u)M(u)F (u)) =
∑

σ∈Sm

ε(σ) σ(M(u)) ,

or, given that K(u) is Sm-invariant,

∑

σ∈Sm

ε(σ) σ(M(u)F (u)) =

∑

σ∈Sm
ε(σ) σ(M(u))

K(u)
. (12)

Of course, the sum on the right-hand side can be evaluated explicitly (the numerator is the
Vandermonde determinant), but this will not be needed here.

We claim that the number fλ can be simply obtained by a coefficient extraction in the
above identity. Consider the series M(u)F (u). Each monomial ua1

1 · · ·uam
m that occurs in it

satisfies a1 > · · · > am (because ai = m − i + λi, where λ is a partition). Consequently, if σ
is not the identity, the exponents of any monomial ua1

1 · · ·uam
m occurring in σ (M(u)F (u)) are

totally ordered in a different way. Hence, when we extract the coefficient of um−1+λ1
1 · · ·u0+λm

m

from (12), only the term corresponding to σ = id contributes in the left-hand side, so that

fλ = [um−1+λ1
1 · · ·u0+λm

m ]

∑

σ∈Sm
ε(σ) σ (M(u))

K(u)
.

Given that M(u) = um−1
1 · · ·u1

m−1u
0
m and

1

K(u)
=

1

1−
∑m

j=1 uj

=
∑

a1,...,am≥0

(a1 + · · ·+ am)!
∏m

i=1 ai!
ua1
1 · · ·uam

m ,

we obtain

fλ =
∑

σ∈Sm

ε(σ)
(λ1 + · · ·+ λm)!

∏m
i=1(λi − i+ σ−1(i))!

= n! det

(

1

(λi − i+ j)!

)

1≤i,j≤m

= n! det

(

(λi − i+ j + 1) · · · (λi − i+m)

(λi − i+m)!

)

1≤i,j≤m

=
n!

∏m
i=1 (λi − i +m)!

det ((λi − i+ j + 1) · · · (λi − i+m))1≤i,j≤m .

The (i, j)-coefficient of the latter determinant is a polynomial in λi−i of degreem−j and leading
coefficient 1. Hence the determinant is simply the Vandermonde determinant det((λi − i)m−j),
that is,

∏

i<j(λi − λj − i+ j). This completes the proof of the proposition.

We recognize in this proof three of the four ingredients that were used in the enumeration
of 123-avoiding permutations: the finite group that leaves the kernel invariant (here, Sm), the
orbit sum (12), and the final coefficient extraction. In this example, the symmetries of the kernel
are obvious with the original variables ui, so that no change of variables is required.

This proof is the generating function counterpart of the classical proof that encodes tableaux
of height at most m by paths in Nm formed of unit positive steps, that start from (0, . . . , 0) and
remain in the wedge λ1 ≥ · · · ≥ λm ≥ 0, and then uses the reflection principle. It is also very
close to another proof due to Xin [35, Sec. 3.1].
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4. Involutions with no long descending subsequence

We now address the solution of the functional equation of Proposition 7, which defines the
generating function of involutions avoiding (m+ 1)m · · · 21.
4.1. Invariance properties of the kernel

As discussed in the previous section, our objective is to exploit invariance properties of the
kernel, that is, the coefficient of G(v; t). This kernel reads

1− tv1χm≡1 − t2v1

ℓ
∑

j=1

vjvj+1

vj − vj+1
,

or, if we divide the equation by v1,

1

v1
− tχm≡1 − t2

ℓ
∑

j=1

vjvj+1

vj − vj+1
.

The invariance properties of this rational function appear clearly after performing the following
change of variables:

vi =
1

1− t(xi + · · ·+ xℓ)
. (13)

Indeed, the kernel becomes

K(x; t) = 1− t(x1 + · · ·+ xℓ)− tχm≡1 − t(x̄1 + · · ·+ x̄ℓ),

where x̄i = 1/xi, and is left invariant by the hyperoctahedral group Bℓ (the group of signed
permutations), seen as a group of transformations on Laurent polynomials in x1, . . . , xℓ. This
group is generated by ℓ elements of order 2, denoted σ1, . . . , σℓ:

σj(P (x1, . . . , xℓ)) =

{

P (x̄1, x2, . . . , xℓ), if j = 1;
P (x1, . . . , xj−2, xj , xj−1, xj+1, . . . , xℓ), for j ≥ 2.

The equation of Proposition 7 now reads:

K(x; t)Ḡ(x; t) = 1 + tḠ(0, x2, . . . , xℓ)χm≡0 − t

ℓ
∑

j=1

x̄jḠ(x1, . . . , xj−2, xj−1 + xj , 0, xj+1, . . . , xℓ)

where

Ḡ(x; t) ≡ Ḡ(x1, . . . , xℓ; t) = G

(

1

1− t(x1 + · · ·+ xℓ)
,

1

1− t(x2 + · · ·+ xℓ)
, . . . ,

1

1− txℓ

; t

)

.

4.2. Orbit sum

We now handle separately the odd and even case.
• If m is odd, the equation reads

K(x; t)Ḡ(x; t) = 1− t

ℓ
∑

j=1

x̄jḠ(x1, . . . , xj−2, xj−1 + xj , 0, xj+1, . . . , xℓ; t)

where
K(x; t) = 1− t(1 + x1 + · · ·+ xℓ + x̄1 + · · ·+ x̄ℓ). (14)

Let us multiply the equation by
M(x) := x1x

2
2 · · ·xℓ

ℓ. (15)

This gives:

K(x; t)M(x)Ḡ(x; t) = M(x)

− t

ℓ
∑

j=1

x1 · · ·xj−1
j−1x

j−1
j xj+1

j+1 · · ·xℓ
ℓḠ(x1, . . . , xj−2, xj−1 + xj , 0, xj+1, . . . , xℓ; t). (16)
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The first term (j = 1) of the sum reads x2
2 · · ·xℓ

ℓḠ(0, x2 . . . , xℓ) and is invariant by the generator

σ1 of Bℓ (which replaces x1 by x̄1). For j ≥ 2, the jth term of the sum is invariant by the
generator σj (which exchanges xj−1 and xj). Consequently, forming the signed sum of (16) over
the hyperoctahedral group Bℓ gives the following orbit sum:

∑

σ∈Bℓ

ε(σ) σ
(

K(x; t)M(x)Ḡ(x; t)
)

=
∑

σ∈Bℓ

ε(σ)σ(M(x)),

or, given that K(x; t) is Bℓ-invariant,

∑

σ∈Bℓ

ε(σ) σ
(

M(x)Ḡ(x; t)
)

=

∑

σ∈Bℓ
ε(σ) σ(M(x))

K(x; t)
, (17)

where K(x; t) is given by (14) and M(x) by (15).

