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Abstract

An image-based strategy for visual servo control of a class of dynamic systems is proposed. The class of systems considered
includes dynamic models of unmanned aerial vehicles capable of quasi-stationary flight (hover and near hover flight). The control
strategy exploits passivity-like properties of the dynamic model to derive a Lyapunov control algorithm using backstepping
techniques. The paper extends earlier work, [6], where partial pose information was used in the construction of the visual
error. In this paper the visual error is defined purely in terms of the image features derived from the camera input. Local
exponential stability of the system is proved. An estimate of the basin of attraction for the closed-loop system is provided.

Key words: Image based visual servo, dynamic system, zero dynamics.

1 Introduction

Visual servo control concerns the problem of using a
camera to provide sensor information to servo-position a
robotic system. Classical visual servo control was devel-
oped for serial-link robotic manipulators with the cam-
era typically mounted on the end-effector [8]. More re-
cently applications involving mobile systems have been
considered [12]. Visual sensing will be a vital technol-
ogy for the host of low cost unmanned aerial vehicle
(UAV) applications that are already under development
[5,16,6]. Visual servo systems may be divided into two
main categories [8]: Pose-Based methods - involving pose
reconstruction or estimation and Image-Based methods
- working directly with the image data. The first ap-
proach is a dual estimation and control problem in which
the state (camera pose) of the system is estimated us-
ing visual information and the control design is a clas-
sical state-space design. The quality of the closed-loop
response depends directly on the quality of the pose es-
timation and makes the control highly sensitive to cam-
era calibration errors and errors in the 3D model of the
target [8]. In the second category, the robotic task is
posed in terms of image features rather than in Cartesian
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space. A controller is designed to drive the image fea-
tures towards a goal configuration that implicitly solves
the original Cartesian motion planning problem [4]. The
approach is inherently robust to camera calibration and
target modelling errors [8].

Classical Image-Based control design uses a simple lin-
earising control for the image kinematics [4] that leads
to complex non-linear dynamics and is not easily ex-
tended to dynamic system models. Most existing ap-
plications exploit a high gain or feedback linearisation
(computed torque) design to reduce the system to a con-
trollable kinematic model. There are very few integrated
IBVS control designs for fully dynamic system models
[9,18,17,2] and even fewer that deal with under-actuated
dynamic models. The key problem in applying the clas-
sical visual servo control approach lies in the highly cou-
pled form of the image Jacobian. Much of the existing
work in visual servo control of UAVs (and particularly
autonomous helicopters) have used pose based visual
servo methodology [15,16]. Prior work by the authors [6]
used an image based visual feature augmented with an
inertial direction, obtained from a partial attitude pose-
estimation algorithm.
In this paper, we propose a fully image based visual
servo control design for a class of dynamic systems as-
sociated with UAV systems capable of quasi-stationary
flight. To understand the difficulty of the associated con-
trol problem, imagine a UAV (such as a helicopter) hov-
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ering above a fixed target. Imagine that the observed
target is slightly to the left of the goal vector in the im-
age. Due to the dynamics of the vehicle, in order to move
left the airframe must be inclined to the left, causing the
observed landmark to move to the right in the image,
while the goal target remains fixed in the image. It fol-
lows that to design a stable IBVS control algorithm it is
necessary to allow the image error to increase locally in
order to allow the system dynamics to act to move the
UAV to the desired position such that when the attitude
of the UAV is stabilized the image error will be zero.
The material presented in the present paper is an exten-
sion of our previous work [6] where inertial information
was used to augment the goal target in order to avoid
the situation just described. In this paper, we deal with
the effects of a fixed goal target by treating them as per-
turbations of the first order image kinematics bounded
by error terms that can be derived from the higher or-
der dynamic stabilization problem. A decoupled control
design is proposed, followed by a fully coupled stability
and robustness analysis. We prove that for a suitable
choice of control gains the perturbation in the first order
dynamics can be bounded by stability of the attitude
dynamics of the system using a structured control Lya-
punov function. This provides a robustness guarantee
for the resulting control law and leads to excellent sim-
ulation results. In this paper, it is assumed that UAV is
equipped with an Inertial Measurement Unit (IMU) to
compensate gravitational force in the control design and
to provide estimates for angular velocity. Additionally,
we assume that a measurement of translational velocity
is also available. Such a measurement can be obtained
from a global position system (GPS) unit, or as a sec-
ondary measurement from a vision system.

