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We study the class of weakly locally modular geometric theories introduced in [5], a common generalization of the classes of linear SU-rank 1 and linear o-minimal theories. We nd new conditions equivalent to weak local modularity: weak one-basedness and the absence of type denable almost quasidesigns. Among other things, we show that weak one-basedness is closed under reducts and generic predicate expansions. We also show that a lovely pair expansion of a non-trivial weakly one-based ω-categorical superrosy thorn rank 1 theory interprets an innite vector space over a nite eld.

Introduction

It is a well known fact [START_REF] Pillay | Canonical bases in o-minimal and related structures[END_REF] that for a strongly minimal theory T , the following conditions are equivalent: i) T is linear, ii) T is 1-based, iii) T is locally modular. Furthermore, these conditions are preserved under reducts. For a simple SU -rank one theory T the picture changes slightly, it is proved in [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF][START_REF] Berenstein | On lovely pairs of geometric structures[END_REF] that for such a theory T , it is equivalent that: i) T is 1-based, ii) T is linear and iii) T is weakly locally modular (see Denition 2.1). It is also known (e.g. see [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF]) that in the SU -rank one setting local modularity is a strictly stronger condition than being 1based. A more general framework where we can still study the geometry associated to the algebraic closure is the class of geometric theories. Recall that a geometric theory is a complete theory T such that for any model M |= T , the algebraic closure satises the Exchange Property and in addition T eliminates the quantier ∃ ∞ . Examples include strongly minimal theories, simple SU rank 1 theories, dense o-minimal theories and the theory of the p-adics. Inside a model of a geometric theory, algebraic independence gives a good notion of independence for real tuples.

A key example of the behavior of linearity in o-minimal theories is the following theory rst introduced in [START_REF] Loveys | Linear o-minimal structures[END_REF].

Example 1.1. Let R = (R, +, <, f | (-1,1) ) where f is dened by f (x) = πx.

Clearly, f | (-1,1) can be extended to all of R by f (x) = nf x n for x ∈ (-n, n), however this extension is not uniformly denable, and thus in a suciently saturated model R * of T = T h(R), we cannot dene f (x) for innite" elements. As the theory of a reduct of a vector space over Q(π), T is a linear (CF) theory, but it is not locally modular. It is also shown in [START_REF] Pillay | Canonical bases in o-minimal and related structures[END_REF] that T does not have almost canonical bases, i.e. a smallest algebraically closed subset over which a type is free. The theory T also fails to be 1-based, i.e. there is M |= T saturated and there are sets A, B ⊂ M such that A | acl eq (A)∩acl eq (B) B.

The example above shows that inside a geometric theory T , local modularity and 1-basedness do not need to be preserved under reducts. The main reason for the failure of the second condition is the absence of almost canonical bases in the reduct.

The origin of the expression 1-basedness comes from the concept that in a 1-based simple theory one element in a Morley sequence contains all the information about the original type (in general we require a countable Morley sequence to recover all the information). Following this idea we introduce the notion of weak 1-basedness (see Denition 2.3), prove that this notion coincides, in the setting of geometric structures, with the notion weak local modularity introduced in [START_REF] Berenstein | On lovely pairs of geometric structures[END_REF] (see Denition 2.1) and nally show that it is preserved under reducts.

The main goal of this paper is to study the class of weakly 1-based geometric structures. All linear o-minimal theories, including the one presented in Example 1.1, as well as linear SU rank 1 theories are examples of weakly 1-based theories.

Our work is divided as follows:

In the second section of this paper we dene weak local modularity, weak 1basedness and show that the notions coincide. We also introduce the notion of type denable almost quasidesigns, prove that it coincides with weak local modularity and use it to show that a reduct of a weakly locally modular theory is again weakly locally modular.

In section three we study the geometry associated to a weakly 1-based geometric theory. We follow the approach from [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF] and show that a lovely pair associated to a non-trivial weakly 1-based ω-categorical superrosy thorn rank 1 theory interprets an innite vector space over a nite eld.

In section four we generalize the notion of weak 1-basedness to the setting of rosy theories. We show that, under some mild assumptions, if T is a thorn rank one rosy weakly 1-based theory, then the associated theory T P of lovely pairs of T is again weakly 1-based.

In section ve we concentrate on examples: we show that the expansion of a weakly 1-based theory with a generic predicate is again weakly 1-based and prove that divisible groups with the Mann property inside a real closed eld with the induced structure from the eld are also weakly 1-based. Finally, in the last section, we show that the dense embeddings studied by Macintyre in [START_REF] Macintyre | Dense embeddings I: A Theorem of Robinson in a general setting[END_REF] are a special case of lovely pairs of geometric structures.

We assume that the reader is familiar with the results on lovely pairs of geometric structures presented in [START_REF] Berenstein | On lovely pairs of geometric structures[END_REF] (although no familiarity with lovely pairs is needed for most of section 2 and section 5). We will now recall the denition and basic properties of lovely pairs. Denition 1.2. We say that an elementary pair of models P (M ) M of a geometric theory T is a lovely pair of models of T if (1) (density/coheir property) if A ⊂ M is algebraically closed and nite dimensional and q ∈ S 1 (A) is non-algebraic, then there is a ∈ P (M ) such that a |= q;

(2) (extension property) if A ⊂ M is algebraically closed and nite dimensional and q ∈ S 1 (A) is non-algebraic, then there is a ∈ M , a |= q and a ∈ acl(A ∪ P (M )).

Any elementary pair of models extends to a lovely one. Any two lovely pairs of models of a geometric theory are elementarily equivalent, thus giving rise to a complete theory T P in the expanded language L P = L(T )∪{P }. The class of lovely pairs of models of T is almost an elementary class: suciently saturated models of T P are again lovely pairs.

Lovely pairs of geometric structures are a common generalization of lovely pairs of supersimple SU-rank 1 structures [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF] and (suciently saturated) dense pairs of o-minimal expansions of ordered abelian groups [START_REF] Van Den Dries | Dense pairs of o-minimal structures[END_REF].

Given a pair (M, P ) and a set A ⊂ M , we say that A is P -independent, if A | P (A) P (M ) where P (A) = A ∩ P (M ). Any two P -independent tuples a and b in a lovely pair, satisfying the same quantier free L P -type, have the same L P -type.

When working in lovely pairs, we will refer to the operator scl(-) = acl(-∪ P (M ))

as the small closure. Note that a small closure of any set is algebraically closed in the sense of T P . We write tp P and acl P for types and algebraic closure in the sense of T P .

The following is a result of Boxall [START_REF] Boxall | Lovely pairs of models of a þ-rank 1 theory[END_REF] (generalizing a fact from [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF] to the setting of superrosy theories of þ-rank 1):

Fact 1.3. Suppose T is a þ-rank 1 theory that eliminates ∃ ∞ . Then T P is superrosy of þ-rank ≤ ω. Moreover:
(1) Any denable large" set in a lovely pair (M, P ) (i.e. a set denable over A such that it has a realization in M \ acl(P (M ) ∪ A)) does not þ-divide over ∅.

(2) Any innite denable subset of P (M ) does not þ-divide over ∅. In particular, P (M ) has þ-rank 1 in (M, P ).

Thus, when T is rosy of thorn rank 1, T P is again super-rosy; we write | P for thorn independence in models of T P .

Weak local modularity, weak 1-basedness and linearity

Our goal in this section is to study, in the setting of geometric theories, analogues to the notions of local modularity, 1-basedness and linearity that are well understood in the setting of minimal stable theories [START_REF] Pillay | Geometric Stability Theory[END_REF] and SU -rank one simple theories [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF].

