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STABLE GROUND STATES FOR THE GRAVITATIONAL

VLASOV-MANEV SYSTEM

MOHAMMED LEMOU, FLORIAN MÉHATS, AND CYRIL RIGAULT

Abstract. In this work, we prove the orbital stability of ground state stationary
solutions to the so-called Vlasov-Manev (VM) system. This system is a kinetic
model which has a similar Vlasov structure as the classical Vlasov-Poisson sys-
tem, but is coupled to a potential in −1/r−1/r2 (Manev potential) instead of the
usual gravitational potential in −1/r, and in particular the potential field does
not satisfy a Poisson equation but a fractional-Laplacian equation. The ground
states are constructed as minimizers of the Hamiltonian, and the orbital stability
is deduced both from the compactness of minimizing sequences and the rigid-
ity of the flow. In driving this analysis, there are two mathematical obstacles:
the first one is related to the possible blow-up of solutions to the VM system,
which we overcome by imposing a sub-critical condition on the constraints of the
variational problem. The second difficulty (and the most important) is related
to the nature of the Euler-Lagrange equations (fractional-Laplacian equations)
to which classical results for the Poisson equation do not extend. In this paper
we prove the uniqueness of the minimizer under equimeasurabilty constraints,
without using Euler-Lagrange equations.

1. Introduction and main results

In this paper, we study the stability of steady states to the Vlasov-Manev (VM)
model for gravitational systems. In this mean field kinetic model, the usual New-
tonian interaction potential is replaced by the so-called Manev potential. This
potential, which was studied in particular by Manev in the 1920’ in order to ex-
plain some observed phenomena in planetary systems [16, 17, 18, 19], corrects the
Newtonian gravitational potential as follows:

U(x) = − 1

4π|x| −
κ

2π2|x|2 ,

where κ is a positive constant. Further physical studies of this potential can be
found in [7].

Taking into account this correction, the standard Vlasov-Poisson system is re-
placed by the following Vlasov-Manev system:





∂tf + v · ∇xf −∇xφf · ∇vf = 0, (t, x, v) ∈ R+ × R
3 × R

3,

f(t = 0, x, v) = f0(x, v) ≥ 0,
(1.1)

in which f = f(t, x, v) ≥ 0 is a distribution function and φf the associated potential
defined as follows. We have

φf (t, x) = φPf + κφMf , (1.2)
1
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where φPf and φMf are respectively the Poisson potential and the Manev potential
of f given by:

φPf (t, x) = −
∫

R3

ρf (t, y)

4π|x− y|dy, φMf (t, x) = −
∫

R3

ρf (t, y)

2π2|x− y|2dy, (1.3)

and ρf is the density associated to the distribution function f and given by

ρf (t, x) =

∫

R3

f(t, x, v)dv.

Note that the two potentials satisfy:

△φPf = ρf and
√

−△φMf = −ρf ,
and in particular system (1.1) reduces to the well-known gravitational Vlasov-
Poisson system in the case κ = 0.

To our knowledge, the only existing mathematical analysis of the Vlasov-Manev
model is due to Bobylev, Dukes, Illner and Victory [5, 6]. In these works, the
local existence of regular solutions is proved and questions of global existence and
finite-time blow-up are discussed.

We now give some basic properties of the Vlasov-Manev system (1.1). Sufficiently
regular solutions to (1.1) on a time interval [0, T ] satisfy the conservation of the
so-called Casimir functionals:

∀t ∈ [0, T ], ‖j(f(t))‖L1 = ‖j(f0)‖L1 (1.4)

and the conservation of the Hamiltonian

∀t ∈ [0, T ], H(f(t)) = H(f0),

where j is a smooth real-valued function with j(0) = 0, and

H(f(t)) =
∥∥|v|2f(t)

∥∥
L1 − Epot(f(t)). (1.5)

The potential energy Epot is defined by

Epot(f(t)) = −
∫

R3

φf (t, x)ρf (t, x)dx

= −
∫

R3

φPf (t, x)ρf (t, x)dx − κ

∫

R3

φMf (t, x)ρf (t, x)dx

= EPpot(f(t)) + κEMpot(f(t))

and is controled thanks to standard interpolation inequalities:

0 ≤ EPpot(f) ≤ C1

∥∥|v|2f
∥∥ 1

2

L1 ‖f‖
7p−9
6(p−1)

L1 ‖f‖
p

3(p−1)

Lp , (1.6)

0 ≤ EMpot(f) ≤ C2

∥∥|v|2f
∥∥
L1 ‖f‖

p−3
3(p−1)

L1 ‖f‖
2p

3(p−1)

Lp , (1.7)

for all p ≥ 3.
Our aim in this paper is to prove the orbital stability of ground states for the

Vlasov-Manev problem using variational techniques. While this question has not
been studied in the past for the the VM system, it has attracted considerable atten-
tion in the case of the Vlasov-Poisson system (κ = 0), both in physics (see [1, 2], [3]
and the references therein) and mathematics community [22, 8, 9, 10, 11, 20, 13].
The extension of the standard variational approach to the case of VM system faces
two mathematical difficulties. The first one is that the Hamiltonian may be un-
bounded from below, and this prevents from obtaining ground states as minimizers
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of this Hamiltonian. This phenomenon is also related to the possible finite-time
blow-up of solutions to the VM system [5], and a similar situation has been en-
countered in the stability analysis of the relativistic Vlasov-Poisson system [12]. As
in [12], this difficulty will be overcome thanks to a homogeneity-breaking property
which allows to impose a sub-critical condition on the constraints of the variational
problem. The second difficulty (probably the most important) is related to the
nature of the Euler-Lagrange equations to which classical results for the Poisson
equation do not extend. In the classical VP case, a complete stability result is gen-
erally obtained by using both the Euler-Lagrange equation (which is equivalent to
a non linear Poisson equation) and the rigidity of the flow. In the present case, the
Euler-Lagrange equation is a fractional-Laplacian equation, and this prevents from
using ODE techniques. Nevertheless, we prove the uniqueness of the minimizer un-
der equimeasurable constraints by a new argument which completely avoids ODE
techniques.

