
HAL Id: hal-00488338
https://hal.science/hal-00488338v1

Submitted on 1 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unsupervised Layer-Wise Model Selection in Deep
Neural Networks

Ludovic Arnold, Hélène Paugam-Moisy, Michèle Sebag

To cite this version:
Ludovic Arnold, Hélène Paugam-Moisy, Michèle Sebag. Unsupervised Layer-Wise Model Selection in
Deep Neural Networks. 19th European Conference on Artificial Intelligence (ECAI’10), Aug 2010,
Lisbon, Portugal. �10.3233/978-1-60750-606-5-915�. �hal-00488338�

https://hal.science/hal-00488338v1
https://hal.archives-ouvertes.fr


Unsupervised Layer-Wise Model Selection in Deep
Neural Networks

Arnold Ludovic1and Paugam-Moisy Hélène2and Sebag Michèle3

Abstract. Deep Neural Networks (DNN) propose a new and ef-

ficient ML architecture based on the layer-wise building of several

representation layers. A critical issue for DNNs remains model se-

lection, e.g. selecting the number of neurons in each DNN layer.

The hyper-parameter search space exponentially increases with the

number of layers, making the popular grid search-based approach

used for finding good hyper-parameter values intractable. The ques-

tion investigated in this paper is whether the unsupervised, layer-wise

methodology used to train a DNN can be extended to model selec-

tion as well. The proposed approach, considering an unsupervised

criterion, empirically examines whether model selection is a modu-

lar optimization problem, and can be tackled in a layer-wise manner.

Preliminary results on the MNIST data set suggest the answer is pos-

itive. Further, some unexpected results regarding the optimal size of

layers depending on the training process, are reported and discussed.

1 INTRODUCTION

The general question of model selection − including the selection

of hyper-parameter values for a Machine Learning (ML) algorithm

− remains at the core of the Statistics and Machine Learning studies

[7]. From a practitioner viewpoint, the best practice relies on variants

of the cross-validation procedure [6]: one should select the model and

hyper-parameter setting yielding the best performance on average.

From a theoretical viewpoint, although some intrinsic limitations of

cross-validation have been pointed out in the ML literature, these ap-

pear to be negligible [2] comparatively to methodological errors [9].

From a computational viewpoint, one generally proceeds by explor-

ing the hyper-parameter space using a grid search, possibly using

racing-based approaches in order to decrease the overall computa-

tional cost [17]. Overall, theoreticians and practitioners would likely

join and agree that the fewer hyper-parameters, the better.

A new ML field, Deep Networks [3, 11] however seems to go

against such a parameter-light trend. The main claim behind Deep

Networks can be schematized as: several levels of representations,

stacked on top of each other, are required to represent complex con-

cepts in a tractable way; a single-level representation, though in prin-

ciple able to do the job, will not make it in practice. While the greater

expressiveness and compactness obtained through the composition

of representations had been known for decades, deep architectures

were discarded as they could not be trained in an efficient way. The

training bottleneck of deep architectures was overcome through an

original, sequential approach [3, 11] aimed at the greedy optimiza-

tion of a seemingly irrelevant criterion : while the goal of a Deep
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Network is to achieve supervised learning, each layer is pre-trained

using unsupervised learning criteria (more in section 2).

The issue of DNN hyper-parameter selection however remains

critical, as the number of hyper-parameters (e.g. for each layer: num-

ber of neurons and learning rate) linearly increases with the number

of layers, exponentially increasing the cost of a grid search.

This paper investigates whether the “Unsupervised learning first!”

principle at the root of DNNs can be applied to hyper-parameter se-

lection too. Accordingly, an unsupervised criterion based on the Re-

construction Error is proposed. The underlying question is whether

hyper-parameter selection is a modular optimization problem, mean-

ing that the optimal overall parameter setting can be obtained by i/

finding the optimal setting for layer 1; ii/ iteratively finding the op-

timal setting for layer i + 1, conditionally to the hyper-parameter

values for layers 1 . . . i.
The experimental validation of the approach for Restricted Boltz-

mann Machines (trained with Mean Field Contrastive Divergence

[21] on the MNIST dataset) suggests a positive answer to the mod-

ularity question (section 4). Furthermore, some unexpected findings,

concerning the optimal size of the representation w.r.t the number

of gradient updates of the training procedure, are reported and dis-

cussed, raising new questions for further study.