In [START_REF] Berenstein | On lovely pairs of geometric structures[END_REF] we studied a notion called weak local modularity using lovely pairs of structures and provided several characterizations of it. We recall the denition: In [START_REF] Berenstein | On lovely pairs of geometric structures[END_REF] we showed this notion coincided with 1-basedness for SU -rank one simple theories and with linearity for o-minimal theories. We have also shown that weak local modularity is equivalent to acl P = acl and to modularity of scl in models of T P . We also proved: Fact 2.2. ([5, Proposition 4.8]) If T is a weakly locally modular superrosy geometric

theory of þ-rank 1, then T P has þ-rank ≤ 2.
Note that in the SU-rank 1 case [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF], weak local modularity of T is actually equivalent to SU-rank of T being ≤ 2.

We now introduce a notion that is an analogue of 1-basedness in the setting of geometric theories. Denition 2.3. Let T be a geometric theory. We say that T is weakly 1-based

if whenever M |= T is saturated, a ∈ M and B ⊂ M , there is a |= tp( a/B) independent from a over B, such that a | a B.
In the stable or simple setting, a rank one theory is locally modular if and only if it is 1-based. The proof uses the notion of canonical bases. An analogue of his notion can be dened in the setting of geometric structures, see for example [START_REF] Pillay | Canonical bases in o-minimal and related structures[END_REF]: Denition 2.4. Let T be a geometric theory and let M |= T be saturated.

We say T has almost canonical bases if whenever A ⊂ M is algebraically closed and a 1 , . . . , a n ∈ M , there is a smallest B ⊂ A algebraically closed such that tp(a 1 , . . . , a n /A) is free over B.

The main problem with this notion is that almost canonical bases need not exist in geometric structures (see [START_REF] Pillay | Canonical bases in o-minimal and related structures[END_REF] and Example 1.1). When they exists, the proofs in [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF] that show the equivalence of local modularity and 1-basedness for SU -rank one simple theories can be used almost word-by-word to prove the equivalence of weak local modularity and weak 1-basedness in the setting of geometric theories. Instead, we will show that weak local modularity agrees with weak 1-basedness using stronger formulations of weak 1-basedness.

We start with a technical lemma. Proof. We can write a = a 1 a 2 , where a 1 is an independent tuple over B and a 2 ∈ acl( a 1 , B). In the same way write a = a 1 a 2 with tp( (3) =⇒ ( 1) is clear.

a 1 , a 2 /B) = tp( a 1 , a 2 /B). Note that dim( a 1 a 2 a 1 a 2 ) = dim( a 1 a 2 ) + dim( a 1 a 2 / a 1 a 2 ) = dim( a 1 a 2 ) + dim( a 1 a 2 / a 1 a 2 ), so dim( a / a) = dim( a/ a ) = dim( a/B a ) = dim( a/B) = | a 1 | = | a 1 |. Thus dim( a / a) = | a 1 | = dim( a /B
Theorem 2.7. Let T be a geometric theory. Then the following conditions are equivalent:

(1) T is weakly 1-based.

(2) T is weakly locally modular.

Proof.

(2) =⇒ [START_REF] Adler | A geometric introduction to forking and thorn-forking[END_REF]. Let M |= T be saturated. Let a 1 , a 1 ∈ M and B ⊂ M be such that a 1 is an independent tuple over B and a 2 ∈ acl(B, a 1 ). Since T is weakly locally modular, there exists

C | a 1 a 2 B such that a 1 a 2 | acl( a 1 a 2 C)∩acl(BC) BC Let a 1 a 2 |= tp( a 1 a 2 / acl(BC)) be independent from a 1 a 2 over acl(BC). Then acl( a 1 a 2 C) ∩ acl(BC) = acl( a 1 a 2 C) ∩ acl(BC), so a 1 a 2 | acl( a 1 a 2 C)∩acl(BC) BC. It is also clear that a 1 a 2 | BC a 1 a 2 BC. Thus tp( a 1 a 2 / acl( a 1 a 2 C) ∩ acl(BC)) ⊂ tp( a 1 a 2 / acl(BC)) ⊂ tp( a 1 a 2 / acl( a 1 a 2 BC))
is a chain of free extensions, so a 1 a 2 | acl( a 1 a 2 C)∩acl (BC) Remark 2.8. By Theorem 4.3, [START_REF] Berenstein | On lovely pairs of geometric structures[END_REF], in the denition of weak local modularity we can assume that one of the two sets is in fact a 2-tuple, i.e. we require that for any ab and a set B such that a ∈ acl(Bb), there exists a C | ∅ Bab such that a ∈ acl(Cbd) for some d ∈ acl(BC). Therefore in the proof of ((1) =⇒ ( 2)) above we can assume that a and b are 1-tuples. Thus in the denition of weak 1-basedness and in the conditions (2) and (3) in 2.6 we may assume that a is a 2-tuple. Now we will connect weak 1-basedness with the notion of quasidesign. It is well-known that a stable theory is 1-based if and only if T has no complete-typedenable quasidesign (see [START_REF] Pillay | Geometric Stability Theory[END_REF]). In our setting, we need to introduce the following modication. Denition 2.9. We say that a partial type r( x, y) over a set A denes a partial almost quasidesign, if If r is complete, we refer to such partial quasidesign as complete. In the complete case, we can replace there are by for any in [START_REF] Adler | A geometric introduction to forking and thorn-forking[END_REF]. Clearly, any partial quasidesign gives rise to a complete one, if we take tp( b c/A) where b and c come from (1).

Proposition 2.10. The following are equivalent for any geometric theory T .

(1) T is weakly 1-based (2) T does not have a partial almost quasidesign (2 → 3) Trivial.

(3 → 1) Suppose T is not weakly 1-based. Adding constants to the language if necessary, by remark 2.8 we may assume that this is witnessed by tp(ab/cd) where dim(cd) = 2. So for any a b ≡ cd ab such that a b | cd ab we have dim(aba b ) = 4.

Let r(xy, zt) = tp(ab, cd).

We claim that if a b realizes tp(ab) and acl(a b ) = acl(ab) then r(ab, zt)∧r(a b , zt) has nitely many realizations. In other words, if a b ≡ cd ab and acl(ab We can now summarize our results on equivalent denitions of weak local modularity / weak 1-basedness by putting them together with the results form [START_REF] Berenstein | On lovely pairs of geometric structures[END_REF].

) = acl(a b ), then c, d ∈ acl(aba b ). Case 1: a | cd a . Then a b | cd ab, so dim(aba b ) = 4. Now dim(aba b cd) = dim(aba b /cd) + dim(cd) = 2 + 2 = 4 = dim(aba b ), hence c, d ∈ acl(aba b ).
Theorem 2.11. The following are equivalent for any geometric theory T (1) T is weakly locally modular;

(2) T is weakly one-based;

(3) T does not have a partial (complete) almost quasidesign; (4) in any lovely pair (M, P ) of models of T , acl P = acl;

(5) in any lovely pair (M, P ) of models of T , the small closure operator scl = acl(-∪ P ) induces a modular pregeometry

From now on we will use the terms weakly 1-based and weakly locally modular interchangeably.

It is known (see e.g. [START_REF] Peterzil | A trichotomy theorem for o-minimal structures[END_REF]) that reducts of geometric theories are geometric. It is also known (see [START_REF] Pillay | Geometric Stability Theory[END_REF]) that 1-basedness is preserved by reducts in the cases of superstable theories of nite U-rank and stable groups (given that the group operation is intact). In the case of SU-rank 1 structures, the fact that 1-basedness is preserved by reducts follows from its characterization in [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF]: reduct of a lovely pair is again lovely, and T P having SU-rank ≤ 2 is also preserved. In the o-minimal group case, it is known (see [START_REF] Loveys | Linear o-minimal structures[END_REF]) that linear structures are exactly the reducts of ordered vector spaces over division rings, and thus linearity is preserved under reducts as well.