In order to state our main results, let us make precise our assumptions. Consider
a function j : R → R

+ satisfying the following hypotheses.
(H1) j is a C

1 function, strictly convex and even, with j(0) = j′(0) = 0.
(H2) There exists p > 3 such that

j(t) ≥ Ctp ∀t ≥ 0. (1.8)

(H3) There exist p1, p2 > 3 such that

p1 ≤
tj′(t)

j(t)
≤ p2 ∀t > 0. (1.9)

We note that (H3) is equivalent to the nondichotomy condition:

bp1j(t) ≤ j(bt) ≤ bp2j(t), ∀b ≥ 1, t ≥ 0. (1.10)

For a function j satisfying (H1), (H2) and (H3), we define the corresponding energy
space

Ej = {f ≥ 0 such that ‖f‖Ej
:= ‖f‖L1 + ‖j(f)‖L1 +

∥∥|v|2f
∥∥
L1 < +∞}. (1.11)

From the interpolation inequality (1.7), the following constant is strictly positive:

KM
j = inf

f∈Ej\{0}

∥∥|v|2f
∥∥
L1 ‖f‖

p−3
3(p−1)

L1 ‖j(f)‖
2p

3(p−1)

L1

EMpot(f)
. (1.12)

In our first result, we establish the existence of ground states for the Vlasov-
Manev problem under a subcritical condition, and then apply concentration-compactness
techniques to prove the compactness of all minimizing sequences.

Theorem 1.1 (Existence of ground states). Let j be a function satisfying (H1),
(H2), (H3). Let M1 > 0, Mj > 0 such that

κM
p−3

3(p−1)

1 M
2p

3(p−1)

j < KM
j , (1.13)

where KM
j is defined by (1.12), and let

F(M1,Mj) = {f ∈ Ej, ‖f‖L1 =M1, ‖j(f)‖L1 =Mj}.
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Then any minimizing sequence of the problem

I(M1,Mj) = inf
f∈F(M1,Mj)

H(f), (1.14)

where H is the Hamiltonian defined by (1.5), is relatively strongly compact in the
energy space Ej up to a space translation shift in x. Let Qj be a minimizer of
(1.14). Then Qj is a compactly supported stationary solution to (1.1) and takes the
form

Qj(x, v) = (j′)−1

(
|v|2

2 + φQj(x)− λ

µ

)

+

(1.15)

where λ and µ are negative constants. Moreover, φQj (x) is spherically symmetric

(up to a translation shift), nondecreasing and belongs to C
0,α, for all α ∈ (0, 1). In

(1.15), we used the notation a+ = max(a, 0).

Notice that in the case κ = 0, condition (1.13) is always satisfied. In this case
the Vlasov-Manev system (1.1) is nothing but the classical Vlasov-Poisson system,
for which it is already known that minimizers of the two constraints problem (1.14)
always exist and the minimizing sequences are compact, see [11]. In [12], the orbital
stability in the case of the VP system has been proved thanks to a uniqueness result
of these minimizers which was based on a combination of the Poisson equation and
the rigidity of the flow.

Now we state our second main result, the uniqueness of the minimizer under an
equimeasurability condition. The following uniqueness result is more general than
the one obtained in [12] in the sense that it completely avoids the use of the Euler-
Lagrange equation. The only properties of the minimizer that we use are: their
equimeasurablity and the fact they are all expressed as a given function of their
microscopic energy. In particular, our proof avoids the usual ODE techniques, which
in fact, are useless here since the Euler-Lagrange equation is a fractional-Laplacian
equation.

Theorem 1.2 (Uniqueness of the minimizer under equimeasurability condition).
Let F ∈ C

0(R,R+), strictly decreasing on R−, such that F (R−) = R+ and F (R+) =

{0}. We define Q0(x, v) = F ( |v|
2

2 +ψ0(x)) and Q1(x, v) = F ( |v|
2

2 +ψ1(x)) on R
3×R

3,
where ψ0 and ψ1 are two nondecreasing continuous radially symmetric potentials
such that the sets {x ∈ R

3, ψ0(x) < 0} and {x ∈ R
3, ψ1(x) < 0} are bounded.

Then the equimeasurability of Q0 and Q1 for the Lebesgue measure in R
6

∀t > 0, meas{(x, v) ∈ R
6, Q0(x, v) > t} = meas{(x, v) ∈ R

6, Q1(x, v) > t} (1.16)

implies that Q0 = Q1. In particular, two equimeasurable minimizers of (1.14)
under the subcritical condition (1.13) are equal.

Our last result is the stability of the ground states through the Vlasov-Manev
flow.

Theorem 1.3 (Orbital stability of ground states). Any minimizer Qj of (1.14)
under the condition (1.13) is orbitally stable under the flow (1.1). More precisely,
given ε > 0, there exists δ(ε) such that the following holds true.
Consider f0 a smooth function with ‖f0 − Qj‖Ej

≤ δ(ε), and let f(t) be a local
classical solution to (1.1) on a time interval [0, T ], with initial data f0. Then there
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exists a translation shift x(t) ∈ R
3 such that, for all t ∈ [0, T ],

‖f(t, x+ x(t), v) −Qj‖Ej
< ε.

