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Abstract

We present a formal derivation of a simplified version of Compressible
Primitive Equations (CPEs) for atmosphere modeling. They are obtained
from 3-D compressible Navier-Stokes equations with an anisotropic vis-

cous stress tensor where viscosity depends on the density. We then study
the stability of the weak solutions of this model by using an intermedi-
ate model, called model problem, which is more simple and practical, to
achieve the main result.
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1 Introduction

Among equations of geophysical fluid dynamics (see [8]), the equations govern-
ing the motion of the atmosphere are the Primitive Equations (PEs). In the
hierarchy of geophysical fluid dynamics models, they are situated between non
hydrostatic models and shallow water models. They are obtained from the full
3 dimensional set of Navier-Stokes equations for atmosphere modeling,

ρ
D

Dt
U+∇p+ ρg = D, (1)

D

Dt
ρ+ ρdivU = 0, (2)

cp
D

Dt
T − 1

T

D

Dt
p = QT , (3)

D

Dt
q = Qq, (4)

p = RT ρ (5)

where
D

Dt
= ∂t +U · ∇ .

U is the three dimensional velocity vector with component u for horizontal
velocity and v for the vertical one. The terms ρ, p, T , g stand for the density,
the pressure, the temperature, the gravity vector (0, 0, g). The diffusion term
D is written as:

D = µ∆xU+ ν∂2yyU (6)

where ∆x stands for the derivatives of second order with respect to the horizontal
variables x = (x1, x2), and µ 6= ν represents the anisotrope pair of viscosity.
The diffusive term Qq represent the molecular diffusion where q is the amount
of water in the air, and QT is the heat diffusion standing for the solar heating
(see for instance [17] for details of diffusive terms). The last term cp is the
specific heat of the air at constant pressure and R is the specific gas constant
for the air.

A scale analysis show that only the terms ∂yp and gρ are dominant (see e.g.
[15]). This leads to replace the third equation of (1) with the hydrostatic one to
obtain the so-called Compressible Primitive Equations (CPEs) for atmosphere
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modeling, 



ρ
d

dt
u+∇xp = D,

∂yp = −gρ,
d

dt
ρ+ ρdivU = 0,

cp
D

Dt
T − 1

T

D

Dt
p = QT ,

D

Dt
q = Qq,

p = RT ρ

(7)

where x and y stand for the horizontal and vertical coordinate and

d

dt
= ∂t + u · ∇x + v∂y .

Derivation “background” In this paper, we present the derivation of Com-
pressible Primitive Equations (CPEs) close to Equations (7) (without taking in
account complex phenomena such as the amount of water in the air and the
solar heating) from the 3-D Navier-Stokes equations with an anisotropic viscous
tensor. Emphasizing to the difference of sizes of the vertical and horizontal
dimensions in the atmosphere (10 to 20 for height with respect to thousands of
kilometers of length), we derive the hydrostatic balance approximation for the
vertical motion. We obtain simplified CPEs :





∂tρ+ divx (ρu) + ∂y (ρv) = 0,
∂t (ρu) + divx (ρu⊗ u) + ∂y (ρ vu) +∇xp(ρ) = divx (ν1Dx(u))
+∂y (ν2∂yu) ,
∂yp(ρ) = −gρ

(8)

where y stands for the vertical coordinate. The main difference between Model
(7) and Model (8) is the viscous term. Moreover, if p = c2ρ with c = RT (for

instance, as above), the density ρ is written ξ(t, x)e−g/c2y where ξ , called again
“density”, is an unknown of the following system called model problem:





d

dt
ξ + ξdivx(u) + ξ∂zw = 0,

ξ
d

dt
u+ c2∇x(ξ) = D,

∂zξ = 0

(9)

which is obtained from System (8) by the “simple” change of variables z =
1− e−y and w = e−yv where

d

dt
= ∂t + u · ∇x + w∂z

and D stands for the following viscous terms

D = divx (ν1Dx(u)) + ∂z (ν2∂zu) . (10)
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As explained below, we cannot obtain a result directly on System (8) without
using the intermediate Model (9), so we use the fact that System (9) is very
close to System (8), and that the equation ∂zξ = 0 is one of the key ingredient
to achieve the stability of weak solutions of System (9), to propagate the result
to System (8).

Mathematical “background” The mathematical study of PEs for atmo-
sphere modeling were first studied by J.L. Lions, R. Temam and S. Wang ([12])
where they produced the mathematical formulation of System (7) in 2 and 3
dimensions based on the works of J. Leray and they obtained the existence
of weak solutions for all time (see also [17] where the result was proved by
different means). For instance, in [17], using the hydrostatic equation, they
used the pressure p as vertical coordinate instead of the altitude y. Moreover,
they wrote System (7) in spherical coordinates (φ, θ, p) to change compressible
equations to incompressible ones to use the well-known results of incompress-
ible theory. They distinguished the prognostic variables from the diagnostic
variables, which are: (u, T, q) for the prognostic and (v, ρ,Φ) for the diag-
nostic variables where Φ is the geopotential gy(φ, θ, p, t). Diagnostic variables
(v = v(u), ρ = ρ(T ),Φ = Φ(T )) can be written as a function of the prognostic
variables through the div-free equation, p = RTρ and by integrating the mass
equation which is written in the new coordinates as follows:

∂pΦ+
RT

p
= 0.