Here we generalize these facts to the case of geometric theories. Proposition 2.12. Weak 1-basedness is preserved by reducts.

Proof. Suppose T -⊂ T is a reduct. We are working in a suciently saturated model of T . Its reduct is a suciently saturated model of T -. If T -is not weakly 1-based, it has a complete almost quasidesign r( x, y). Adding parameters to the language we may assume that r is over ∅. We claim that r is a partial almost quasidesign in the sense of T . Part (2) of the denition is clear since acl -(A) is a subset of acl(A) for any set A. Suppose part (1) fails in T . Thus in T r( x, y) implies that x ∈ acl( y) or y ∈ acl( x). By compactness, r( x, y) implies (in T ) a formula φ( x, y) ∨ ψ( x, y), where φ and ψ witness x ∈ acl( y) and y ∈ acl Thus for any n we can build a sequence b

0 c 0 b 1 c 1 b 2 c 2 . . . b n c n such that |= r( b i , c i ), |= r( b i+1 , c i ), b i ∈ acl( c i ), c i ∈ acl( b i+1 ), b i+1 ∈ acl( c i ), c i ∈ acl(b i ).
Thus we have strict embeddings

acl( b 0 ) ⊂ acl( c 0 ) ⊂ acl( b 1 ) ⊂ acl( c 1 ) ⊂ . . . ⊂ acl( b n ) ⊂ acl( c n ).

Contradiction with niteness of dim( c).

Our next goal is to compare weak local modularity with linearity. We start by recalling the denition from [START_REF] Peterzil | A trichotomy theorem for o-minimal structures[END_REF]: Denition 2.13. Let T be a geometric theory and let M |= T be saturated. By a curve we mean a one dimensional subset of M 2 . A family F of plane curves is said to be denable if it can be written as a family of bers of a denable subset of M 2 × M k , where the parameter set is the subset of M k . A family F of plane curves is said to be interpretable if it can be written as a family of bers of a denable subset of M 2 × (M k /E), where E is a denable equivalence relation. We say F is normal if any two curves from F which are given by dierent parameters intersect at most nitely many times. We say that T is linear if every interpretable normal family of plane curves has dimension ≤ 1.

On has to be careful with the previous denition. In order for the dimension of an interpretable family of plane curves to be dened, we need to extend the notion of dimension from real tuples to imaginary tuples. In [START_REF] Gagelman | Stability in geometric theories[END_REF] Gagelman showed that the geometric theories T where the notion of independence extends to the set of imaginary elements are those that are surgical. Recall that a geometric theory T is surgical if whenever X ⊂ M n is denable and dim(X) = m then there is no denable equivalence relation E on X that has innitely many classes of dimension m. The results from [START_REF] Gagelman | Stability in geometric theories[END_REF] together with the fact that thorn forking is the weakest notion of independence [START_REF] Ealy | Characterizing Rosy Theories[END_REF], show that T is surgical if and only if T is rosy of thorn rank one.

We will divide our discussion on normal families of plane curves into two cases. We will rst deal with denable families in the setting of geometric theories. Then we will deal with the case of interpretable families when the underlying theory is rosy of thorn rank one.

For the following results we will use the tools of lovely pairs developed in [START_REF] Berenstein | On lovely pairs of geometric structures[END_REF]. In particular, we will use the fact that a theory T is weakly locally modular if and only if the small closure in a saturated model of T P is modular. Lemma 2.14. Let T be a geometric theory and let M be a saturated model of T .

If M has a denable normal family of plane curves of dimension ≥ 2 then T is not weakly locally modular.

Proof. We may assume that there is N M such that (M, N ) is a lovely pair of models of T and we write P instead of N . For A ⊂ M we write scl(A) for acl(A, P ). Assume that T is weakly locally modular so scl is modular. By hypothesis there is a 2-dimensional normal family of plane curves, say given by {C(x, y, a, b) :

a ∈ θ( z, b)} where θ( z, b) denes a subset of M k and dim(θ( z, b)) = 2.
We may assume that θ is dened over ∅.

We may assume that θ( a) = θ(a 1 , a 2 , a 3 ) and that whenever θ(a 1 , a 2 , a 3 ) holds then a 3 ∈ acl(a 1 , a 2 ). Let a = (a 1 , a 2 , a 3 ) ∈ θ be generic over P , let c, d ∈ M be such that C(c, d, a 1 , a 2 , a 3 ) and choose c independent from a 1 a 2 P . Let X = scl(c, d), Y = scl(a 1 , a 2 ). Since scl is modular and dim(X ∪ Y /P ) = 3 we must have dim(X ∩ Y /P ) = 1. Let t be real such that scl(t) = X ∩ Y . Note that d ∈ scl(c, t) and that dim(a 1 a 2 /tP ) = 1. Let p ∈ P be such that d ∈ acl(c, t, p), dim(a 1 a 2 /t p) = 1. Note that by genericity of (a 1 , a 2 ) we have t ∈ acl(a 1 , a 2 , p).

Let (a 1 , a 2 , a 3 ) |= tp(a 1 , a 2 , a 3 /t, c, d, p) be independent from c, t, a 1 , a 2 , p over c, t, p. Then whenever c |= tp(c/a 1 , a 2 , a 3 , a 1 , a 2 , a 3 , p) we have that

∃y(C(c , y, a 1 , a 2 , a 3 ) ∧ C(c , y, a 1 , a 2 , a 3 )).
Since the type tp(c/a 1 , a 2 , a 3 , a 1 , a 2 , a 3 , p) is not algebraic, the family of plane curves is not normal, a contradiction. Lemma 2.15. Let T be a thorn rank one rosy theory and let M be a saturated model of T . If M has a interpretable normal family of plane curves of dimension ≥ 2 then scl is not modular.

Proof. As before we may assume that (M, P ) is a lovely pair of models of T . By hypothesis there is a 2-dimensional normal family of plane curves, say given by {C(x, y, â) : â ∈ θ} where θ(ẑ) denes a subset of M eq and dim(θ(ẑ)) = 2. We may assume that θ is dened over ∅. Let a be a base for â, so â = a E for some denable equivalence relation E. We may write a = (a 1 , . . . , a k , . . . , a n ), where a 1 , . . . , a k are independent and a k+1 , . . . , a n ∈ acl(a 1 , . . . , a k ). By the extension property, we may choose a such that dim(a/P ) = k. Let c, d ∈ M be such that C(c, d, â) and choose c independent from a, P . Let X = scl(c, d), Y = scl(a). Since scl is modular and dim(X ∪ Y /P ) = 1 + dim(Y /P ) we must have dim(X ∩ Y /P ) = 1. Let t be real such that scl(t) = X ∩ Y . Note that d ∈ scl(c, t) and that dim(a/tP ) < dim(a/P ). Without loss of generality we may assume that a k ∈ acl(a 1 , . . . , a k-1 , t, P ). Let p ∈ P be such that d ∈ acl(c, t, p), a k ∈ acl(a <k , t, p), by the exchange property we have t ∈ acl(a 1 , . . . , a k , p). C(c ,y,b). Since the type tp(c/a, b, p) is not algebraic, the family of plane curves is not normal, a contradiction.

We will prove below a partial converse to the previous results using the proof of Proposition 2.10. Denition 2.16. Let T be a geometric theory and let M be a saturated model of

T . Let F = {ψ(z, t, a, b) : a |= ϕ( x, b
)} be a family of plane curves. We say that F is generically normal if whenever a, a |= ϕ( x, b) are such that dim( a/ a b) ≥ 1, we have that ψ(z, t, a, b) ∧ ψ(z, t, a , b) is nite. We say that T is generically linear if every generically normal family of plane curves has dimension ≤ 1.