Remark. The goal of this article is to prove the stability of classical solutions to
the Vlasov-Manev model, and not to solve the Cauchy problem. For smooth initial
data decaying fast enough at the infinity, the local existence and the uniqueness of
regular solutions to (1.1) has been proved in [6]. The global existence of classical
solutions is an open problem. Our result shows that the solutions remain in the
vicinity of the ground state Qj (up to a translation shift), but does not a priori
exclude a possible blow-up of some derivative of f .

The outline of the paper is as follows. Section 2 deals with the proof of The-
orem 1.1. After preliminary technical results concerning some properties of the
infimum I(M1,Mj) (Subsection 2.1), we apply in Subsection 2.2 the P.-L. Lions
concentration-compactness principle in order to prove the convergence of minimiz-
ing sequences. Then we characterize the ground states: Euler-Lagrange equation,
regularity and spherical symmetry. Section 3 is devoted to the proof of stability of
the ground state through the Vlasov-Manev flow, in two steps. In Subsection 3.1,
we prove the uniqueness of the ground state in the class of equimeasurable func-
tions, Theorem 1.2. This uniqueness result is crucial to obtain the orbital stability,
Theorem 1.3, which we prove in Subsection 3.2.

2. Existence of ground states

This section is devoted to the proof of Theorem 1.1.

2.1. Properties of the infimum. We start with a lemma concerning some mono-
tonicity properties of the infimum defined by (1.14).

Lemma 2.1 (Monotonicity properties of the infimum I(M1,Mj)). Let j be a real-
valued function satisfying Assumptions (H1)–(H3), let M1 > 0 and Mj > 0 such
that (1.13) holds, and let I(M1,Mj) be defined by (1.14). Then we have

−∞ < I(M1,Mj) < 0. (2.1)

Moreover the following nondichotomy condition holds true: for all 0 < α < 1 and
0 ≤ β ≤ 1,

I(αM1, βMj) + I((1 − α)M1, (1− β)Mj) > I(M1,Mj). (2.2)

Proof. Step 1. The infimum is finite and negative.

We first prove (2.1). From (1.6), we define KP
j by

KP
j = inf

f∈Ej\{0}

∥∥|v|2f
∥∥ 1

2

L1 ‖f‖
7p−9
6(p−1)

L1 ‖j(f)‖
p

3(p−1)

L1

EPpot(f)
> 0. (2.3)

Let f ∈ F(M1,Mj). Then from (1.12) and (2.3), we have

H(f) ≥
∥∥|v|2f

∥∥
L1 −

1

KP
j

∥∥|v|2f
∥∥ 1

2

L1 M
7p−9
6(p−1)

1 M
1

3(p−1)

j − κ

KM
j

∥∥|v|2f
∥∥
L1 M

p−3
3(p−1)

1 M
2

3(p−1)

j

≥
∥∥|v|2f

∥∥
L1

(
1− κ

KM
j

M
p−3

3(p−1)

1 M
2

3(p−1)

j

)
− 1

KP
j

∥∥|v|2f
∥∥ 1

2

L1 M
7p−9
6(p−1)

1 M
1

3(p−1)

j .
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Now the subcritical condition (1.13) implies that

1− κ

KM
j

M
p−3

3(p−1)

1 M
2

3(p−1)

j > 0.

Thus H(f) is bounded from below, which proves that I(M1,Mj) is finite. To
prove that I(M1,Mj) is negative, we use a rescaling argument. For λ > 0 and

f ∈ F(M1,Mj), we consider the rescaled function f̃(x, v) = f(xλ , λv). Then f̃
belongs to F(M1,Mj) and we have

H(f̃) =
1

λ2

∥∥|v|2f
∥∥
L1 −

1

λ
EPpot(f)−

κ

λ2
EMpot(f)

∼ − 1

λ
EPpot(f) as λ→ +∞,

where EPpot(f) is positive. The property (2.1) follows.

Step 2. The nondichotomy condition.

We now claim the following monotonicity properties: for all 0 < k ≤ 1,

I(M1, kMj) ≥ k
1

3(p2−1) I(M1,Mj) (2.4)

and

I(kM1,Mj) ≥ k
4p1−6
3(p1−1) I(M1,Mj). (2.5)

Proof of (2.4). Let k ∈ (0, 1] and f ∈ F(M1, kMj). From Appendix A, consider

the unique rescaled function f̃(x, v) = αf(α1/3x, v) in F(M1,Mj). From (A.2), we
deduce in particular that α ≥ 1 and

αp1−1 ≤ 1

k
≤ αp2−1.

Then, we get

H(f̃) =
∥∥|v|2f

∥∥
L1−α

1
3EPpot(f)−α

2
3κEMpot(f) ≤

∥∥|v|2f
∥∥
L1−α

1
3
(
EPpot(f) + κEMpot(f)

)

and

I(M1,Mj) ≤ H(f̃) ≤
∥∥|v|2f

∥∥
L1−

(
1

k

) 1
3(p2−1) (

EPpot(f) + κEMpot(f)
)
≤
(
1

k

) 1
3(p2−1)

H(f).

This result holds for all f ∈ F(M1, kMj) and k ∈ (0, 1], which proves (2.4).

Proof of (2.5). Similarly, we take f ∈ F(kM1,Mj) and set

f̃(x, v) = αf(α1/3k1/3x, v)

the unique rescaled function in F(M1,Mj), which implies that α ≤ 1 with

αp2−1 ≤ k ≤ αp1−1.

Thus,

H(f̃ ) =
1

k

∥∥|v|2f
∥∥
L1 − α

1
3 k−5/3EPpot(f)− α

2
3k−4/3κEMpot(f)

≤ 1

k

∥∥|v|2f
∥∥
L1 −

(
1

k

) 5p1−6
3(p1−1)

EPpot(f)−
(
1

k

) 4p1−6
3(p1−1)

κEMpot(f).



