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Abstract

In this paper, we propose a robust and efficient La-
grangian approach, which we call Delaunay Deformable
Models, for modeling moving surfaces undergoing large de-
formations and topology changes. Our work uses the con-
cept of restricted Delaunay triangulation, borrowed from
computational geometry. In our approach, the interface is
represented by a triangular mesh embedded in the Delau-
nay tetrahedralization of interface points. The mesh is it-
eratively updated by computing the restricted Delaunay tri-
angulation of the deformed objects. Our method has many
advantages over popular Eulerian techniques such as the
level set method and over hybrid Eulerian-Lagrangian tech-
niques such as the particle level set method: localization
accuracy, adaptive resolution, ability to track properties as-
sociated to the interface, seamless handling of triple junc-
tions. Our work brings a rigorous and efficient alternative
to existing topology-adaptive mesh techniques such as T-
snakes.

1. Introduction

Deformable models, also known in the literature
as snakes, active contours/surfaces, deformable con-
tours/surfaces, constitute a widely used computerized tech-
nique to address various shape reconstruction problems in
image processing. They have been initially proposed for the
purpose of image segmentation by Kass, Witkin and Ter-
zopoulos in [24], but they have proven successful in many
other contexts, in computer vision and in medical imaging,
including region tracking and shape from X. More gener-
ally, modeling dynamic interfaces between several materi-
als undergoing large deformations is a ubiquitous task in
science and engineering. Let us mention computer aided
design, physics simulation and computer graphics.

The existing techniques roughly fall into two categories:
Eulerian and Lagrangian formulations. It is commonly ad-

mitted that both viewpoints have strengths and weaknesses
and that only a hybrid approach can overcome the limita-
tions of both. In this paper, we propose a method which
has the particularity of being purely Lagrangian with all the
associated advantages, while achieving topological adaptiv-
ity with a comparable robustness and efficiency to Eulerian
methods.

1.1. Eulerian methods

The Eulerian formulation casts deformation as a time
variation of quantities defined over a fixed grid. The inter-
faces have to be represented implicitly, since the grid does
not conform to them. In computational physics, this is also
known as the front capturing method. Two notable front
capturing techniques are the level set method, introduced
by Osher and Sethian [34], and the volume-of-fluid (VOF)
method, pioneered by Hirt and Nichols [23].

Hereafter, we will mainly focus on the level set method
because it is an established technique in computer vision.
Basically, this method consists in representing the interface
as the zero level set of a higher-dimensional scalar function.
The movement of the interface can be cast as an evolution of
the embedding level set function by an Eulerian PDE (par-
tial differential equation). We refer the reader to some good
reviews [33, 40] for all the details about the theory, the re-
cent developments, the implementation and the applications
of the level set method.

On the one hand, this approach has several advantages
over an explicit Lagrangian representation of the interface:
no parameterization is needed, topology changes are han-
dled automatically, intrinsic geometric properties such as
normal or curvature can be computed easily from the level
set function. Last but not least, the theory of viscosity solu-
tions provides robust numerical schemes and strong math-
ematical results to deal with the evolution PDE. These ad-
vantages explain the popularity of the level set method not
only in computer vision but also for multi-phase fluid flow
simulation [42] in CFD (computational fluid dynamics), as



well as for computer animation of fluids with free surfaces
[18, 19, 20, 21, 28].

On the other hand, several serious shortcomings limit the
applicability of the level set method:

First, the higher dimensional embedding makes the level
set method much more expensive computationally than ex-
plicit representations. Much effort has been done to alle-
viate this drawback, leading to the narrow band methodol-
ogy [1] and to the PDE-based fast local level set method
[36]. More recently, octree decompositions have been pro-
posed [10, 19, 27, 28] to circumvent the typically fixed uni-
form sampling of the level set method, in order to reach
high resolution (typically an effective resolution of 5123)
while keeping the computational and memory cost sustain-
able. However, these methods somewhat lose the simplicity
of the original level set method, as an efficient implemen-
tation of such tree-based methods turns out to be a tricky
task.