• If m is even, the equation reads

K(x; t)Ḡ(x; t) = 1+t(1−x̄1)Ḡ(0, x2, . . . , xℓ; t)−t

ℓ
∑

j=2

x̄jḠ(x1, . . . , xj−2, xj−1+xj , 0, xj+1, . . . , xℓ; t)

where
K(x; t) = 1− t(x1 + · · ·+ xℓ + x̄1 + · · ·+ x̄ℓ). (18)

Let us multiply the equation by

M(x) := x2x
2
3 · · ·xℓ−1

ℓ (1− x1) · · · (1− xℓ). (19)

This gives:

K(x; t)M(x)Ḡ(x; t) = M(x) + tx2x
2
3 · · ·xℓ−1

ℓ (1 − x̄1)(1 − x1)
ℓ
∏

j=2

(1− xj)Ḡ(0, x2, . . . , xℓ; t)

− t

ℓ
∏

j=1

(1− xj)

ℓ
∑

j=2

x2 · · ·xj−2
j−1x

j−2
j xj

j+1 · · ·xℓ−1
ℓ Ḡ(x1, . . . , xj−2, xj−1 + xj , 0, xj+1, . . . , xℓ; t).

(20)

The term involving Ḡ(0, x2, . . . , xℓ) is invariant by the generator σ1 of Bℓ. For j ≥ 2, the jth

term of the sum is invariant by the generator σj . Consequently, forming the signed sum of (20)
over the hyperoctahedral group Bℓ yields the orbit sum (17), where now K(x; t) and M(x) are
respectively given by (18) and (19).

4.3. Extraction of G(1, . . . , 1; t)

• Assume m is odd, and consider the orbit sum (17). For every σ ∈ Bℓ, the term

σ(M(x)Ḡ(x; t)) = σ

(

x1x
2
2 · · ·xℓ

ℓ G

(

1

1− t(x1 + · · ·+ xℓ)
,

1

1− t(x2 + · · ·+ xℓ)
, . . . ,

1

1− txℓ

; t

))

is a power series in t with coefficients inQ[x1, . . . , xℓ, x̄1, . . . , x̄ℓ]. We will prove that the coefficient
of x1 · · ·xℓ

ℓ in (17) reduces to Ḡ(0, . . . , 0; t) = G(1, . . . , 1; t), which is the (ordinary) length
generating function of involutions avoiding (m+ 1)m · · · 21.

First, if σ has some signed elements, all monomials in the xi’s occurring in σ(M(x)Ḡ(x; t))
have at least one negative exponent. Hence σ(M(x)Ḡ(x; t)) does not contribute to the coefficient
of x1 · · ·xℓ

ℓ.
If σ is not signed, it is a mere permutation of the xi’s. Each monomial occurring in σ(M(x)Ḡ(x; t))

is of the form xe1
1 · · ·xeℓ

ℓ , where the ei’s are positive. However, monomials with e1 = 1 only occur

if σ(1) = 1 (because of the factor M(x) = x1x
2
2 · · ·xℓ

ℓ). But then, if we also want e2 = 2, the only
permutations σ that contribute are those that satisfy σ(2) = 2. Iterating this observation, we
see that the only permutation σ that contributes to the coefficient of x1x

2
2 · · ·xℓ

ℓ is the identity.
Moreover, its contribution is clearly Ḡ(0, . . . , 0; t) = G(1, . . . , 1; t).
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Let us state this as a proposition, in which we have also explicited the right-hand side of the
orbit sum.

Proposition 9. If m = 2ℓ + 1, the ordinary generating function of involutions avoiding (m +
1)m · · · 21 is the coefficient of x1x

2
2 · · ·xℓ

ℓ in a rational function:

Gm(t) :=
∑

τ∈I(m)

t|τ | =
[

x1x
2
2 · · ·xℓ

ℓ

] det(xi
j − x̄i

j)1≤i,j≤ℓ

1− t(1 + x1 + · · ·+ xℓ + x̄1 + · · ·+ x̄ℓ)
.

Equivalently, the exponential generating function of these involutions is

G(e)
m (t) :=

∑

τ∈I(m)

t|τ |

|τ |! = et
[

x1x
2
2 · · ·xℓ

ℓ

]

det
(

(xi
j − x̄i

j)e
t(xj+x̄j)

)

1≤i,j≤ℓ
.

Proof. We have just argued that Gm(t) is the coefficient of x1x
2
2 · · ·xℓ

ℓ in the right-hand side
of (17). There remains to prove that

∑

σ∈Bℓ

ε(σ)σ(x1
1 · · ·xℓ

ℓ) = det(xi
j − x̄i

j)1≤i,j≤ℓ.

This is easily proved if we consider that σ first replaces some xi’s by their reciprocals, and then
permutes the xi’s. More precisely, there is a bijection between Bℓ and Sℓ × Zℓ

2, sending σ to
(π, e1, . . . , eℓ), with π ∈ Sℓ and ei ∈ {−1, 1}, such that

σ(P (x1, . . . , xℓ)) = π (P (xe1
1 , . . . , xeℓ

ℓ )) and ε(σ) = ε(π)(−1)♯{i: ei=−1}. (21)

Thus
∑

σ∈Bℓ

ε(σ)σ(x1
1 · · ·xℓ

ℓ) =
∑

π∈Sℓ

ε(π)
∑

e1,...,eℓ∈{−1,1}

(−1)♯{i: ei=−1}xe1
π(1)x

2e2
π(2) · · ·x

ℓeℓ
π(ℓ)

=
∑

π∈Sℓ

ε(π)
ℓ
∏

i=1

(

xi
π(i) − x̄i

π(i)

)

= det(xi
j − x̄i

j)1≤i,j≤ℓ.

This gives the expression of Gm(t). We then convert it into an expression for the exponential

generating function G
(e)
m (t) by observing that the ordinary generating function 1/(1 − αt) =

∑

n t
nan corresponds to the exponential generating function

∑

n t
nan/n! = exp(at).

Remark. The determinant occurring in the proposition can be evaluated in closed form (see,
e.g., [20, Lemma 2]):

det(xi
j − x̄i

j)1≤i,j≤ℓ = (x1 · · ·xℓ)
−ℓ

ℓ
∏

i=1

(x2
i − 1)

∏

1≤i<j≤ℓ

((xi − xj)(1 − xixj))

but this is not needed here.

• Assume now that m = 2ℓ is even. The identity (17) still holds, with K(x; t) and M(x) given
by (18) and (19). Based on the study of the odd case, it would be tempting to extract the

coefficient of x2 · · ·xℓ−1
ℓ in this identity. However, this will not give Ḡ(0, . . . , 0; t), as both σ = id

and σ = σ1 (the generator of Bℓ that replaces x1 by x̄1) contribute to this coefficient. But we

note that each term in the equation is a multiple of P (x) :=
∏ℓ

i=1(1 − xi). Hence we will first
divide by P (x). Let us study the action of σ ∈ Bℓ on P (x), with σ described as in (21). There
holds:

σ(P (x)) = π ((1− xe1
1 ) · · · (1− xeℓ

ℓ )) = π

(

P (x)
∏

i:ei=−1

(−x̄i)

)

= (−1)♯{i:ei=−1}P (x)
∏

i:ei=−1

x̄π(i).
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Hence, denoting e = (e1, . . . , eℓ), x
e = (xe1

1 , . . . , xeℓ
ℓ ) and N(x) = x2 · · ·xℓ−1

ℓ , dividing (17) by
P (x) gives

∑

π∈Sℓ

e∈{−1,1}ℓ

ε(π) π

(

N(xe) Ḡ(xe; t)
∏

i:ei=−1

x̄i

)

=
1

K(x; t)







∑

π∈Sℓ

e∈{−1,1}ℓ

ε(π) π

(

N(xe)
∏

i:ei=−1

x̄i

)






.