STABLE GROUND STATES FOR THE GRAVITATIONAL VLASOV-MANEV SYSTEM 7

From k ≤ 1 and p > 3, we conclude that

I(M1,Mj) ≤ H(f̃) ≤
(
1

k

) 4p1−6

3(p1−1)

H(f),

and (2.5) follows.
We now prove (2.2). Let 0 < α < 1 and 0 ≤ β ≤ 1. Then (2.4) and (2.5) imply

I(αM1, βMj) ≥ α
4p1−6
3(p1−1)β

1
3(p2−1) I(M1,Mj),

and a similar inequality with (1 − α) and (1 − β). As we have I(M1,Mj) < 0, we
only have to show that

α
4p1−6
3(p1−1)β

1
3(p2−1) + (1− α)

4p1−6
3(p1−1) (1− β)

1
3(p2−1) < 1,

which holds true since p2 > 1 and 4p1−6
3(p1−1) > 1. The proof of Lemma 2.1 is complete.

�

2.2. Proof of Theorem 1.1. This subsection is devoted to the proof of Theorem
1.1, adapting arguments from [11] and [12].

Step 1. Compactness of minimizing sequences.

Let M1,Mj > 0. From Lemma 2.1, we know that I(M1,Mj) is finite and negative.
Consider a minimizing sequence fn of (1.14):

‖fn‖L1 =M1, ‖j(fn)‖L1 =Mj and lim
n→+∞

H(fn) = I(M1,Mj). (2.6)

Let

ρn(x) =

∫

R3

fn(x, v)dv.

From the concentration compactness lemma [14, 15], up to a subsequence, one of
the three following possibilities occurs (BR being the ball of radius R centered at
the origin in R

3):

(i) Compactness: there exists yn ∈ R
3 such that

∀ε > 0, ∃R < +∞ such that ∀n ≥ 1,

∫

yn+BR

ρn(x) dx ≥M1 − ε. (2.7)

(ii) Vanishing:

∀R < +∞, lim
n→+∞

sup
y∈R3

∫

y+BR

ρn(x) dx = 0. (2.8)

(iii) Dichotomy: there exists m1 ∈ (0,M1) such that for all ε >
0, there exist n0 ≥ 1 and sequences (ρ1n)n≥1, (ρ

2
n)n≥1, (wn)n≥1 ∈

L1
+(R

3) satisfying, for all n ≥ n0,




ρ1nρ
2
n = ρ1nwn = ρ2nwn = 0 almost everywhere,

ρn = ρ1n + ρ2n + wn with 0 ≤ ρ1n, ρ
2
n, wn ≤ ρn

dist(Supp(ρ1n), Supp(ρ
2
n)) → +∞ as n→ +∞,

‖ρn − ρ1n − ρ2n‖L1 ≤ ε,
∣∣∫

R3 ρ
1
n(x)dx−m1

∣∣+
∣∣∫

R3 ρ
2
n(x)dx− (M1 −m1)

∣∣ < ε.
(2.9)
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We claim that only compactness can occur. To show this claim, we need some
preliminary results. First, we know that H(fn) is bounded. Consequently, the
inequality

H(fn) ≥
∥∥|v|2fn

∥∥
L1

(
1− κ

KM
j

M
p−3

3(p−1)

1 M
2

3(p−1)

j

)
− 1

KP
j

∥∥|v|2fn
∥∥ 1

2

L1 M
7p−9
6(p−1)

1 M
1

3(p−1)

j ,

and the subcritical condition (1.13) imply that the kinetic energy of fn is also
bounded. Thus fn is bounded in the energy space Ej and a standard interpolation
inequality shows that (ρn) is a bounded sequence in Lr(R3) for all r ∈ [1, q] with

q = 5p−3
3p−1 >

3
2 (recall that the real number p has been defined in Assumption (H2)).

Vanishing cannot occur. Assume that vanishing occurs and pick ε > 0. We denote
kP = 1, kM = 2 and introduce the index i ∈ {P,M}. For 0 < η < R, we decompose
the Poisson and Manev potential energies into a sum of three terms, as

Eipot(fn) =

∫

|x−y|>R

ρn(x)ρn(y)

|x− y|ki dxdy +

∫

|x−y|<η

ρn(x)ρn(y)

|x− y|ki dxdy

+

∫

η<|x−y|<R

ρn(x)ρn(y)

|x− y|ki dxdy. (2.10)

The first term in (2.10) can be estimated as follows. For R large enough, we have
∫

|x−y|>R

ρn(x)ρn(y)

|x− y|ki dxdy ≤ M2
1

Rki
≤ ε.

Let us now estimate the second term in (2.10). Let Kη(x) =
1|x|<η(x)

|x|ki and r =

q

2(q − 1)
<

3

2
. Then, Kη belongs to Lr(R3) with

‖Kη‖r ≤ Cηβi , βi =
3− kir

r
> 0.

Furthermore, since r satisfies 1
r +

1
q = 1+ 1

q′ , we deduce from the Young inequality

that
‖Kη ∗ ρn‖q′ ≤ C‖Kη‖r‖ρn‖q ≤ Cηβi‖ρn‖q.

Hence, from the Hölder inequality, for η small enough we have
∫

|x−y|<η

ρn(x)ρn(y)

|x− y|ki dxdy = ‖ρn(Kη ∗ ρn)‖1 ≤ Cηβi‖ρn‖2q < ε,

since ‖ρn‖q is bounded.
In order to estimate the third term in (2.10), we write

∫

η<|x−y|<R

ρn(x)ρn(y)

|x− y|ki dxdy ≤ 1

ηki

∫

R3

ρn(y)

(∫

|x−y|<R
ρn(x)dx

)
dy

≤ M1

ηki
sup
y∈R3

∫

y+BR

ρn(x)dx.