Proposition 2.17. Let T be a geometric theory. If T not weakly 1-based, then T is not generically linear.

Proof. Let M be a saturated model of T . Assume T is not weakly 1-based, so this fact is witnessed by tp(a

1 a 2 /cd b) where dim(cd/ b) = 2. So for any a 1 a 2 ≡ cd b a 1 a 2 such that a 1 a 2 | cd b a 1 a 2 we have dim(a 1 a 2 a 1 a 2 ) = 4. Let r(zt, x 1 x 2 ) = tp(cd, a 1 a 2 / b).
As in the proof of Proposition 2.10, we have that if a 1 a 2 realizes tp(a 1 a 2 / b) and acl(a 1 a 2 b) = acl(a 1 a 2 b) then r(zt, a 1 a 2 ) ∧ r(zt, a 1 a 2 ) has nitely many realizations. By compactness there is a uniform bound m for these realizations. Choose a formula ψ(z, t, x 1 , x 2 , b) ∈ r(z, t, x 1 , x 2 ) such that ψ(z, t, a 1 , a 2 , b) is one dimensional and such that whenever a 1 a 2 realizes tp(a 1 a 2 / b) and acl(a

1 a 2 b) = acl(a 1 a 2 b) then ψ(z, t, a 1 a 2 , b) ∧ ψ(z, t, a 1 a 2 , b) has at most m realizations. By compactness, there is a formula ϕ(x 1 , x 2 , b) ∈ tp(a 1 , a 2 / b), such that if a 1 a 2 re- alizes ϕ(x 1 , x 2 , b) then ψ(z, t, a 1 , a 2 , b) is one dimensional (in the variables z, t). Making ϕ(x 1 , x 2 , b) and ψ(z, t, x 1 , x 2 , b) smaller if necessary, whenever a 1 a 2 , a 1 a 2 are realizations of ϕ(x 1 , x 2 , b) such that acl(a 1 a 2 b) = acl(a 1 a 2 b) we have that ψ(z, t, a 1 , a 2 , b) ∧ ψ(z, t, a 1 , a 2 , b) has at most m realizations. Thus, generically {ψ(z, t, a 1 , a 2 , b) : (a 1 , a 2 ) |= ϕ(x 1 , x 2 , b)} is a 2-dimensional
family of plane curves and T is not generically linear.

ω-categorical case

One of the main consequences of one-basedness in (non-trivial) stable, and to some extent, simple geometric theories was denability or type-denability of innite groups in T eq . In the o-minimal case, groups appear naturally in the linear case, as a consequence of the Trichotomy theorem. It is well-known that the geometry of a non-trivial locally modular (one-based) strongly minimal structure is projective or ane over a division ring, and the corresponding vector space is actually denable. This is no longer the case for a non-trivial 1-based SU-rank 1 theory, but De Piro and Kim [START_REF] De Piro | The geometry of 1-based minimal types[END_REF] show, using canonical bases, that an ω-categorical non-trivial 1-based SU-rank 1 theory interprets an innite vector space over anite eld. Thus our best hope at this point is to obtain a group in the case of an ω-categorical non-trivial weakly 1-based geometric theory. In the case of geometric theories, since canonical bases are not readily available, we use the lovely pairs approach developed in [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF].

First we note that the weak 1-basedness assumption implies the preservation of ω-categoricity when passing to the theory of lovely pairs.

The following is a generalization of Proposition 5.15 from [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF], and its proof also improves the estimate on the size of a P -independent extension from Lemma 5.14. of [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF]. Proposition 3.1. Let T be an ω-categorical weakly 1-based geometric theory. Then

T P is ω-categorical.
Proof. Let a b be a tuple of length n in a lovely pair, such that a ∈ acl( bP ) and b is independent over P . Let p ∈ P be such that a ∈ acl( b p). By weak 1-basedness, there is a b |= tp( a b/p) such that a b | p a b and a b | a b p. Then b is independent over p a b, so we may assume that b ∈ P . It follows that a ∈ P a b | a b P . Thus any n-tuple can be extended to a P -independent set of size 2n (in fact, by its own L-conjugate). Then by uniform local niteness of acl in T , there is a function f : ω → ω such that any n tuple embeds in a P -independent algebraically closed set of size f (n). Since for such sets L P -type is determined by quantier free L P -type, we have nitely many n-types in T P for any n. Thus T P is ω-categorical.

As in [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF], if T is a non-trivial weakly locally modular geometric theory, then the geometry of the small closure (the quotient geometry, or the associated geometry of (M, acl(-∪ P (M )))) is split into a disjoint union of innite-dimensional projective geometries over division rings (and possibly a trivial geometry) by the equivalence relation "x = y or |cl(x, y)| ≥ 3".

If T is weakly 1-based and ω-categorical, then by the above proposition, T P is also ω-categorical and the relations y ∈ acl(y 1 , . . . , y n , P ) and the equivalence relation acl(x, P ) = acl(y, P ) are L P -denable. Thus the geometry of the small closure is interpretable in T P and the relations x ∈ cl(y 1 , . . . , y n ) on its elements are denable in (T P ) eq . Clearly, the equivalence relation "x = y or |cl(x, y)| ≥ 3" is also denable, and thus each of the projective geometries over division rings mentioned above, viewed as a structure where the only relations are given by x ∈ cl(y 1 , . . . , y n ), n ≥ 1, is denable in (T P ) eq (as a quotient of the home sort). Note that each of these geometries is an ω-categorical structure, and in the superrosy thorn-rank 1 case, by Fact 2.2 it is superrosy of thorn-rank at most 2.

Let (V, +, λ•) λ∈F be an innite dimensional vector space over a division ring F . By Geom(V ) we denote the associated geometry of (V, Span) viewed as a structure (G, x ∈ cl(y 1 , . . . , y n )) n≥1 . Note that a ∈ cl( b) does not imply a ∈ acl( b) in this language unless F is nite.

Our goal is to show that the division rings above are actually nite elds. Then Geom(V ) is a non-trivial ω-categorical strongly minimal structure, and it is wellknown that such a theory interprets an innite group (namely, a vector space over a nite eld).

The following proposition shows that for an innite F , T h(Geom(V )) has a thorn-forking chains of any nite length. It follows that if T is a weakly 1-based superrosy theory of thorn-rank 1, then all the division rings above are nite (since, as noted above, hence Geom(V ), will have thorn-rank at most 2 ), and thus T P interprets an innite group (a vector space over a nite eld).

When working in Geom(V ), for any v ∈ V , by v * we denote Span(v) as an element of Geom(V ). Proposition 3.2. Suppose V is a vector space over an innite division ring. Let 

v 1 , . . . , v n ∈ V be linearly independent. Let u k = v 1 +v 2 +. . .+v k . Then
, . . . , b n-k )|a b |= tp(u * k , v * k+1 , . . . , v * n /v * 1 , . . . , v * n , u * 2 , . . . , u * k-1 )} is 2-inconsistent.
Proof of the Claim: Note that for any a b as above,

b 1 = v * k+1 , . . . , b n-k = v * n and a satises ψ(y, u * k-1 , v * k ) = y ∈ cl(u * k-1 , v * k ) (since this holds for u * k ). Now, if a, a ∈ G are two distinct realizations of ψ(y, u * k-1 , v * k ), then φ(x, a, v * k+1 , . . . , v * n ) ∧ φ(x, a , v * k+1 , . . . , v * n ) is inconsistent. Indeed, we may assume that a, a ∈ Geom(V ), so a = w * 1 and a = w * 2 for some linearly independent w 1 , w 2 ∈ V . Now, if φ(x, w * 1 , v * k+1 , . . . , v * n ) ∧ φ(x, w * 2 , v * k+1 , . . . , v * n ) is realized by some p * (where p ∈ V ), then from the denition of φ, p = γ 1 w 1 + µ 1 v k+1 + . . . + µ n-k v n = γ 2 w 2 + ξ 1 v k+1 + . . . + ξ n-1 v n ,
where γ 1 , γ 2 = 0. Thus, γ 1 w 1 -γ 2 w 2 ∈ Span(v k+1 , . . . , v n ). On the other hand, γ 1 w 1 -γ 2 w 2 = 0 (by linear independence of w 1 and w 2 ) and The assumption of T being superrosy of thorn rank one seems quite articial, and we therefore conjecture that the above result holds for any ω-categorical weakly one-based geometric theory. A key issue here is to understand the theory T h(Geom(V )) when V is innite-dimensional over an innite division ring. So far we know that T h(Geom(V )) has innite thorn-forking (even thorn-dividing) chains, and any model of T h(Geom(V )) is an innite-dimensional projective geometry over an innite (and possibly dierent) division ring. However the following questions remain open. Question 3.4. Let V be an innite-dimensional vector space over an innite division ring, and let T = T h(Geom(V )).