Then, the outline of their proof of the existence was: they wrote

• a weak formulation of the PEs (by defining appropriate space functions)
of the form

dU

dt
+AU +B(U,U) + E(U) = l

where U = (u, T, q) with initial data U(0) = U0 and A,B,E are appro-
priate functional,

• finite differences in time: Un,

• a priori estimates for Un,

• approximate functions: U∆t(t) = Un on ((n− 1)∆t, n∆t) (following [16])

• a priori estimates for U∆t,

and they proved the passage to the limit.
Setting T and q constant, the main difference between Model (7) and (8)

comes from the viscous term (6) and (10). Starting from the Navier-Stokes
equations with non constant density dependent viscosity and anisotropic viscous
tensor, it is natural to get the viscous term (10). This term is also present in
the viscous shallow water equations (see e.g. [1]). In the same spirit than [17],
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authors [9] showed a global weak existence for the 2-D version of model problem
(8) with p(ρ) = c2ρ (with the notation above) by a change of vertical coordinates
(but not on p as done in [17]) which led to prove that Model (8) and Model (9)
are equivalent. Then, using an existence result provided by Gatapov et al [10]
for Model (9), they could conclude. Existence result [10] for System (9) was
obtained as follows:

• by a useful change of variables in the Lagrangian coordinates, authors [10]
showed that the density ξ is bounded from above and below .

• by a priori estimates and writing the system for the oscillatory part of the
velocity u, authors [10] obtained the existence result thanks to a Schauder
fix point theorem.

Unfortunately, this approach [10] fails for the 3-D version (9) since the change
of variables in Lagrangian coordinates does not provide enough information to
bound the density ξ. Moreover, to show a stability result for weak solutions for
Model (8) with standard techniques also fails, since multiplying the conservation
of the momentum equations of Model (8) by (u, v) gives:

d

dt

∫

Ω

ρ|u|2+ρ ln ρ−ρ+1 dxdt+

∫

Ω

ν1(ρ)|Dx(u)|2+nu2(ρ)|∂2yyu| dx+
∫

Ω

ρgv dx

where the sign of the integral

∫

Ω

ρgv dx is unknown (in the equation above,

Dx(u) stands for
∇xu+∇t

xu

2
). It appears that, prima facie, there is a missing

information on v to avoid the integral term

∫

Ω

ρgv dx introduced by the hydro-

static equation ∂yp = −gρ. In fact, the study of the weak solutions stability
cannot be performed directly on System (8) (at least up to our knownledge):
therefore, we have to study the intermediate Model (9) through the change of
vertical coordinates. Indeed, we have just remarked that (as described above)

that ρ is written as ξe−g/c2y, where ξ does not depend on y. Thus, performing a
change of variable in vertical coordinate in Model (8), following [9], we showed
that Model (8) could be written as Model (9). As the hydrostatic equation in
System (9) is ∂zξ = 0, an energy equality is easily obtained, and provided some
a priori estimates. Nevertheless, those estimates are not strong enough to pass
to the limit in the non linear terms; additional informations are required. On
the other hand, we have to remark that the missing information for the verti-
cal speed v for Model (8) (or equivalently w for Model (9)) is fulfilled by the
equation of the mass of System (9), which is also written as:

∂2zzw =
1

ξ
divx(ξ∂yu) .

Then, the fact that ξ = ξ(t, x) combined with the equation above, allowed
to obtain a mathematical entropy, the BD-entropy (initially introduced in [4],
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where a simple proof was given in [7, 6] or in [1] and the reference therein). Let
us also notice that, as for shallow water equations (see e.g. [2, 3, 5] to cite only
a few), it is necessary to add a regularizing term (as capillarity of friction) to
equations (9) (equivalently to Model (8)) to conclude to the stability of weak
solutions for Model (9): in this present case, we add a quadratic friction source
term which is written rρu|u| for System (8) or equivalently rξu|u| for System
(9). Indeed, the viscous term (10) combined to the friction term brings some
regularity on the density, which is required to pass to the limit in the non linear
terms (e.g. for the term ρu ⊗ u, where typically a strong convergence of

√
ρu

is needed). Finally, by the reverse change of variables, the estimates, necessary
to prove stability of weak solutions, were obtained for System (8) from those of
System (9).

We note that, for the sake of simplicity, periodic conditions on the spatial
horizontal domain Ωx are assumed, since it avoids an incoming boundary term
(whose sign is unknown: see e.g. [6]), which appears when we seek a mathe-
matical BD-entropy. Let us also precise that “good” boundary conditions on
Ωx may be used (see [6]) instead of periodic ones to avoid this boundary term.

We may also perform this analysis without the quadratic friction term by
using the “new” multiplier introduced in [13] which provides another mathe-
matical entropy: particularly to estimate bounds of ρu2 in a better space than
L∞(0, T ;L1(Ω)).

This paper is organized as follows In Section 2, starting from the 3-D
compressible Navier-Stokes equations with an anisotropic viscous tensor, we
formally derive the simplified Model (8) as described above. We present the
main result in Section 2.2. In the third and last Section 3.2, we prove the main
result. Firstly, we show that Model (8) can be rewritten as Model (9) which is
more simpler. Then, taking advantages of the property of the density ξ, adding
a quadratic friction term (following [2, 3]), we obtain a mathematical energy
and entropy which provides enough estimates to pass to the limit in Model (9).
Finally, following [9], the stability result for Model (8) is easily obtained.