Second, as discussed and numerically demonstrated by
Enright et al. in [18], the level set method is strongly af-
fected by mass loss, smearing of high curvature regions
and inability to resolve very thin parts. These limitations
have motivated the development of some hybrid Eulerian-
Lagrangian methods, such as the particle level set method
outlined by Foster and Fedkiw [21] and later improved
by Enright and coworkers [18, 19, 20]. While the latter
method yields state-of-the-art results, an objection could be
the large number of parameters controlling the particle re-
seeding strategy included in this approach.

Third, purely Eulerian formulation is not very appropri-
ate for tracking interface properties such as color or texture
coordinates, as may be needed in computer graphics appli-
cations. Some approaches based on a coupled system of Eu-
lerian PDEs were recently proposed to overcome this lim-
itation within the level set framework [2, 37, 46], but this
capability comes at a significant additional computational
cost.

1.2. Previous Lagrangian methods

The Lagrangian formulation adopts a more “natural”
point of view. It explicitly tracks the interfaces between
the different materials with some points advected by the
motion. There are mainly two classes of Lagrangian tech-
niques: mesh-based methods and particle-based methods.
We first tackle the mesh-based approach, which corre-
sponds to the so-called ”snake” methodology in computer
vision. and which is also known as the front tracking
method in computational physics. When dealing with large
deformations, this approach is hampered by distortion and
entanglement of the mesh, source of numerical instabilities
or even of breakdowns of the simulation. For instance, if
corners or cusps develop in the evolving front, front track-
ing methods usually form “swallowtail” solutions. These

defective parts of the interface must be detected, then re-
moved through intricate delooping procedures.

Another major shortcoming of the mesh-based La-
grangian approach is that a fully automatic, robust and effi-
cient handling of topology changes remains an open issue,
despite several heuristic solutions proposed in computer vi-
sion [8, 12, 13, 17, 25, 26, 30, 31].

McInerney and Terzopoulos [30, 31] propose topology
adaptive deformable curves and meshes, called T-snakes
and T-surfaces. During the evolution, the model is periodi-
cally resampled by computing its intersections with a regu-
lar simplicial decomposition of space. A labeling of the ver-
tices of the simplicial grid as inside or outside of the model
is maintained. This procedure loses the desirable adaptivity
of the Lagrangian formulation, by imposing a fixed uniform
spatial resolution. Also, not all motions are admissible: this
approach only works when the model inflates or deflates
everywhere, which considerably restricts the range of ap-
plications.

Several authors have proposed alternatives to the T-
snakes approach: Lachaud and coworkers [25, 26], Bredno
et al. [8], Duan and Qin [17], Delingette and Montagnat
[12, 13]. Basically, these approaches consist in detect-
ing self-intersections in the evolving mesh and in merg-
ing the colliding regions using a set of heuristic remeshing
rules. Unfortunately, the detection of intersection is com-
putationally expensive, even when optimizing pairwise dis-
tance computations with an octree structure. In practice, it
requires the most part of total computation time. Also, these
approaches lack a systematic and provably correct remesh-
ing strategy. Consequently, they are very likely to break in
some complex or degenerate practical cases.

This major shortcoming of mesh-based methods have
gained popularity to the particle-based approach [9, 14, 15,
22, 32, 35, 38, 43, 44] for representing dynamic interfaces
undergoing complex topology changes. However, it is gen-
erally admitted that with the meshless approach, the local-
ization of the interface and the computation of interface
properties such as normal and curvature gets cumbersome.

1.3. Novelty of our method

In this paper, we present a purely Lagrangian approach,
which combines the advantages of front tracking and front
capturing methods, while discarding their respective draw-
backs. Our work brings a robust and efficient solution to
remeshing and topological adaptivity for Lagrangian dy-
namic interfaces, thanks to the concept of restricted Delau-
nay triangulation, borrowed from computational geometry.
In our approach, the interface is represented by a triangular
mesh embedded in the Delaunay tetrahedralization of inter-
face points. Interestingly, this increase of dimension bears
similarity to the spirit of the level set method. This em-
bedding tetrahedralization enforces directly watertight in-



terfaces free of loops, swallowtails or self intersections at
all times. The mesh is iteratively updated by computing
the restricted Delaunay triangulation of the deformed ob-
jects. Thus, our approach does not need heuristic rules to
update the mesh connectivity. The proximity structure en-
coded in the Delaunay triangulation allows to detect topol-
ogy changes efficiently and to handle them naturally.