2 DEEP NEURAL NETWORKS

For the sake of completeness, this section introduces Deep Neural

Networks, focusing on the Restricted Boltzmann Machine and Auto-

Associator approaches. The interested reader is referred to [11, 1, 13]

for a comprehensive presentation.

2.1 Restricted Boltzmann Machine (RBM)

While a Boltzmann Machine is a completely connected network

made of a bag of visible and hidden units, Restricted Boltzmann Ma-

chines (RBMs) only involve connections between visible units on the

one hand and hidden units on the other hand (Fig. 1).

Let us denote v = v1, . . . , vq (respectively h = h1, . . . , hr)

the set of visible (resp. hidden) units. For notational simplicity, it

is assumed that both the visible and the hidden layers involve a bias

unit always set to 1. An RBM is described from its set of weights

W ∈ IRq×r , where wij stands for the weight on the connection be-

tween vi and hj . All units are boolean. Each visible unit vi encodes

the i-th domain attribute, while each hidden unit hj encodes a hy-

pothesis. Formally, the so-called energy of an RBM state (v,h) is

defined as:

Energy(v,h) = −h
⊤
Wv (1)



Figure 1. Left: Architecture of a Boltzmann Machine. Right: A Restricted
Boltzmann Machine.

An RBM can be interpreted as a constraint satisfaction network,

where the weight wij reflects the correlation between vi and hj (if

wij > 0 a lower energy is obtained for vi = hj everything else be-

ing equal). As such, an RBM induces a joint probability measure on

the space of RBM states:

PW(v,h) =
e−Energy(v,h)

Z
(2)

where Z denotes as usual the normalization factor. Simple calcula-

tions show that visible (resp. hidden) units are independent condi-

tionally to the hidden (resp. visible) units, and the conditional prob-

abilities can be expressed as follows, where sgm(t) = 1
1+e−t :

PW(hi|v) = sgm(
∑

j

wijvj) 1 ≤ i ≤ q (3)

PW(vj |h) = sgm(
∑

i

wijhi) 1 ≤ j ≤ r (4)

An RBM thus defines a probabilistic generative model: Considering

a uniform distribution on the visible units, a probability distribution

on the hidden units is derived (Eq. (3)), which enables in turn to

derive a probability distribution on the visible units (Eq. (4)) and this

process can be iterated after the so-called Gibbs sampling (Monte-

Carlo Markov Chain), converging toward PW. Let us consider the

probability distribution PD , defined from the empirical data D by

taking a uniform sample v in D, and sampling h after PW(h|v).
Intuitively, the RBM model best fitting the data is such that PW =
PD (a sample v is equally likely generated after PW or by uniformly

sampling D).

Accordingly, an RBM is trained by minimizing the Kullback

Leibler divergence KL(PD||PW), or a tractable approximation

thereof, the Contrastive Divergence [10]. Contrastive divergence can

itself be approximated using a Mean Field approach [21], yielding a

deterministic and faster learning procedure, albeit with higher risk of

overfitting.

2.2 Stacked RBMs

After the Deep Network principles [11], stacked RBMs (SRBMs) are

built in a layer-wise manner (Fig. 2). The first layer h is built from

the training set and the visible units v as explained above, and the i-

th layer RBM is built using the same approach, with the hidden units

hi−1 in the i−1-th layer being used as the new RBM’s visible layer.