(22)

Let us now extract from the left-hand side the coefficient of x2 · · ·xℓ−1
ℓ . The argument is sim-

ilar to the odd case. If e 6= (1, . . . , 1), each monomial occurring in N(xe) Ḡ(xe; t)
∏

i:ei=−1 x̄i

contains a negative exponent, and thus cannot contribute. Now for e = (1, . . . , 1), the term
π
(

N(x) Ḡ(x; t)
)

only contributes if π = id, and then its contribution is Ḡ(0, . . . , 0; t), the length
generating function of involutions avoiding (m+1)m · · · 21. We obtain the following counterpart
of Proposition 9.

Proposition 10. If m = 2ℓ, the ordinary generating function of involutions avoiding (m +

1)m · · · 21 is the coefficient of x0
1x

1
2 · · ·xℓ−1

ℓ in a rational function:

Gm(t) :=
∑

τ∈I(m)

t|τ | =
[

x0
1x

1
2 · · ·xℓ−1

ℓ

] det(xi−1
j + x̄i

j)1≤i,j≤ℓ

1− t(x1 + · · ·+ xℓ + x̄1 + · · ·+ x̄ℓ)
.

Equivalently, the exponential generating function of these involutions is

G(e)
m (t) :=

∑

τ∈I(m)

t|τ |

|τ |! =
[

x0
1x

1
2 · · ·xℓ−1

ℓ

]

det
(

(xi−1
j + x̄i

j)e
t(xj+x̄j)

)

1≤i,j≤ℓ
.

Proof. We have just argued that Gm(t) is the coefficient of x1
2 · · ·xℓ−1

ℓ in the right-hand side
of (22). There remains to evaluate the numerator in the right-hand side:

∑

π∈Sℓ

e∈{−1,1}ℓ

ε(π) π

(

N(xe)
∏

i:ei=−1

x̄i

)

=
∑

π∈Sℓ

ε(π) π





∑

e∈{−1,1}ℓ

ℓ
∏

i=1

x
(i−1)ei−χei=−1

i





=
∑

π∈Sℓ

ε(π) π

(

ℓ
∏

i=1

(

xi−1
i + x̄i

i

)

)

= det(xi−1
j + x̄i

j).

This gives the expression of Gm(t). Taking the corresponding exponential generating function

gives G
(e)
m (t).

Remark. Again, the determinant occurring in the proposition can be evaluated in closed
form [20, Eq. (2.6)], but this is not needed here.

4.4. Determinantal expression of the series

• Let us assume that m is odd, and return to Proposition 9. Taking the exponential generating
function rather than the ordinary one makes the extraction of the coefficient of x1 · · ·xℓ

ℓ an
elementary task, as all variables xj decouple. The series Ii defined by (1) arise naturally from

[xi]et(x+x̄) = Ii.
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There holds:

G(e)
m (t) = et

∑

π∈Sℓ

ε(π)

ℓ
∏

i=1

[

xi
i

]

((

x
π(i)
i − x̄

π(i)
i

)

et(xi+x̄i)
)

= et
∑

π∈Sℓ

ε(π)

ℓ
∏

i=1

(

Ii−π(i) − Ii+π(i)

)

= et det (Ii−j − Ii+j)1≤i,j≤ℓ
.

We have thus recovered the first part of Theorem 2.

• If m is even, we start from Proposition 10. Again, the variables xj decouple in the exponential
generating function:

G(e)
m (t) =

∑

π∈Sℓ

ε(π)

ℓ
∏

i=1

[

xi−1
i

]

((

x
π(i)−1
i + x̄

π(i)
i

)

et(xi+x̄i)
)

=
∑

π∈Sℓ

ε(π)

ℓ
∏

i=1

(

Ii−π(i) + Ii+π(i)−1

)

= det (Ii−j + Ii+j−1)1≤i,j≤ℓ
.

We have thus recovered the second part of Theorem 2.

Remark. The determinantal expression of G
(e)
m implies that this series is D-finite, that is,

satisfies a linear differential equation with polynomial coefficients. However, this follows as well
from the constant term expressions of Propositions 9 and 10 using the closure properties of
D-finite series [23, 22].

4.5. The number of fixed points

We now enrich our results by taking into account the number of fixed points, thereby recover-
ing Theorem 3. Recall from Proposition 6 that the label of the involution obtained by inserting

n+1 as a fixed point in τ ∈ I
(m)
n is (a1+1, a2+1, . . . , aℓ+1) if m is odd, (1, a2+1, . . . , aℓ+1) oth-

erwise. Hence, if we keep track of the number of fixed points by a new variable s, the functional
equation of Proposition 7 becomes:

G(v; t, s) = v1 + stv1G(v; t, s)χm≡1 + stv1G(v2, v2, v3, . . . , vℓ; t, s)χm≡0

+ t2v1

ℓ
∑

j=1

vjvj+1
G(v; t, s)−G(v1, . . . , vj−1, vj+1, vj+1, vj+2, . . . , vℓ; t, s)

vj − vj+1
.

The series G(1, . . . , 1; t, s) counts involutions of I(m) by their length and number of fixed points.
The change of variables (13) now gives

K(x; t, s)Ḡ(x; t, s) = 1 + stḠ(0, x2, . . . , xℓ; t, s)χm≡0

− t
ℓ
∑

j=1

x̄jḠ(x1, . . . , xj−2, xj−1 + xj , 0, xj+1, . . . , xℓ; t, s),

where

K(x; t, s) = 1− t(x1 + · · ·+ xℓ)− stχm≡1 − t(x̄1 + · · ·+ x̄ℓ),

and

Ḡ(x; t, s) ≡ Ḡ(x1, . . . , xℓ; t) = G

(

1

1− t(x1 + · · ·+ xℓ)
,

1

1− t(x2 + · · ·+ xℓ)
, . . . ,

1

1− txℓ

; t, s

)

.
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• If m is odd, the argument of Sections 4.2, 4.3, 4.4, applies verbatim. The only difference is
that the term t occurring in the kernel is replaced by st. This gives at once the first part of
Theorem 3, in the form (3).

• If m is even, the equation reads:

K(x; t)Ḡ(x; t, s) = 1 + t(s− x̄1)Ḡ(0, x2, . . . , xℓ; t, s)

− t

ℓ
∑

j=2

x̄jḠ(x1, . . . , xj−2, xj−1 + xj , 0, xj+1, . . . , xℓ; t, s)

with K(x; t) = 1− t(x1 + · · ·+ xℓ + x̄1 + · · ·+ x̄ℓ). We multiply it by

M(x; s) := x2x
2
3 · · ·xℓ−1

ℓ (s− x1) · · · (s− xℓ),

and then argue as in Section 4.2 to conclude that

∑

σ∈Bℓ

ε(σ) σ
(

M(x; s)Ḡ(x; t, s)
)

=

∑

σ∈Bℓ
ε(σ) σ(M(x; s))

K(x; t)
, (23)

with the above values of K(x; t) and M(x; s).
Now we cannot follow exactly the argument of Section 4.3, because σ(M(x; s)) does not differ

from M(x; s) by a monomial. So it does not help to divide the equation by (s− x1) · · · (s− xℓ).