γ 1 w 1 -γ 2 w 2 ∈ Span(v 1 , . . . , v k-1 , v k ) since w * 1 , w * 2 ∈ cl(u * k-1 , v * k ). Thus Span(v 1 , . . . , v k-1 , v k ) and Span(v k+1 , . . . , v n ) have a non-
(1) Is T ω-categorical?

(2) Is T stable?

(3) Does T have trivial algebraic closure? (4) Does T have quantier elimination? [START_REF] Berenstein | On lovely pairs of geometric structures[END_REF] What happens when we vary the (innite) division ring?

4. Independence in T P for T weakly 1-based

We know from Fact 1.3, that for T a rosy theory of thorn rank one, the associated theory T P of lovely pairs of models of T is again rosy of thorn rank ≤ ω. It is an interesting question which other properties of T are preserved in T . We start by generalizing the notion of weak 1-based theories to the setting of rosy theories. Denition 4.1. Let T be a rosy theory. We say that T is weakly 1-based if whenever M |= T is saturated, B ⊂ M and a ∈ M there is a superset C of B independent from a over B such that whenever a |= tp( a/C) is independent from a over C, we have a | a B.

Note that for a simple T , a canonical base argument shows that weak 1-basedness coincides with 1-basedness. The goal of this section is to show that whenever T is weakly 1-based rosy rank one theory then T P is again weakly 1-based. We only succeeded in doing this under some extra assumptions. Notation 4.4. Let (M, P ) |= T P be a saturated model. We use the word independence for acl-independence and we write | for the acl-independence relation. We use the word T P -independent for þ-independence in models of T P and we write the corresponding independence relation as | P .

We will need the following result from the proof of [START_REF] Berenstein | On lovely pairs of geometric structures[END_REF]Proposition 4.8] Fact 4.5. Let T be a weakly locally modular thorn rank one theory and let (M, P ) |= T P . Let a ∈ M , A ⊂ B ⊂ M and assume that a ∈ acl(AP ) \ acl(A) and that a ∈ acl(BP ) \ acl(B). Then tp P (a/B) does not þ-fork over A. Notation 4.6. Let a 1 , . . . , a n ∈ M . We write a <1 for ∅ and for 1 < i ≤ n + 1, we write a <i for (a 1 , . . . , a i-1 ).

We will also assume the following condition: Assumption 4.7. Let T be a weakly 1-based geometric thorn rank one theory and let (M, P ) |= T P . Let A ⊂ B ⊂ M and let a = (a 1 , . . . , a n , a n+1 , . . . , a m , a m+1 , . . . , a l ) ∈ M , where (a 1 , . . . , a n ) is a P ∪ A-independent tuple, for i = n + 1, . . . , m a i ∈ acl(a <i P A) \ acl(a <i A) and for i = m + 1, . . . , l a i ∈ acl(a <i A).

Then tp P ( a/B) does not thorn fork over A if and only if (a 1 , . . . , a n ) is a P ∪ Bindependent tuple and for i = n + 1, . . . , m a i ∈ acl(a <i , P, B) \ acl(a <i , B).

In the above assumption, we know that the right property always implies the left property, we assume left to right. Proposition 4.8. Assume that T is a weakly 1-based geometric thorn rank one theory satisfying assumption 4.7. Then T P is also weakly 1-based.

Proof. Let (M, P ) |= T P be saturated, let a ∈ M be a nite tuple and let A ⊂ M be a set. We will write a = (a 1 , . . . , a n , a n+1 , . . . , a m , a m+1 , . . . , a l ) where (a 1 , . . . , a n ) is a P ∪ A-independent tuple, for i = n + 1, . . . , m a i ∈ acl(a <i P A) \ acl(a <i A) and for i = m + 1, . . . , l a i ∈ acl(a <i A). We need to nd a superset E ⊃ A such that a | 

Claim a | P

A E From the previous conditions, we have a p | A E and E | A a pP . Thus a 1 , . . . , a n is a P ∪ E-independent tuple, a i ∈ acl(a <i , p 1 , . . . , p t , E) \ acl(a <i , E) for i = n + 1, . . . , m. Since T is weakly locally modular, the claim follows from Fact 4.5. Now let a |= tp P ( a/E) be such that a | P E a.

Claim a | P a A By Assumption 4.7 a 1 , . . . , a n is an E a ∪ P -independent n-tuple, so it is also a a ∪P -independent n-tuple. Since a | P E a we have a | E a and thus by (0) a | a A. In particular, this shows that a m+1 , . . . , a l ∈ acl(a 1 , . . . , a m , a ). It remains to show that a n+1 , . . . , a m ∈ acl(a 1 , . . . , a n , a , P ).

Let q = (q 1 , . . . , q t ) |= tp P (p 1 , . . . , p t /E a) be such that q | P aE a . By transitivity, we get a q | P E a . Now let q ∈ P be such that tp P ( a q/E) = tp P ( a q /E), we may choose q such that q | P E a a q and by symmetry and transitivity we get a q | P E a q . From this we conclude a q | E a q and by (0) a q | a q A. Since a n+1 , . . . , a m ∈ acl(a 1 , . . . , a n , q, A), we get a m+1 , . . . , a l ∈ acl(a 1 , . . . , a n , a , q, q ) as desired.

Corollary 4.9. Let T be the theory of an o-minimal ordered vector space and let T P be the corresponding theory of lovely pairs. Then T P is weakly 1-based.

Proof. Since the algebraic closure coincides with the linear span, assumption 4.7 holds and thus by Proposition 4.8 the result follows.

Corollary 4.10. Let T be an SU -rank one theory and let T P be the corresponding theory of lovely pairs. Then T P is weakly 1-based.

Proof. Since T is simple of SU -rank one, T is 1-based, T P is supersimple and forking and thorn forking coincide in models of T P . By [START_REF] Vassiliev | Generic pairs of SU-rank 1 structures[END_REF]Corollary 3.9] assumption 4.7 holds and thus by Proposition 4.8 the result follows.

Note that the previous result is known in a more general context. It is proved in [START_REF] Ben Yaacov | Lovely pairs of models[END_REF] that if T is simple 1-based and the theory T P of lovely pairs is rst order, then T P is again 1-based.

We know from section 2 that in the geometric case, weak 1-basedness is preserved by reducts. As we mentioned earlier, it is known that reducts of 1-based superstable theories of nite U-rank are 1-based. Question 4.11. Is a reduct of a weakly 1-based superrosy theory of nite thorn rank again weakly 1-based? By Fact 2.2, for a weakly 1-based superrosy þ-rank 1 geometric theory T , T P is superrosy of þ-rank ≤ 2. We also know from [START_REF] Loveys | Linear o-minimal structures[END_REF], that linear o-minimal structures with global addition are precisely the reducts of ordered vector spaces. Since the reducts of lovely pairs are again lovely, a positive answer to the above question, together with Corollary 4.9, would imply preservation of weak 1-basedness (linearity) when passing to T P in the additive o-minimal case.