The paper is organized as follows: Section 2 presents the
dynamic system model considered. Section 3 describes
the visual features and defines the image based error
used. Section 4 derives a Lyapunov control function for
the positioning task and an analysis of the stability of the
closed-loop system. Section 5 applies the control strat-
egy to a simplified model for the dynamics of a four rotor
vertical take-off and landing (VTOL) vehicle known as
an X4-flyer [7,1] and presents some simulation results.
The final section provides a short summary of conclu-
sions.

2 Problem Formulation.

This section presents a dynamic model for the motion of
unmanned aerial vehicles capable of stationary hovering
at one location. The model used is equivalent to those in-
troduced in the literature to model the dynamics of heli-
copters [16,3,7]. Let I = {Ex, Ey, Ez} denote the world
frame and let A = {Ea

1 , E
a
2 , E

a
3} denote the body-fixed

frame of the rigid body. The position of the rigid body in
the world frame is denoted ξ = (x, y, z) ∈ I and its atti-
tude (or orientation) is given by a rotation R : A → I,
where R ∈ SO(3) is an orthogonal rotation matrix. Let

V (resp. Ω) denote the translational (resp. angular) ve-
locity of the body expressed in the body fixed frame.
Let m denote the total mass and I = diag(I1, I2, I3) a
diagonal matrix denoting the inertia of the body. The
dynamics of a rigid body are 1 :

ξ̇ = RV (1)

mV̇ = −mΩ × V + F = −msk(Ω)V + F (2)

Ṙ = Rsk(Ω), (3)

IΩ̇ = −Ω × IΩ + Γ = −sk(Ω)IΩ + Γ. (4)

The exogenous force and torque are denoted F and Γ
respectively (cf. Fig. 1). The inputs considered corre-
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Fig. 1. Reference frames, forces and torques for an Unmanned
Aerial Vehicle (UAV).

spond to a typical arrangement found on a VTOL air-
craft (cf. Sec. 5). The inputs are written as a single
translational force, denoted F in Figure 1, along with
full torque control, shown by the torques Γ1, Γ2 and Γ3

around axes Ea
1 , Ea

2 and Ea
3 respectively. The force F

combines thrust, lift, gravity and drag components. It is
convenient to separate the gravity component mgEz =
mgRT e3 from the combined aerodynamic forces and as-
sume that the aerodynamic forces are always aligned
with the z-axis in the body fixed frame 2 ,

F := −Te3 +mgRT e3 (5)

where T ∈ R is a scalar input representing the magnitude
of external force applied in direction e3. Control of the
airframe is obtained by using the torque control Γ =
(Γ1,Γ2,Γ3) to align the force F0 := Te3 as required to
track the goal trajectory.

3 Image feature and dynamics

Classical visual servo control schemes choose sufficient
image features to control all six degrees of freedom of

1 The notation sk(Ω) denotes the skew-symmetric matrix
such that sk(Ω)v = Ω×v for the vector cross-product × and
any vector v ∈ R

3.
2 This is a reasonable assumption for the dynamics of a
UAV in quasi-stationary flight where the exogenous force is
dominated by the lift force while drag and forward thrust
are negligible.
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the camera frame of reference [4,8]. This cannot be
done for the control of an under-actuated system as
the dynamic constraints between states will prevent
certain configurations from being stabilisable. For the
model class considered there are four independent in-
puts (T,Γ1,Γ2,Γ3) for the six degrees of the freedom
of the system (x, y, z, φ, θ, ψ), where (φ, θ, ψ) denote
the yaw-pitch-roll Euler angles. In principal, it is possi-
ble to stabilise four independent outputs, however, the
dynamic constraints of the system prevent arbitrary
input-output assignment. The equilibrium condition for
the dynamics of the translational motion (Eq. 2) implies
that

V̇∞ = V∞ = F∞ = 0.