Moreover, improving the geometric quality and adapt-
ing the resolution of the deformable model is far easier than
in previous approaches, since the adequate connectivity is
automatically obtained through the restricted Delaunay tri-
angulation.

Being purely Lagrangian, our method does not suffer
from mass loss which plagues the level set method, and
can track material properties such as color or texture coordi-
nates during motion at no additional cost, while being free
of the localization problem of particle-based approaches.

Finally, our method is not limited to two-phase mo-
tion. It seamlessly accommodates any number of materi-
als, whereas this requires special care in most existing La-
grangian and Eulerian methods (cf for example [41] on the
treatment of triple junctions with the level set method). To
achieve this, it suffices to label each Delaunay tetrahedron
with the type of material it contains.

The remainder of this paper is organized as follows. Sec-
tion 2 gives some background on the basic computational
geometry concepts needed in our approach: Voronoi dia-
grams, Delaunay triangulations and restricted Delaunay tri-
angulations. Our algorithm is described in Section 3. In
Section 4, we demonstrate the applicability and the effi-
ciency of our approach with some numerical experiments,
including the multi-label segmentation of real medical im-
ages.

2. Background
2.1. Voronoi diagram and Delaunay triangulation

Voronoi diagrams are versatile structures which encode
proximity relationships between objects. They are particu-
larly relevant to perform nearest neighbors search and mo-
tion planning (e.g. in robotics), and to model growth pro-
cesses (e.g. crystal growth in materials science). Delaunay
triangulations, which are geometrically dual to Voronoi di-
agrams, are a classical tool in the field of mesh generation
and mesh processing due to its optimality properties.

Most of the following definitions are taken from [6]. We
also refer the interested reader to some recent computational
geometry textbooks [7, 11].

In the sequel, we call k-simplex the convex hull of k + 1
affinely independent points. For example, a 0-simplex is a
point, a 1-simplex is a line segment, a 2-simplex is a triangle
and a 3-simplex is a tetrahedron.

Let E = {p1, . . . , pn} be set of points in Rd. Note that

Figure 1. Left: Voronoi diagram of a set of points in the plane.
Right: Its dual Delaunauy triangulation.

in this work, we are mainly interested in d = 2 and d =
3. The Voronoi region, or Voronoi cell, denoted by V (pi),
associated to a point pi is the region of space that is closer
from pi than from all other points in E:

V (pi) = {p ∈ Rd : ∀j, ‖p− pi‖ ≤ ‖p− pj‖} . (1)

V (pi) is the intersection of n−1 half-spaces bounded by the
bisector planes of segments [pipj ], j 6= i. V (pi) is there-
fore a convex polytope, possibly unbounded. The Voronoi
diagram of E, denoted by Vor(E), is the partition of space
induced by the Voronoi cells V (pi).

See Figure 1 for a two-dimensional example of a Voronoi
diagram In two dimensions, the edges shared by two
Voronoi cells are called Voronoi edges and the points shared
by three Voronoi cells are called Voronoi vertices. Similarly,
in three dimensions, we term Voronoi facets, edges and ver-
tices the geometric objects shared by one, two and three
Voronoi cells, respectively. The Voronoi diagram is the col-
lection of all these k-dimensional objects, with 0 ≤ k ≤ d,
which we call Voronoi objects. In particular, note that
Voronoi cells V (pi) correspond to d-dimensional Voronoi
objects.

The Delaunay triangulation Del(E) of E is defined as
the geometric dual of the Voronoi diagram: there is an edge
between two points pi and pj in the Delaunay triangula-
tion if and only if their Voronoi cells V (pi) and V (pj) have
a non-empty intersection. It yields a triangulation of E,
that is to say a partition of the convex hull of E into d-
dimensional simplices (i.e. into triangles in 2D, into tetra-
hedra in 3D and so on).

