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Abstract-The measures of dissimilarity between basic belief
assignments (bba’s) in the framework of the theories of evidence
have been regularly studied in the literature until recently.
Nevertheless, the question is still open and it is very difficult
to represent efficiently the dissimilarity between bba’s through a
single scalar measure. In this paper, we analyze the limitation of
conflicting beliefs and the classical distance when they are used
directly as dissimilarity measures. The main problem for evalu-
ating the dissimilarity between two bba’s lies in the relationship
among their focal elements. Probabilistic transformations allow to
approximate any bba into a subjective probability measure based
on an underlying frame of discernment whose atomic elements
are exhaustive and exclusive. In this paper, we propose to use
both a distance based on probabilistic transformations (mainly
the pignistic transformation BetP and the Dezert-Smarandache
transformation DSmP ) and also a conflict coefficient in order
to charracterize and measure the dissimilarity between two
bba’s. Our approach takes into account both the difference
between bba’s (through the probabilistic distance) and the degree
of divergence (through the conflict coefficient) of hypothesis
that two belief functions strongly support. These two aspects
of disimilarity are complementary in the evaluation of our
dissimilarity measure. The method proposed in this paper is
applied for evaluating the reliability of sources of evidence and
selecting a rule of combination rule of bba’s. Simple numerical
examples are given to illustrate the interest of the proposed
approach.
Keywords: belief functions, dissimilarity measure, eviden-
tial distance, conflict coefficient, pignistic transformation,
DST, DSmT.

I. INTRODUCTION

The theories of evidence [15], [16], also called theories of
belief functions, are widely used in information fusion as soon
as the information to deal with are uncertain and possibly
conflicting and represented by basic belief assignments (bba’s).
The serach for an efficient measure of dissimilarity between
two bba’s is still an open and challenging question. In last
years, many works on the dissimilarity have emerged, and a
many proposals for the definition of a measure dissimilarity
have been proposed [7], [8], [10], [14]. The dissimilarity
measures are usually applied for evaluating fusion algorithms
or for the optimization of fusion systems [8]. For instance, this

appears in [1] for belief functions approximation algorithms, in
[2], [6] for defining the agreement between sources of evidence
as a basis for discounting factors, or also in [11] in a criterion
for selecting an adapted rule of combination. The dissimilarity
between two bba’s is actually difficult to quantify because
several aspects of dissimilarity need to be involved when es-
tablishing a real efficient and precise measure of dissimilarity.
In previous published works, a particular attention has been
paid to search a scalar measure to represent the dissimilarity
measure, but these proposed measures did capture only one
aspect of the dissimilarity between bba’s mainly associated
with a distance metric. From authors opinion, the dissimilarity
between two bba’s is not only represented by some well
chosen distance between bba’s, but also by another aspect
which reflects the level of conflict between the bba’s. So both
aspects must count when defining a measure of dissimilarity
between bba’s. So, the basic idea presented in this paper is to
define the dissimilarity measure between two bba’s from both a
distance1 between the bba’s, and also from their intrinsic level
of conflict. The proposed distance measures the mathematical
difference between the belief assignments whereas the conflict
measures the degree of divergences of hypothesis the sources
of evidence strongly support. Therefore, the distance and the
conflict captures and measure the two different aspect of
the dissimilarity between two bba’s, and they are mutually
compensable in a certain sense.

The degree of conflict is generally used to evaluate the inter-
action between conflicting beliefs [18], but it is not appropriate
in some cases (especially for the two equal belief functions
when they can be considered as cognitively independent).
Moreover, the conflicting beliefs can’t precisely reflect the
divergence of the hypothesis that the belief functions strongly
support. An evidential distance proposed by Jousselme et al.
in [7] is commonly considered as an interesting and valuable
distance measure since it takes both into account the value of
the mass of belief and the relative specificity of focal elements
of each bba. This distance measure however is not good
enough to capture the different aspects of the dissimilarity
between bba’s as it will be clearly shown in our examples
1 and 2 in the sequel. Moreover its computation burden can
become a bit expensive in time and in memory requirements.
When working in the probabilistic framework, the atomic

1For simplicity, we suggest to use the L1 distance between the approximate subjective probability measures of the bba’s obtained with BetP or DSmP
transfromations.



elements are exclusive and independent, and the degree of the
conflict and distance become easier to measure regardless the
intrinsic relationship between bba’s. The two most common
probabilistic transformations are BetP (proposed by Smets
in [19]) and DSmP (proposed by Smarandache and Dezert
in [4]). These transformations allow to approximate any bba
into a subjective probability measure. BetP approximates the
bba in a prudent way, and that’s why we call it a pessimistic
probabilistic transformation. The approximation done with
DSmP transformation is more specific and it allows to reach
the highest probabilistic information content (PIC) [20] and
so DSmP is more satisfactory from the theoretical point
of view. DSmP can thus be considered as an optimistic
probabilistic approximation of a bba. In this paper, we define
the dissimilarity measure from both the level of conflict and
from the distance between bba’s based on BetP and DSmP
transformations. The interest of the new measurements are
illustrates by some numerical examples, and the dissimilarity
mesure is shown for the selection of an adapted rule of
combination among Dempster’s rule and its main alternatives,
and for the determination of the reliability factor for the
sources of evidence to be discounted.

II. PRELIMINARIES

A. Basics of Dempster-Shafer theory (DST)

DST [15] is based on a given set Θ = {θ1, θ2, . . . , θn} of n
mutually exclusive and exhaustive elements θi, i = 1, 2, . . . , n.
Θ is called the frame of discernment of the fusion problem.
The set of all subsets of Θ is called the power set of Θ,
and it is denoted 2Θ. For instance, if Θ = {θ1, θ2, θ3}, 2Θ =
{∅, {θ1}, {θ2}, {θ3}, {θ1, θ2}, {θ1, θ3}, {θ2, θ3},Θ}. A basic
belief assignment (bba), also called mass of belief, is a
mapping m(.) : 2Θ → [0, 1] associated to a given source
of evidence such that m(∅) = 0 and

∑
A∈2Θ m(A) = 1. The

credibility function Bel(.), commonality function q(.) and the
plausibility function Pl(.) are also defined by Shafer and do
not need to be reported here, for details see [15]. The functions
m(.), Bel(.), q(.) and Pl(.) are in one-to-one correspondence.