2 Formal derivation of the simplified atmosphere

model

We consider the Navier-Stokes model in a bounded three dimensional domain
with periodic boundary conditions on Ωx and free conditions on the rest of the
boundary. More exactly, we assume that motion of the medium occurs in a
domain Ω = {(x, y); x ∈ Ωx, 0 < y < h} where Ωx = T

2 is a torus. The full
Navier-Stokes equation is written:

∂tρ+ div(ρu) = 0, (11)

∂t(ρu) + div(ρu⊗ u)− divσ(u)− ρf = 0, (12)

p = p(ρ) (13)
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where ρ is the density of the fluid and u = (u, v)t stands for the fluid veloc-
ity with u = (u1, u2)

t the horizontal component and v the vertical one. The
pressure law is given by the equation of state:

p(ρ) = c2ρ (14)

for some given constant c. The term f is the quadratic friction source term and
the gravity strength is given as follows:

f = −r
√
u21 + u22 (u1, u2, 0)

t − gk

where r is a positive constant coefficient, g is the gravitational constant and
k = (0, 0, 1)t (where Xt stands for the transpose of tensor X). The term σ(u)
is a non symmetric stress with the following viscous tensor (see e.g. [11, 10, 9])
Σ(ρ): 


µ1(ρ) µ1(ρ) µ2(ρ)
µ1(ρ) µ1(ρ) µ2(ρ)
µ3(ρ) µ3(ρ) µ3(ρ)


 .

The total stress tensor is written:

σ(u) = −pI3 + 2Σ(ρ) : D(u) + λ(ρ)div(u) I3

where the term Σ(ρ) : D(u) is written:
(

2µ1(ρ)Dx(u) µ2(ρ) (∂yu+∇xv)

µ3(ρ) (∂yu+∇xv)
t 2µ3(ρ)∂yv

)
(15)

with I3 the identity matrix. The term Dx(u) stands for the strain tensor, that

is: Dx(u) =
∇xu+∇t

xu

2
where ∇x =

(
∂x1

∂x2

)
.

Remark 1 Let us remark that, if we play with the magnitude of viscosity µi,
the matrix Σ(ρ) will be useful to set a privileged flow direction.

The last term λ(ρ)div(u) is the classical normal stress tensor with λ(ρ) the
viscosity. The Navier-Stokes system is closed with the following boundary con-
ditions on ∂Ω:

periodic conditions on ∂Ωx,
v|y=0 = v|y=h = 0,
∂yu|y=0 = ∂yu|y=h = 0.

(16)

We also assume that the distribution of the horizontal component of the velocity
u and the density distribution are known at the initial time t = 0:

u(0, x, y) = u0(x, y),

ρ(0, x, y) = ξ0(x)e
−g/c2y.

(17)

The fact that the initial condition for the density ρ has the form (17) is justified
at the end of Section 2.1.
We assume that ξ0 is a bounded positive function:

0 6 ξ0(x) 6M < +∞. (18)
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2.1 Formal derivation of the simplified CPEs

Taking advantages of the shallowness of the atmosphere, we assume that the
characteristic scale for the altitude H is small with respect to the characteristic
length L. So, the ratio of the vertical scale to the horizontal one is assumed
small. In this context, we assume that the vertical movements and variations
are very small compared to the horizontal ones, which justifies the following
approximation.
Let ε be a “small” parameter such as:

ε =
H

L
=
V

U

where V and U are respectively the characteristic scale of the vertical and

horizontal velocity. We introduce the characteristic time T such as: T =
L

U
and

the pressure unit P = ρU2 where ρ is a characteristic density. Finally, we note
the dimensionless quantities of time, space, fluid velocity, pressure, density and
viscosities:

t̃ =
t

T
, x̃ =

x

L
, ỹ =

y

H
, ũ =

u

U
, ṽ =

v

V
,

p̃ =
p

ρ̄U2
, ρ̃ =

ρ

ρ̄
, λ̃ =

λ

λ̄
, µ̃j =

µj

µ̄j
, j = 1, 2, 3

With these notations, the Froude number Fr, the Reynolds number associated to
the viscosity µi (i=1,2,3), Rei, the Reynolds number associated to the viscosity
λ, Reλ, and the Mach number Ma are written respectively:

Fr =
U√
g H

, Rei =
ρUL

µi
, Reλ =

ρUL

λ
, Ma =

U

c
. (19)

Applying this scaling, System (11)–(14) is written:





1

T
∂t̃ρ̃+

U

L
divx̃ (ρ̃ ũ) +

V

H
∂ỹ (ρ̃ṽ) = 0,

ρU

T
∂t̃ (ρ̃ ũ) +

ρU2

L
divx̃ (ρ̃ ũ⊗ ũ) +

ρU V

H
∂ỹ (ρ̃ ṽũ) +

c2 ρ

L
∇x̃ρ̃ =

µ1 U

L2
divx̃ (µ1Dx̃(ũ)) +

µ2 U

H2
∂ỹ (µ̃2 ∂ỹũ) +

µ2 V

LH
∂ỹ (µ̃2 ∇x̃ṽ) +

λU

L2
∇x̃

(
λ̃divx̃ (ũ)

)
+
λ V

LH
∇x̃

(
λ̃ ∂ỹ ṽ

)
,

ρ V

T
∂t̃ (ρ̃ ṽ) +

ρU V

L
divx̃ (ρ̃ ũ ṽ) +

ρ V 2

H
∂ỹ

(
ρ̃ ṽ2

)
+
c2 ρ

H
∂ỹρ̃ =

−g ρρ̃+ µ3 U

LH
divx̃ (µ̃3 ∂ỹũ) +

µ3 V

L2
divx̃ (µ̃3 ∇x̃ṽ) + 2

µ3 V

H2
∂ỹ(µ̃3∂ỹ ṽ)

+
λU

LH
∂ỹ

(
λ̃divx̃ (ũ)

)
+
λV

H2
∂ỹ

(
λ̃ ∂ỹ ṽ

)
.