The rationale for iterating the RBM construction is that trained

hidden units hi are not independent; rather, they are independent

conditionally to v. A more refined generative model can thus in prin-

ciple be defined by capturing the correlations between the hidden

Figure 2. A Deep Architecture: Stacked RBMs

units h, via a second RBM layer. More generally, the i-th layer in

a stacked RBM aims at modelling the correlations between the hid-

den units in the previous layer. Letting W1, . . .Wℓ denote the RBM

parameters for layers 1 . . . ℓ, with h0 = v, comes the equation:

P (v) =
∑

h1...hℓ

PW1
(v|h1)PW2

(h1|h2) . . . PWℓ
(hℓ) (5)

Let fW (respectively gW) denote the forward propagation of an

input to the hidden layer according to PW(h|v) (resp. the back-

ward propagation from the hidden layer from the input according to

PW(v|h)). Considering a ℓ-layer RBM with weights W1, . . .Wℓ

(Fig. 2), Fℓ and Gℓ are respectively defined as the forward propaga-

tion of the input to the ℓ-th layer, and the backward propagation from

the ℓ-th layer to the input:

Fℓ = fWℓ
◦ · · · ◦ fW1

Gℓ = gW1
◦ · · · ◦ gWℓ

(6)

2.3 Stacked Auto-Associators

Deep Neural Networks can also be built by stacking auto-associators

[13]. An auto-associator is a 1-hidden layer neural network aimed at

reproducing its input; formally, it uses back propagation to minimize

the Reconstruction error defined as

∑

x∈D

||x− Φ(x)||2

where Φ is the function corresponding to forward propagation

through the network.

Stacking Auto-Associators proceeds by setting the i-th DNN layer

to the hidden layer of the Auto-Associator built from the (i − 1)-th
DNN layer.

3 UNSUPERVISED MODEL SELECTION

The model selection approach is inspired from the DNN unsuper-

vised layer-wise methodology. After discussing the position of the

problem, this section describes an unsupervised criterion supporting

the model selection task. The presented approach focuses on finding

the optimal number of neurons in each layer of a stacked RBM. The

choice of a SRBM architecture is motivated by their good empirical

results and their strong theoretical background [11, 13, 14].
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3.1 Position of the problem

The goal is to optimize the size ni of the i-th layer Li conditionally

to the size of the layers 1 . . . i− 1; in this manner, model selection is

brought to a sequence of ℓ scalar optimization problems, as opposed

to a single optimization problem in INℓ.

A first question regards the type of optimization criterion to be

used. After [3], it is better that supervised learning criteria only be

considered at a late stage when learning a deep architecture. Exten-

sive empirical evidence suggests that unsupervised learning actually

regularizes the supervised optimization problem [8]. The proposed

model selection approach will accordingly be based on an unsuper-

vised criterion.

Another question raised by a layer-wise approach regards its con-

sistency, aka the modularity of the model selection problem. For-

mally, the question is whether the global optimum of the considered

criterion is found with a layer-wise sequential optimization approach.

Lastly and most importantly, the question is whether the layer-wise

unsupervised optimization approach eventually enforces good per-

formances w.r.t. supervised learning.

3.2 Reconstruction Error

A most natural unsupervised criterion relevant to RBMs is the log-

likelihood of test data under the model. This criterion would how-

ever require computing the normalization factor in Eq. (2), which is

intractable in the general case. An alternative is to consider the Re-

construction Error inspired from the auto-associator approach (sec-

tion 2.3). Formally, the Reconstruction Error of an RBM is computed

by clamping v to some data sample x, computing the (real-valued)

hidden unit configuration after P (h|v), backpropagating this hid-

den configuration onto the visible units, and computing the square

Euclidean distance between x and the visible unit configuration ob-

tained. For the sake of computational tractability, the Mean Field ap-

proximation is used.