Let m1(.) and m2(.) be two bba’s provided by two inde-
pendent sources of evidence over the frame of discernment
Θ. The combination of m1(.) with m2(.), denoted m(.) =
[m1 ⊕m2](.) is obtained in DST framework by Dempster’s
rule of combination as follows:





m(∅) = 0

m(A) =

∑
X1∩X2=A

m1(X1)m2(X2)

∑
X1∩X2 6=∅

m1(X1)m2(X2)
∀A 6= ∅, A ∈ 2Θ (1)

The total degree of conflict between the two sources of
evidence is defined by

m12(∅) ,
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2) (2)

Dempster’s rule can be directly extended to the combination
of n independent and equally reliable sources. It is a commu-
tative and associative rule of combination.

For decision-making, probabilistic transformations includ-
ing BetP [3], [19], and DSmP [4] are commonly used to
approximate any bba resulting of a fusion rule to a subjective
probability measure which can then be used classically with
the utility theory.

B. Probabilistic transformations
BetP transformation: Let m be a given bba related with Θ

satisfying Shafer’s model2. Its pignistic probability, denoted
BetP , is given by [19]:

BetP (Y ) =
∑

X⊂2Θ,Y⊆X

|X ∩ Y |
|X| m(X) (3)

where |X| is the cardinality of subset X . The formula (4) can
be rewritten for any singleton Y ∈ Θ as

BetP (Y ) =
∑

X⊂2Θ,Y⊆X

1
|X|m(X) (4)

DSmP transformation: DSmP [4], [16] is a generalized
probabilistic transformation which can work both when the
frame Θ satisfies Shafer’s model or when it satisfies any other
hybrid DSm model3. DSmP is more efficient than BetP in
the sense that it allows to reach the highest PIC value of
the approximate subjective probability in a consistent way as
shown in details in [4], however it is a bit more complicated to
implement than BetP transformation. Let’s consider a discrete
frame Θ with a given model, the DSmP transformation is
defined by ∀X ∈ GΘ \ {∅}

DSmP (X) =
∑

Y ∈GΘ

∑

Z⊆X∩Y
|Z|=1

m(Z) + ε · |X ∩ Y |

∑

Z⊆Y
|Z|=1

m(Z) + ε · |Y |
m(Y ) (5)

where ε ≥ 0 is a tuning parameter and GΘ corresponds
to the hyper-power set including eventually all the integrity
constraints (if any) of the model. Since we consider here for
simplicity only Shafer’s model for the frame Θ, then GΘ = 2Θ

in this case.
The formula (6) can be rewritten for any singleton X ∈ Θ

in Shafer’s model as

DSmP (X) =
∑

Y⊂2Θ

m(X) + ε∑
z⊆Y
|z|=1

m(z) + ε · |Y |m(Y ) (6)

It is worth to note that BetP transfers the mass of belief of
an ignorance (partial or total) to the singletons involved in that
ignorance but proportionally only with respect to the singleton
cardinals to reach the maximal entropy. BetP doesn’t provide

2i.e. all elements of Θ are truly exclusive and exhaustive.
3For simplicity, we consider in this work Shafer’s model only since most of readers are acquainted with DST, for more details with examples see [16].



the highest PIC in general as pointed out by Sudano [20] and
it transfers the belief in a prudent way and that’s why it can
be regarded as a pessimistic transformation. DSmP redis-
tributes the ignorance mass with respect to both the singleton
masses and the singletons cardinals. DSmP is justified by
the maximization of the PIC criterion. Stricto sensu, DSmP
doesn’t maximize strictly the PIC value but it provides the
largest PIC value with the numerical robustness of the result.
It has been proved recently in [9] that the solution obtained
from the strict maximization of the PIC doesn’t provide robust
numerical results and thus cannot be used as a valid and
useful approach in practice. The parameter ε allows to reach
the maximum value PIC of the probabilistic approximation
of m(.) in very specific degenerate cases, see [4] and [16],
Vol. 3 for details with many examples. The smaller ε is, the
bigger PIC value is. However, in some particular degenerate
cases the DSmPε=0(.) values cannot be derived, while the
DSmPε>0(.) values can always be derived by choosing ε as a
very small positive number. We define ε = 1/1000 by example
in this paper in order to be as close as we want to the maximum
of the PIC. DSmP does a more specific transfer of masses
committed to ignorances than BetP and can be considered as
an optimistic probabilistic transformation. As soon as the bba
m(.) is Bayesian (i.e. its focal elements are only singletons)
DSmP (.) coincides with BetP (.).

C. Discounting source of evidence

When the sources of evidences are not considered equally
reliable, it is reasonable to discount each unreliable source si,
i = 1, 2, . . . , n by a reliability factor αi ∈ [0, 1]. Following
the classical discounting method [15], a new discounted bba
m′(.) is obtained from the initial bba m(.) provided by the
unreliable source si as follows [15]





m′(A) = αi ·m(A), A 6= Θ
m′(Θ) = 1−∑

A∈2Θ

A 6=Θ

m′(A) (7)

αi = 1 means the total confidence in the source si, and the
original bba doesn’t need to be discounted. αi = 0 means that
the source is si is totally unreliable and its bba is revised as a
vacuous bba m′(Θ) = 1, which must have a neutral impact in
the fusion process if (as we expect) the fusion rule statisfies
the neutrality of the vacuous belief assigment. In practice, the
discounting method can be used efficiently if one has a good
estimation of the reliability factor of each source.

III. DISTANCES BETWEEN BASIC BELIEF ASSIGNMENTS

Usually a distance between two bba’s is defined to represent
the dissimilarity measure between two sources of evidence.
The choice for a well-adapted distance is no easy and many
proposals for distances have been proposed in the literature
which will not be reported here since this has been recently
pusblished in detail in [8]. In this paper, we present only the
most commonly used distance proposed by Jousselme et al.

in [7] and the distance based on probabilistic transformations
of bba’s suggested in [10] since it is involved in the approach
proposed in this paper.