Instead, let us leave the equation as it is, and extract all terms of the form xa
1x

1
2 · · ·xℓ−1

ℓ with
a ≥ 0. More precisely, for a series F (x1, . . . , xℓ; t, s) in Q[x1, . . . , xℓ, s][[t]], let us denote

[x≥0
1 x1

2 · · ·xℓ−1
ℓ ]F (x1, . . . , xℓ; t, s) :=

∑

a≥0

xa
1 [x

a
1x

1
2 · · ·xℓ−1

ℓ ]F (x1, . . . , xℓ; t, s). (24)

Consider the term

σ
(

M(x; s)Ḡ(x; t, s)
)

= σ
(

x2x
2
3 · · ·xℓ−1

ℓ (s− x1) · · · (s− xℓ)Ḡ(x; t, s)
)

.

Let us decouple in σ the sign changes e1, . . . , eℓ and the permutation π of the xi’s, as in (21).

We wish to determine [x≥0
1 x1

2 · · ·xℓ−1
ℓ ]σ

(

M(x; s)Ḡ(x; t, s)
)

.

– If one of the ei’s, for i ≥ 2, is −1, then all monomials occurring in σ
(

M(x; s)Ḡ(x; t, s)
)

involve a negative exponent and thus do not contribute.
– If e1 = −1 while ei = 1 for i ≥ 2, the only way to obtain a non-zero contribution of
σ
(

M(x; s)Ḡ(x; t, s)
)

is to take π = id, and the contribution is then

sℓḠ(0, . . . , 0; t, s).

– If σ = π ∈ Sℓ, the contribution is

(s− x1)[x
≥0
1 x1

2 · · ·xℓ−1
ℓ ]

(

(s− x2) · · · (s− xℓ) π(x
1
2 · · ·xℓ−1

ℓ Ḡ(x; t, s))
)

.

We note that this is a multiple of (s− x1).

Hence, the result of our coefficient extraction on (23) is

−sℓḠ(0, . . . , 0; t, s)+(s−x1)
∑

π∈Sℓ

ε(π)[x≥0
1 x1

2 · · ·xℓ−1
ℓ ]

(

(s− x2) · · · (s− xℓ) π(x
1
2 · · ·xℓ−1

ℓ Ḡ(x; t, s))
)

= [x≥0
1 x1

2 · · ·xℓ−1
ℓ ]

∑

σ∈Bℓ
ε(σ) σ(M(x; s))

K(x; t)
.

Let us specialize this to x1 = s:

−sℓḠ(0, . . . , 0; t, s) =

(

[x≥0
1 x1

2 · · ·xℓ−1
ℓ ]

∑

σ∈Bℓ
ε(σ) σ(M(x; s))

K(x; t)

)∣

∣

∣

∣

x1 7→s

.
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The kernel K(x; t) is independent of s. But this is also the case of

∑

σ∈Bℓ

ε(σ) σ(M(x; s)) =
∑

π∈Sℓ

ε(π)π

(

ℓ
∏

i=1

((s− xi)x
i−1
i − (s− x̄i)x̄

i−1
i )

)

= det
(

s(xi−1
j − x̄i−1

j )− xi
j + x̄i

j

)

1≤i,j≤ℓ

= det
(

−xi
j + x̄i

j

)

1≤i,j≤ℓ

as is seen by taking linear combinations of rows. We have thus obtained the following counterpart
of Proposition 10.

Proposition 11. If m = 2ℓ, the ordinary generating function of involutions avoiding (m +
1)m · · · 21, counted by the length and number of fixed points, is, with the notation (24):

Gm(t, x1) :=
∑

τ∈I(m)

t|τ |x
f(τ)
1 = − 1

xℓ
1

[x≥0
1 x1

2 · · ·xℓ−1
ℓ ]

det(x̄i
j − xi

j)1≤i,j≤ℓ

1− t(x1 + · · ·+ xℓ + x̄1 + · · ·+ x̄ℓ)
.

Equivalently, the exponential generating function of these involutions is

G(e)
m (t, x1) :=

∑

τ∈I(m)

t|τ |

|τ |! x
f(τ)
1 = − 1

xℓ
1

[x≥0
1 x1

2 · · ·xℓ−1
ℓ ] det

(

(x̄i
j − xi

j)e
t(xj+x̄j)

)

1≤i,j≤ℓ
.

We can now perform the coefficient extraction explicitly in the expression of G
(e)
m (t, x1):

G(e)
m (t, x1) = − 1

xℓ
1

∑

π∈Sℓ

ε(π)[x≥0
1 ]
(

(x̄
π(1)
1 − x

π(1)
1 )et(x1+x̄1)

)

ℓ
∏

i=2

[xi−1
i ]

(

(x̄
π(i)
i − x

π(i)
i )et(xi+x̄i)

)

= − 1

xℓ
1

∑

π∈Sℓ

ε(π)
∑

k≥0

xk
1(Ik+π(1) − Ik−π(1))

ℓ
∏

i=2

(Ii+π(i)−1 − Ii−π(i)−1)

=
∑

k≥0

xk−ℓ
1 det

(

(Ik−j − Ik+j)1≤j≤ℓ

(Ii+j−1 − Ii−j−1)2≤i≤ℓ,1≤j≤ℓ

)

.

Upon extracting the coefficient of xp
1, this gives the second part of Theorem 3.

5. Permutations with no long ascending subsequence

We now want to derive from the functional equation of Proposition 5 the Bessel generating
function of permutations avoiding 12 · · ·m(m + 1), given in Theorem 1. We follow the same
steps as in the case of involutions, but the coefficient extraction is more delicate.

5.1. Invariance properties of the kernel

The kernel of the equation of Proposition 5, that is, the coefficient of F (v; t), reads

1− tv1 − t
m
∑

j=2

vj−1vj
vj−1 − vj

.

Its invariance properties appear clearly if we set

vj =
1

x1 + · · ·+ xj

.

Indeed, the kernel then becomes

K(x; t) := 1− t(x̄1 + · · ·+ x̄m), (25)
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with x̄i = 1/xi, and is left invariant by the symmetric group Sm, seen as a group of transforma-
tions of Laurent polynomials in the xi. This group is generated by m − 1 elements of order 2,
denoted σ1, . . . , σm−1:

σj(P (x1, . . . , xm)) = P (x1, . . . , xj−1, xj+1, xj , xj+2, . . . , xm).