With same notations as in section 2.2, let W∗
θ denote the weights

of the RBM trained from the dataset D using the hyper-parameters

θ; then the associated Reconstruction Error is defined as:

L(D, θ) =def L(D,W
∗

θ) =
∑

x∈D

||x− gW∗

θ
◦ fW∗

θ
(x)||2 (7)

The Reconstruction Error corresponding to the whole ℓ-layer RBM

can be directly defined as:

L(D,W1, . . .Wℓ) =
∑

x∈D

||x−Gℓ ◦ Fℓ(x)||
2

(8)

For reference, examples of reconstructed digits from the MNIST

dataset are given in Fig.3.

Figure 3. Examples of reconstructed digits from the MNIST dataset with
an RBM trained on 60,000 examples for 1 epoch. Left: Original image.

Middle: Reconstruction with a 300 hidden units RBM. Right:
Reconstruction with a 10 hidden units RBM.

3.3 Optimum selection

How to use the reconstruction error to select the optimal number of

neurons in each DNN layer raises the parsimony vs accuracy tradeoff.

After [15], the reconstruction error should decrease with the number

of neurons, which suggests the use of a regularization term. Another

possibility is to wait until the reconstruction error does not decrease

any more (plateau).

4 EXPERIMENTAL VALIDATION

This section reports on the experimental validation of the proposed

unsupervised layer-wise approach for hyper-parameter selection in

stacked RBMs and discusses possible extensions.

4.1 Goals of experiments

The goal of the experiments is to answer the following questions:

Feasibility: Does the considered unsupervised criterion clearly and

steadily support some selection of the optimal number of neurons ?

Stability: Does the proposed procedure offer some stability w.r.t. the

experimental setting (number of samples, number of epochs) ?

Efficiency: How does the model selected in an unsupervised layer-

wise manner affect the supervised classification accuracy ?

Consistency: Does the model globally optimized over ℓ layers coin-

cide with the layer-wise optimization of the size of each layer ?

Generality: A last question concerns the extension of the proposed

approach to RBMs trained with plain Contrastive Divergence, and

Auto-Associators.

4.2 Experimental setting

The experiments consider the MNIST dataset including 60, 000
28 × 28 images representing digits from 0 to 9 in grey level, inten-

sively used in the DNN literature4 [11, 13]. The unsupervised learn-

ing stage considers 1, 000, 10, 000 or 60, 000 examples. A disjoint

test set including 1,000 examples is used to assess the (supervised or

unsupervised) generalization performance.

For the sake of computational tractability, the experimental val-

idation was limited to a 2-layer RBM setting. The above experi-

ment goals were investigated in this restricted experimental setting,

based on a grid-search systematic exploration of the first and second

layer size. The overall computational effort is 300 days CPU time on

a 1.8GHz Opteron processor. Using multiple cores, several models

were trained in parallel making the total training time about 15 days.

4.3 Feasibility and stability

The Reconstruction Error on the MNIST test set for the first RBM

is reported vs the number of neurons (in log scale) in Fig.4. As ex-

pected, the Reconstruction Error is a monotonically decreasing func-

tion of the number of neurons. The feasibility of the approach how-

ever is empirically established as the Reconstruction Error displays a

plateau when the number of neurons increases5. After these results,

4 Mean Field Contrastive Divergence is used in the unsupervised phase, and
backpropagation with momentum is used in the supervised phase. The al-
gorithm is available upon request.

5 Experiments conducted on the cifar-10 dataset likewise show a decreasing
reconstruction error as the number of neurons increases. Due to the higher
complexity of the cifar-10 dataset comparatively to MNIST, the plateau
however was not reached for the largest considered networks (up to 12,000
neurons).
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the Reconstruction Error criterion suggests a clear and stable hyper-

parameter selection of n1 ≥ n∗
1 = 300 neurons.

Figure 4. Reconstruction Error for different numbers of epochs and sizes
of the training set (with the same overall number of gradient updates) in the

first layer of a SRBM.