A. Jousselme’s distance

Jousselme’s distance [8], denoted dJ is since recent years
commonly used because it takes judiciously into account both
the mass and the cardinality of focal elements of each bba’s.
dJ between two bba’s m1 and m2 defined on the same power
set 2Θ is defined by:

dJ(m1,m2) =

√
1
2
(m1 −m2)T D(m1 −m2) (8)

where m1 and m2 denote the vectors of bba’s m1(.) and m2(.)
and where D is a 2|Θ| × 2|Θ| positive matrix whose elements
are defined by Jaccard’s indexes Dij , |Ai∩Bj |

|Ai∪Bj | where Ai and
Bj are elements of the power set 2Θ. dJ(m1,m2) ∈ [0, 1] is a
distance4 which measures the similarity between m1 and m2

taking into account both the values and the relative specificity
of focal elements of each bba.

However and as shown in the following example, this
distance doesn’t work well to in some cases and cannot
reveal the difference between belief of a single element and
of non specific element in some application. Moreover, its
computational complexity is a bit large.

Example 1. Let’s consider the frame Θ = {θ1, θ2, · · · , θn}
with Shafer’s model and the following three independent bba’s

m1 : m1(θ1) = m1(θ2) = · · · = m1(θn) =
1
n

m2 : m2(Θ) = 1
m3 : m3(θl) = 1, for some l ∈ {1, 2, . . . n}

According to (8), one gets:

dJ(m1,m2) = dJ(m1,m3) =

√
1
2
(1− 1

n
). (9)

One sees that m3 is absolutely confident in θl and it is
very different from m1 and from m2. Moreover, m1 is
rather different from m2 even if they can be considered
both as uncertain sources. The source m2 is truly fully
ignorant since it corresponds to the vacuous belief assignment,
whereas the source m1 is much more specific than m2 since
it is a Bayesian belief assignment. It turns out that m1

corresponds actually to nothing but a ”probabilistic” fully
ignorant source having uniform probability mass function
(pmf). As one sees from (9), the dissimilarity measure based
on Jousselme’s distance doesn’t discriminate (as we consider)
well the difference between these two very different cases for
dealing efficiently with the specificity of the information.

4More precisely, one can only conjecture that dJ (.) is a true distance measure since no proof that D is a positive definite matrix has been given so far in
the literature.



Example 2. Let’s consider the frame Θ = {θ1, θ2, θ3} with
Shafer’s model and the following three independent bba’s

m1 : m1(θ1) = m1(θ2) = m1(θ3) = 1/3
m2 : m2(θ1) = m2(θ2) = m2(θ3) = 0.1,m2(Θ) = 0.7
m3 : m3(θ1) = m3(θ2) = 0.1,m3(θ3) = 0.8

In this example, one sees that it is impossible to take a
rational decision from m1 because all masses of singletons
are equal. Same problem occurs with m2 because this second
source has a very high mass of belief of its total ignorance
and the masses of singletons are also the same. The sources
1 and 2 correspond to two very different situations in term
of the specificity of their informational content but they yield
the same problem from decision-making point of view. m3

assigns its largest belief to θ3. Intuitively, it seems natural
to consider m1 and m2 more closer than m1 and m3

since m1 and m2 yields the same (impossible) choice in
decision-making because of the ambiguity in choice among
the singletons of the frame. Using Jousselme’s distance as a
measure of dissimilarity, one obtains the same dissimilarity,
i.e. dJ(m1,m2) = dJ(m1,m3) = 0.4041 which we think is
not very satisfactory for such case because it means that the
dissimilarity between m1 and m2 is the same as between m1

and m3 which is obviously not acceptable, nor convincing.
Such very simple examples show that the most commonly

used Jousselme’s distance is not sufficient to fully measure
the dissimilarity betweenbba’s in general and that’s why some
other/better approaches need to be developed. The main reason
of such unsatisfactory results comes from the fact that such
dissimilarity measure doesn’t consider all the aspects of the
dissimilarity.

B. Probabilistic-based distances

Let m1 and m2 be two bba’s defined with respect to a given
frame Θ with Shafer’s model. We propose to define probabilis-
tic distance between m1 and m2 through their approximate
subjective probability measures. Since many transformations
exist to approximate a bba into a subjective probability, we
concentrate only on the two most well known and used
transformations, i.e. BetP and DSmP decribed in the section
II-B. For notation convenience, we denote the first proba-
bilistic transformation (BetP ) and the second probabilistic
transformation (DSmP ) of any bba mi(.) by

{
P

(1)
mi (.) , BetPmi

(.)
P

(2)
mi (.) , DSmPmi(.)

where BetPmi
(.) is the pignistic transformation of mi(.)

obtained with formula (3) in replacing m(.) by mi(.) and
where DSmPmi

(.) is the DSmP transformation of mi(.)
obtained with formula (6) in replacing m(.) by mi(.).

• The MaxDiff distance

In 2006, W. Liu has proposed in [10], the MaxDiff distance
between two bba’s as

MaxDiff(BetPm1 , BetPm2) =
max
A∈Θ

|BetPm1(A)−BetPm2(A)| (10)

Such kind of distance can be defined also using DSmP
transformation (or any other probabilistic transformations) as
well. The MaxDiff distance reflects the variation only by the
maximal distance between the (pignistic) probabilities of a
pair of the individual element. However, it is not adapted for
measuring precisely the total amount of difference between
two bba’s as shown in the next example.

Example 3. Let’s consider the frame of discernment Θ =
{θ1, θ2, · · · θn, θn+1, · · · , θn+t} with Shafer’s model and the
following two pairs of bba’s from different sources:

{
m1

1(θ1 ∪ θ2 ∪ . . . ∪ θn) = 1
m1

2(θn+1 ∪ θn+2 ∪ . . . ∪ θn+t) = 1{
m2

1(θ1 ∪ θ2 ∪ . . . ∪ θl) = 1
m2

2(θ1 ∪ θ2 ∪ · · · ∪ θf ) = 1

As we can see, m1
1 and m1

2 totally contradict with each
other, but MaxDiff(BetPm1

2
, BetPm1

1
) = max{ 1

n , 1
t } → 0

when n, t → ∞. m2
1 and m2

2 are much more similar and
consistent. Let’s now take f

2 < l < f , then

MaxDiff(BetPm2
1
, BetPm2

2
) =

1
f

.