(20)

Using the definition of the dimensionless number (19), dropping .̃, multiplying
the mass equation of System (20) by T , the momentum equation for u of System
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(20) by
T

ρU
, the momentum equation for v of System (20) by

T

ρV
, we get the

non-dimensional version of System (11)–(14) as follows:





∂tρ+ divx (ρu) + ∂y (ρv) = 0,

∂t (ρu) + divx (ρu⊗ u) + ∂y (ρ vu) +
1

M2
a

∇xρ =
1

Re1
divx (µ1Dx(u))

+
1

Re2
∂y

(
µ2

(
1

ε2
∂yu+∇xv

))
+

1

Reλ
∇x (λdivx(u) + λ∂yv) ,

∂t (ρ v) + divx (ρu v) + ∂y
(
ρ v2

)
+

1

ε2
1

M2
a

∂yρ = − 1

ε2
1

F 2
r

ρ

+
1

Re3
divx

(
µ3

(
1

ε2
∂yu+∇xv

))
+

2

ε2Re3
∂y(µ3∂yv)

+
1

ε2Reλ
∂y (λdivx(u) + λ∂yv) .

(21)
Next, if we assume the following asymptotic regime:

µ1(ρ)

Re1
= ν1(ρ),

µi(ρ)

Rei
= ε2νi(ρ), i = 2, 3 and

λ(ρ)

Reλ
= ε2γ(ρ). (22)

and drop all terms of order O(ε), System (21) reduces to the following model:





∂tρ+ divx (ρu) + ∂y (ρv) = 0,

∂t (ρu) + divx (ρu⊗ u) + ∂y (ρ vu) +
1

M2
a

∇xp(ρ) = divx (ν1Dx(u))

+∂y (ν2∂yu) + ρf,

∂yp(ρ) = −M
2
a

F 2
r

ρ,

(23)

called simplified CPEs. In the sequel, we simplify by setting Ma = Fr. Then,
the hydrostatic equation of System (23) with the pressure law (14) provides the
density as

ρ(t, x, y) = ξ(t, x)e−y (24)

for some function ξ = ξ(t, x) also called “density”. Let us note that the density
ρ is stratified: it means that for any altitude y, the density ρ has the profile of
the function ξ. Therefore, Equation (24) justifies the choice of the initial data
(17) for the density ρ at the time t = 0. In the sequel, we also assume that:

νi(ρ) = νρ, i = 1, 2, for ν > 0. (25)

2.2 The main result

Assuming the viscosity under the form (25) and Ma = Fr, we define:

Definition 1 A weak solution of System (23) on [0, T ]×Ω, with boundary (16)
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and initial conditions (17), is a collection of functions (ρ,u, w), if

ρ ∈ L∞(0, T ;L3(Ω)),
√
ρ ∈ L∞(0, T ;H1(Ω)),√

ρu ∈ L2(0, T ;L2(Ω)2),
√
ρv ∈ L∞(0, T ; (L2(Ω))),√

ρDx(u) ∈ L2(0, T ; (L2(Ω))2×2),
√
ρ∂yv ∈ L2(0, T ;L2(Ω)),

∇√
ρ ∈ L2(0, T ; (L2(Ω))3)

with ρ > 0 and where (ρ,
√
ρu,

√
ρv) satisfies:

{
∂tρ+ divx(

√
ρ
√
ρu) + ∂y(

√
ρu

√
ρv) = 0,

ρ(0, x) = ρ0(x)
(26)

in the distribution sense, and the following equality holds for all smooth test
function ϕ with compact support such as ϕ(T, x, y) = 0 and ϕ0 = ϕt=0:

−
∫ T

0

∫

Ω

ρu∂tϕdxdydt+

∫ T

0

∫

Ω

(2νρDx(u)− ρu⊗ u) : ∇xϕdxdydt

−
∫ T

0

∫

Ω

ρvu∂yϕdxdydt− ν

∫ T

0

∫

Ω

ρu∂2yyϕdxdydt+

∫ T

0

∫

Ω

rρ|u|uϕdxdydt

−
∫ T

0

∫

Ω

ρdiv(ϕ) dxdzdt +

∫ T

0

∫

Ω

ρvϕ dxdzdt =

∫

Ω

ρ0u0ϕ0 dxdy.

(27)

Now, we state the main result of this paper:

Theorem 1 Let (ρn,un, vn) be a sequence of weak solutions of System (23),
with boundary (16) and initial conditions (17), satisfying entropy inequalities
(37) and (51) such as

ρn > 0, ρn0 → ρ0 in L1(Ω), ρn0u
n
0 → ρ0u0 in L1(Ω). (28)

Then, up to a subsequence,

• ρn converges strongly in C0(0, T ;L3/2(Ω)),

• √
ρnun converges strongly in L2(0, T ;L3/2(Ω)2),

• ρnun converges strongly in L1(0, T ;L1(Ω)2) for all T > 0,

• (ρn,
√
ρnun,

√
ρnvn) converges to a weak solution of System (26),

• (ρn,un, vn) satisfy the entropy inequalities (37) and (51) and converge to
a weak solution of (23)-(16).

The proof of the main result is divided into three parts: the first part consists
in writing System (23), using (ξ,u, w = e−yv) as unknowns instead of (ρ,u, v).
The obtained model is called model problem (see Section 3.1). In the second
part of the proof, we show the stability of weak solutions of the model problem
(see Section 3.2.2-3.2.6). In the third and last part, by a simple criterion, the
main result is proved (see Section 3.2.7).
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3 Proof of the main result

The first part of the proof of Theorem 1 consists in writing the simplified model
(23) in a more practical way, since the standard technique fails, as pointed out
in Section 1.