Following the proposed layer-wise approach (section 3.1), we now

optimize the size of the second layer, conditionally to the selected

size of the first layer. Setting the size of the first layer to n1 = 300,

the selection of the optimal number of neurons in the second layer

after the Reconstruction Error criterion (Fig. 5), was conducted in

the same way as above. Once again, the experimental results show a

plateau for the Reconstruction Error criterion after a certain threshold

value. The optimal number of neurons on the second layer condition-

ally to n1 = 300 is obtained for n2 ≥ n∗
2 = 200.

Figure 5. Reconstruction Error vs number of neurons in the second-layer
of a SRBM, with n1 = 300 neurons on the first layer.

The stability of the criterion with respect to experimental settings

is illustrated on Fig. 4, which shows the Reconstruction Error for

three different sizes of the training set and same number of gradient

updates. This confirms that the optimal layer size does not depend on

the size of the training set, conditionally to the number of gradient

updates; this point will be discussed further in section 4.6.

4.4 Efficiency and consistency

The efficiency of the presented approach must eventually be assessed

with the classification accuracy. In the previous experiments, RBMs

with different hidden layer sizes were trained and evaluated against

the Reconstruction Error criterion only. In order to assess their clas-

sification performance, a last layer with 10 output neurons is built

on the top of the first RBM-layer (with weights uniformly initialized

in [−1, 1]), and a backpropagation algorithm with early stopping is

applied on the whole network [3]. Fig. 6 depicts the classification ac-

curacy versus the number of neurons in the hidden layer. As shown

in Fig. 7, the classification accuracy increases as the Reconstruction

Error decreases. Overall, the unsupervised criterion used for model

selection yields same performance as that of the best 1-hidden layer

neural networks in the literature (1.9%) [3].

Figure 6. Classification accuracy vs number of neurons for different
dataset sizes and numbers of epochs.

Figure 7. Classification accuracy vs Reconstruction Error (the higher and
the rightmost the better).

A last question regards the consistency of the modular approach,

that is, whether simultaneously optimizing several layers yields the

same result as sequentially optimizing each layer conditionally to the

optimal setting for the previous layers. The global Reconstruction Er-

ror on a 2-layer RBM is depicted in Fig. 8, where the first (resp. sec-

ond) axis stands for the number of neurons in the first (resp. second)

layer.

As could have been expected, the Reconstruction Error decreases

as the number of units increases; and it is shown to plateau after a suf-

ficient number of units in each layer. Furthermore, one cannot com-

pensate for the insufficient number of units in layer 1 by increasing

the number of neurons in layer 2. This behavior is unexpected in the

perspective of the mainstream statistical learning theory [20], where

the VC-dimension of the model space increases with the number of

weights in the network, whatever the distribution of the neurons on

the different layers, as confirmed empirically in the multi-layer per-

ceptron framework [18].

The Reconstruction Error isolines are approximately rectangular-

shaped: for a given number of units n1 on the first layer, there exists a

4



Figure 8. Overall Reconstruction Error in a 2-layer RBM vs the number of
units in first layer (horizontal axis) and second layer (vertical axis). The
white cross shows the optimal configuration found with the layer-wise

procedure (300,200).

best Reconstruction Error reached for n2 greater to a minimal value,

referred to as n∗
2(n1). Likewise, the best Reconstruction Error for a

given number of units n2 on the second layer, is reached whenever

the number of hidden units on the first layer is sufficient. Overall, the

optimal Reconstruction Error w.r.t. the simultaneous optimization of

n1 and n2, given in Fig. 8, leads to the same optimal setting as the

layer-wise procedure in Fig.4 and Fig.5 ((n1, n2)
∗ = (n∗

1, n
∗
2(n

∗
1)),

which empirically confirms the modularity of the optimization prob-

lem.

4.5 Generality

Complementary experiments show that the presented approach

hardly applies when considering Contrastive Divergence (instead of

Mean Field); on the one hand, the Reconstruction Error very slowly

decreases as the number of neurons increases, making the plateau de-

tection computationally expensive. Furthermore, the Reconstruction

Error displays a high variance between runs due to the stochastic na-

ture of the learning procedure.

