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Two proofs of the Bermond-Thomassen
conjecture for tournaments with bounded

minimum in-degree

Stéphane Bessy∗ Nicolas Lichiardopol†

Jean-Sébastien Sereni‡

Abstract

The Bermond-Thomassen conjecture states that, for any positive
integer r, a digraph of minimum out-degree at least 2r−1 contains at
least r vertex-disjoint directed cycles. Thomassen proved that it is true
when r = 2, and very recently the conjecture was proved for the case
where r = 3. It is still open for larger values of r, even when restricted
to (regular) tournaments. In this paper, we present two proofs of this
conjecture for tournaments with minimum in-degree at least 2r − 1.
In particular, this shows that the conjecture is true for almost regular
tournament. In the first proof, we prove auxiliary results about union
of sets contained in other union of sets, that might be of independent
interest. The second one uses a more graph-theoretical approach, by
studying the properties of a maximum set of vertex-disjoint directed
triangles.

1 Introduction

In 1981, Bermond and Thomassen [2] conjectured that for any positive integer
r, any digraph of minimum out-degree at least 2r − 1 contains at least r
vertex-disjoint directed cycles. It is trivially true when r is one, and it was
proved by Thomassen [7] when r is two in 1983. Very recently, the conjecture
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was also proved in the case where r is three [6]. It is still open for larger
values of r. We prove, in two different ways, that the restriction of this
conjecture to almost regular tournaments is true.

Chen, Gould and Li [3] proved that a k-strongly-connected tournament
of order at least 5k − 3, contains k vertex-disjoint directed cycles. Given a
tournament T , let q(T ) be the maximum order of a transitive subtournament
of T . Li and Shu [4] showed that any strong tournament T of order n with
q(T ) ≤ n−5k+8

2
can be vertex-partitioned into k cycles. However, these results

do not prove the Bermond-Thomassen conjecture for regular tournaments.
The following definitions are those of the monograph by Bang-Jensen and

Gutin [1]. A tournament is a digraph T such that for any two distinct vertices
x and y, exactly one of the couples (x, y) and (y, x) is an arc of T . The vertex
set of T is V (T ), and its cardinality is the order of T . The set of arcs of T
is A(T ). A vertex y is a successor of a vertex x if (x, y) is an arc of T . A
vertex y is a predecessor of a vertex x if x is a successor of y. The number of
successors of x is the out-degree δ+(x) of x, and the number of predecessors
of x is the in-degree δ−(x) of x. Let δ+(T ) := min{δ+(x) : x ∈ V (T )},
δ−(T ) := min{δ−(x) : x ∈ V (T )} and δ(T ) := min{δ+(T ), δ−(T )}.

Given a tournament T , its reversing tournament is the tournament T ′ =
(V (T ),A′), where A′ := {(x, y) : (y, x) ∈ A(T )}. A tournament is regular
of degree d if δ+(x) = δ−(x) = d for every vertex x. Necessarily, the order
of such a tournament is 2d + 1. It is almost regular if |δ+(x) − δ−(x)| ≤ 1
for every vertex x. An almost regular tournament of odd order is regular,
and an almost regular tournament T of even order v is characterised by
δ+(T ) = δ−(T ) = v

2
− 1.

For any subset A of V (T ), we let T (A) be the sub-tournament induced
by the vertices of A. By a path or a cycle of a tournament T , we mean a
directed path or a directed cycle of T , respectively. By disjoint cycles, we
mean vertex-disjoint cycles. A cycle of length three is a triangle.