For instance, if one takes t = n = 10, and f = 3, l = 2, then

MaxDiff(BetPm1
2
, BetPm1

1
) = 0.1

< MaxDiff(BetPm2
1
, BetPm2

2
) = 0.333

According to the value of MaxDiff , the difference between
m1

1 and m1
2 is larger than the difference between m2

1 and
m2

2. This result shows that the MaxDiff distance doesn’t work
well in such very simple case like this one.

• Minkowski distances
In this paper, we propose to use Minkowski’s distances

denoted DistP
(k)
t for k = 1, 2 (the index k specifies the type

of the probabilistic transformation under consideration; k = 1
means BetP, whereas k = 2 means DSmP) and defined by

DistP
(k)
t (m1,m2) = (

1
2

∑

θi∈Θ
|θi|=1

|P (k)
m1

(θi)− P (k)
m2

(θi)|t) 1
t

(11)
for t ≥ 1, and k = 1, 2.
The coefficient 1

2 in (11) is to satisfy DistP
(k)
t (m1,m2) ∈

[0, 1]. This can be proven as follows: since P
(k)
mi (wi) ∈ [0, 1]



and t ≥ 1 then the following inequalities hold

0 ≤
∑

wi∈Θ
|wi|=1

|P (k)
m1

(wi)− P (k)
m2

(wi)|t

≤
∑

wi∈Θ
|wi|=1

|P (k)
m1

(wi)− P (k)
m2

(wi)|

≤
∑

wi∈Θ
|wi|=1

|P (k)
m1

(wi)|+
∑

wi∈Θ
|wi|=1

|P (k)
m2

(wi)| = 2

Therefore

0 ≤ 1
2

∑

wi∈Θ
|wi|=1

|P (k)
m1

(wi)− P (k)
m2

(wi)|t ≤ 1 ⇒

0 ≤ (
1
2

∑

wi∈Θ
|wi|=1

|P (k)
m1

(wi)− P (k)
m2

(wi)|t) 1
t ≤ 1

which completes the proof.

Note that when t = 1, this Minkovski’s distance corresponds
to the well-known city-block (a.k.a. Manhattan distance) and
when t = 2 it corresponds to the classical Euclidean distance.
For some cases, it can happen that DistP

(1)
t = DistP

(2)
t

whenever DSmP (.) = BetP (.).

The type of distance characterized by the choice of the
parameter t can be tuned by the user. The larger t leads to
the larger complexity burden. When two sources of evidence
are in total conflict, such distances do not work well if t > 1.

Example 4. Let’s consider the frame Θ = {θ1, θ2, . . . , θ2n}
with Shafer’s model and the following two independent bba’s

m1 : m1(θ1) = m1(θ2) = · · · = m1(θn) = 1/n

m2 : m2(θn+1) = m2(θn+2) = · · · = m2(θ2n) = 1/n

In this example m1 and m2 totally contradict with each
other. The distance measures between bba’s m1 and m2 is
shown in the Fig.1.

2 4 6 8 10 12 14 16 18 20
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MaxDiff
d

J

DistP(i)
1

DistP(i)
2

DistP(i)
3

Fig.1: Distances measures between m1 and m2.

DistP
(1)
t = DistP

(2)
t in Fig 1 and DistP

(i)
2 = dJ , since

m1 and m2 are Bayesian bba’s, and BetP (.) = DSmP (.).
Therefore, the plots for DistP

(i)
2 and dJ coincide on the

figure. The values of DistP
(i)
2 and DistP

(i)
3 tends towards

0, meaning that m1 and m2 are closer and closer with the
increase of n, which is obviously abnormal. The larger value
of the tuning parameter t makes the dissimilarity decrease
faster. MaxDiff converges towards 0 with the fastest rate
when |Θ|/2 = n increases. Only DistP

(i)
1 = 1 is invariable,

and it shows that m1 and m2 are completely different, which
correctly reflects their dissimilarity. Moreover, the computation
burden is low when using t = 1. So we did choose t = 1 in
this paper.

Lemma 1: Let m1, m2 be two bba’s defined on 2Θ. The
probabilistic-based distance DistP (m1,m2) ∈ [0, 1]. If
m1 = m2, then DistP (m1,m2) = 0, but its reciprocal
is not true. If DistP (m1,m2) = 1, then m1 and m2 totally
contradict and therefore there is none compatible elements
supported by the both bba’s, and its reciprocal is true.

In the example 1, one has DistP (m1,m2) = 0 and
DistP (m1,m3) = DistP (m2,m3) = (n − 1)/n.
In the example 2, one has DistP (m1,m2) = 0 and
DistP (m2,m3) = 0.4666. In the example 3, let assumef ≥
l, DistP (m1

1,m
1
2) = 1 > DistP (m2

1,m
2
2) = 1− l

f .

For the bba’s taken in the examples 1, 2 and 3, one has
DistP (1) = DistP (2). The distances DistP (k), k = 1, 2 say
that m1, m2 is closer than m2 and m3 in both Example 1
and 2, and m1

1 and m1
2 is much more similar than that of m2

1

and m2
2 in Example 3. The results are consistent with what is

intuitively expected as an acceptable behavior. Moreover, the
computation is much simpler than that the use of dJ measure.

DistP characterizes the dissimilarity between bba’s by
the absolute distance between their associate subjective
probabilities. In this dissimilarity measure, the degree of the
divergence of hypothesis that different sources of evidence
strongly support plays an important role. Unfortunately,
DistP is unable to reveal the divergence at all.

Lemma 2: Even if the distance/disimilarity measures are high,
the two bba’s can however possibly and strongly support the
same hypothesis and even if the distance measures are low, the
bba’s can still assign the most belief to different incompatible
elements of the frame.

This lemma is illustrated/proved through the following
simple examples.