In the meanwhile, the same approach was investigated in the Auto-

Associator (AA) framework, which naturally considers the Recon-

struction Error as training criterion. Fig. 9 shows the AA Recon-

struction Error on the MNIST dataset vs the number of neurons. In-

terestingly, the optimal layer size is larger than in the RBM case;

interpreting this fact is left for further work.

Figure 9. Reconstruction Error vs number of neurons for an
Auto-Associator.

4.6 Model selection and training process

Intermediate experiments, aimed at reducing the computational cost

and memory resources involved in the experiment campaign, led

to consider datasets with sizes 60,000, 10,000 and 1,000 (Fig. 10)

trained for 1 epoch. Quite interestingly, for the Reconstruction Error

criterion, the optimal number of hidden units decreases with smaller

datasets.

Figure 10. Reconstruction Error vs the number of hidden units in a 1-layer
RMB, depending on the size of the training set.

A second experiment was launched to see if the above results

could be attributed to the increased diversity of the bigger datasets,

or to the increased number of gradient updates (granted that 1 epoch

was used for every dataset in Fig. 10).

For two datasets of 1,000 and 60,000 samples, the Reconstruction

Error is evaluated at multiple points in the training process, each sep-

arated by 1,000 gradient updates. The results (Fig.11) show the Re-

construction Error w.r.t. the number of neurons for the two datasets

as the training progresses from right to left. The Reconstruction Er-

ror isolines clearly show the decreasing number of neurons needed

with the increasing number of gradient updates.

A tentative interpretation for this fact goes as follows. Firstly, the

above results state that the optimal model size can decrease as train-

ing goes on. Secondly, a main claim at the core of DNNs [4, 12]

is that they capture a more abstract and powerful description of the

data domain than shallow networks. Therefore it is conjectured that

the network gradually becomes more able to construct key features

as training goes on. Further work will aim at investigating experi-

mentally this conjecture, by examining the features generated in the

deep layers depending on the input distribution, as done by [16].

5 Conclusion and Perspectives

The contribution of the paper is twofold. Firstly, an unsupervised

layer-wise approach has been proposed to achieve model selection in

Deep Networks. The selection of hidden layer sizes is a critical issue

potentially hindering the large scale deployment of DNN. A frugal

unsupervised criterion, the Reconstruction Error, has been proposed.

A proof of principle for the feasibility and stability of Reconstruc-

tion Error-based Model Selection has been experimentally given on

the MNIST dataset, based on an extensive experiment campaign. The

merits of the approach have also been demonstrated from a super-

vised viewpoint, considering the predictive accuracy in classification

for the supervised DNN learned after the unsupervised layer-wise

parameter setting.
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Figure 11. Reconstruction Error for RBM trained on 60x1,000 (Left) and 1x60,000 examples (Right) as a function of the number of neurons and gradient
updates.

After these results, the model selection tasks related to the differ-

ent layers can be tackled in a modular way, iteratively optimizing

each layer conditionally to the previous ones. This result is unex-

pected in the perspective of standard Neural Nets, where the com-

plexity of the model is dominated by the mere size of the weight vec-

tor. Quite the contrary, it seems that deep networks actually depend

on the sequential acquisition of different “skills”, or representational

primitives. If some skills have not been acquired at some stage, these

can hardly be compensated at a later stage.

Lastly, the dependency between the model selection task and the

training effort has been investigated. Experimental results suggest

that more intensive training efforts lead to a more parsimonious

model. Further work will investigate in more depth these findings,

specifically examining the properties of abstraction of the hidden lay-

ers in an Information Theoretical perspective and taking inspiration

from [16]. Along the same lines, the choice of the examples (curricu-

lum learning [5]) used to train the RBM, will be investigated w.r.t. the

unsupervised quality of the hidden units: The challenge would be to

define an intrinsic, unsupervised, measure to order the examples and

construct a curriculum.
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