A tournament is acyclic, or transitive, if it does not contain cycles, i.e. if
its vertices can be ranged into a unique Hamiltonian path x1, . . . , xn such that
(xi, xj) is an arc if and only if i < j. As is well-known, and straightforward
to prove, a non-acyclic tournament contains a triangle. In particular, note
that if a tournament contains k disjoint cycles, then it contains k disjoint
triangles.
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2 Preliminary results

Let (x, y) be an arc of a tournament T . We set

A(x, y) := {z ∈ V (T ) : (z, x) ∈ A(T ) and (z, y) ∈ A(T )},
B(x, y) := {z ∈ V (T ) : (x, z) ∈ A(T ) and (y, z) ∈ A(T )},
E(x, y) := {z ∈ V (T ) : (z, x) ∈ A(T ) and (y, z) ∈ A(T )}, and

F (x, y) := {z ∈ V (T ) : (x, z) ∈ A(T ) and (z, y) ∈ A(T )}.

Note that E(x, y) is the set of vertices z such that x, y and z form a triangle.
We let a(x, y), b(x, y), e(x, y) and f(x, y) be the respective cardinalities of
these four sets. The proof of the following proposition is straightforward,
and can be found in [5], so we omit it.

Proposition 2.1. If (x, y) is an arc of a tournament, then e(x, y) = f(x, y)+
δ+(y)− δ+(x) + 1.

A set of cardinality m is an m-set. We give now three new results, which
may be of independent interest. The first one is essential in our first proof
of the Bermond-Thomassen conjecture for almost regular tournaments.

Theorem 2.2. Fix two integers m ≥ 3 and r ≥ 1. Let n ∈ {1, 2, . . . , r}
and s =

⌈
r+m−1

2

⌉
. For every i ∈ {1, 2, . . . , n}, let Bi be an m-set, and

for every j ∈ {1, 2, . . . , s}, fix a set Aj ⊆
⋃

1≤i≤n Bi of cardinality at least
r + m + 1 − 2j. Then, there exist i ∈ {1, 2, . . . , n} and distinct elements j
and k of {1, 2, . . . , s} such that Bi has distinct elements x and y with x ∈ Aj

and y ∈ Ak.

Proof. If n < r, then proving the result for the sets B′
1, B

′
2, . . . , B

′
r with

B′
i = Bi if i ≤ n and B′

i = Bn if i > n will yield the desired conclusion. So,
we suppose now that n = r, and we use induction on r.

Observe that it is sufficient to prove that there exist i ∈ {1, 2, . . . , n} and
distinct integers j, k ∈ {1, 2, . . . , s} such that |Aj∩Bi| ≥ 1 and |Ak∩Bi| ≥ 2.

The assertion is true when r = 1. Indeed, in this case, s =
⌈

1+m−1
2

⌉
=⌈

m
2

⌉ ≥ 2, |A1| ≥ m ≥ 3, |A2| ≥ m − 2 ≥ 1 and B1 is an m-set such that
Ai ⊆ B1 for i ∈ {1, 2, . . . , s}. Therefore, |A1 ∩ B1| ≥ 3 and |A2 ∩ B1| ≥ 1,
which yields the desired conclusion.

The assertion is true also for r = 2. Indeed, in this case, s =
⌈

2+m−1
2

⌉
=⌈

m+1
2

⌉ ≥ 2, |A1| ≥ m + 1 ≥ 4, |A2| ≥ m − 1 ≥ 2 and A1 ∪ A2 ⊆ B1 ∪ B2.
Clearly, A1 ∩ B1 6= ∅ — otherwise B2 would contain A1, which has at least
m+1 elements — and similarly, A1∩B2 6= ∅. If |A1∩B1| ≥ 2 and |A1∩B2| ≥
2, then the result holds. Otherwise, we have, say, |A1 ∩ B1| = 1 and hence
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|A1 ∩ B2| = m. Now, either |A2 ∩ B1| ≥ 2 or |A2 ∩ B2| ≥ 1, so the result
holds.

Suppose now that the assertion is true for every k < r, for some integer
r ≥ 3, and let us prove it for r. Then, s =

⌈
r+m−1

2

⌉ ≥ 3, |A1| ≥ r + m − 1
and |A2| ≥ r + m − 3 ≥ r. Without loss of generality, we assume that
|B1 ∩ A1| ≥ |B2 ∩ A1| ≥ · · · ≥ |Br ∩ A1|.