Examples

5.1. Adding a generic predicate. In this section we assume the reader is familiar with the work of Chatzidakis and Pillay in random predicates [START_REF] Chatzidakis | Generic structures and simple theories[END_REF]. We will show that if a theory is geometric and weakly 1-based then any of its completions with a random predicate is again weakly 1-based.

Fix T a complete theory in a language L. We will assume that L contains a unary predicate symbol S (which could be equality) and we let L R be the language L augmented with a new unary predicate symbol R (we use the letter R instead of the usual notation P , since we use P in earlier parts of the paper to denote a predicate in a lovely pair). It is proved in [START_REF] Chatzidakis | Generic structures and simple theories[END_REF] that the theory T ∪{∀xR(x) =⇒ S(x)} has a model companion T R,S . The theory T R,S may not be complete.

Our results rely heavily on the following facts:

Fact 5.1. [8, Corollary 2.6,(3)] The algebraic closure in models of T R,S coincides with the algebraic closure in the sense of T .

For models of T R,S we will write acl for the algebraic closure.

Fact 5.2. [8, Remark 2.12,(4)] If T eliminates ∃ ∞ then T R,S also eliminates ∃ ∞ .

First observe that since T is geometric, acl has the exchange property in models of T R,S and thus T R,S is pregeometric. Also, by the previous fact, T R,S eliminates ∃ ∞ , so in fact T R,S is a geometric theory. Lemma 5.3. Assume that T is a geometric theory which is weakly 1-based. Then any completion of T R,S is weakly 1-based.

Proof. Let M |= T R,S be saturated, let a ∈ M and let B ⊂ M be a set. By hypothesis there is a superset C of B with a | B C such that whenever a |= tp( a/C) is acl-independent from a over C, we have a | a B. Since algebraic independence in the sense of T and T R,S coincide, C is a witness for the desired property in T R,S . 5.2. The structure induced on the predicate of a lovely pair. In this section we study the structure induced on the predicate of the lovely pair by the large model. Our presentation follows closely the one from Pillay and Vassiliev [START_REF] Pillay | On lovely pairs and the ∃y ∈ P quantier[END_REF]. Let T be a geometric theory in a language L with quantier elimination and let (M, P ) be a lovely pair of models of T . For each L-formula ϕ(x) with parameters in M , we introduce a new predicate symbol R ϕ (x). Let L * be the resulting language. We denote by M * the structure M with the natural interpretation for the new relations and P * the substructure with universe P . Finally T * stands for the theory of P * . Note that the language L * and the theory T * depend on the choice of M . We denote the algebraic closure in models if T by acl and in models of T * by acl * .

We will characterize acl * in terms of acl and M , prove that T * is also a geometric theory and that if T is weakly 1-based then T * is again weakly 1-based.

Following [START_REF] Baisalov | Paires de structures o-minimales[END_REF][START_REF] Pillay | On lovely pairs and the ∃y ∈ P quantier[END_REF], we say that (M, P ) eliminates the quantier ∃y ∈ P if for every formula ϕ( x, y, z) and a ∈ M there exists a formula ψ( x, w Proof. Let (N, P ) be a saturated model of T h M (M, P ). Let a ∈ P (N ) and let B ⊂ P (N ) be a set. By hypothesis there is a superset C of BM such that a | BM C and whenever a |= tp( a/C) is independent from a over C, we have a | a BM . Since acl * = acl M , C is a witness for the desired property in T * . 5.3. Fields expanded with a group having the Mann property. In this section we deal with the theory of a dense divisible multiplicative subgroup with the Mann property of a real closed eld K as presented by van den Dries and Günaydin in [START_REF] Van Den Dries | Günaydin The elds of real and complex numbers with a small multiplicative group[END_REF]. These structures are analyzed by adding a predicate G to the real closed eld, where G is interpreted as the multiplicative group and considering the new structure (K, G). A description of denable sets of K and of G in such a structure can be found in [START_REF] Van Den Dries | Günaydin The elds of real and complex numbers with a small multiplicative group[END_REF]. It was proved by Berenstein, Ealy and Günaydin [4] that such a pair (K, G) is super-rosy of þ-rank ω and that þ-rank(G) = 1 (seen as a denable subset of the pair). In particular, G as a subset of the structure (K, G) is a pregeometry. Our goal is to show that the theory of G with the induced structure is weakly 1-based.

We proceed as in the previous subsection. For each L-formula ϕ(x) with parameters in K, we introduce a new predicate symbol R ϕ . Let L * be the resulting language. We denote by K * the structure K with the natural interpretation for the new relations and G * the substructure with universe G. Finally let T * be the theory of G * , it is important to note that the theory T * depends on the underlying eld K. We denote the algebraic closure in models if T by acl and in models of T * by acl * .

As in the previous section it can be proved that T * has quantier elimination and that acl(-∪ K) = acl * (-). In particular T * is a geometric theory.

Our work depends on the following facts:

Fact 5.7 (Theorem 7.2 [START_REF] Van Den Dries | Günaydin The elds of real and complex numbers with a small multiplicative group[END_REF]). Let K be a real closed eld and let G be a dense divisible multiplicative subgroup of K >0 having the Mann property. Then if X ⊂ G n is denable, there is Y ⊂ K n denable in K (seen as an ordered eld) such

X = Y ∩ G n .
This fact remains true in a saturated model of T h K (K, G), since we only added new constants to the language.

From the previous fact it easily follows that if

a ∈ G * , B ⊂ K ∪ G * and dim( a/B) < dim( a), then there is a polynomial f ( y) ∈ Q(B)[y] such that f ( a) = 0.
In particular, we need to understand the solutions of algebraic varieties in G * . This is characterized in [START_REF] Van Den Dries | Günaydin The elds of real and complex numbers with a small multiplicative group[END_REF] Denition 5.8. For any n-tuple k

= (k 1 , . . . , k n ) ∈ Z n consider the character χ k : (K × ) n → K × given by χ k (x 1 , . . . , x n ) = x k1 1 • • • x k n n .
We let D(n, d) be the nite collection of subgroups of (K × ) n that are the intersection of kernels of characters

χ k with |k| = |k 1 | + • • • + |k n | ≤ d. Proposition 5.9. Let f 1 , . . . , f m ∈ K[X 1 , . . . , X n ] have degree ≤ d, and let V = {x ∈ K n : f 1 (x) = • • • = f m (x) = 0}. Suppose G has the Mann property. Then V ∩ G n is a nite union of cosets of subgroups D ∩ G n of G n with D ∈ D(n, d).
Proof. This proposition is proved in [START_REF] Van Den Dries | Günaydin The elds of real and complex numbers with a small multiplicative group[END_REF]Proposition 5.8] when K is an algebraically closed eld. The same proof, that only depends on the Mann property, holds when K is a real closed eld.

The conclusion of the proposition is also true for a saturated model of T h K (K, G) since the statement is an elementary property. Proposition 5.10. Let K be a real closed eld and let G be a dense divisible multiplicative subgroup of K >0 having the Mann property. Then the theory of G * is weakly 1-based.