Substituting into Eq. 5 one has

RT
∞
e3 = e3, T∞ = mg. (6)

It follows that the asymptotic values of the pitch (θ∞)
and roll (ψ∞) are fixed by the stability condition. Con-
versely, the remaining four independent state variables
(x, y, z, φ) can be assigned an arbitrary set point. To
pose a well defined visual servo control task it is neces-
sary to find visual outputs for the partial state (x, y, z, φ)
that are independent of the states (θ, ψ). In practice,
the stabilization of φ involves a significant level of addi-
tional complexity in the control design that has little to
do with the principal issues addressed in this paper. For
this reason we will consider a quasi-equilibrium in the
yaw direction corresponding to the output states

Yout = (x, y, z, φ̇).

In visual servo control problems, the image dynamics
must be expressed in the frame of reference of the cam-
era. Since we consider a camera mounted on the vehi-
cle, the motion of the camera frame inherits dynamics
in the body fixed frame. In order to simplify the deriva-
tion in the sequel, it is assumed that the camera fixed
frame coincides with the body fixed frame A. Let P ′

i de-
note a set of n points of a stationary target in the iner-
tial frame (I). Let Pi be the same points expressed in
camera-fixed-frame

Pi = RT (P ′

i − ξ). (7)

Backstepping control design has passivity-like proper-
ties from virtual input to the backstepping error [11].
In our previous work [6] it was shown that these struc-
tural passivity-like properties are present in the image
space dynamics if and only if the spherical projection of
an observed point is used (see [6] for additional details).
Denoting the spherical projection of an image point Pi

by pi the image dynamics are given by:

ṗi = −sk(Ω)pi − πpi

Vi

ri
(8)

Here ri = |Pi| (the focal length is assumed to be unity
for simplicity) and Vi ∈ A is the velocity of the target
point represented in the camera fixed frame. The matrix
πpi

= (I3−pip
T
i ) is the projection onto the tangent space

of the spherical image surface at the point pi (I3 is the
3 × 3 identity matrix).

If the inertial velocity of the target point P ′

i is equal to
zero then Vi = −V . In this case, Eq. 8 becomes

ṗi = −sk(Ω)pi −
πpi

ri
V (9)

For a given target the centroid of the target based on
spherical information is defined to be

q :=

n
∑

i=1

pi ∈ R
3 (10)

The three entries in the feature q provide information
corresponding to position (x, y, z) in the camera-fixed-
frame. The depth information, that is the key problem
in most visual servo algorithms, is in one-to-one corre-
spondence with a non-linear function of the norm |q|
[14]. Direct information on the inertial position cannot
be obtained without an estimate of the orientation, R,
of the vehicle. The final degree of freedom considered φ̇
does not required a visual error as it can be measured
using gyros.

Recalling Eq. 9, it may be verified that

q̇ = −sk(Ω)q −QV, (11)

where

Q =
i=n
∑

i=1

πpi

r(Pi)
. (12)

The visual servo control task considered is that of posi-
tioning a camera relative to a stationary (in the inertial
frame) target. In our previous work [6], in addition to vi-
sual information, inertial information is explicitly used
in the error formulation. In particular, the inertial direc-
tion of the goal target in the image is fixed. That is, a
goal q∗ was chosen that had fixed inertial orientation and
inherited the ego motion of the camera, q̇∗ = −sk(Ω)q∗.
The advantage of such a choice is clear when one recalls
the example mentioned in the introduction of a UAV
(such as a helicopter) hovering above a fixed target. If
the image vector has fixed inertial direction, then as the
UAV tilts the image error does not change. The goal
vector q∗(t) moves in the (spherical) image plane in ex-
actly the same manner as the observed target. It is only
as the vehicles changes its position that the image error
changes. In prior work [6], this property was exploited
to decouple the position stabilization from the attitude
stabilization problem.
If no inertial information for the goal vector is known
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then we propose to define a fixed goal vector and deal
with coupled dynamic equations. Define q∗ ∈ A to be an
attainable desired target vector expressed in the camera
fixed frame.

q∗ := (q∗1 , q
∗

2 , q
∗

3)T ∈ A (13)