3.1 A model problem; an intermediate model

We first begin, by noticing that the structure of the density ρ defined as a
tensorial product (see (24)) suggests the following change of variables:

z = 1− e−y (29)

where the vertical velocity, in the new coordinates, is:

w(t, x, z) = e−yv(t, x, y). (30)

Since the new vertical coordinate z is defined as
d

dy
z = e−y, multiplying by ey

System (23) and using the viscosity profile (25) and the change of variables (29)
provides the following model:





∂tξ + divx (ξ u) + ∂z (ξ w) = 0,
∂t (ξ u) + divx (ξ u⊗ u) + ∂z (ξ uw) +∇xξ = νdivx (ξDx(u)) + ν∂2zz(ξu),
∂zξ = 0.

(31)
which is the simplified CPEs (23) with the unknowns

(ξ(t, x),u(t, x, y), w(t, x, y)) instead of (ρ(t, x, y),u(t, x, y), v(t, x, y))

that we call model problem. In the new variables, the boundary conditions (16)
and the initial conditions (17) are written:

periodic conditions on Ωx,
w|z=0 = w|z=h = 0,
∂zu|z=0 = ∂zu|z=h = 0

(32)

and
u(0, x, y) = u0(x, z),
ξ(0, x) = ξ0(x)

(33)

where Ω = T
2 × [0, h] with h = 1− e−1.

3.2 Mathematical study of the model problem

This section is devoted to the study of stability of weak solutions of System (31)
and equivalently for System (23) as we will see in Section 3.2.7. In what follows,
we can say that:
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Definition 2 A weak solution of System (31) on [0, T ]×Ω, with boundary (32)
and initial conditions (33), is a collection of functions (ξ,u, w), if

ξ ∈ L∞(0, T ;L3(Ω)),
√
ξ ∈ L∞(0, T ;H1(Ω)),√

ξu ∈ L2(0, T ;L2(Ω)),
√
ξw ∈ L∞(0, T ; (L2(Ω))2)√

ξDx(u) ∈ L2(0, T ; (L2(Ω))2×2),
√
ξ∂zw ∈ L2(0, T ;L2(Ω)),

∇x

√
ξ ∈ L2(0, T ; (L2(Ω))2)

with ξ > 0 and (ξ,
√
ξu,

√
ξw) satisfies:

{
∂tξ + divx(

√
ξ
√
ξu) + ∂z(

√
ξu

√
ξw) = 0,

ξ(0, x) = ξ0(x)
(34)

in the distribution sense, and the following equality holds for all smooth test
function ϕ with compact support such as ϕ(T, x, z) = 0 and ϕ0 = ϕt=0:

−
∫ T

0

∫

Ω

ξu∂tϕdxdzdt+

∫ T

0

∫

Ω

(2νξDx(u)− ξu ⊗ u) : ∇xϕdxdzdt

−
∫ T

0

∫

Ω

ξwu∂zϕdxdzdt− ν

∫ T

0

∫

Ω

ξu∂2zzϕdxdzdt+

∫ T

0

∫

Ω

rξ|u|uϕdxdzdt

−
∫ T

0

∫

Ω

ξdivx(ϕ) dxdzdt =

∫

Ω

ξ0u0ϕ0 dxdz.

(35)

We then have the following result:

Theorem 2 Let (ξn,un, wn) be a sequence of weak solutions of System (31),
with boundary (32) and initial conditions (33), satisfying entropy inequalities
(37) and (51) such as

ξn > 0, ξn0 → ξ0 in L1(Ω), ξn0 u
n
0 → ξ0u0 in L1(Ω). (36)

Then, up to a subsequence,

• ξn converges strongly in C0(0, T ;L3/2(Ω)),

•
√
ξnun converges strongly in L2(0, T ;L3/2(Ω)2),

• ξnun converges strongly in L1(0, T ;L1(Ω)2) for all T > 0,

• (ξn,
√
ξnun,

√
ξnwn) converges to a weak solution of System (34),

• (ξn,un, wn) satisfy the entropy inequalities (37) and (51) and converge to
a weak solution of (31)-(32).

The proof of Theorem 2 is divided into three steps:

1. we first obtain suitable a priori bounds on (ξ,u, w) (see Section 3.2.1).
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2. assuming the existence of sequences of weak solutions (ξn,un, wn), we
show the compactness of sequences (ξn,un, wn) in apropriate space func-
tion (see Section 3.2.2-3.2.5).

3. using the obtained convergence, we show that we can pass to the limit in
all terms of System (31): this finishes the proof of Theorem 2 (see Section
3.2.6).

3.2.1 Energy and entropy estimates

A part of a priori bounds on (ξ,u, w) are obtained by the physical energy in-
equality which is obtained in a very classical way by multiplying the momentum
equation by u, using the mass equation and integrating by parts. We obtain
the following inequality:

d

dt

∫

Ω

(
ξ
u2

2
+ (ξ ln ξ − ξ + 1)

)
+

∫

Ω

ξ(|Dx(u)|2 + |∂zu|2) + r

∫

Ω

ξ|u|3 6 0 (37)

which provides the uniform estimates:

√
ξu is bounded in L∞(0, T ; (L2(Ω))2), (38)

ξ
1/3u is bounded in L3(0, T ; (L3(Ω))2), (39)√
ξ∂zu is bounded in L2(0, T ; (L2(Ω))2), (40)√

ξDx(u) is bounded in L2(0, T ; (L2(Ω))2×2), (41)

ξ ln ξ − ξ + 1 is bounded in L∞(0, T ;L1(Ω)). (42)

As pointed out by several authors (see e.g. [3, 13]), the crucial point in the
proof of the stability in these kind of models is to pass to the limit in the non
linear term ξu⊗ u which requires the strong convergence of

√
ξu. So we need

additional information, which may be for instance provided by the mathematical
BD-entropy [2]:
we first take the gradient of the mass equation, then we multiply by 2ν and
write the terms ∇xξ as ξ∇x ln ξ to obtain:

∂t (2νξ∇x ln ξ) + divx (2νξ∇x ln ξ ⊗ u) + ∂z (2νξ∇x ln ξw)
+divx

(
2νξ∇t

xu
)
+ ∂z (2νξ∇xw) = 0.