Suppose first that |B2 ∩ A1| ≤ 1. Then, B2 ∪ · · · ∪ Br contains at most
r − 1 elements of A1 and B1 ∪ B2 ∪ · · · ∪ Br contains at least r + m − 1
elements of A1. So, we deduce that |B1 ∩ A1| = m and |Bi ∩ A1| = 1 for
every i ∈ {2, 3, . . . , r}. The assertion of the theorem holds if |B1 ∩ A2| ≥ 1.
If |B1∩A2| = 0, then there exists i ∈ {2, 3, . . . , r}, such that |Bi∩A2| ≥ 2 —
otherwise we would have |(B1 ∪B2 ∪ · · · ∪ Br) ∩ A2| ≤ r−1, a contradiction.
Clearly, Bi contains distinct elements x and y with x ∈ A1 and y ∈ A2.

Suppose now that |B2∩A1| ≥ 2. In this case, |B1∩A1| ≥ 2, |B2∩A1| ≥ 2
and the desired conclusion holds if B1∪B2 contains an element of A2∪· · ·∪As.
If B1 ∪ B2 does not contain an element of A2 ∪ · · · ∪ As, let A

′
i := Ai+1 for

i ∈ {1, 2, . . . , s−1}. We have s−1 =
⌈

r−2+m−1
2

⌉
, |A′

i| ≥ r−2+m+1−2i and

A
′
i ⊆

⋃
3≤j≤r

Bj for i ∈ {1, 2, . . . , s−1}. Therefore, by the induction hypothesis

there exist i ∈ {3, . . . , r} and distinct elements j and k of {2, . . . , s} such
that Bi contains distinct elements x and y with x ∈ Aj and y ∈ Ak, which
concludes the proof.

The second and third results can be proved analogously, and we omit
their proofs.

Theorem 2.3. Fix two integers m ≥ 3 and r ≥ 2. Let n ∈ {1, 2, . . . , r}, and
for every i ∈ {1, 2, . . . , n}, denote by Bi an m-set. For every j ∈ {1, 2, . . . , r},
let Aj ⊆

⋃
1≤i≤n Bi with |Aj| ≥ r+m+1−2j. Then, there exist i ∈ {1, . . . , n}

and distinct elements j and k of {1, . . . , r} such that Bi has distinct elements
x and y with x ∈ Aj and y ∈ Ak.

The best result is a combination of the first two.

Theorem 2.4. Fix two integers m ≥ 3 and r ≥ 2. Let n ∈ {1, 2, . . . , r} and
set s = min

(⌈
r+m−1

2

⌉
, r

)
. For i ∈ {1, 2, . . . , n}, denote by Bi an m-set, and

for every j ∈ {1, 2, . . . , s}, let Aj ⊆
⋃

1≤i≤n Bi with |Aj| ≥ r + m + 1 − 2j.
Then, there exist i ∈ {1, . . . , n} and distinct elements j and k of {1, . . . , s}
such that Bi has distinct elements x and y with x ∈ Aj and y ∈ Ak.
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3 Disjoint cycles in tournaments T with δ(T ) ≥
2r − 1

In this section, we give two different proofs of the following result.

Theorem 3.1. For any r ≥ 1, every tournament T with δ(T ) ≥ 2r − 1
contains r disjoint cycles.

Proof. The case r = 1 being a simple observation, we assume that r ≥ 2.
Let v be the order of T , and let n be the maximum number of disjoint cycles
of T . Thus, n is also the maximum number of disjoint triangles: let Ti,

i ∈ {1, 2, . . . , n} be n disjoint triangles. Let V ′ := V (T ) \
⋃

1≤j≤n

V (Tj) and

p := |V ′|. Suppose that n ≤ r− 1. Thus, p ≥ v− 3(r− 1), that is p ≥ r + 2,
since v ≥ 4r−1. The subtournament T (V ′) is acyclic — otherwise, we would
have an extra cycle — and, consequently, its vertices can be ranged into a
Hamiltonian path x1, . . . , xp such that (xi, xj) is an arc of T (V ′) if and only
if i < j, see Figure 1.