The fundamental property of the Delaunay triangulation
is called the empty circle (resp. empty sphere in 3D) prop-
erty: in 2D (resp. in 3D), a triangle (resp. tetrahedron)
belongs to the Delaunay triangulation if and only if its cir-
cumcircle (resp. circumsphere) does not contain any other
points of E.

The algorithmic complexity of the Delaunay triangula-
tion of n points is O(n log n) in 2D, and O(n2) in 3D. For-
tunately, as was recently proven in [4], the complexity in
3D drops to O(n log n) when the points are distributed on a
smooth surface, which is the case of interest here.



Figure 2. Left: The Delaunay triangulation restricted to the blue
curve is plotted with a thick red line. Right: The Delaunay tri-
angulation restricted to the region bounded by the blue curve is
composed of the filled red triangles, whose circumcenters (blue
crosses) are inside the region.

2.2. Restricted Delaunay triangulation

Each k-simplex in the Delaunay triangulation is dual to
a (d − k)-dimensional Voronoi object. For instance, in 3D,
the dual of a Delaunay tetrahedron is the Voronoi vertex
which coincides with the circumcenter of the tetrahedron,
the dual of a Delaunay facet is a Voronoi edge, the dual
of a Delaunay edge is a Voronoi facet, and the dual of a
Delaunay vertex pi is the Voronoi cell V (pi).

Given a subset Ω ∈ Rd, typically a manifold of dimen-
sion k ≤ d, we call the Delaunay triangulation of E re-
stricted to Ω, and we note Del|Ω(E) the subcomplex of
Del(E) composed of the Delaunay simplices whose dual
Voronoi objects intersect Ω. For example, in 2D, as il-
lustrated in Figure 2 (left), the Delaunay triangulation re-
stricted to a curve C is composed of the Delaunay edges
whose dual Voronoi edges intersect C. Similarly, as shown
in Figure 2 (right), the Delaunay triangulation restricted to
a region R is composed of the Delaunay triangles whose
circumcenters are contained in R. The attentive reader may
have noticed that in both cases the restricted Delaunay tri-
angulation forms a good approximation of the object.

Actually, this is a general property of the restricted De-
launay triangulation. It can be shown that, under some as-
sumptions, and especially if E is a ”sufficiently dense” sam-
ple of Ω, in some sense defined in [3], Del|Ω(E) is a good
approximation of Ω, both in a topological and in a geomet-
ric sense: as regards topology, Del|Ω(E) is homeomorphic
to Ω; as regards geometry, the Hausdorff distance between
Del|Ω(E) and Ω can be made arbitrarily small; normals
and curvatures of Ω can be consistently approximated from
Del|Ω(E).

Based on these approximation properties, a family of
provably correct algorithms for mesh generation and mesh
reconstruction from point clouds have been designed in the
last decade. We refer the reader to [6] and references therein
for more details.

Figure 3. Embedding labeled Delaunay triangulation, including
three materials and triple junctions. The different materials are
color-coded. Thick red edges indicate the interfaces between dif-
ferent materials.

3. Methods

3.1. Embedding labeled Delaunay triangulation

A determinant feature of our approach is that the deform-
ing objects and the interfaces between them are modeled as
a subset of the Delaunay simplices of a point sample E.

More specifically, each tetrahedron of Del(E) is labeled
with the type of material it contains. For instance, in a
multi-phase fluid simulation, each tetrahedron would be
mapped to one of the phases. This information, that we
call for short the label of a tetrahedron, can be conveniently
represented by an integer value. The interfaces of interest
are embedded in the Delaunay triangulation: they are com-
posed of the triangular facets adjacent to two tetrahedra hav-
ing different labels.