Example 5. Let’s consider the frame Θ = {θ1, θ2, . . . , θ2n−1}
with Shafer’s model and the following three independent bba’s

m1 :

{
m1(θ1) = · · · = m1(θn−1) = 1

n − ε
n−1

m1(θn) = 1
n + ε,

m2 :

{
m2(θ1) = 1

n + ε,

m2(θ2) = · · · = m2(θn) = 1
n − ε

n−1

m3 :

{
m3(θn) = 1

n + ε,

m3(θn+1) = · · · = m2(θ2n−1) = 1
n − ε

n−1

In this example, one has DistP (1) = DistP (2) and the
various distances between these bba’s are (ε → 0) :

{
dJ(m1,m2) = ε + ε

n−1 ,

dJ(m1,m3) = ( 1
n − ε

n−1 )
√

n− 1{
MaxDiff(BetPm1 , BetPm2) = ε + ε

n−1 ,

MaxDiff(BetPm1 , BetPm3) = 1
n − ε

n−1{
DistP (m1,m2) = ε + ε

n−1 ,

DistP (m1,m3) = 1− 1
n − ε

Although m1 and m3 strongly support the same hypothesis
θn, and m2 is different from m1 and m3 supporting θ1, the
dissimilarity between m1 and m3 is larger than the dissimi-
larity between m1 and m2 according to distance measures.

The divergence of the hypothesis that the two bba’s strongly
support cannot be taken into account efficiently from DistP
measure of dissimilarity. This remark implies that DistP is
not sufficient enough to measure the dissimilarity, and another
measure as the complement of probabilistic-based distance
to reflect the degree of divergence/conflict among the belief
functions is necessary.

IV. INTRINSIC CONFLICT AMONG BELIEF FUNCTIONS

As in [10], a qualitative definition of conflict between two
beliefs in the context of DST is given.

Definition 2: A conflict between two beliefs can be interpreted
qualitatively as one source strongly supports one hypothesis
and the other strongly supports another hypothesis, and the two
hypotheses are not compatible (their intersection is empty).

This definition is intuitively consistent, and it will be
adopted here. According this definition, the conflict mainly
comes from pairs of incompatible hypothesis which are
separately strongly supported by two different sources
of evidence. So the extent of conflict should mainly be
reflected by the conflicting beliefs of the pair of incompatible
hypothesis.

The total degree of conflict, denoted m⊕(∅) ≡ m12(∅), is
generally used to evaluate the level of conflict [18] between the
two sources of evidence. From (2), one sees that m⊕(∅) is the
sum of all the masses of belief committed to the empty through
the conjunctive rule of combination. It is not so appropriate to

measure the conflict between bba’s, particularly in case of two
equal bba’s, and it cannot show the divergence of hypothesis
in which two sources of evidence commits the most possibility
as shown on the next example.

Example 6. Let’s consider the frame Θ = {θ1, θ2, . . . , θn}
with Shafer’s model and the following three independent bba’s

m1 :

{
m1(θ1) = 1

n + ε,

m1(θ2) = · · · = m1(θn) = 1
n − ε

n−1

m2 :

{
m2(θ1) = 1

n + ε,

m2(θ2) = · · · = m2(θn) = 1
n − ε

n−1

m3 : m3(θl) = 1, for l = 2, · · ·n
It is clear that m1 = m2 6= m3, and m1, m2 are very
ambiguous when ε ¿ 1, while m3 absolutely supports θl.
Therefore, m3 is highly conflicting with m1 and m2. From
(2), one sees that the total degrees of conflict are given by

m12
⊕ (∅) = 1− 1

n
− ε2 − ε2

n− 1

m13
⊕ (∅) = 1− 1

n
+

ε

n− 1
and therefore, when ε tends towards zero, one gets in the limit
case m12

⊕ (∅) ε=0= m13
⊕ (∅).

According to the value of m⊕(∅), if ε ¿ 1, m1 and m2

tends towards the total conflict when n increases. The large
number of pairs of incompatible hypotheses leads to a large
value of m⊕(∅). Moreover, m⊕(∅) cannot distinguish the
level of conflict between m1 and m2, and between m1 and
m3 at all as soon as ε = 0.

Example 7. Let’s consider the frame Θ = {θ1, θ2, θ3} with
Shafer’s model and the following three independent bba’s

m1 : m1(θ1) = 0.5,m1(θ2 ∪ θ3) = 0.4,m1(Θ) = 0.1
m2 : m2(θ1) = 0.5,m2(θ2) = 0.3,m2(θ3) = m2(Θ) = 0.1
m3 : m3(θ2) = 0.6,m3(Θ) = 0.4

From (2), one gets m12
⊕ (∅) = 0.4 > m23

⊕ (∅) = 0.36. The
amount of conflict between m1 and m2 is higher than that of
m2 and m3. Nevertheless, both m1 and m2 strongly support
the same hypothesis θ1, whereas, m3 distributes the most of
its mass of belief to θ2, which is obviously different from m1

and m2. Such examples shows that m⊕(∅) doesn’t measure
efficiently the degree of divergence of a hypothesis that two
sources strongly support.

Lemma 3: If two bba’s commit the most of their masses of
belief onto compatible or same elements, the level of conflict
between them still may be very large and even can tend
towards 1 according to conflicting beliefs.

The example 6 can be used to illustrate the lemma 3. Indeed,
m

12

⊕ (∅) = 1− 1
n − ε2 − ε2

n−1 → 1 when n →∞, ε → 0. This



implies that m⊕(∅) cannot correctly represent the degree of
conflict in some cases.

A. A new measure of level of conflict

We want to pay more attention to the hypothesis which
gets the most credibility in the bba’s. If two sources of
evidence commit the most possibility to compatible or same
elements, we argue that they are consistent in the element
they strongly support, and they do not contradict with each
other. Otherwise, they are considered in conflict. In order to
overcome the limitation of m⊕(∅), a new measure of level
of conflict, called conflict coefficient is proposed in this paper
in using probabilistic-based transformations and based on the
definition 2.

Definition 3 (conflict coefficient): Let m1 and m2 be two
bba’s on 2Θ. Their associated subjective probabilities are
P

(k)
mi (.), i = 1, 2; k = 1, 2 as defined in Section II-B. The

Conflict coefficient, denoted ConfP
∆= ConfP (k), k = 1, 2

is defined by

ConfP (k)(m1,m2) = Ψ(m1,m2)P (k)
m1

(x1)P (k)
m2

(x2) (12)

where

Ψ(m1,m2) =

{
0, if X1 ∩X2 6= ∅, xi ∈ Xi

1, if X1 ∩X2 = ∅, xi ∈ Xi

and Xi = {xi|P (k)
mi (xi) = max(P (k)

mi (.))}.