The target vector does not inherit the ego motion of
the camera, q̇∗ = 0. The norm |q∗| encodes the effective
depth information for the desired limit point while the
direction of q∗ defines the camera attitude up to rotation
around the axis q∗ in the desired limit configuration.
The image based error considered is the difference be-
tween the measured centroid and the target vector ex-
pressed in the camera fixed frame

δ1 := q − q∗. (14)

Deriving δ1 yields:

δ̇1 = −sk(Ω)δ1 −QV − sk(Ω)q∗ (15)

The above equation (Eq. 15) defines the kinematics of
the visual error δ1.
It is of interest to study the structural properties of
Eq. 15. Consider the storage function |δ1|2. The deriva-
tive of this function is

d

dt
|δ1|2 = −δT

1 sk(Ω)δ1 − δT
1 QV − δT

1 sk(Ω)q∗.

The first term is zero due to the skew symmetry of Ω.
Since the matrix Q > 0 is positive definite, the second
term can be seen as an inner product between δ1 and V .
In this sense we think of the second term as a the supply
function to the storage function. Choosing V = δ1 acts
to decrease |δ1|2. The last term is the perturbation due
to the fixed goal assumption and was not present in the
prior work of the authors [6]. When the goal vector is
fixed in the image plane it is impossible to avoid the
presence of the perturbation term. The term resembles
the perturbations due to small-body forces that lead to
zero dynamic effects studied in recent work [5,13]. This
sort of term is particularly difficult to deal with explicitly
in the control design. It depends on the angular velocity
Ω and destroys the pure feedback nature of the system
that is necessary to apply the backstepping approach.
The approach taken in this paper is to leave this term
as a perturbation of the stability analysis of the first
order image kinematics. By choosing the control gains
governing the higher order backstepping errors correctly
this error perturbation can be controlled and dominated
in the integrated stability analysis.

4 Visual servo control for a VTOL aircraft

This section presents a backstepping control design for
visual servo control of the under-actuated system con-

sidered. The full dynamics of the error δ1 may be written

δ̇1 = −sk(Ω)δ1 −QV − sk(Ω)q∗ (16)

mV̇ = −msk(Ω)V + F (17)

Ṙ = Rsk(Ω), (18)

IΩ̇ = −sk(Ω)IΩ + Γ. (19)

Before introducing the main result of the paper, we in-
troduce the following change of variables:

δ2 =
m

k1
V − δ1, (20)

δ3 =
m

k2
1k2

(

−Te3 +mgRT e3
)

+ δ2 (21)

The error δ2 is introduced to regulate the translational
velocity of the camera and ensures that it comes to rest.
The additional error vector δ3 incorporates information
on the attitude of the camera. This is natural for a system
such a VTOL aircraft capable of quasi-stationary flight,
since the desired motion can only be obtained by exploit-
ing the attitude dynamics to regulate δ1. If the position
and translational velocity are regulated then the total
external force must be zero, −Te3 + mgRT e3 = 0. Re-
calling Eq. 6 one hasRe3 = e3 and T = mg. This implies
that the pitch and roll rotations of the rigid body are di-
rectly stabilised via the stabilisation of the error δ3. This
corresponds to the input-output structure discussed in
Section 3. As expected, the yaw rotation around the di-
rection e3 is independent of the error δ3. The remaining
output state considered is the yaw rate φ̇ = Ω3. To sim-
plify the remainder of the development we will assume
that this state is in equilibrium at time zero, Ω3(0) = 0.
A simple linearising proportional control is applied in
the third component of angular velocity to maintain the
condition

Γ3 = e3
T (sk(Ω)IΩ) − kΩΩ3 (22)

where kΩ is a suitable positive gain. In practice, the
above control will quickly stabilise the system from non-
zero initial conditions. In the sequel we will assume that
Ω3(0) = 0 and therefore Ω3(t) = 0, for all t > 0.
The proposed control algorithm requires a formal time
derivative of the input T . To provide this input, T is
dynamically extended

Ṫ = U (23)