Since we assume that vanishing occurs, we have

sup
y∈R3

∫

y+BR

ρn(x)dx→ 0
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and the third term converges to zero as n → +∞, for each fixed R and η. We
finally obtain Eipot(fn) −→ 0 as n→ +∞, for i ∈ {P,M}. Thus

Epot(fn) −→ 0.

Now, passing to the limit in

H(fn) =
∥∥|v|2fn

∥∥
L1 −Epot(fn) ≥ −Epot(fn),

and, using (2.6), we get I(M1,Mj) ≥ 0 which contradicts (2.1). We have proved
that vanishing cannot occur.

Dichotomy cannot occur. Suppose that dichotomy occurs and pick ε > 0. We have
a decomposition ρn = ρ1n + ρ2n +wn, where ρ

1
n, ρ

2
n and wn are disjointly supported.

We define then f1n = fn1{x∈Supp(ρ1n)} and similarly f2n and fwn . Now we write, for
i ∈ {P,M},

Eipot(fn)− Eipot(f
1
n)− Eipot(f

2
n) = 2

∫

R6

ρ1n(x)ρ
2
n(y)

|x− y|ki dxdy + 2

∫

R6

ρn(x)wn(y)

|x− y|ki dxdy

−
∫

R6

wn(x)wn(y)

|x− y|ki dxdy. (2.11)

Let us treat the first term in (2.11). From

dn = dist(Supp(ρ1n), Supp(ρ
2
n)) → +∞,

we deduce that ∫

R6

ρ1n(x)ρ
2
n(y)

|x− y|ki dxdy ≤ M2
1

(dn)ki
→ 0 as n→ +∞.

We now treat the second and third terms in (2.11). We define qcrit,P = 6
5 and

qcrit,M = 3
2 and we recall that, by standard interpolation inequalities, ‖wn‖qcrit,i ≤

‖ρn‖qcrit,i is bounded. Then, from the Hardy-Littlewood-Sobolev inequality, we
have ∫

R6

ρn(x)wn(y)

|x− y|ki dxdy ≤ C‖ρn‖qcrit,i‖wn‖qcrit,i ≤ C‖wn‖qcrit,i
and ∫

R6

wn(x)wn(y)

|x− y|ki dxdy ≤ C‖wn‖2qcrit,i ≤ C‖wn‖qcrit,i .

From the Hölder inequality, we get

‖wn‖qcrit,i ≤ ‖wn‖θi1 ‖wn‖1−θiq ≤ C‖wn‖θi1 ≤ Cεθi

for θi =
q−qcrit,i
qcrit,i(q−1) > 0 and for n large enough. We finally get, for i ∈ {P,M},

lim sup
n→+∞

∣∣Eipot(fn)− Eipot(f
1
n)− Eipot(f

2
n)
∣∣ ≤ Cεθi ,

and thus,

lim sup
n→+∞

∣∣Epot(fn)− Epot(f
1
n)− Epot(f

2
n)
∣∣ ≤ C(εθ1 + κεθ2) ≤ Cεθ2 .

Hence,
lim inf
n→+∞

(
H(fn)−H(f1n)−H(f2n)

)
≥
∥∥|v|2fwn

∥∥
L1 − Cεθ2 .

As limn→+∞H(fn) = I(M1,Mj), we get

I(M1,Mj) ≥ lim sup
n→+∞

(
H(f1n) +H(f2n)

)
− Cεθ2 . (2.12)
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Now, from the dichotomy assumption, the boundness of fn in Ej , and from the
disjoint support property, we have

M1
j +M2

j ≤Mj , (2.13)

with

M1
j = lim sup

n→+∞
‖j(f1n)‖L1 and M2

j = lim sup
n→+∞

‖j(f2n)‖L1 . (2.14)

Let f̃1n be the following rescaled function in F(m1,M
1
j ) defined thanks to Appendix

A, Lemma A.1:

f̃1n(x, v) = γnf
1
n

(
γ
1/3
n

λ
1/3
n

x, v

)
.

Then

H(f1n) = H(f̃1n) + (1− λn)
∥∥|v|2f

∥∥
1
− (1− λ

5
3
nγ

1
3
n )E

P
pot(f

1
n)− (1− λ

4
3
nγ

2
3
n )κE

M
pot(f

1
n),

where, by interpolation inequalities, the potential and kinetic energies are uniformly
bounded. From the expression (A.2) of λn and γn, from the dichotomy condition
(2.9) and from (2.14), we conclude that there exists Cε > 0 such that, up to a
subsequence extraction and for n large enough, we have

H(f1n) ≥ H(f̃1n)− Cε ≥ I(m1,M
1
j )− Cε with lim

ε→0
Cε = 0.

A similar result holds for f2n which gives, from (2.12),

I(M1,Mj) ≥ lim sup
ε→0

lim sup
n→+∞

(
H(f1n) +H(f2n)

)

≥ I(m1,M
1
j ) + I((M1 −m1),M

2
j ). (2.15)

Now, from the nondichotomy condition (2.2), we deduce

I(m1,M
1
j ) + I((M1 −m1),M

2
j ) > I(M1,M

1
j +M2

j ) ≥ I(M1,Mj), (2.16)

where we used (2.4) coupled to (2.13). Since (2.16) contradicts (2.15), we have
proved that dichotomy cannot occur.

Finally, we conclude from the concentration-compactness principle that compact-
ness occurs. Therefore, from the boundedness of fn in Ej and the Dunford-Pettis
theorem, we deduce that the sequence

fn(x, v) = fn(x+ yn, v),

is weakly relatively compact in L1. Up to a subsequence, we have

fn ⇀ f in L1 and Lp with f ∈ Ej (2.17)

and in particular

‖f‖L1 =M1.