The functional equation now reads

K(x; t)F̄ (x; t) = 1− t

m−1
∑

j=1

x̄j+1F̄ (x1, . . . , xj−1, xj + xj+1, 0, xj+2, . . . , xm; t),

with

F̄ (x; t) ≡ F̄ (x1, . . . , xm; t) = F

(

1

x1
,

1

x1 + x2
, . . . ,

1

x1 + · · ·+ xm

; t

)

. (26)

5.2. Orbit sum

Let us multiply the equation by

M(x) = x0
1x

1
2 · · ·xm−1

m . (27)

This gives:

K(x; t)M(x)F̄ (x; t) = M(x)

− t

m−1
∑

j=1

x0
1 · · ·xj−1

j xj−1
j+1x

j+1
j+2 · · ·xm−1

m F̄ (x1, . . . , xj−1, xj + xj+1, 0, xj+2, . . . , xm; t). (28)

The jth term of the sum is invariant by the generator σj (which exchanges xj and xj+1).
Consequently, forming the signed sum of (28) over the symmetric group Sm gives the following
orbit sum:

∑

σ∈Sm

ε(σ) σ
(

K(x; t)M(x)F̄ (x; t)
)

=
∑

σ∈Sm

ε(σ)σ(M(x)),

or, given that K(x; t) is Sm-invariant,

∑

σ∈Sm

ε(σ) σ
(

M(x)F̄ (x; t)
)

=

∑

σ∈Sm
ε(σ) σ(M(x))

K(x; t)
=

det(xi−1
j )1≤i,j≤m

K(x; t)
, (29)

where K(x; t) is given by (25) and M(x) by (27).

5.3. Extraction of F (1, . . . , 1; t)

For 1 ≤ j ≤ m, let us now denote zj = x1+ · · ·+xj . Equivalently, xj = zj−zj−1 with z0 = 0.
All series occurring in the orbit sum (29) become series in t with coefficients in Q(z1, . . . , zm).
In particular,

F̄ (x; t) = F

(

1

z1
,
1

z2
, . . . ,

1

zm
; t

)

has coefficients which are Laurent polynomials in the zj ’s. This is not the case for all terms
in (29). For instance, if σ is the 2-cycle (1, 2),

σ(F̄ (x; t)) = F

(

1

x2
,

1

x1 + x2
, . . . ,

1

x1 + · · ·+ xm

; t

)

= F

(

1

z2 − z1
,
1

z2
, . . . ,

1

zm
; t

)

involves coefficients which are not Laurent polynomials in the zj ’s. In order to perform our
extraction, we will expand all rational functions of the zj ’s as (iterated) Laurent series, by
expanding first in z1, then in z2, and so on. For instance, the expansion of 1/(x1+x3+x4) reads

1

x1 + x3 + x4
=

1

z4 − z2 + z1
=
∑

e1≥0

(−z1)
e1

(z4 − z2)e1+1
=

∑

e1≥0,e2≥0

(

e1 + e2
e1

)

(−z1)
e1ze22

z1+e1+e2
4

.
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In other words, the coefficients of our series in t now lie in the ring of iterated Laurent series in
z1, . . . , zm, which is defined inductively as follows:

– if m = 1, it coincides with the ring of Laurent series in z1 (with rational coefficients),
– if m > 1, it is the ring of Laurent series in z1 whose coefficients are iterated Laurent
series in z2, . . . , zm.

It follows from this definition that an iterated Laurent series in the zj ’s only contains finitely
many non-positive monomials, that is, monomials ze11 · · · zemm with ej ≤ 0 for all j. This allows
us to define below a linear operator Λ, which extracts from an iterated Laurent series some
coefficients associated with non-positive monomials and adds them up.

Definition 12. Let Λ be the linear operator defined on iterated Laurent series in z1, . . . , zm by
the following action on monomials:

Λ(ze11 · · · zemm ) =

{

1, if e1 ≤ 0, . . . , em ≤ 0 and ej = 0 ⇒ ej+1 = · · · = em = 0;
0, otherwise.

(30)

Remark. The action of Λ can also be described as the extraction of a constant term: for any
iterated Laurent series F (z1, . . . , zm),

Λ(F (z1, . . . , zm)) = [z01 · · · z0m]



F (z1, . . . , zm)

m
∑

i=0

i
∏

j=1

zj
1− zj



 .

This operator has been designed to extract from (29) the series F (1, . . . , 1; t) in which we are
interested. The following proposition is thus the counterpart of Propositions 9 and 10.

Proposition 13. The ordinary generating function of permutations avoiding 12 · · ·m(m+1) is
obtained by applying Λ to a rational function:

Fm(t) :=
∑

τ∈S(m)

t|τ | = Λ

(

det(xi−j
j )1≤i,j≤m

1− t(x̄1 + · · ·+ x̄m)

)

,

with xj = zj − zj−1 and z0 = 0.
Equivalently, the exponential generating function of these permutations is

F (e)
m (t) :=

∑

τ∈S(m)

t|τ |

|τ |! = Λ
(

det(xi−j
j etx̄j )1≤i,j≤m

)

.

Remarks

1. The fact that the action of Λ can be described as a constant term extraction, combined with

closure properties of D-finite series [23, 22], implies that the series Fm (and F
(e)
m ) are D-finite.

This was first proved by Gessel [13].
2. Again, the determinant is a Vandermonde determinant and can be evaluated in closed form,
but this will not be needed.

Proof. We will prove that for all σ ∈ Sm,

Λ

(

σ
(

M(x)F̄ (x; t)
)

M(x)

)

=

{

F (1, . . . , 1; t), if σ = id;
0, otherwise,

(31)

so that the first result directly follows from (29), after dividing by M(x) and applying Λ. It is
then easily converted into an expression for the exponential generating function.

Recall the definition (26) of F̄ (x; t), and that Sm acts by permuting the xj ’s. Also,

F (v1, . . . , vm; t) =
∑

τ∈S(m)

v
a2(τ)−1
1 v

a3(τ)−a2(τ)
2 · · · v|τ |+1−am(τ)

m t|τ |,
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where the labels ai(τ) are defined by (4). This definition implies that, if aj(τ) = aj+1(τ), then
aj(τ) = aj+1(τ) = · · · = am(τ) = |τ | + 1. In other words, the v-monomials occurring in F (v; t)
satisfy a property that should be reminiscent of the definition of Λ:

F (v1, . . . , vm; t) =
∑

(e1,...,em)∈E

c(e1, . . . , em) ve11 ve22 · · · vemm te1+···+em , (32)

where

E = {(e1, . . . , em) ∈ Nm : ej = 0 ⇒ ej+1 = · · · = em = 0}.

With this property at hand, we can now address the proof of (31). If σ = id,

Λ

(

σ
(

M(x)F̄ (x; t)
)

M(x)

)

= Λ

(

F
( 1

z1
,
1

z2
, . . . ,

1

zm
; t
)

)

= F (1, . . . , 1; t)

by definition of Λ and (32).
There remains to prove the second part of (31). Let us consider an example, say m = 5 and

σ = 13425. Let τ ∈ S
(5)
n , and denote ei = ai+1(τ)−ai(τ), with a1(τ) = 1 and am+1(τ) = |τ |+1.