The motivation for adding a differentiator is to ensure
decoupling between translational and rotational dynam-
ics as shown in the sequel.
Recalling Eqn’s 16-27, the full dynamics of the visual
error δ1 in terms of the additional errors δi (i = 1 . . . 3)
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can be written

δ̇1 = − sk(Ω)δ1 −
k1

m
Qδ1 −

k1

m
Qδ2 + sk(q∗)Ω (24)

δ̇2 = − sk(Ω)δ2 +
k1

m
Qδ1 −

k1

m
(k2I −Q)δ2 +

k1k2

m
δ3

− sk(q∗)Ω (25)

δ̇3 = − sk(Ω)δ3 +
k1

m
Qδ1 −

k1

m
(k2I −Q)δ2 +

k1k2

m
δ3

+
m

k2
1k2

(

sk

(

Te3 −
k2
1k2

m
q∗

)

Ω − Ṫ e3

)

(26)

Define δ4 as a final error term. It will regulate the pitch
and roll angular velocities as

δ4 =
m2

k2
1k2(k1k2 + k3)

πe3
sk

(

Te3 −
k2
1k2

m
q∗

)

Ω + πe3
δ3,

(27)
where πe3

= (I − e3e
T
3 ). Using the assumption Ω3 =

0 (cf. Eq. ??) and introducing Eqn’s 23 and 27 in the
expression of the derivative of error δ3 (Eq. 26) yields

δ̇3 = −sk(Ω)δ3 +
k1

m
Qδ1 −

k1

m
(k2I −Q)δ2 (28)

+
k1k2 + k3

m
πe3

δ4 −
k3

m
δ3

− (I − πe3
)

(

sk(q∗)πe3
Ω − k1k2 + k3

m
δ3 +

m

k2
1k2

Ue3

)

Deriving the expression of δ4 (Eq. 27) and recalling Eqn’s
24, 25, 23 and 28, it yields

δ̇4 = −πe3
sk(Ω)δ3 +

k1

m
πe3

Qδ1 −
k1

m
πe3

(k2I −Q)δ2

(29)

+
k1k2 + k3

m
πe3

δ4 −
k3

m
πe3

δ3

+
m2

k2
1k2(k1k2 + k3)

πe3
Usk(e3)πe3

Ω

+
m2

k2
1k2(k1k2 + k3)

πe3
sk

(

Te3 −
k2
1k2

m
q∗

)

πe3
Ω̇

It is now possible to present the main result of the paper.

Theorem 1 Consider the dynamics given by Eqn’s 24,
25, 28 and 29. Let λmax > 0 be a bound on the 2-norm
of the matrix Q

||Q||2 ≤ λmax

Let the vector controller be given by

U =
k2
1k2

m

k1k2 + k3

m
eT
3 δ3 −

k2
1k2

m
eT
3 sk(q∗)Ω (30)

Γ = I−1

(

sk(Ω)IΩ − kΩΩ3e3 −
I

T − k2

1
k2

m
q∗3

Usk(e3)Ω

−k
2
1k2(k1k2 + k3)

(T − k2

1
k2

m
q∗3)m2

sk(e3)

(

sk(Ω)δ3 +
k1k2

m
δ2 −

k1k2

m
δ3

−k1k2 + k3 + k4

m
δ4

)

)

(31)

Define a storage function for the visual scheme by

L =
1

2
|δ1|2 +

1

2
|δ2|2 +

1

2
|δ3|2 +

1

2
|δ4|2 (32)

Set

f(T ) =
k1k2(k1k2 + k3)

m
(

T − k2

1
k2

m
q∗3

)

and choose the positive control gains (k1, . . . , k4) to sat-
isfy

k2 > λmax(Q),

k3 >
k1(k2(λmax + 2f(Tmin)|q∗|) + 2f(Tmin)|q∗|2)

(k2 − λmax)
,

where Tmin = 2
k2

1
k2

m
q∗3 . Then, for any initial condition

such that Ω3(0) = 0 and that the initial value of the
Lyapunov function satisfies

L(0) <
1

2

(

m2g

k2
1k2

− 2q∗3

)2

, (33)

L(t) is exponentially decreasing. The error coordinates
(δ1, . . . , δ4) converge exponentially to zero. The closed-
loop system is locally exponentially stable.