Now we claim that

EPpot(fn) → EPpot(f) and EMpot(fn) → EMpot(f). (2.18)

Indeed, for i ∈ {P,M}, we have

Eipot(fn − f) =

∫

R6

(ρn(x)− ρ(x))(ρn(y)− ρ(y))

|x− y|ki dxdy.
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We decompose this integral similarly as in (2.10) for the proof of nonvanishing.
There exist βi > 0 and two positive constants C1, C2 such that, for 0 < η < R,

Eipot(fn − f) ≤ C1η
βi +

C2

Rki
+

∫

R3

(ρn(x)− ρ(x))vn(x)dx,

where

vn = (ρn − ρ) ∗ hηR with hηR(x) =
1{η<|x|<R}(x)

|x|ki .

The sequence vn is bounded in L1 ∩L∞. From hηR ∈ L∞ and from the convergence
ρn ⇀ ρ in L1, we get

∀x ∈ R
3, vn(x) → 0 as n→ +∞.

Since, in addition, there is no mass loss:

‖ρn ∗ hηR‖1 =

(∫

R3

hηR(x)dx

)(∫

R3

ρn(y)dy

)

=

(∫

R3

hηR(x)dx

)(∫

R3

ρ(y)dy

)
= ‖ρ ∗ hηR‖1,

we have in fact vn → 0 in L1, and also in Lq
′

. From the Hölder inequality, for all η
and R we have ∫

R3

(ρn(x)− ρ(x))vn(x)dx → 0,

which implies Eipot(fn − f) → 0 and also (2.18). Thus, by Fatou’s lemma,

H(f) ≤ I(M1,Mj) and ‖j(f)‖L1 ≤Mj. (2.19)

Moreover, we have from (2.4),

0 > I(M1,Mj) ≥ H(f) ≥ I(M1, ‖j(f)‖L1) ≥
(‖j(f)‖L1

Mj

) 1
3(p2−1)

I(M1,Mj).

Together with (2.19), this implies that ‖j(f)‖L1 = Mj . Hence f ∈ F(M1,Mj) and
H(f) = I(M1,Mj) and we finally get

∥∥fn
∥∥
L1 → ‖f‖L1 ,

∥∥|v|2fn
∥∥
L1 →

∥∥|v|2f
∥∥
L1 ,

∥∥j(fn)
∥∥
L1 → ‖j(f)‖L1 .

From standard convexity argument, see [4], we conclude that fn → f in L1,
|v|2fn → |v|2f in L1 and j(fn − f) → 0 in L1. We have proved the strong conver-
gence, in the Ej sense, of the subsequence fn to the minimizer f .

Step 2. Euler-Lagrange equation for the minimizer.

Let Q be a minimizer of (1.14). Our goal in this step is to derive the Euler-Lagrange
equation satisfied by Q. Let ε > 0. We introduce the set

Sε = {(x, v) ∈ R
6, Q(x, v) ≥ ε},

and pick a compactly supported function g ∈ L∞(R6) such that g ≥ 0 almost
everywhere in R

6\Sε. Then,

for all t ∈ [0,
ε

‖g‖∞
], ft = Q+ tg ∈ Ej\{0}.
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Similarly as in Appendix A, there exists a unique pair (γt, ηt) positive such that

the function f̃t defined by

f̃t(x, v) = γtft

(
x,

(
γt
ηt

) 1
3

v

)

belongs to F(M1,Mj), which is equivalent to

ηt =
M1

‖ft‖1
and

1

γt
‖j(γtft)‖1 =

Mj

M1
‖ft‖1. (2.20)

By differentiating the first equality, we obtain for t→ 0

ηt = 1−
∫
R6 g

M1
t+ o(t),

Let, for all t ∈ [0, ε
‖g‖∞

] and for all γ ∈ R
∗
+,

G(γ, t) =
1

γ

∫

R6

j(γft)−
Mj

M1

∫

R6

ft.

Then G is clearly a C
1 function of t ∈ [0, ε

‖g‖∞
] and γ ∈ R

∗
+. Moreover, from

Appendix A, we get

∂G

∂γ
(γ, t) > 0.

This implies that t 7→ γt is a C1 function and, by differentiating (2.20), we obtain
as t→ 0

γt = 1+

(
Mj

M1CQ

∫

R6

g − 1

CQ

∫

R6

j′(Q)g

)
t+o(t), with CQ = ‖j′(Q)Q‖1−Mj > 0.

Since Q is a minimizer of (1.14) and since f̃t belongs to F(M1,Mj), we have

lim
t→0

H(f̃t)−H(Q)

t
≥ 0,

where, by Appendix A,




∥∥∥|v|2f̃t
∥∥∥
1
−
∥∥|v|2Q

∥∥
1
=
η
5/3
t

γ
2/3
t

(∥∥|v|2Q
∥∥
1
+ t

∫

R6

|v|2g
)
−
∥∥|v|2Q

∥∥
1
,

Epot(f̃t)− Epot(Q) = η2t

(
Epot(Q)− 2t

∫

R6

φQg + t2Epot(g)

)
− Epot(Q),

which finally implies, after straightforward calculations using the above expansions
of ηt and γt near 0, that

∫

R6

( |v|2
2

+ φQ − λ− µj′(Q)

)
g ≥ 0, (2.21)

with

µ = −
∥∥|v|2Q

∥∥
1

3CQ
and λ = − 1

M1

(
Epot(Q)−

∥∥|v|2Q
∥∥
1

6

(
5− 2Mj

CQ

))
.
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One can remark that µ and λ are negative. Indeed, the equality I(M1,Mj) =∥∥|v|2Q
∥∥
1
− Epot(Q) gives

λ =
1

M1

(
I(M1,Mj)−

∥∥|v|2Q
∥∥
1

6CQ

∫

R6

(
j′(Q)Q− 3j(Q)

)
)
,

where I(M1,Mj) < 0 and, from (H3), j′(Q)Q − 3j(Q) ≥ 0. The equality (2.21)
holds for all g ∈ L∞(R6) compactly supported on Sε, which implies that

|v|2
2

+ φQ − λ− µj′(Q) = 0 on Sε

and thus on the support of Q. Similarly, out of the support of Q, as g ≥ 0, we have

|v|2
2

+ φQ − λ ≥ 0.