Of course, ei ≥ 0 for all i. Up to a factor t|τ |, the contribution of τ in σ
(

M(x)F̄ (x; t)
)

/M(x) is

1

x2x2
3x

3
4x

4
5

σ

(

x2x
2
3x

3
4x

4
5

xe1
1 (x1 + x2)e2 · · · (x1 + · · ·+ x5)e5

)

=

x3x
2
4x

3
2x

4
5

x2x2
3x

3
4x

4
5 x

e1
1 (x1 + x3)e2(x1 + x3 + x4)e3 (x1 + x2 + x3 + x4)e4 (x1 + · · ·+ x5)e5

=

(z2 − z1)
2

(z3 − z2)(z4 − z3)z
e1
1 (z3 − z2 + z1)e2 (z4 − z2 + z1)e3z

e4
4 ze55

.

To prepare the Laurent expansion in the variables zi, we rewrite this fraction as

(z2 − z1)
2

ze11 z1+e2
3 z1+e3+e4

4 ze55

(

1− z3
z4

)(

1− z2
z3

)1+e2 (

1− z2
z4

)e3
(

1 + z1

z3

(

1−
z2
z3

)

)e2 (

1 + z1

z4

(

1−
z2
z4

)

)e3 .

It is now clear that, in each term of the Laurent expansion, z2 has a non-negative exponent,
while z4 has a negative exponent. By definition of Λ, this implies that

Λ

(

1

M(x)
σ

(

M(x)

xe1
1 (x1 + x2)e2 · · · (x1 + · · ·+ x5)e5

))

= 0.

As this holds for every permutation τ ∈ S
(5)
n , we have proved that (31) holds for σ = 13425.

Let us say that a series of Q(x1, . . . , xm)[[t]] is positive in zj (or zj-positive) if, in every term
of its z-expansion, zj appears with a positive exponent. We define similarly the notion of zj-
negative, zj-non-positive, zj-non-negative series. We have just observed that, for m = 5 and
σ = 13425, the series σ

(

M(x)F̄ (x; t)
)

/M(x) is non-negative in z2 but negative in z4. This is
generalized by the following lemma.

Lemma 14. Take σ ∈ Sm \ {id}. Let σ(j) be the largest non-fixed left-to-right maximum of σ.
That is,

for k < j, σ(k) < σ(j), and for every k such that σ(k) > σ(j), one has σ(k) = k.

Let σ(i) be any value that is not a left-to-right maximum and satisfies σ(i) ≤ i. For e1 ≥
0, . . . , em ≥ 0, consider the fraction

1

M(x)
σ

(

M(x)

xe1
1 (x1 + x2)e2 · · · (x1 + · · ·+ xm)em

)

. (33)

Then this fraction is non-negative in zσ(i) but negative in zσ(j). Since σ(i) < σ(j), applying Λ
to this fraction gives 0.
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Returning to the example σ = 13425 studied above, we observe that the lemma applies with
σ(i) = 2 and σ(j) = 4.

This lemma implies the second part of (31): indeed, the contribution of any τ ∈ S
(m) in

σ(M(x)F̄ (x; t))/M(x) is of the form (33). Hence proving the lemma will conclude the proof of
Proposition 13.

Proof of Lemma 14. We establish this lemma via a sequence of three elementary properties.

Property 1. Let i1 < i2 < · · · < ik, and e ∈ Z. The fraction

1

(±zi1 ± · · · ± zik)
e

is non-negative in zi1 , . . . , zik−1
. If e ≥ 0, it is non-positive in zik , and even negative in zik if

e > 0.

Proof. The result is obvious if e ≤ 0, as the fraction is a polynomial in this case. If e > 0, we
prove it by induction on k. It clearly holds for k = 1. If k > 1, we write

1

(±zi1 ± · · · ± zik)
e
=

1

(±zi2 ± · · · ± zik)
e

(

1± zi1
zi2±···±zik

)e

=
∑

n≥0

(

e− 1 + n

n

)

(±zi1)
n

(±zi2 ± · · · ± zik)
e+n

,

and conclude by induction on k.

Property 2. Let σ, j, e1, . . . , em be as in Lemma 14. The fraction

σ

(

1

xe1
1 (x1 + x2)e2 · · · (x1 + · · ·+ xm)em

)

is non-negative in all zσ(k) such that σ(k) is not a left-to-right maximum, and non-positive in
zσ(j).

Proof. It suffices to prove that the result holds for each term

σ

(

1

(x1 + · · ·+ xℓ)eℓ

)

=
1

(zσ(1) − zσ(1)−1 + · · ·+ zσ(ℓ) − zσ(ℓ)−1)eℓ
, (34)

for ℓ ∈ {1, . . . ,m} (with z0 = 0).
By Property 1, this term is non-negative in all variables, except possibly in zmax(σ(1),...,σ(ℓ)).

Since max(σ(1), . . . , σ(ℓ)) is always a left-to-right maximum, this proves the first part of the
property.

Consider now the variable zσ(j).

– If ℓ < j, then max(σ(1), . . . , σ(ℓ)) < σ(j), so that the term (34) is independent of zσ(j),
and thus non-positive in this variable.

– If j ≤ ℓ ≤ σ(j), then max(σ(1), . . . , σ(ℓ)) = σ(j). Then (34) is non-positive in zσ(j) by
Property 1.

– Finally, if ℓ > σ(j), then {σ(1), . . . , σ(ℓ)} = {1, . . . , ℓ}, so that the term (34) simply
reads 1/zeℓℓ . This is independent of zσ(j), and thus non-positive in this variable.

Property 3. Let σ and j be as in Lemma 14. The fraction

σ (M(x))

M(x)

is non-negative in all zσ(k) such that σ(k) ≤ k, and negative in zσ(j).
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Proof. We have

σ (M(x))

M(x)
=

m
∏

ℓ=1

(zσ(ℓ) − zσ(ℓ)−1)
ℓ−σ(ℓ).

Assume σ(k) ≤ k. The two terms of the above product that involve zσ(k) are (zσ(k)−zσ(k)−1)
k−σ(k)

and (zσ(k)+1 − zσ(k))
e, with e = σ−1(σ(k) + 1)− σ(k) − 1. The former term is non-negative in

zσ(k) because σ(k) ≤ k. The latter term is non-negative in zσ(k) by Property 1. This proves the
first part of the property.

The two terms that involve zσ(j) are (zσ(j) − zσ(j)−1)
j−σ(j) and (zσ(j)+1 − zσ(j))

e, with e =

σ−1(σ(j) + 1)− σ(j)− 1. Since σ(j) > j, the former term is negative in zσ(j) by Property 1. By
construction of j, the exponent e is 0, so that the latter term is simply 1.

Lemma 14 now follows by combining Properties 2 and 3.

5.4. Determinantal expression of the series

Let us write etx̄ =
∑

b≥0(tx̄)
b/b!. The second formula in Proposition 13 reads:

∑

τ∈S(m)

t|τ |

|τ |! =
∑

b1,...,bm≥0

tb1+···+bm

b1! · · · bm!

∑

σ∈Sm

ε(σ) Λ

(

σ(M(x))

M(x)σ(xb)

)

(35)

where M(x) = x2x
2
3 · · ·xm−1

m , b = (b1, . . . , bm), and xb = xb1
1 · · ·xbm

m . We will give a closed form

expression of Λ
(

σ(M(x))
M(x)σ(xb)

)

(Lemma 17), which in turn will give a closed form expression of the

sum over σ occurring in (35).