This representation has many virtues. It automatically
enforces watertight interfaces. It seamlessly accommodates
any number of materials. It makes the request of the type of
material at some point inexpensive, since there exist very ef-
ficient location algorithms dedicated to triangulations [11].
An example of this embedding Delaunay triangulation in
2D, including three materials with some triple junctions, is
displayed in Figure 3.

3.2. Algorithm

We now describe how our embedding labeled Delaunay
triangulation is consistently updated during motion, in or-
der to faithfully reflect the deformations and the topology
changes of the different materials. For sake of simplicity,
the following description only deals with the case of two
materials (inside and outside), the most common in practice.
However, the described algorithm extends to any number of
materials with a few minor changes.

Let us denote by En the point sample at iteration n, and
by Dn the subset of the embedding Delaunay triangulation
which is labeled as inside, i.e. foreground objects, at the cor-
responding time. The core idea of our approach is to obtain
Dn by taking the Delaunay triangulation of En restricted to



some region Ωn:

Dn = Del|Ωn(En) . (2)

Given the approximation properties of the restricted Delau-
nay triangulation evoked in the previous section, this ap-
proach is valid as soon as En is a good point sample of the
interfaces and Ωn faithfully represents the interior of ob-
jects.

With this construction on hand, we only need to compute
the point sample En+1 at the subsequent iteration and the
domain Ωn+1 after deformation, given the current En and
Ωn. As for the connectivity of interface meshes, it is au-
tomatically determined through Equation (2). No heuristic
and intricate remeshing rule is needed, as opposed to previ-
ous work [8, 12, 13, 17, 25, 26].

En+1 is obtained simply by advecting the points in En

with the desired velocity field, then by adapting the sam-
pling resolution if needed. Specifically, for each pair of
points of En corresponding to an interface edge in Dn:

• if the distance between the two displaced points is too
small, the points are discarded and replaced by their
midpoint in En+1;

• otherwise, the displaced points are included in En+1;

• if the distance between the two displaced points is too
large, their midpoint is also added to En+1.

Of course, the aforementioned length thresholds may be de-
pendent on the input data or on the geometry of the interface
itself, e.g. on the structure tensor of the image as in [26], or
on the curvature of the object. Also, we emphasize that,
in contrast with existing approaches, the above resampling
procedure can be applied without taking care of the connec-
tivity of interface meshes. Again, the adequate connectivity
after resampling is recovered through Equation (2).

The ability of our approach to deal with topology
changes is intimately related to the computation of the do-
main of objects after deformation. Ωn+1 is obtained as
the union of tetrahedra in Dn, after advecting their vertices
with the velocity field, and after discarding tetrahedra which
have become inverted. This can be written as

Ωn+1 =
⋃
{T̃ | T ∈ Dn, orientation(T̃ ) > 0} , (3)

where T denotes a tetrahedron and T̃ is the same tetrahe-
dron after displacement.

For sake of clarity, the different substeps of an iteration
of our algorithm are illustrated in Figure 4 (a-f), in two di-
mensions:

• (a) shows the embedding triangulation Dn before de-
formation.

• (b) shows the triangulation after deformation, with its
connectivity kept constant. Note that it is no longer
a valid geometric triangulation, since there are some
inverted triangles, dotted with yellow edges.

• (c) shows the domain Ωn+1, i.e. the union of displaced
triangles still having a correct orientation. Note that
this domain accounts for the change in topology.

• (d) shows the Delaunay triangulation of the new point
sample En+1 along with the associated circumcenters,
dotted with blue crosses.

• (e) shows the Delaunay triangulation of En+1 re-
stricted to the domain Ωn+1. It is obtained by label-
ing Delaunay triangles as inside if the circumcenters
displayed in (d) are inside the domain shown in (c).

• In some cases, especially after a topology change,
some vertices of the new triangulation may be sur-
rounded by simplices all sharing the same label. In
the example shown in (e), four vertices are in this case.
These vertices are of no use for representing the in-
terfaces, so they are removed from the triangulation,
yielding the final embedding Delaunay triangulation to
be used in the next iteration, shown in (f).