. . .

x1 x2 x3 xpxp−1xp−2xr+1xr

. . . . . .

TnT1

Figure 1: Disjoint triangles and Hamiltonian path of T(V’)

For i ∈ {
1, 2, . . . ,

⌈
r+1
2

⌉}
, consider the arc (xi, xp+1−i): each vertex xj

with j ∈ {i + 1, i + 2, . . . , r + 2− i} belongs to F (xi, xp+1−i). Therefore,

f(xi, xp+1−i) ≥ p− 2i ≥ v − 3n− 2i.

By Proposition 2.1,

e(xi, xp+1−i) ≥ p− 2i + δ+(xp+1−i)− δ+(xi) + 1.

Since 2r − 1 ≤ δ+(x) ≤ v − 2r for every vertex x, we deduce that

e(xi, xp+1−i) ≥ v − 3n− 2i + 2r − 1− (v − 2r) + 1 ≥ (r − 1) + 3 + 1− 2i,

as n ≤ r − 1.
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Observe now that every vertex of E(xi, xp+1−i) forms a triangle with the
vertices xi and xp+1−i. Moreover, as T (V ′) is acyclic, we have E(xi, xp+1−i) ⊆⋃
1≤j≤n

V (Tj) for i ∈ {
1, 2, . . . ,

⌈
r+1
2

⌉}
. Hence, the conditions of Theorem 2.2

are fulfilled — the r of the theorem being r − 1, m being three, s =
⌈

r+1
2

⌉
,

Ai = E(xi, xp+1−i) and Bj = V (Tj). Consequently, with s =
⌈

r+1
2

⌉
, there

exist i ∈ {1, · · · , n} and distinct elements j and k of {1, · · · , s} such that
V (Ti) contains distinct vertices x and y with x ∈ E(xj, xp+1−j) and y ∈
E(xk, xp+1−k). Each Tq, for q ∈ {1, 2, . . . , n} \ {i}, and the tournaments
induced by xj, xp+1−j, x and by xk, xp+1−k, y are n+1 disjoint triangles, which
contradicts the definition of n. Therefore, T contains at least r disjoint cycles,
as desired.

Second proof of Theorem 3.1. As mentioned in the Introduction, Thomassen [7]
proved the conjecture in the general case for r ≤ 2, and the general case for
r = 3 was recently proved [6]. Thus, we assume in this proof that r ≥ 4.

Suppose that V ′ is a subset of at least 6 vertices such that T (V ′) is acyclic.
Let {x1, x2, . . . , xp} be the vertices of V ′, indexed such that (xi, xj) is an arc
if and only if i < j. We set AV ′ := {x1, x2, x3} and BV ′ := {xp−2, xp−1, xp}.
For a vertex x, let s−V ′(x) be the in-score of x with respect to V ′, that is the
number of predecessors of x in BV ′ . Analogously, s+

V ′(x) is the out-score of
x with respect to V ′, that is is the number of successors of x in AV ′ . Given a
subgraph H of T , the in-score of H with respect to V ′ is

s−V ′(H) :=
∑

x∈V (H)

s−V ′(x).

We define s+
V ′(H), the out-score of H with respect to V ′, analogously regard-

ing the outscores of the vertices of H. Last, the score of H with respect to
V ′ is sV ′(H) = s−V ′(H) + s+

V ′(H). In all these notations, we may omit the
subscript if the context is clear.

As in the first proof, let n be the maximum number of disjoint triangles,
and consider a family Ti, i ∈ {1, 2, . . . , n}, of n disjoint triangles. We set

V ′ := V (T ) \
⋃

1≤j≤n

V (Tj) and p := |V ′|. Again, we consider the Hamiltonian

path x1, . . . , xp of the acyclic tournament T (V ′) such that (xi, xj) is an arc
of T (V ′) if and only if i < j.