Proof. We work in a saturated model

(K * , G * ) of T h K (K, G) in the language L * . Assume as above that a ∈ G * , B ⊂ K ∪ G * and dim( a/B) < dim( a). Let V be a variety of dimension dim( a/B) denable over B such that a ∈ V . Then V ∩ (G * ) n is equivalent to a disjunction ∨ i≤t c i (D i ∩ (G * ) n ),
where each D i is the intersection of kernels of characters and thus D i ∩ (G * ) n is a ∅-denable subgroup of (G * ) n . Assume D i is the kernel of the characters χ ij (x 1 , . . . , x n ), j ≤ m i and that c i = (c i1 , . . . , c in ). Then χ ij (a 1 , . . . , a n ) = χ ij (c i1 , . . . , c in ) so we may assume that c i ∈ (G * ) n . After taking a non thorn-forking extension of tp * ( c 1 , . . . , c t /B) we may further assume that c 1 , . . . , c t are free from a 1 , . . . , a n over B.

Let C = B ∪ { c 1 , . . . , c t } and let (a 1 , . . . , a n ) |= tp(a 1 , . . . , a n /C) be such that (a 1 , . . . , a n ) | þ C (a 1 , . . . , a n ). Then we have χ ji (a 1 , . . . , a n ) = χ ji (c i1 , . . . , c in ) = χ ji (a 1 , . . . , a n ) for some i ≤ t and all j ≤ m i , so c i (D i ∩ (G * ) n ) is denable over {a 1 , . . . , a n } and dim(a 1 , . . . , a n /a 1 , . . . , a n ) ≤ dim(a 1 , . . . , a n /C) = dim(a 1 , . . . , a n /B). In particular, (a 1 , . . . , a n ) | þ (a 1 ,...,a n ) B.

Lovely pairs and dense embeddings

In this section we relate the notion of lovely pairs of geometric structures to that of dense embeddings developed by Macintyre in [START_REF] Macintyre | Dense embeddings I: A Theorem of Robinson in a general setting[END_REF]. We will review some of the notions introduced in [START_REF] Macintyre | Dense embeddings I: A Theorem of Robinson in a general setting[END_REF] and prove that for the geometric theories T considered in [START_REF] Macintyre | Dense embeddings I: A Theorem of Robinson in a general setting[END_REF], Macintyre's theory T d of dense embeddings of models of T coincides with the theory T P of lovely pairs of models of T .

We start with reviewing some denitions. Let T be a pregeometric theory. Proof. See Lemma 5 in [START_REF] Macintyre | Dense embeddings I: A Theorem of Robinson in a general setting[END_REF].

The pregeometric theories T considered in [START_REF] Macintyre | Dense embeddings I: A Theorem of Robinson in a general setting[END_REF] do not have Vaughtian pairs. First of all this implies that under this extra assumption T is geometric, so the tools from lovely pairs developed in [START_REF] Berenstein | On lovely pairs of geometric structures[END_REF] apply. On the other hand the example above shows that the family of theories under consideration in [START_REF] Macintyre | Dense embeddings I: A Theorem of Robinson in a general setting[END_REF] is strickly smaller than the class of geometric theories.

The notion of dense pairs in [START_REF] Macintyre | Dense embeddings I: A Theorem of Robinson in a general setting[END_REF] is word by word the notion that we call in Denition 1.2 the density/coheir property. In order to conclude that the dense embeddings are lovely pairs, we need to show that the extension property holds in saturated models of dense embeddings. Fact 6.5. Suppose T satises the assumptions 1 -6 listed in [START_REF] Macintyre | Dense embeddings I: A Theorem of Robinson in a general setting[END_REF] and let (M, N ) |= T d . Suppose that card(M ) = dim(M/N ) = dim(N ) ≥ |L|. Then there is a basis X of M over N and a basis Y of N such that for every innite denable set D over M , X ∩ D = ∅ and Y ∩ D = ∅.

Proof. See Lemma 8 in [START_REF] Macintyre | Dense embeddings I: A Theorem of Robinson in a general setting[END_REF]. Lemma 6.6. Suppose T satises the assumptions 1 -6 listed in [START_REF] Macintyre | Dense embeddings I: A Theorem of Robinson in a general setting[END_REF]. Let (M, N ) be a saturated model of T d . Let m be a tuple of elements in M and let ϕ(x, m) be an L-formula with innitely many realizations. Then there is a realization of ϕ(x, m) in M which is free from m ∪ N .

Proof. Let X be as in the previous fact. Let X 0 ⊂ X nite and Y 0 ⊂ Y nite such that m ⊂ acl(X 0 ∪ Y 0 ). Let ψ(x, m, X 0 , Y 0 ) = ϕ(x, m) ∧ y∈X0∪Y0 (x = y). By the fact there is an a ∈ X satisfying ψ. Since X is a basis of M over N , a ∈ acl(X 0 , N ) and M |= ϕ(a, m) as we wanted. Proposition 6.7. Suppose T satises the assumptions 1 -6 listed in [START_REF] Macintyre | Dense embeddings I: A Theorem of Robinson in a general setting[END_REF]. Let (M, N ) be a saturated model of T d . Then (M, N ) is a lovely pair of models of T .

Proof. As pointed out earlier, such theories T are geometric. The assumption that P (M ) is dense in M translates to the coheir property. Finally the previous lemma implies the extension property.

Denition 2 . 1 .

 21 (See [5, Theorem 1]) Let T be a geometric theory. We say that T is weakly locally modular if for M |= T saturated and A, B ⊂ M there exist C | AB such that A | acl(AC)∩acl(BC) B

Lemma 2 . 5 .

 25 Let T be a geometric theory and let M |= T be saturated. Let a ∈ M , B ⊂ M and a ∈ M be such that tp( a/B) = tp( a /B), a | B a and a | a B. Then a | a B.

( 1 )

 1 =⇒ (2). Let M |= T be saturated. Let a, b ∈ M and B ⊂ M be such that a is an independent tuple over B and b ∈ acl(B, a). Since T is weakly 1-based there exists a b |= tp( a b/B) such that a b | B a b and a b | a b B. Let C = a , notice that C | B a b and a b | a b BC. Claim a b | acl( a bC)∩acl(BC) B. First note that b ∈ acl(B a ). Since a b | a b B by Lemma 2.5 we have a b | a b B and thus b ∈ acl( a a b). Thus a b ∈ acl( a bC)∩acl(BC) and we get a b | acl( a bC)∩acl(BC) B as desired.

  there are b, c such that |= r( b, c), b ∈ acl( c, A) and c ∈ acl( b, A); (2) whenever c ∈ acl( c , A) and c ∈ acl( c, A), r( x, c) ∧ r( x, c ) is nite.

( 3 )

 3 T does not have a complete almost quasidesign Proof. (1 → 2) Suppose T is weakly 1-based, and r( x, y) denes a partial almost quasidesign. Adding the parameters of r to the language, we may assume that r is dened over ∅. Take b and c such that |= r( b, c), b ∈ acl( c) and c ∈ acl( b). By weak 1-basedness we can nd c |= tp( c/ b) such that c | b c and c | c b. Then |= r( b, c ), c ∈ acl( c ) and c ∈ acl( c), and therefore r( x, c) ∧ r( x, c ) is nite. But this means that b ∈ acl( c, c ), a contradiction with b ∈ acl( c ) and c | c b.

Case 2 :

 2 acl(acd) = acl(a cd). Since acl(ab) = acl(a b ), a or b is not in acl(ab). Thus either dim(aba ) = 3 or dim(abb ) = 3. Either way, since dim(aba b cd) = 3, we get c, d ∈ acl(aba b ). Now, r(xy, zt) is a complete almost quasidesign, as needed.