Naturally, it can happen in some particular cases that
ConfP (1) = ConfP (2) whenever DSmP (.) = BetP (.).
The conflict coefficient is defined in using the maximal
approximate subjective probability of the bba’s. If two sources
of evidence distribute their most mass of belief to compatible
elements, there is no conflict between the two sources in
such conditions. Otherwise, the amount of conflict will be
represented by the product of the pair of maximal subjective
probability from different sources (as illustrated again by the
examples 6 and 7).

Indeed, in the example 6 one has ConfP (1)(.) =
ConfP (2)(.) and

{
ConfP (m1,m2) = 0,

ConfP (m2,m3) = 1
n + ε

In the example 7, one has
{

ConfP (1)(m1,m2) = 0,

ConfP (1)(m2,m3) = 0.3911

and {
ConfP (2)(m1,m2) = 0,

ConfP (2)(m2,m3) = 0.55

Our new conflict coefficient indicates that m1 and m2

strongly support a compatible hypothesis, but m3 is in conflict

with m2 for these examples 6 and 7.

Lemma 4: Let m1 and m2 are independent bba’s on 2Θ.
m12
⊕ (∅) ∈ (0, 1), even if ConfP (m1,m2) = 0. Also,

m12
⊕ (∅) = 1, when ConfP (m1,m2) = 1.

The former part of the Lemma 4 is consistent with the
Lemma 3. The later part can be easily proven. This lemma
implies m⊕(∅) is not quite efficient when the bba’s are not in
conflict, and m⊕(∅) is similar with ConfP in case of highly
conflicting situations. The conflict coefficient reflects well
the divergence of incompatible hypothesis that two sources
of evidence commit most belief on. However, it ignores the
other elements of bba’s, so that it cannot capture the total
difference among the belief of the compatible elements in the
belief functions.

Example 8. Let’s consider the frame Θ = {θ1, θ2} with
Shafer’s model and the following three independent bba’s

m1 : m1(θ1) = 1
m2 : m2(Θ) = 1
m3 : m3(θ1) = 0.9,m3(Θ) = 0.1

m1 and m3 are much closer than m1 and m2, since m1

and m3 distribute most of their mass of belief onto the same
hypothesis θ1, whereas m2 is fully ignorant (i.e. m2 is the
vacuous belief assignment). Nevertheless, from the formula
(2) and (12), one gets

ConfP (m1,m2) = ConfP (m1,m3) = 0

m12
⊕ (∅) = m13

⊕ (∅) = 0.

So in such case, we cannot make a distinction between
m1 and m2, and between m1 and m3 at all only from these
conflict measures.

If the proposed probabilistic-based distance is used in this
example, one gets{

DistP (m1,m2) = 0.5,

DistP (m1,m3) = 0.05

Naturally, the dissimilarity between m1 and m2 is
quite larger than between m1 and m3 according to the
probabilistic-based distance measure. Actually, probabilistic-
based distance and the conflict coefficient are complementary
and they separately capture different aspects involved in the
dissimilarity. Altogether they can help to define a better
measure the dissimilarity between bba’s rather than taking only
one measure separately (say the probabilistic-based distance,
or the conflict coefficient).

Definition 4 (A new dissimilarity mesure): Let m1, m2 be
bba’s on 2Θ. The new measurement of dissimilarity between
m1 and m2 is defined by a 2D vector as follows:

DismP (m1,m2) =< DistP (m1,m2), ConfP (m1,m2) >
(13)



k = 1, 2. The first component of DismP is the probabilistic-
based distancee and the second component is the conflict
coefficient. Sometimes, it is much more convenient to consider
only a scalar measure of the dissimilarity. This can be obtained
easily using the weighted arithmetic mean as follows:

dismP (m1,m2) = γDDistP (m1,m2)
+ γCConfP (m1,m2) (14)

where the weighting factors γC and γD are in [0, 1] and
such that γC + γD = 1 and must be tuned according to
the application. Since DistP (m1,m2) and ConfP (m1,m2)
are also in [0,1], then dismP (m1,m2) ∈ [0, 1]. If DistP
is considered more important than ConfP in the dismP ,
we will take γD > γC , as for example in the evaluation
of reliability of sources of evidence. Otherwise, one can
take γC > γD, for example as in the selection of adapted
combination rules.

In this new dissimilarity measure, DSmP provides the
most specific/optimistic transfer of masses of uncertainties
to singletons of the frame and by tuning the parameter ε
one can reach the maximum of the PIC while preserving the
numerical robustness of the result. So it is appropriate to use
DSmP instead of BetP if specific results are needed in some
applications. However DSmP requires more computation
resources than BetP . BetP transfers the belief committed
to ignorances in a very prudent/pessimistic way onto the
singletons of the frame. If we want to keep the nonspecific
results in case of very uncertain information, BetP can be
chosen instead of DSmP.

V. APPLICATION AND COMPARISONS OF OUR APPROACH

A. Determination of reliability factors for sources of evidence

Usually the evidences arising from different independent
sources are considered equally reliable in the combination
process, when the prior knowledge about the reliability of each
source is unknown. However, all the sources to combine can
have different reliability in real applications5. If the sources of
evidence are considered as equi-reliable, the unreliable ones
may bring a very bad influence in the combination result, and
even leads to inconsistent results and wrong decisions. Thus,
the reliability of each source must be taken into account in
the fusion process as best as possible to provide a useful and
unbiased result.

In this work, we propose to evaluate on the fly the reliability
of the sources to combine based on the dissimilarity measure.
From this reliability measure, one can then discount the
unreliable sources accordingly before applying a rule of
combination of bba’s. The reliability of the sources is related
with the difference among the belief functions under the
underlying principle that the ”Truth lies in the majority
opinion”. That’s why the distance measure plays a more
important role in the dissimilarity than the conflict coefficient

so that the weighting factor in dismP are chosen such that
1 ≥ γD > γC ≥ 0 with γD + γC = 1.