Suppose that n ≤ r− 1. Then, we obtain that p ≥ 4r− 1− 3(r− 1), that
is p ≥ r + 2, and hence p ≥ 6 since r ≥ 4.

For each triangle Ti, we have s−(Ti) ≤ 9 and s+(Ti) ≤ 9. If s−(Ti) ≥ 7
and s+(Ti) ≥ 4, then there exists a matching of size three from BV ′ to Ti,
and a matching of size two from Ti to AV ′ . Therefore, T (AV ′ ∪BV ′ ∪ V (Ti))
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contains two disjoint triangles, which contradicts the maximality of n. Thus,
either s−(Ti) ≤ 6 or s+(Ti) ≤ 3. Similarly, either s+(Ti) ≤ 6 or s−(Ti) ≤ 3.

We assert that s(Ti) ≤ 12 for each triangle Ti: indeed, if s−(Ti) > 6, then
s+(Ti) ≤ 3, and since s−(Ti) ≤ 9, we infer that s(Ti) ≤ 12. In the same way,
if s+(Ti) > 6, one can deduce that s(Ti) ≤ 12. Finally, if s−(Ti) ≤ 6 and
s+(Ti) ≤ 6, we also have s(Ti) ≤ 12. Hence, the sum s of the scores of the n
triangles is at most 12n.

Observe that the vertices xp, xp−1 and xp−2 have δ+(xp), δ
+(xp−1)−1 and

δ+(xp−2) − 2 successors in
⋃

1≤j≤n

V (Tj), respectively. Moreover, the vertices

x1, x2 and x3 have respectively δ−(x1), δ
−(x2)−1 and δ−(x3)−2 predecessors

in
⋃

1≤j≤n

V (Tj). It follows that

s = δ+(xp) + δ+(xp−1) + δ+(xp−2) + δ−(x1) + δ−(x2) + δ−(x3)− 6.

Therefore, it holds that

δ+(xp)+δ+(xp−1)+δ+(xp−2)+δ−(x1)+δ−(x2)+δ−(x3)−6 ≤ 12n ≤ 12r−12.

Recall that δ+(x) ≥ 2r − 1 and δ−(x) ≥ 2r − 1 for every vertex x. Thus,
we infer that δ+(xp) = δ+(xp−1) = δ+(xp−2) = δ−(x1) = δ−(x2) = δ−(x3) =
2r−1 n = r−1 and s(Ti) = 12 for every triangle Ti. Note that this assertion
holds for any set on n disjoint triangles — their score being with respect to
the remaining vertices.

For each integer i ∈ {4, 5, . . . , p−3}, the vertex xi belongs to F (x3, xp−2),
and hence f(x3, xp−2) ≥ p− 6. Therefore, by Proposition 2.1,

e(x3, xp−2) ≥ p− 6 + δ+(xp−2)− δ+(x3) + 1

≥ v − 3(r − 1)− 6 + (2r − 1)− (v − 1− 2r + 1) + 1

≥ r − 3 ≥ 1.

Consequently, there exists a vertex x of some triangle Tj such that the ver-
tices x3, xp−2, x induce a triangle T ′. Let y and z be the vertices of Tj different
from x. The triangles T ′ and Ti for i 6= j form a new collection of n disjoint
triangles, and V ′′ := (V ′ \ {x3, xp−2})∪{y, z} is the set of the remaining ver-
tices. Consider now the set AV ′′ : observe that x3 has at most two successors
in AV ′′ , and it can have two only if both y and z belong to AV ′′ . Furthermore,
the predecessors of x3 in BV ′′ can only be y and z. Therefore, it follows that
s−V ′′(x3)+s+

V ′′(x3) ≤ 3 with equality only if both y and z belong to BV ′′ . Sim-
ilarly, s−V ′′(xp−2) + s+

V ′′(xp−2) ≤ 3 with equality only if both y and z belong
to AV ′′ . Thus, the score of the triangle T ′ with respect to V ′′ is at most 11,
a contradiction. This concludes the proof.
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