Proof Recall that

Ω̇ = −I−1sk(Ω)IΩ + I−1Γ

Note that

πe3
sk

(

Te3 −
k2
1k2

m
q∗

)

πe3
= (T − k2

1k2

m
q∗3)sk(e3)

and that πe3
δ4 = δ4. Differentiating L and substituting

from Eqn’s 24-25, 28-29 along with the feedback control
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(Eqn’s 30 and 31) one obtains

L̇ = −k1

m
δT
1 Qδ1 −

k1

m
δT
2 (k2I3 −Q)δ2 −

k3

m
|δ3|2 −

k4

m
|δ4|2

+
k1

m
δT
3 Qδ1 +

k1

m
δT
3 Qδ2 +

k1

m
δT
4 Qδ1 +

k1

m
δT
4 Qδ2

+ (δ1 − δ2)
T sk(q∗)Ω (34)

Note that, due to the dependence on the angular velocity
Ω it is not immediately clear that the storage function
is decreasing. Recall the expression of the error term δ4
Eq. 27. One has

πe3
Ω = −k1

m
f(T )sk(e3)(δ4 − δ3) (35)

Substituting for Ω in Eq. 34 one obtains

L̇ ≤ −∆T Σ∆

where:

∆ =















δ1

δ2

δ3

δ4















,Σ =















k1Q 0 −k1

2 M −k1

2 N

0 k1(k2I −Q) −k1

2 N −k1

2 M

−k1

2 M −k1

2 N k3 0

−k1

2 N −k1

2 M 0 k4















,

M = (Q − f(T )AT ), N = (Q + f(T )AT ) and A =
−sk(q∗)sk(e3). The above quadratic expression is nega-
tive definite if and only if the symmetric matrix Σ is pos-
itive definite. This is true if and only if the principal mi-
nors of Σ are positive. This yields the following sufficient
conditions on the positive control gains (k1, . . . , k4):

k2 > λmax,

k3 >
k1(k2(λmax + 2f(Tmin)||A||) + 2f(Tmin)||AAT ||2)

(k2 − λmax)
,

where || · || denotes the matrix Frobenius matrix norm.
In order to derive the conditions provided by the theo-
rem statement insuring the definite negativeness of the
storage function L and that the control law Eq. 31 is well

defined all the time well, in particular, that T − k2

1
k2

m
q∗3

does not vanish, the following two sided bound on the
control T = T (t) is obtained from Eq. 21

mg− k2
1k2

m
(|δ2|+ |δ3|) < T (t) < mg+

k2
1k2

m
(|δ2|+ |δ3|).

Combining this bound with the expression for the stor-
age function, one obtains

mg − k2
1k2

m

√
2L < T (t) < mg +

k2
1k2

m

√
2L

The uniqueness of the control input is guaranteed as long

as T (t) 6= k2

1
k2

m
|q∗3 | (cf. Eq. 31).

Combining the above inequality with constraint on the
initial conditions Eq. 33 of the theorem yields the fol-
lowing bound on the initial condition of the control T

2
k2
1k2

m
|q∗3 | <

(

mg − k2
1k2

m

√

2L(0)

)

< T (0) <

(

mg +
k2
1k2

m

√

2L(0)

)

It remains to show that this inequality is verified for all
t > 0. To this end, we will assume first that T (t) >

Tmin = 2
k2

1
k2

m
|q∗3 |, ∀t > 0. In this situation, the choice of

gains k1, . . . , k4 ensures the positiveness of the principal
minors of the matrix Σ and therefore the definite neg-
ativeness of the storage function derivative. Combining
both above inequalities, it follows that

2
k2
1k2

m
|q∗3 | <

(

mg − k2
1k2

m

√

2L(t)

)

< T (t) <

(

mg +
k2
1k2

m

√

2L(t)

)

This ensures that for all ∀t > 0, T (t) > Tmin. It follows
that the control law Eq. 31 is well defined for all time and
guarantees that the derivative of the storage function is
negative definite.