If there is a batch of n sources of evidence to combine,
the dissimilarity between each pair of sources can be obtained
following from (14). The mutual support degree among these
sources is then given by:

sup(mi,mj) = (1− dismP (mi,mj)λ)
1
λ (15)

For simplicity, one suggest to take λ = 1. The mutually
support degree n× n matrix is then defined by

S =




1 sup12 . . . sup1n

sup21 1 . . . sup2n
...

...
...

...
supn1 supn2 . . . 1


 (16)

where supij
∆= sup(mi,mj).

The Perron-Frobenius vector (the eigen vector associated
to the maximal positive eigen value ) of S is used as the
credibility factor denoted β = [β1, β2, . . . , βn]′, that is λmax ·
β = S · β.

The source with the largest reliability factor is considered
as totally credible, and there is no need to revise this source.
The other sources are discounted classically as follows:

{
m′

i(wj) = αi ·m′
i(wj), for wj 6= Θ

m′
i(Θ) = 1−∑

m′
i(wj)

(17)

where αi = βi/ max(β) which can be called the relative
reliability factor of the source no. i.

Example 9. Let’s consider the frame Θ = {θ1, θ2, θ3} with
Shafer’s model and the following five independent bba’s

m1 : m1(θ1) = 0.8,m1(θ2) = 0.1,m1(Θ) = 0.1
m2 : m2(θ1) = 0.4,m2(θ2) = 0.25,m2(θ3) = 0.2,

m2(θ2, θ3) = 0.15
m3 : m3(θ2) = 0.9,m3(θ3) = 0.1
m4 : m4(θ1) = 0.35,m4(θ2) = 0.1,m4(θ3) = 0.35,

m4(Θ) = 0.2
m5 : m5(θ1) = 0.3,m5(θ1, θ2) = 0.25,m5(θ3) = 0.1,

m5(Θ) = 0.35

We assume no prior knowledge about reliability of these
five sources of evidence. The weighting factors needed in
dismP formula are chosen here as γD = 1/1.5 = 2/3 and
γC = 0.5/1.5 = 1/3. The BetP and DSmP probabilistic
transformations of the bba’s are given in the following tables.

5They can also have different importances as well in some applications and a new method for dealing with the different importances of sources has been
developped recently in [17]. For sake of simplicity, we consider only the reliability of the sources in this paper.



Table 1. Probabilistic transformation by using BetP .

θ1 θ2 θ3 PIC(.)
BetPm1(.) 0.8333 0.1333 0.0333 0.5140
BetPm2(.) 0.5000 0.4250 0.0750 0.1767
BetPm3(.) 0 0.9000 0.1000 0.7041
BetPm4(.) 0.4167 0.1667 0.4167 0.0641
BetPm5(.) 0.5417 0.2417 0.2167 0.0837

Table 2. Probabilistic transformation by using DSmP .

θ1 θ2 θ3 PIC(.)
DSmPm1(.) 0.8887 0.1112 0.0001 0.6813
DSmPm2(.) 0.5230 0.4764 0.0006 0.3659
DSmPm3(.) 0 0.9000 0.1000 0.7041
DSmPm4(.) 0.4374 0.1252 0.4374 0.1048
DSmPm5(.) 0.8106 0.0017 0.1877 0.5494

From the tables 1 and 2, one sees that the PIC value
based on DSmP is larger than the one based on BetP ,
and the probabilities from DSmP are all more specific than
that from BetP . So we argue that the results of DSmP is
optimistic, whereas the results of BetP is more pessimistic.
The computation burden of DSmP is a bit larger than of
BetP .

The dissimilarity measures among these bba’s can be ob-
tained according to the formula (13) and (14). The degree of
mutually support is calculated by the formula (15) and the
support degree matrices are then given by

S(1) =




1.0000 0.7778 0.1944 0.7222 0.8056
0.7778 1.0000 0.5167 0.7722 0.8778
0.1944 0.5167 1.0000 0.3861 0.3986
0.7222 0.7722 0.3861 1.0000 0.8667
0.8056 0.8778 0.3986 0.8667 1.0000




S(2) =




1.0000 0.7562 0.1409 0.6991 0.8749
0.7562 1.0000 0.4944 0.7088 0.6835
0.1409 0.4944 1.0000 0.3522 0.1580
0.6991 0.7088 0.3522 1.0000 0.7512
0.8749 0.6835 0.1580 0.7512 1.0000




The two matrices are very similar, but there are still some
little differences. The mutual support degree among bba’s by
DSmP in matrix S(2) is smaller than that by BetP in matrix
S(1) in most cases. It indicates the dissimilarity by DSmP
is larger than that by BetP , especially for the dissimilarity
between m3 with respect to the others, since the probabilistic
transformation of m3(.) is invariant since m3(.) is already a
Bayesian bba, but the probabilities of the other bba’s become
more specific with the DSmP than with the BetP .

The eigenvectors of S(1) and S(2) associated with the
maximum positive eigenvalue are respectively

β(1) = [0.4505 0.4942 0.2761 0.4746 0.5013]′

β(2) = [0.4898 0.4879 0.2341 0.4788 0.4878]′

The relative reliability factors of the sources are then given by

α(1) = [0.8987 0.9859 0.5508 0.9468 1.0000]′

α(2) = [1.0000 0.9961 0.4778 0.9774 0.9959]′

As we can see m1, m2, m4 and m5 all assign their most
belief on θ1, but m3 oppositely commits its largest mass of
belief in θ2. m3 is then considered as less reliable based on the
aforementioned underlying principle, and this corresponding
source may be considered as a noisy source. The result of the
relative reliability factors agrees pretty well with our intuition.
The reliability factors of m3 in both α(1)(.) and α(2)(.)
are much smaller that the others, which leads an important
discounting of m3. Moreover, the factor of m3 in α(2)(.) is
even smaller than in α(1)(.) which indicates that m3 will be
discounted much more when using DSmP .