As regards removing useless points in the last substep
of each iteration, using a Delaunay triangulation rather than
an arbitrary triangulation plays an important role in 3D. In-
deed, although it may be impossible to tetrahedralize the
hole created by removing a point from an arbitrary 3D tri-
angulation [39], it is always possible in a 3D Delaunay tri-
angulation, and there exist efficient algorithms to do it [16].

4. Numerical experiments
By using CGAL (Computational Geometry Algorithms

Library, homepage: www.cgal.org) [5], we have been able
to implement our approach with only 1000 lines of C++
code. CGAL defines all the needed geometric primitives
and provides an excellent algorithm to compute the Delau-
nay triangulation in 3D: it is robust to degenerate configu-
rations and floating-point error, thanks to the use of exact
geometric predicates, while being able to process millions
of points per minute on a standard workstation. As regards
the efficient computation of the restricted Delaunay trian-
gulation, which requires to test if a point intersects a ”soup”
of tetrahedra, we use a segment tree data structure [11], also
implemented in CGAL.

4.1. Imbricated toruses

In our first experiment, we demonstrate that our ap-
proach naturally handles topology changes and resolution



(a) (b) (c) (d) (e) (f)
Figure 4. Substeps of one iteration of our algorithm (see text).

adaptivity, by segmenting a synthetic image of two imbri-
cated toruses, starting from a sphere. The obtained evolu-
tion is shown in Figure 5. Note that we have purposely en-
forced different resolutions in the lower and upper parts of
the object. Whereas this is straightforward to achieve with
our approach, it is intricate when using Eulerian techniques
such as the level set method.

In this experiment, the number of iterations to reach con-
vergence is 120, the number of vertices ranges from 8,000
to about 22,000 along the evolution, and the total com-
putation time is 171 s. Thus, the efficiency of our algo-
rithm is comparable to the recent work of Lachaud and
Taton [26]: roughly one second per iteration for 10,000 ver-
tices. Comparing these timings to other related methods
[8, 12, 13, 17, 30, 31] turned out to be a tricky task, due
to missing information such as number of iterations, num-
ber of vertices, or hardware specifications. Moreover, as the
complexity of these algorithms is not linear, a fair compar-
ison would suppose to use the same number of vertices, if
not the same dataset.

4.2. Medical image segmentation

In our second experiment, we apply our approach to the
segmentation of real 3D medical data. In order to demon-
strate the ability of our approach to seamlessly handle any
number of materials, we use three different labels: air, soft
tissues (skin, muscles, . . . ) and bone. We set the velocity
of the model to a combination of mean curvature motion
and of a region-based data attachment term (see [29, 45]
for more details). Figure 6 shows the input CT image that
drives the motion and the different stages of the evolution.
Note how the initial random seeds corresponding to the dif-
ferent tissues grow and progressively merge, while creating
triple junctions, until they successfully partition the head.

Some movies of these experiments are available as sup-
plemental material. Also, we plan to make our code avail-
able at the time of the conference.

5. Conclusion and future work

We have proposed a robust and efficient Lagrangian ap-
proach for modeling dynamic interfaces between differ-
ent materials undergoing large deformations and topology

changes, based on the rigorous concept of restricted Delau-
nay triangulation, borrowed from computational geometry.
We have demonstrated the applicability and the efficiency
of our approach with some numerical experiments, includ-
ing the multi-label segmentation of real medical images. As
our algorithm easily extends to any number of dimensions,
our future work includes investigating its effectiveness in
4D, e.g. for dynamic scene reconstruction from multi-view
image sequences, or for spatio-temporal MRI segmentation.
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Figure 5. From left to right and top to bottom, different stages of the segmentation of two imbricated toruses, starting from a sphere, using
a non-uniform sampling resolution.

(a) (b) (c)

(d) (e) (f)
Figure 6. Application to multi-tissue medical image segmentation: (a) Some cuts of the input CT image. (b) Random initial seeds (soft
tissues in pink, bone in white). (c-d) Different stages of the evolution. (e) Final three-material reconstruction. Note that the head positioning
system is segmented as bone, which creates triple junctions in the final reconstruction. (f) Final bone surface.