Finally, the analysis has shown thatL(t) is exponentially
decreasing for suitable initial conditions and the result
follows from Lyapunov’s direct method [10]. �

Theorem 1 proves only local exponential convergence.
The saturation constraints on the control input T sug-
gests that it is impossible to extend the result to global
exponential stability. It is of interest, however, to obtain
some information on the basin on attraction of the sys-
tem and suitable choice of gains to ensure stability of
the closed-loop system. Consider initial conditions where
the system is in stationary flight. That is

V (0) = 0, Ω(0) = 0, T (0)e3 = mgR(0)T e3.

As a consequence of this choice one has

δ2(0) = δ1(0), δ3(0) = δ1(0), δ4(0) = πe3
δ1(0).

It is straightforward to see that L < 2|δ(0)|2 under these
conditions. Thus, the condition Eq. 33 in Theorem 1 is
guaranteed if

2δ21(0) <
1

2

(

m2g

k2
1k2

− 2q∗3

)2

. (36)
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Equation 36 has a natural physical interpretation; if the
gain k1 for stability of the image feature δ1 is sufficiently
small then the demanded motion of the system will be
slow and the closed-loop response will not excite the un-
modeled zero dynamics of the system, ensuring that the
stability analysis is valid. It is interesting to note that δ1
is naturally saturated due to the nature of the discrete
centroid image feature used as shown in simulation sec-
tion 5.

Corollary 1 Consider the same conditions as given for
Theorem 1. The state (ξ,R, V,Ω) converges exponentially
to a point (ξ∞, R∞, 0, 0) such that

R∞ =









cosφ∞ − sinφ∞ 0

sinφ∞ cosφ∞ 0

0 0 1









. (37)

If q∗ = |q∗|e3 is collinear with the direction of gravity
then ξ∞ = −αe3, for some α > 0, is an isolated point.
If q∗ × e3 6= 0 then there is a smooth set of exponentially
stable ξ∞ parameterized by φ∞.

Proof Theorem 1 ensures that δi → 0 exponentially.
Setting δi = 0 and recalling Eqn’s 7-10 and 13, one ob-
tains

RT
∞
q0
∞

= q∗ (38)

where q0
∞

represents the inertial representation of q∗.
In addition, one has that V∞ = Ω∞ = 0 and (from
Eq. 21), the total external force must be zero, −T∞e3 +
mgRT

∞
e3 = 0. It follows that R∞e3 = e3 and the pitch

and roll angles are directly stabilized via the regulation
of δ1. The yaw angular velocity is exponentially stable
and the rotation matrix must converge exponentially to
the form of Eq. 37 for some φ∞ that depends on initial
conditions.

If q∗ = |q∗|e3 then one has that q0
∞

= q∗ = |q∗|e3. By
construction of the inertial frame this implies that ξ∞
must also be collinear with e3. The first result follows
directly.

If q∗ × e3 6= 0 then RT
∞
q0
∞

= q∗ induces a relationship
between the angle φ∞ and the value of q0

∞
. It is straight-

forward to see that this relationship is non-degenerate,
that is each φ∞ leads to a unique q0

∞
and consequently

ξ∞. The exact relationship depends on the geometry of
the target constellation and cannot be easily character-
ized. �

If the control design is extended to stabilize the yaw an-
gle instead of the yaw angle velocity [6] then the limit
point (ξ∞, R∞, 0, 0) is the unique set point for the sys-
tem.

5 Example System and Simulation

In this section, the procedure presented in Section 4 is
applied to an idealised model of the dynamics of an X4-
flyer. This flying robot consists of four individual fans
fixed to a rigid cross frame. It operates as an omnidirec-
tional vehicle capable of quasi-stationary flight. An ide-
alised dynamic model of the X4-flyer [7,1] is given by the
rigid body equations (Eqn’s 1-4) along with the external
force and torque inputs (cf. Fig. 2)

T = Trr + Trl + Tfr + Tfl, (39)

Γ1 = d(Tfr + Tfl − Trr − Trl), (40)

Γ2 = d(Trl + Tfl − Trr − Tfr), (41)

Γ3 = Q(Tfr) +Q(Trl) +Q(Tfl) +Q(Trr)

= κ (Tfr + Trl − Tfl − Trr) . (42)

The individual thrust of each motor is denoted T(.), while
κ is the proportional constant giving the induced couple
due to air resistance for each rotor and d denotes the
distance of each rotor from the centre of mass of the X4-
flyer. The parameters used for the dynamic model are

Fig. 2. The force and torque inputs for an X4-flyer.

m = 1kg, I = diag(0.42, 0.42, 0.22)kg.m, d = 0.25m,
κ = 0.01m and g = 9.8m.s−2.