(43)

Next, we sum Equation (43) with the momentum equation of System (31) to
get the equation:

∂t (ξ ψ) + divx (ψ ⊗ ξu) + ∂z (ξ w ψ) + ∂z (2νξ∇xw)
+∇xξ = 2νdivx (ξAx(u))− rξ|u|u+ νξ∂z (∂zu)

(44)

where ψ = u+2ν∇x ln ξ and 2Ax(u) = ∇xu−∇t
xu is the vorticity tensor. The

mathematical BD-entropy is then obtained by multiplying the previous equation
by ψ and integrating by parts:
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•
∫

Ω

(∂t (ξ ψ) + divx (ψ ⊗ ξu) + ∂z (ξ w ψ))ψ dxdz =
d

dt

∫

Ω

ξ
|ψ|2
2

dxdz.

(45)

• Since ∫

Ω

2νdivx (ξAx(u))∇x ln ξ dxdz = 0

and periodic boundary conditions are assumed on Ωx, we have:
∫

Ω

2νdivx (ξAx(u))u dxdz = 2ν

∫

Ω

ξ|Ax(u)|2 dxdz. (46)

• Derivating the mass equation with respect to z provides the identity

∂zdivx(ξu) = −ξ∂2zzw

and also recalling that ξ is only x-dependent, the integral becomes:
∫

Ω

∂z (2νξ∇xw)ψ dxdz =

∫

Ω

∂z (2νξ∇xw)u dxdz

=

∫

Ω

w∂zdivx(ξu) dxdz

=

∫

Ω

ξ|∂zw|2 dxdz.

(47)

• The other terms are easily computed. We have:
∫

Ω

rξ|u|uψ dxdz =

∫

Ω

r|u|3 dxdz +
∫

Ω

2νr|u|u∇xξ dxdz, (48)

∫

Ω

ν∂z (∂zu)ψ dxdz =

∫

Ω

νξ|∂zu|2 dxdz. (49)

and
∫

Ω

∇xξψ dxdz =

∫

Ω

∇xξu dxdz + 2ν

∫

Ω

∇xξ∇x ln ξ dxdz

=
d

dt

∫

Ω

(ξ ln ξ − ξ + 1) dxdz + 8ν

∫

Ω

|∇x

√
ξ| dxdz.

(50)

Finally, gathering results (45)–(50) provides the following mathematical entropy
equality:

d

dt

∫

Ω

(ξ
|ψ|2
2

+ ξ ln ξ − ξ + 1) dxdz

+

∫

Ω

(2νξ|∂zw|2 + 2νξ|Ax(u)|2 + νξ|∂zu|2) dxdz

+

∫

Ω

(rξ|u|3 + 2νr|u|u∇ξ + 8ν|∇x

√
ξ|2) dxdz = 0

(51)
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and estimates:

∇
√
ξ is bounded in L∞(0, T ; (L2(Ω))3), (52)√

ξ∂zw is bounded in L2(0, T ; (L2(Ω))), (53)√
ξAx(u) is bounded in L2(0, T ; (L2(Ω))2×2). (54)

which finishes the first step of the proof of Theorem 2.

Remark 2 Estimate (52) is a straightforward consequence of estimates
√
ξψ ∈

L∞(0, T, L2(Ω)2) and
√
ξu ∈ L∞(0, T, L2(Ω)2) since

√
ξψ =

√
ξu+

∇xξ√
ξ
.

The second step of the proof of Theorem 2 will be divided into 4 parts. The
first part consists to show the convergence of

√
ξn (see Section 3.2.2). Then, we

seek for bounds of
√
ξnun and

√
ξnwn in an appropriate space (see Section 3.2.3)

to be able to prove the convergence of ξnun (see Section 3.2.4). Thereafter, the

convergence of
√
ξnun is obtained (see Section 3.2.5).

3.2.2 Convergence of
√
ξn

The first part of the proof of Theorem 2 consists to show the following conver-
gence.

Lemma 1 For every ξn satisfying the mass equation of System (31), we have:

√
ξn is bounded in L∞(0, T,H1(Ω)),

∂t
√
ξn is bounded in L2(0, T,H−1(Ω)).

Then, up to a subsequence, the sequence ξn converges almost everywhere and
strongly in L2(0, T ;L2(Ω)). Moreover, ξn converges to ξ in C0(0, T ;L3/2(Ω)).

Proof of Lemma 1:

The mass conservation equation gives

||
√
ξn(t)||2L2(Ω) = ||ξn0 ||L1(Ω).

This equation and Estimate (52) give the bound of
√
ξn in L∞(0, T,H1(Ω)).

Using again the mass conservation equation, we write

∂t(
√
ξn) = −1

2

√
ξndivx(un)− un.∇x

√
ξn −

√
ξn∂zwn

=
1

2

√
ξndivx(un)− divx(un

√
ξn)−

√
ξn∂zwn.