Proposition 15. For b = (b1, . . . , bm) ∈ Nm,

∑

σ∈Sm

ε(σ) Λ

(

σ(M(x))

M(x)σ(xb)

)

=
(b1 + · · ·+ bm)!
∏m

i=1(bi − i+m)!

∏

1≤i<j≤m

(bi − i− bj + j).

Let us delay for the moment the proof of this proposition, and derive from it Gessel’s deter-
minantal formula (Theorem 1).
Proof of Theorem 1. The exponential generating function of permutations of S(m) now reads

∑

τ∈S(m)

t|τ |

|τ |! =
∑

b1,...,bm≥0

tb1+···+bm
(b1 + · · ·+ bm)!

∏m
i=1 bi!(bi − i+m)!

∏

1≤i<j≤m

(bi − i− bj + j).

Replacing t by t2, and taking the Bessel generating function gives

∑

τ∈S(m)

t2|τ |

|τ |!2 =
∑

b1,...,bm≥0

t2(b1+···+bm)

∏m
i=1 bi!(bi − i+m)!

∏

1≤i<j≤m

(bi − i − bj + j). (36)

But this is exactly Gessel’s determinant. Indeed:

det(Ij−i)1≤i,j≤m =
∑

σ∈Sm

ε(σ)

m
∏

i=1

Iσ(i)−i

=
∑

σ∈Sm

ε(σ)

m
∏

i=1

∑

bi≥0

t2bi−i+σ(i)

bi!(bi − i+ σ(i))!

=
∑

b1,...,bm≥0

t2(b1+···+bm)

∏m
i=1 bi!(bi − i+m)!

det ((bi − i+ j + 1) · · · (bi − i+m)) ,

and this coincides with (36), because the above determinant is the Vandermonde determinant in
the variables ui := bi − i (since (bi − i+ j +1) · · · (bi − i+m) is a polynomial in ui of dominant

term um−j
i ).
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There remains to prove Proposition 15. The proof relies on two lemmas. The first one is a
simple identity based on a partial fraction expansion. The second gives a closed form expression

of Λ
(

σ(M(x))
M(x)σ(xb)

)

, for b ∈ Nm.

Lemma 16. Let x1, . . . , xk, u1, . . . , uk be indeterminates, and let the symmetric group Sk act
on the xi’s by permuting them (that is, τ(xi) = xτ(i) for τ ∈ Sk). Then

∑

τ∈Sk

ε(τ) τ

(

k−1
∏

i=1

(xi + ui) · · · (xi + uk)

xi + ui + · · ·+ xk + uk

)

=
∏

1≤i<j≤k

(xi − xj).

Proof. Let us denote u = (u1, . . . , uk) and

T (x, u) =

k−1
∏

i=1

(xi + ui) · · · (xi + uk)

xi + ui + · · ·+ xk + uk

.

This is a rational function of uk, in which the numerator and denominator have degree k − 1.
By a partial fraction expansion,

T (x, u) = C(x, u) +

k−1
∑

ℓ=1

αℓ(x, u)

xℓ + uℓ + · · ·+ xk + uk

, (37)

where C and the αℓ’s are independent of uk. By letting uk tend to infinity, one obtains

C(x, u) =
∏

1≤i≤j<k

(xi + uj).

The value of αℓ is obtained by taking the residue of T (x, u) at uk = −(xℓ + uℓ + · · ·+ xk). This
gives, for ℓ ≤ k − 1:

αℓ(x, u) =

∏

1≤i≤j<k(xi + uj)
∏

1≤i<k(xi − (xℓ + uℓ + · · ·+ xk))
∏

i6=ℓ,i<k(xi + ui + · · ·+ xk−1 + uk−1 + xk − (xℓ + uℓ + · · ·+ xk))
.

Return now to (37). It is easy to check that αℓ(x, u)/(xℓ + uℓ + · · · + xk + uk) is left invariant
by the exchange of xℓ and xℓ+1. Consequently, the sum of the lemma reads

∑

τ∈Sk

ε(τ) τ (T (x, u)) =
∑

τ∈Sk

ε(τ) τ (C(x, u)) = det

(

k−1
∏

h=i

(xj + uh)

)

1≤i,j≤k

=
∏

1≤i<j≤k

(xi − xj),

because
∏k−1

h=i (xj + uh) is a polynomial in xj of leading term xk−i
j : the sum over τ thus reduces

to a Vandermonde determinant.

Lemma 17. Let b = (b1, . . . , bm) ∈ Nm and σ ∈ Sm. Let

1

xe
=

σ(M(x))

M(x)σ(xb)
,

where as before M(x) = x2 · · ·xm−1
m . That is, e = (e1, . . . , em) where ei = bτ(i) − τ(i) + i and

τ = σ−1. Let k = max{i : bi > 0} (if b = (0, . . . , 0), we take k = 0). Then

Λ

(

1

xe

)

=











k
∏

i=1

(

ei + · · ·+ ek − 1

ei − 1

)

, if σ(j) = j for all j > k;

0, otherwise .

(38)

Remark. If σ(j) = j for all j > k, and i ≤ k, then ei + · · ·+ ek ≥ 1. Indeed, if ei + · · ·+ ek =
bτ(i) + · · · + bτ(k) + (i + · · · + k) − (τ(i) + · · · + τ(k)) were non-positive, this would mean that
{τ(i), . . . , τ(k)} = {i, . . . , k} and bi = · · · = bk = 0, which contradicts the definition of k.
However, ei may be non-positive, and in this case the above expression vanishes. However,
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ei + k − i ≥ 0. When we apply this lemma to prove Proposition 15, we will write the above
product of binomial coefficients in the following equivalent form:

(e1 + · · ·+ ek)!
∏

1≤i≤k(ei + k − i)!

k−1
∏

i=1

ei(ei + 1) · · · (ei + k − i)

ei + · · ·+ ek
. (39)

Proof. For an iterated Laurent series in z1, . . . , zk, of the formR(z) =
∑

n∈Zk c(n1, . . . , nk)z
n1
1 · · · znk

k ,
we define the negative part of R(z) by

[z<]R(z) = [z<1 · · · z<k ]R(z) :=
∑

n1<0,...,nk<0

c(n1, . . . , nk).

Let us first prove that if f = (f1, . . . , fk) ∈ Zk,

[z<]

(

1

xf

)

=

k
∏

i=1

(

fi + · · ·+ fk − 1

fi − 1

)

. (40)

We adopt the standard convention that
(

a
b

)

= 0 unless 0 ≤ b ≤ a. Given that xi = zi − zi−1,
there holds

1

xf
=

1

zf11 · · · zfkk
(

1− z1
z2

)f2
· · ·
(

1− zk−1

zk

)fk
.

If fi ≤ 0 for some i, the z-expansion of 1/xf only involves non-negative powers of zi, so that the
negative part of 1/xf is zero. The right-hand side of (40) is zero as well, and thus (40) holds.
Assume now fi > 0 for all i. The proof works by induction on k. If k = 1 and f1 > 0,

[z<]

(

1

zf11

)

= 1 =

(

f1 − 1

f1 − 1

)

.