The simulation undertaken considers the case of stabil-
isation of the X4-flyer, initially in hover flight, to a new
set point several metres distance from the initial con-
dition. Consider the case where one wishes to position
the camera parallel to a plan target characterised by a
square. The vertex length is of 2 meters. In the case
of a pin-hole camera the visual measurements available
are the projective coordinates of the four points defining
the square. Re-normalising the visual data during cali-
bration, we assume without loss of generality that the
focal length of the camera is unity and the focal plane
is spherical. The desired target vector q∗ is chosen such
that the camera set point is located 3 metres above the
square. Using the above specification, the desired fea-
ture q∗ = (0, 0, 3.6181)T . For the simulation under-
taken, the bound λmax = 2m−1 was used. The initial
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condition was chosen such that the X4-flyer was in sta-
ble stationary flight (V0 = Ω0 = 0 and T0 = g = 9.8)
with ξ0 = (−1.5 − 2.5 − 4)T 3 and R0 = I3. The con-
trol gains used were k1 = 0.35kg.m.s−1, k2 = 6 kg−1,
k3 = 65 kg.s−1, k4 = 3 kg.s−1. These gains ensure that
the condition Eq. 36 holds,

2|δ1(0)|2 = 10.2514 < 18.5875 =
1

2

(

mg

k2
1k2

− 2q∗3

)2

,

and consequently that the initial conditions satisfy
the conditions of Theorem 1 (Eq. 33). This bound
2|δ1(0)|2 < 18.5875 provides an inner bound on the size
of the basin of attraction for the closed-loop system.
Figure 3 plots a slice through the shape of the basin (in
the Cartesian space) for the example considered. Note
that the basin extends infinitely high above the target,
this is to be expected due to the bounded magnitude of
the image feature. The inner bound on the basin shape
is generated by the constraint on ||Q||2 ≤ λmax. It is
clear that the overall shape of the basin of attraction is
reminiscent of a conic section (cut off close to the tar-
get). By decreasing k1 the slope of the edge of the basin
is flattened and the basin enlarged in a natural manner.

−8 −6 −4 −2 0 2 4 6 8
0

1

2

3

4

5

6

7

basin of attraction guaranteed 
  by theorem conditions 

initial condition 

set point 

target points 

Fig. 3. An inner bound on basin of attraction computed from
the bound Eq. 36 for initial conditions where the device is
in stable hover. The present plot displays a slice through the
basin taken in the (y, z) plane. The projection of the target
points onto the plane is shown to indicate the relative size
of the target. Axis are in metres.

Figures 4-5 show a typical simulated trajectory for the
closed-loop system. The evolution of the image features
in the image plan and the local and slight increase of the
error δ1 are respectively shown in Figures 6 and 7.

3 According to standard aeronautical conventions height is
measured down relative to the aircraft and hence the height
of the X4-flyer is negative with respect to the world frame.
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Fig. 4. Positioning of the X4-flyer with respect to the target.
Initial condition within the guaranteed basin of attraction.
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Fig. 5. Evolution of the attitude and position of the X4-flyer
in ‘roll’ (theta), ‘pitch’ (psi) and ‘yaw’ (phi) Euler angles and
Cartesian space coordinates (x, y, and z). Initial condition
within the guaranteed basin of attraction.

6 Conclusion

This paper has proposed a 2D image-based strategy for
visual servo control of a class of under-actuated dynamic
systems. It extends previous work by the authors [6] by
avoiding the use of inertial information in the definition
of the visual error. A decoupled control design is under-
taken followed by a fully coupled stability and robust-
ness analysis. The simulation of the control of an X4-
flyer indicates that the control will function effectively
in practice.
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