Then from Estimates (41), (54), (52), (53),

∂t
√
ξn is bounded in L2(0, T,H−1(Ω)).
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Next, Aubin’s lemma provides compactness of
√
ξn in C0(0, T, L2(Ω), that is:

√
ξn converges strongly to

√
ξ in C0(0, T, L2(Ω)). (55)

We also have, by Sobolev embeddings, bounds of
√
ξn in spaces L∞(0, T, Lp(Ω))

for all p ∈ [1, 6].
Consequently, for p = 6, we get bounds of ξn in L∞(0, T, L3(Ω)) and we deduce
that

ξnun =
√
ξn
√
ξnun is bounded in L∞(0, T, L3/2(Ω)2). (56)

It follows that ∂tξn is bounded in L∞(0, T,W−1,3/2(Ω)) since

∂tξn = −div(ξnun)− ξn∂zwn

and we have Estimate (53).
To conclude, writing

∇xξn = 2
√
ξn∇x

√
ξn ∈ L∞(0, T ;L3/2(Ω)2),

we deduce bounds of ξn in L∞(0, T ;W 1,3/2(Ω)). Then Aubin’s lemma provides
compactness of ξn in the intermediate space L3/2(Ω):

compactness of ξn in C0(0, T ;L3/2(Ω)).
�

3.2.3 Bounds of
√
ξnun and

√
ξnwn

To prove the convergence of the momentum equation, we have to control bounds
of

√
ξnun and

√
ξnwn.

Lemma 2 We have

√
ξnun bounded in L∞(0, T ; (L2(Ω))2)

and √
ξwn bounded in L2(0, T ;L2(Ω)).

Proof of Lemma 2: We have already bounds of
√
ξn (see Estimates (38)).

There is left to show bounds of
√
ξnwn L2(0, T ;L2(Ω)). As ξn = ξn(t, x) and

Estimates (53) holds, by the Poincaré inequality, we have:

∫ h

0

|
√
ξnwn|2 dz 6 c

∫ h

0

|∂z(
√
ξnwn)|2 dz.

Hence, ∫

Ω

ξn|wn|2 dxdz 6 c

∫

Ω

ξn|∂zwn|2 dxdz

gives bounds of
√
ξnwn in L2(0, T ;L2(Ω)).

�
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3.2.4 Convergence of ξnun

As bounds of
√
ξnun and

√
ξnwn are provided by Lemma 2, we are able to

show the convergence of the momentum equation.

Lemma 3 Let mn = ξnun be a sequence satisfying the momentum equation
(31). Then we have:

ξnun → m in L2(0, T ; (Lp(Ω))2) strong , ∀ 1 6 p < 3/2

and
ξnun → m a.e. (t, x, y) ∈ (0, T )× Ω.

Proof of Lemma 3:

Writing ∇x(ξnun) as:

∇x(ξnun) =
√
ξn
√
ξn∇xun + 2

√
ξnun ⊗∇

√
ξn

provides
∇x(ξnun) bounded in L2(0, T ; (L1(Ω))2×2). (57)

Next, we have

∂z(ξnun) =
√
ξn
√
ξn∂z(un) is bounded L

2(0, T ; (L3/2(Ω))2). (58)

Then, from bounds (57) and (58), we deduce:

ξnun is bounded L2(0, T ;W 1,1(Ω)2). (59)

On the other hand, we have:

∂t(ξn un) = −divx (ξn un ⊗ un)− ∂z (ξn un wn)−∇xξn
+νdivx (ξnDx(un)) + ν∂z (ξn∂zun) .

As
ξnun ⊗ un =

√
ξun ⊗

√
ξun, (60)

we deduce bounds of

ξnun ⊗ un in L∞(0, T ; (L1(Ω))2×2).

Particularly, we have

div(ξnun ⊗ un) bounded in L∞(0, T ; (W−2,4/3(Ω))2).

Similarly, as ξnunwn =
√
ξun

√
ξwn ∈ (L1(Ω))2, we also have

∂z(ξnunwn) bounded in L∞(0, T ; (W−2,4/3(Ω))2).

Moreover, as √
ξn
√
ξn∂zun,∈ L2(0, T ; (L3/2(Ω))2) and
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√
ξn
√
ξnDx(un) ∈ L2(0, T ; (L3/2(Ω))2×2),

we get bounds of

∂z(
√
ξn
√
ξn∂zun), divx(

√
ξn
√
ξnDx(un)) ∈ L2(0, T ; (W−1,3/2(Ω))2).

We also have bounds of ∇xξn ∈ L∞(0, T, (W−1,3/2(Ω))2).
Using W−1,3/2(Ω) ⊂W−1,4/3(Ω), we obtain

∂t(ξnun) bounded in L2(0, T ;W−2,4/3(Ω)2). (61)

Using bounds (59), (61) with Aubin’s lemma provides compactness of

ξnun ∈ L2(0, T ; (Lp(Ω))2), ∀p ∈ [1, 3/2[. (62)
�

3.2.5 Convergence of
√
ξnun and ξnwn

Let us note that, up to Section 3.2.4, we can always define u = m/ξ on the set
{ξ > 0}, but we do not know, a priori, if m equals zero on the vacuum set. To
this end, we need to prove the following lemma:

Lemma 4

1. The sequence
√
ξnun satisfies

•
√
ξnun converges strongly in L2(0, T ;L2(Ω)) to

m√
ξ
.

• We have m = 0 almost everywhere on the set {ξ = 0} and there
exists a function u such that m = ξu and

ξnun → ξu strongly in L2(0, T ;Lp(Ω)2) for all p ∈ [1, 3/2[, (63)
√
ξnun →

√
ξu strongly in L2(0, T ;L2(Ω)2). (64)

2. The sequence
√
ξnwn converges weakly in L2(0, T ;L2(Ω)) to

√
ξw.