We finally get, for all (x, v) ∈
(
R
3
)2

,

Q(x, v) = (j′)−1

(
|v|2

2 + φQj(x)− λ

µ

)

+

.

Step 3. Regularity of the potential φQ and compact support of Q

Let us prove that φQ belongs to C
0,α, for all α ∈ (0, 1). Using the expression of Q,

we get

ρQ(x) =

∫

R3

(j′)−1

(
|v|2

2 + φQj (x)− λ

µ

)

+

dv. (2.22)

Passing to the spherical velocity coordinate u = |v| and performing the change of

variable q = u2

2|µ| , we get

ρQ(x) = 4π
√
2|µ| 32

∫ +∞

0
(j′)−1 (k(x)− q)+

√
qdq, (2.23)

where k(x) =
φQ(x)− λ

µ
. We remark that the support of ρQ is contained in {x ∈

R
3, k(x) ≥ 0} and that k(x)+ ≤ φQ(x)/µ. Moreover, from (H2) and (H3), for all

s ≥ 0 we have

(j′)−1(s) ≤ Cs
1

p−1 .

Therefore

ρQ(x) ≤ C

∫ k(x)+

0
(k(x)−q)

1
p−1

√
qdq ≤ C (k(x)+)

3
2
+ 1

p−1 ≤ C |φQ(x)|
3
2
+ 1

p−1 . (2.24)

As Q ∈ L1 ∩ Lp with p > 3 and |v|2Q ∈ L1, interpolation inequalities give ρQ ∈
L1 ∩ Lq0 with q0 >

3
2 . Let us prove that ρQ ∈ Lr for some r > 3. We assume that

q0 < 3, otherwise the claim is already proved.
Let us start a bootstrap argument. If ρQ ∈ L1 ∩Lqk with 3

2 < qk < 3, then from

the Hardy-Littlewood-Sobolev inequality, we deduce that φPQ belongs to all Ls with
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3 < s ≤ ∞ and that φMQ belongs to all Lq with 3
2 < q ≤ 3qk

3−qk
. Hence, from (2.24),

ρQ belongs to Lqk+1 with

qk+1

(
3

2
+

1

p− 1

)
=

3qk
3− qk

. (2.25)

Recall that, by Assumption (H2), we have p > 3. Hence, a simple analysis of the
sequence (qk) defined by (2.25) with an initial term q0 ∈ (32 , 3) shows that there
exists k0 such that qk0 > 3. This proves the claim: there exists r > 3 such that
ρQ ∈ Lr.

Consequently, from Lemma C.1 in Appendix C, we deduce that the Manev po-
tential φMQ belongs to C

0,α for all α ∈ (0, 1− 3
r ). Since this function converges to 0

at the infinity, we have φMQ ∈ L∞, and then φQ ∈ L∞. Thus (2.24) gives ρQ ∈ L∞.

Finally, using again Lemma C.1, we get φMQ ∈ C
0,α for all α ∈ (0, 1). From Sobolev

embeddings, the Poisson potential φPQ also belongs to all C0,α. We have proved the
regularity of the potential stated in Theorem 1.1.

Next, from the regularity of φQ and the fact that this function converges to 0 as
|x| → +∞, one deduces that

Supp(Q) =

{
(x, v) ∈ R

6,
|v|2
2

+ φQ(x)− λ ≤ 0

}

is compact.

Step 4. The functions ρQ and φQ are spherically symmetric and monotone.

Consider a minimizer Q of (1.14), continuous and compactly supported thanks to
the previous step, and denote by Q∗x its symmetric rearrangement with respect
to the x variable only. We have clearly Q∗x ∈ F(M1,Mj) and

∫
|v|2Qdxdv =∫

|v|2Q∗xdxdv. Moreover, by the Riesz theorem, we have
∫

R6

Q(x, v)Q(y,w)g(|x − y|)dxdy ≤
∫

R6

Q∗x(x, v)Q∗x(y,w)g(|x − y|)dxdy (2.26)

for all (v,w) ∈ R
3 × R

3, where g(r) = 1
r + κ

r2
. Therefore, by integrating this

inequality with respect to v and w, one gets

Epot(Q) ≤ Epot(Q
∗x),

which means that H(Q∗x) ≤ H(Q): Q∗x is also a minimizer of (1.14). Hence,
we must have the equality in the above inequalities: Epot(Q) = Epot(Q

∗x) and,
even more, we have an equality in (2.26) for all v,w. We are then in a situation
of equality in the Riesz inequality: since the function g is strictly decreasing, we
deduce that, for all v,w, there exists a translation shift x0(v,w) such that

Q(x, v) = Q∗x(x+ x0(v,w), v) and Q(x,w) = Q∗x(x+ x0(v,w), w). (2.27)

Let v be such that Q(·, v) 6≡ 0. Q being compactly supported, we integrate the first
inequality in (2.27) against x and obtain

∫

R3

xQ(x, v)dx =

∫

R3

xQ∗x(x+ x0(v,w), v)dx

=

∫

R3

xQ∗x(x, v)dx − x0(v,w)

∫

R3

Q∗x(x, v)dx.
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Hence, we have the expression

x0(v,w) =

∫
R3 x(Q(x, v)−Q∗x(x, v))dx∫

R3 Q∗x(x, v)dx

and x0(v,w) is independent of w. Similarly, using the second equality in (2.27),
one can prove that x0 is independent of v. We have proved finally that there exists
x0 ∈ R

3 such that

Q(x, v) = Q∗x(x+ x0, v) = Q∗x(|x+ x0|, v), ∀v ∈ R
3.