For k ≥ 2,

[z<]

(

1

xf

)

= [z<]
1

zf11 zf22

(

1− z1
z2

)f2
(z3 − z2)f3 · · · (zk − zk−1)fk

= [z<]
∑

n≥0

(

n+ f2 − 1

f2 − 1

)

zn−f1
1

zn+f2
2 (z3 − z2)f3 · · · (zk − zk−1)fk

=

f1−1
∑

n=0

(

n+ f2 − 1

f2 − 1

)

[z<2 · · · z<k ]
1

zn+f2
2 (z3 − z2)f3 · · · (zk − zk−1)fk

=

f1−1
∑

n=0

(

n+ f2 − 1

f2 − 1

)(

n+ f2 + · · ·+ fk − 1

n+ f2 − 1

) k
∏

i=3

(

fi + · · ·+ fk − 1

fi − 1

)

by the induction hypothesis. Now

f1−1
∑

n=0

(

n+ f2 − 1

f2 − 1

)(

n+ f2 + · · ·+ fk − 1

n+ f2 − 1

)

=

f1−1
∑

n=0

(

n+ f2 + · · ·+ fk − 1

n

)(

f2 + · · ·+ fk − 1

f2 − 1

)

=

(

f1 + f2 + · · ·+ fk − 1

f1 − 1

)(

f2 + · · ·+ fk − 1

f2 − 1

)

.

The last equality results from the classical binomial identity
a
∑

n=0

(

n+ b

n

)

=

(

a+ b+ 1

a

)

.
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This gives (40).

Let us now prove (38). Assume that σ(j) = j for all j > k. This implies that ek+1 = · · · =
em = 0. As argued just after the statement of the lemma, ek > 0. But then 1/xe is negative in
zk, and involves none of the variables zk+1, . . . , zm. Thus, by definition of Λ,

Λ

(

1

xe

)

= [z<1 · · · z<k ]
1

xe1
1 · · ·xek

k

=

k
∏

i=1

(

ei + · · ·+ ek − 1

ei − 1

)

(by (40)), and this gives the first part of (38).
Assume now that there exists j > k such that σ(j) 6= j. Then there also exists j > k such

that σ(j) < j. Let us choose such a j. Then there also exists ℓ > σ(j) such that τ(ℓ) < ℓ. There
holds

eσ(j) = bj − j + σ(j) = −j + σ(j) < 0,
eℓ = bτ(ℓ) − τ(ℓ) + ℓ > 0,

with ℓ > σ(j). Let ℓ′ = max{p > σ(j) : ep > 0} (this set is non-empty as it contains ℓ). Then
eℓ′+1 = · · · = em = 0, and 1/xe is non-negative in zσ(j) but negative in zℓ′ . By definition of Λ,
this implies that Λ(1/xe) = 0.

Proof of Proposition 15. Let us denote by SUM(b) the sum we want to evaluate. Let k = max{i :
bi > 0}. By Lemma 17, the sum can be reduced to permutations σ that fix all points larger than

k, and then we use the closed form expression (39) of Λ
(

σ(M(x))
M(x)σ(xb)

)

. This gives:

SUM(b) =
∑

σ∈Sk

ε(σ) Λ

(

σ(M(x))

M(x)σ(xb)

)

=
∑

τ∈Sk

ε(τ)
(b1 + · · ·+ bk)!

∏k
i=1(bτ(i) − τ(i) + k)!

k−1
∏

i=1

(bτ(i) − τ(i) + i) · · · (bτ(i) − τ(i) + k)

bτ(i) − τ(i) + i+ · · ·+ bτ(k) − τ(k) + k

=
(b1 + · · ·+ bk)!
∏k

i=1(bi − i+ k)!

∏

1≤i<j≤k

(bi − i− bj + j).

The last equality is the case xi = bi − i, ui = i of Lemma 16. It is easy to check that, given that
bk+1 = · · · = bm = 0, the above expression coincides with

(b1 + · · ·+ bm)!
∏m

i=1(bi − i+m)!

∏

1≤i<j≤m

(bi − i− bj + j),

as stated in Proposition 15.

6. Final comments

Clearly, our proof of Theorem 1, dealing with permutations of S(m), is more complicated than
our proof of Theorem 2, dealing with involutions of I(m). We still wonder if there exists another
change of variables, another coefficient extraction or another way to perform this extraction
effectively that would simplify Sections 5.3 and 5.4.

Our approach is robust enough to be adapted to other enumeration problems. Consider for
instance the set S̃

(m) of permutations π of S(m) in which the values 1, 2, . . . ,m occur in this
order. That is, π−1(1) < · · · < π−1(m). Garsia and Goupil found recently a simple formula for
the number of such permutations of (small) length n: if n ≤ 2m, this number is [12, Coro. 6.2]

♯ S̃(m)
n =

n−m
∑

r=0

(−1)r
(

n−m

r

)

n!

(m+ r)!
. (41)

This was then reproved by Panova [25]. See also [1].
In terms of the generating tree described in Section 2.1, this means that one is only counting

the nodes of the subtree rooted at the permutation 12 · · ·m. The only change in the functional
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equation of Proposition 5 is thus the initial condition: instead of 1 (which accounts for the empty
permutation), it is now v1 · · · vmtm. Sections 5.1 to 5.3 translate verbatim, and we reach the
following counterpart of Proposition 13.

Proposition 18. The ordinary generating function of permutations that avoid 12 · · ·m(m+ 1)
and in which the values 1, . . . ,m occur in this order is obtained by applying the operator Λ of
Definition 12 to a rational function:

∑

τ∈S̃(m)

t|τ | = Λ

(

tm

x1
2 · · ·xm−1

m (1− t(x̄1 + · · ·+ x̄m))

∑

σ∈Sm

ǫ(σ)σ

(

x1
2 · · ·xm−1

m
∏m

i=1(x1 + · · ·+ xi)

)

)

,

with xj = zj − zj−1 and z0 = 0.
Equivalently, the exponential generating function of these permutations is

∑

τ∈S̃(m)

t|τ |

|τ |! = Λ

(

tmet(x̄1+···+x̄m)

x1
2 · · ·xm−1

m

∑

σ∈Sm

ǫ(σ)σ

(

x1
2 · · ·xm−1

m
∏m

i=1(x1 + · · ·+ xi)

)

)

.

We have not pursued further in this direction, but one could try to obtain an explicit formula
giving the whole generating function (which would imply (41) when n ≤ 2m).

As discussed at the beginning of Section 2.2, the generating tree for 12 · · ·m(m+1)-avoiding
involutions can be described using m catalytic variables. Since these involutions are equinu-
merous with (m+ 1)m · · · 21-avoiding involutions, it is natural to ask whether one could derive
Theorem 2 from this tree and the corresponding functional equation. This could allow us to
address the enumeration of 12 · · ·m(m+1)-avoiding fixed point free involutions, for which deter-
minantal formulae exist (obtained by applying Gessel’s θ operator [13] to identities (5.41) and
(5.42) of a paper by Baik and Rains [3]; see also Stanley’s survey [32, Thm. 8]). The recursive
construction we have used does for involutions not allow us to address this problem.

Acknowledgements. The author thanks Aaron Jaggard for communicating an early version
of his paper with Joseph Marincel [18].
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