Proof of Lemma 4:

We refer to [14] for details of the first part of the proof. The second part of the

theorem is done by weak compactness. As
√
ξnwn is bounded in L2(0, T ;L2(Ω)),

there exists, up to a subsequence,
√
ξnwn which converges weakly some limit l

in L2(0, T ;L2(Ω)). Next, we define w

w =





l√
ξ

if ξ > 0,

0 a.e. if ξ = 0

where the limit l is written: l =
√
ξ
l√
ξ
=

√
ξw.

�

This finishes the second step of the proof of Theorem 2.
In the third and last step (see Section 3.2.6), using the convergence of Sec-

tions 3.2.2–3.2.5, we show that we can pass to the limit for all terms of System
(31).

18



3.2.6 Convergence step

We are now ready to prove that we can pass to the limit in all terms of System
(31) in the sense of Theorem 2. To this end, let (ξn, un, wn) be a weak solution
of System (31) satisfying Lemma 1 to 4 and let φ ∈ C∞

c ([0, T ]×Ω) be a smooth
function with compact support such as φ(T, x, z) = 0. Then, writing each term
of the weak formulation of System (31), we have:

• ∫ T

0

∫

Ω

∂t(ξnun)φdxdzdt = −
∫ T

0

∫

Ω

ξnun∂tφdxdzdt

−
∫

Ω

ξn0 u
n
0φ(0, x, z) dxdz.

(65)

Using convergences (36) and Lemma 3, we get

−
∫ T

0

∫

Ω

ξnun∂tφdxdzdt−
∫

Ω

ξn0 u
n
0φ(0, x, z) dxdz →

−
∫ T

0

∫

Ω

ξu∂tφdxdzdt−
∫

Ω

ξ0u0φ(0, x, y) dxdz.

•
∫ T

0

∫

Ω

divx(ξnun ⊗ un) · φdxdzdt = −
∫ T

0

∫

Ω

ξnun ⊗ un : ∇xφdxdzdt.

From Equality (60) and Lemma 4, we have:

−
∫ T

0

∫

Ω

ξnun ⊗ un : ∇xφdxdzdt→ −
∫ T

0

∫

Ω

ξu⊗ u : ∇xφdxdzdt.

• ∫ T

0

∫

Ω

∂z(ξnunwn) · φdxdzdt = −
∫ T

0

∫

Ω

ξnunwn · ∂zφdxdzdt.

As ξnunwn =
√
ξnun

√
ξnwn, by Lemma 4, we get:

−
∫ T

0

∫

Ω

ξnunwn · ∂zφdxdzdt→ −
∫ T

0

∫

Ω

ξuw · ∂zφdxdzdt.

• ∫ T

0

∫

Ω

∇xξn · φdxdzdt = −
∫ T

0

∫

Ω

ξndivx(φ) dxdzdt.

Then, Lemma 1 provides:

−
∫ T

0

∫

Ω

ξndivx(φ) dxdzdt → −
∫ T

0

∫

Ω

ξdivx(φ) dxdzdt
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•
∫ T

0

∫

Ω

divx(ξnDx(un)) · φdxdzdt = −
∫ T

0

∫

Ω

ξnDx(un) : ∇φdxdzdt.

Since Dx(un) =
1

2
(∇xun+∇t

xun), expanding the term in the last integral

gives:

−
∫ T

0

∫

Ω

ξnDx(un) : ∇xφdxdzdt

=
1

2

∫ T

0

∫

Ω

(ξnun ·∆xφ+∇xφ∇x(
√
ξn) ·

√
ξnun dxdzdt

+
1

2

∫ T

0

∫

Ω

(ξnun · divx(∇t
xφ) +∇t

x

√
ξn · ∇xφ ·

√
ξnun) dxdzdt.

From Estimates (52), the sequence ∇x

√
ξn weakly converges, and using

Lemma 1, Lemma 3 and 4, we obtain:

1

2

∫ T

0

∫

Ω

(ξnun ·∆xφ+∇xφ∇x(
√
ξn) ·

√
ξnun dxdzdt

+
1

2

∫ T

0

∫

Ω

(ξnun · divx(∇t
xφ) +∇t

x

√
ξn · ∇xφ ·

√
ξnun) dxdzdt →

1

2

∫ T

0

∫

Ω

(ξu ·∆xφ+∇xφ∇x(
√
ξ) ·

√
ξu dxdzdt

+
1

2

∫ T

0

∫

Ω

(ξu · divx(∇t
xφ) +∇t

x

√
ξ · ∇xφ ·

√
ξu) dxdzdt.

Hence

−
∫ T

0

∫

Ω

ξnDx(un) : ∇xφdxdzdt → −
∫ T

0

∫

Ω

ξDx(u) : ∇xφdxdzdt.

• ∫ T

0

∫

Ω

∂2zz(ξnun) · φdxdzdt →
∫ T

0

∫

Ω

ξnun · ∂2zz(φ) dxdzdt.

Using Lemma 3 provides the following convergence:

∫ T

0

∫

Ω

ξnun · ∂2zz(φ) dxdzdt →
∫ T

0

∫

Ω

ξu · ∂2zz(φ) dxdzdt

• ∫ T

0

∫

Ω

rξn|un|un · φdxdzdt →
∫ T

0

∫

Ω

rξ|u|u · φdxdzdt

with Lemma 4, which finishes the proof of Theorem 2.
�
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3.2.7 End of the proof of Theorem 1

In order to conlude, let (ξn, un, wn) be a weak solution of System (31), then
all estimates 3.2.2-3.2.6 hold if we replace ξn by ρn and wn by vn (see [9]),

since ρ(t, x, y) = ξ(t, x)e−y and w(t, x, z) = v(t, xy)e−y where
d

dy
z = e−y. This

proves Theorem 1.
�
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