B. Selection of a combination rule

Many rules, like Dempster’s rule [15] and its alternatives
can be used to combine sources of evidences expressed by
bba’s, but they all have their drawbacks and advantages.
Dempster’s rule, is usually considered well adapted for com-
bining the evidences in low conflict situations and provide a
good comprise of complexity and specificity, but it involves
counter-intuitive behaviors when the sources of evidences
become highly conflicting. To palliate this drawback, several
interesting alternatives have been proposed when Dempster’s
rule doesn’t work well, mainly: Yager’s rule [21], DP rule [5],
and PCR5 [16]. The choice among PCR5, DP, and Yager’s
rule should depend on the actual application. PCR5 is very
appropriate to use in general for decision-making because it
provides the most specific fusion results, but it requires more
computational resources than other rules. If we want to keep
uncertain results and don’t necessarily need a very specific
decision in case of high conflict between sources, Yager’s rule
or DP rule can be selected instead.

The criteria of selection mainly concentrates on the amount
of conflict between belief functions. Therefore, the conflict
coefficient should be more effectual in the dissimilarity
measures when applied in selection of rules, and the weighting
factors must be selected such that 0 ≤ γD < γC ≤ 1 with
γD + γC = 1.

According to the properties of the combination rules, several
simple general principles are present in the selection process
by using the dissimilarity measures. Let m1 and m2 be two
independent bba’s, then the selection of the rule can be done
according the following algorithm:

1) If ConfP (k)(m1,m2) = 0, Dempster’s rule is used.
2) If ConfP (k)(m1,m2) ∈ (0, η(k)) and if

dismP (m1,m2) ∈ (0, µ(k)), Dempster’s rule could
be used only with caution, and its alternatives should
be used instead.

3) If ConfP (k)(m1,m2) ≥ η(k), Dempster’s alternative
rules must be used.



The tuning of thresholds η(k), µ(k) is not easy in general.
If the thresholds are too large, one takes the risk to get
counterintuitive results, whereas if they are set to too low
values the non specificity of the result will increase and even
will lead to take a decision under a big uncertainty. Therefore,
they need to be determined by users’ experience depending
on the actual application.

Example 10. Let’s consider the frame Θ = {θ1, θ2, θ3} with
Shafer’s model and the following four pairs of independent
bba’s {

m1
1(θ1) = 0.6,m1

1(θ2 ∪ θ3) = 0.4
m1

2(θ2) = 0.9,m1
2(θ3) = 0.1{

m2
1(θ2 ∪ θ3) = 0.7,m2

1(Θ) = 0.3
m2

2(θ1) = 0.4,m2
2(Θ) = 0.6{

m3
1(θ1) = 0.5,m3

1(θ2) = 0.3,m3
1(θ3) = 0.2

m3
2(θ1) = 0.5,m3

2(θ2) = 0.3,m3
2(θ3) = 0.2{

m4
1(θ1) = 0.8,m4

1(θ2) = 0.1,m4
1(Θ) = 0.1

m4
2(θ1) = 0.7,m4

2(θ2 ∪ θ3) = 0.3

In this example, the weighting factors have been chosen as
γC = 1/1.5 = 2/3, γD = 0.5/1.5 = 1/3 reflecting γC > γD,
and the thresholds for selecting the combination rule have been
taken as η(2) = η(1) = 0.5 and µ(1) = µ(2) = 0.5.

Table 3. Selection of rules based on BetP .

bba’s m⊕(∅) ConfP DistP dismP selection
m1

1,m
1
2 0.6 0.54 0.7 0.5933 Alternative

m2
1,m

2
2 0.28 0.27 0.5 0.3467 Caution

m3
1,m

3
2 0.62 0 0 0 Dempster’s

m4
1,m

4
2 0.31 0 0.1333 0.0444 Dempster’s

Table 4. Selection of rules based on DSmP .

bba’s ConfP DistP dismP selection
m1

1,m
1
2 0.54 0.7 0.5933 Alternative

m2
1,m

2
2 0.4487 0.8970 0.5981 Alternative

m3
1,m

3
2 0 0 0 Dempster’s

m4
1,m

4
2 0 0.1877 0.0629 Dempster’s

m1
1 and m1

2 are in high conflict, and Dempster’s rule will
be involved counterintuitive results. So its alternatives should
be selected. The degree of conflict between m2

1 and m2
2

lies in the caution zone by using BetP , but if DSmP is
applied, the dissimilarity will becomes larger, and even over
the threshold. Therfore, an alternative rule will be safer to use
in such conditions. Although the conflicting beliefs between
m3

1 and m3
2 is large, the two belief functions are actually the

same, and thus Dempster’s rule can be used according to the
choice of our setting parameters. For the fourth pair of bba’s,
the dissimilarity between m4

1 and m4
2 is small, and therefore

Dempster’s rule could be used to combine these two bba’s.
It is worth to note that the results based on dissimilarity

mesure with BetP or DSmP are very similar, but small
differences still exist. We have to select the probabilistic

transformation, BetP or DSmP , according the application
under consideration, and maybe they could be used together
in a more sophisticated process in future.

VI. CONCLUSIONS

In this paper, a new measurement of dissimilarity between
basic belief assignments (bba’s) has been proposed. The
notion of dissimilarity is rather difficult to represent by an
efficient scalar measure. After analyzing the limitation of the
classical dissimilarity measures based either on the degree
of conflict or on the distance measures, we have proposed a
new dissimilarity measure which mixes both the probabilistic-
based distances and a conflict coefficient and which uses BetP
and DSmP transformations. The distance measures mainly
captures the difference between two belief functions, whereas
the conflict coefficient measures the degree of divergence of
hypothesis that two belief functions strongly support. The
distance and conflict measures can be seen as complementary
for characterizing the different aspects of the dissimilarity
between two bba’s. The selection between BetP and DSmP
in the dissimilarity measure depends on the application.
DSmP is appropriate to use if specific results are needed
since it provides robust numerical results with highest PIC,
but it requires more computation resources. If one prefers to
get nonspecific results in case of very uncertain information,
BetP can be used instead. We have shown how to use the
dissimilarity to estimate the reliability factors of sources when
no prior knowledge is given on their reliabilities. Also several
simple principles for the selection of a combination rule have
been defined based on our new dissimilarity measure. The
numerical examples presented in this paper illustrate clearly
the potential interest of this new approach for applications
dealing with evidential reasoning.
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