  ( x) respectively. Now, for any b and c such that |= r( b, c), b ∈ acl -( c) and c ∈ acl -( b) (since r is complete in T -). Then for any b c |= r( x, y) we have either |= φ( b, c) (i.e. b ∈ acl( c)) or |= ψ( b, c) (i.e. c ∈ acl( b)), or both. On the other hand, whenever |= r( b, c), there are innitely many c and b such that |= r( b, c ) and |= r( b , c). Now, for all but nitely many c we have |= φ( b, c ) witnessing b ∈ acl( c ) (since ψ( b, y) has nitely many solutions). Similarly, for all but nitely many b we have |= ψ( b , c) witnessing c ∈ acl( b ) (since ψ( x, c) has nitely many solutions).

  Let b |= tp(a/ acl(t, c, d, p)) be independent from c, t, a, p over c, t, p. Let b = b E , so we get â | ct p b and c ∈ acl(a, b, t, p). Since dim(â/ct p) = dim(â/cd p) = dim(â/cd) = 1, we must have â = b. Then whenever c |= tp(c/a, b, p) we have that there is y satisfying C(c , y, â) and

Lemma 4 . 2 .

 42 Let T be a weakly 1-based rosy theory. Let M |= T be suciently saturated, let a ∈ M , B ⊂ M and let C ⊃ B be such that a | B C and whenever a |= tp( a/C) is independent from a over C, we have a | a B. Let D |= tp(C/B a), then whenever a |= tp( a/D) is independent from a over D, we have a | a B. Proof. Clear. Remark 4.3. Let M |= T be suciently saturated, let a ∈ M , B ⊂ M and assume that there is a set C ⊃ B with a | B C such that whenever a |= tp( a/C) is independent from a over C, we have a | a B. Also assume that b ∈ M and that there is a set D ⊃ B with a b | B D such that whenever a b |= tp( a b/D) is independent from a b over D, we have a b | a b B. Let C ≡ B a C be such that C | B a D b and let E = D ∪ C . Then whenever a b |= tp( a b/E) is independent from a b over E, we have a b | a b B and a | a B. Proof. Let C ≡ B a C be such that C | B a D b and let E = D ∪ C . Note that C | B a. By transitivity we get C | B D a b and C | BD a b. Applying symmetry and transitivity we get a b | B E. Let a b |= tp( a b/E) be such that a b | E a b. In particular, since a b | D E, we have a b |= tp( a b/D) and a b | D a b. Thus a b | a b B. We also have a | E a and a | C E, so a | C a. By Lemma 4.2 a | a B.

PA

  E and whenever a |= tp P ( a/E) is such that a | P E a then a | P a A. Let p = (p 1 , . . . , p t ) ∈ P be an independent tuple over A such that a n+1 , . . . , a m ∈ acl(a 1 , . . . , a n , p 1 , . . . , p t , A). By hypothesis, there is a set D ⊃ A such that a p | A D and whenever a p |= tp( a p/D) is such that a p | D a p , then a p | a p A. Again by hypothesis, there is a set C ⊃ A such that a | A C and whenever a |= tp( a/C) is such that a | C a , then a | a A. By the previous remark, we can nd E such that E | A a p and whenever a p |= tp( a p/E) is independent from a p over E, we have a p | a p A and a | a A. (0) By Lemma 4.2 we may choose E such that E | A a p P .

  ) and b ∈ M such that for all c ∈ P , M |= ψ( c, b) if and only if (M, P ) |= ∃d ∈ P ϕ( c, d, a) It is clear that (M, P ) eliminates the quantier ∃y ∈ P if and only if T * has quantier elimination. Since T * is again geometric, T * has a notion of independence induced by acl * . As before, we let (N, P ) be a saturated model of T h M (M, P ). For A, B, C ⊂ P (N ) sets, we write A | * B C to mean that A is acl * -independent from C over B. Note that by [22, Theorem 2.3] when T is simple of SU -rank one, our notion of independence coincides with non-forking in T * . Lemma 5.6. Assume that T is a geometric theory which is weakly 1-based. Then T * is weakly 1-based.

Denition 6 . 1 .

 61 Let N, M |= T with N M , N = M . We say that (M, N ) is a Vaughtian pair if for some formula ϕ(x, a) with parameters a ∈ N with innitely many solutions in N we have ϕ(N ) = ϕ(M ). We say that T has a Vaughtian pair if there are N, M |= T such that (M, N ) is a Vaughtian pair. Lemma 6.2. Let (M, P ) |= T P . Then (M, P (M ) is not a Vaughtian pair.Proof. Let ϕ(x, a) be an -formula with parameters in P (M ) with innitely many solutions, so P (M ) |= ∃ ∞ xϕ(x, a). Let (M , P ) (M, P ) be saturated, so (M , P ) is a lovely pair of models of T . Let p(x) be a complete non-algebraic type over a containing ϕ(x, a). Since (M , P ) is a lovely pair, there is a realization b of p(x) in M which is free from P (M ). In particular, b ∈ ϕ(M ) \ ϕ(P (M )), so (M , P ) |= ∃xϕ(x, a) ∧ ¬P (x). Thus (M, P ) |= ∃xϕ(x, a) ∧ ¬P (x) and ϕ(M, a) = ϕ(P (M ), a) as we wanted.Thus, the class of models that we consider when dealing with lovely pairs are not Vaughtian pairs, but the underlying theory T under consideration may have Vaughtian pairs as shown by the following example: Example 6.3. Consider the theory DLO of dense linear orders without endpoints.Let M = R and let N = (R ∩ (-∞, 0]) ∪ Q + . Then (M, N ) is a Vaughtian pair Fact 6.4. Assume that T does not have Vaughtian pairs. Then T eliminates the quantiers ∃ ∞ .

  a) and a | a B. Whenever a ∈ M , B ⊂ M , there is C | B a such that for all a |= tp( a/ acl(BC)) independent from a over BC, we have a | a B. (3) Whenever a ∈ M , B ⊂ M , there is C | B a such that for all a |= tp( a/ acl(BC)) independent from a over BC, we have a | a BC. Let c |= tp( a/ acl(BC)) be such that c | BC a. Since a | a B, we have cB | a a and thus we can show using condition (2) that a | a B. On the other hand, we have a | BC a and a | B C, so by transitivity a | B C a and thus a | B a BC. This fact together with a | a B gives us a | a BC as desired.

	B |	a	( * )
	a c		
	Since a | a B and c |= tp( a/BC) we get c | a B. Using Lemma 2.5 this implies a | c B and together with ( * ) we get B | c a. (2) =⇒ (3). This direction is mostly forking calculus. With the assumptions
	from (3),		
	Proposition 2.6. Let T be a geometric theory and let M |= T be saturated. Then
	the following conditions are equivalent:		
	(1) T is weakly 1-based.		
	(2) Proof. (1) =⇒ (2). Let a ∈ M and B ⊂ M . Since T is weakly 1-based, there
	exists a |= tp( a/B) such that a | B a and a | a B. Let C = a 1 . Claim Whenever c |= tp( a/ acl(BC)) is independent from a over BC, we have
	a is independent from B over c.		

  a 1 a 2 BC and thus a 1 a 2 | a 1 a 2 C B. On the other hand, since C | a 1 a 2 B, we have a 1 a 2 C | a 1 a 2 a 1 a 2 B, and by symmetry and transitivity of independence a 1 a 2 | a 1 a 2 B as we wanted.

  zero vector in their intersection, a contradiction with the linear independence of v 1 , . . . , v n . This proves the Claim, and hence φ(x) strongly divides over {v * 1 , . . . , v * n , u * 2 , . . . , u * k-1 }, as needed. Corollary 3.3. If T is a ω-categorical weakly 1-based thorn rank one theory, then

T P interprets an innite group.

The rst author was supported by a grant from Facultad de Ciencias, Universidad de los Andes and by the ANR chaire d'excellence junior THEMODMET (ANR-06-CEXC-007) while visiting Université Claude Bernard Lyon 1 during the academic year 2008-2009; the second author was supported by a NSERC grant.