Consequently, up to a translation shift, ρQ is a nonincreasing function of |x|.

Let us now prove that φQ is a nondecreasing function of r = |x|. Since the
function j is strictly increasing and µ < 0, the expression (2.22) shows clearly that
φQ(r) is nondecreasing on the compact support of the nonincreasing function ρQ(r).
Let [0, RQ] be this compact support.

For |x| = r > RQ, we have

φPQ(x) = −
∫

R3

ρQ(y)

4π|x− y|dy and φMQ (x) = −
∫

R3

ρQ(y)

2π2|x− y|2dy.

Similarly as in Appendix B, we find

φPQ(x) = −M1

4πr
and φMQ (x) = − 1

π

∫ RQ

0

sρQ(s)

r
ln

(
r + s

r − s

)
ds.

Since the function r 7→ 1
r ln

(
1 + 2s

r−s

)
is positive and decreasing, φQ is nondecreas-

ing on [RQ,+∞). The proof of Theorem 1.1 is complete. �

3. Orbital stability of the ground states

To prove the orbital stability result stated in Theorem 1.3, we first need to prove
the uniqueness of the minimizer under equimeasurability constraints which are in-
herited from the invariance properties of the Vlasov-Manev flow. This uniqueness
result is at the heart of our stability analysis and is quite robust in the sense that
its proof does not use the nature of the Euler-Lagrange equation. Technically, the
uniqueness proof only uses the fact that a minimizer is some given function of the
microscopic energy, and does not use the equation satisfied by the potential itself
(a non linear fractional-Laplacian equation in the present case).

3.1. Uniqueness of the minimizer under equimeasurability condition. This
subsection is devoted to the proof of Theorem 1.2.

Let

Q0(x, v) = F (
|v|2
2

+ ψ0(x)), Q1(x, v) = F (
|v|2
2

+ ψ1(x))

be the functions defined in Theorem 1.2. For i ∈ {0, 1} and for all τ < 0, we define

aψi
(τ) = meas

{ |v|2
2

+ ψi(x) < τ

}
.

From the equimeasurability of Q0 and Q1 and the properties of the function F , we
have

∀τ < 0, aψ0(τ) = aψ1(τ). (3.1)
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For i ∈ {0, 1}, we define

µψi
(λ) = measR3

{
x ∈ R

3, ψi(x) < λ
}

for all λ < 0 and we have then for all τ < 0,

aψi
(τ) =

∫

R3

µψi

(
τ − |v|2

2

)
dv.

Passing to the spherical velocity coordinate u = |v| and performing the change of
variable w = τ − u2/2, we obtain

aψi
(τ) = 4π

√
2

∫ τ

−∞
µψi

(w)
√
τ − w dw. (3.2)

We claim that the expression (3.2) and the equality (3.1) imply that,

for almost all λ < 0, µψ0(λ) = µψ1(λ). (3.3)

Hence, as ψ0 and ψ1 are continuous and nondecreasing, we have ψ0 = ψ1 on the set

{x ∈ R
3, ψ0(x) < 0} = {x ∈ R

3, ψ1(x) < 0},
which immediatly gives Q0 = Q1.

Proof of (3.3) from (3.1) and (3.2). By differentiating with respect to τ the function
aψi

defined by (3.2), one gets

∀τ < 0, a′ψi
(τ) = 2π

√
2

∫ τ

−∞

µψi
(w)√

τ − w
dw. (3.4)

Now, remarking that, for w < λ, the following integral is constant:

I(λ,w) =

∫ λ

w

dτ√
(λ− τ)(τ − w)

= π,

one deduces from the Fubini theorem that
∫ λ

−∞

a′ψi
(τ)

√
λ− τ

dτ = 2π
√
2

∫ λ

−∞
µψi

(w)I(λ,w)dw = 2π2
√
2

∫ λ

−∞
µψi

(w)dw.

Thus, from aψ0 = aψ1 , we deduce that µψ0(λ) = µψ1(λ) for almost all λ < 0, and
the proof of (3.3) is complete.

End of the proof of Theorem 1.2. Let Q0, Q1 be two equimeasurable radially sym-
metric minimizers of (1.14). From Theorem 1.1, there exist λ0, µ0, λ1, µ1 < 0 such
that, for i ∈ {0, 1},

Qi(x, v) = (j′)−1

(
|v|2

2 + φQi(x)− λi

µi

)

+

. (3.5)

We define then, for i ∈ {0, 1},

Q̃i(x, v) = Qi

(
x

|µi|1/2
, |µi|1/2v

)
.

The function Q̃0 and Q̃1 are still equimeasurable and satisfy

Q̃i(x, v) = (j′)−1

(
−|v|2

2
− ψi(x)

)

+

with ψi(x) =
φQi

(
x

|µi|1/2

)
− λi

|µi|
.
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Since φQi is continuous nondecreasing and converges to 0 as r → +∞, the function
ψi is continuous, nondecreasing and the set {x ∈ R

3, ψ0(x) < 0} is bounded. From
the previous step, we can thus conclude that

Q̃0 = Q̃1.

Let α =
√

µ1
µ0
. Then

Q1 (x, v) = Q0

(x
α
, αv

)
. (3.6)

It remains to prove that α = 1. To this aim, let us derive a virial identity satisfied
by the minimizers Q of (1.14), using a rescaling argument. For λ > 0, we set
fλ(x, v) = Q(λx, vλ), which implies fλ ∈ F(M1,Mj) and

H(fλ) = λ2
∥∥|v|2Q

∥∥
L1 − λEPpot(Q)− λ2κEMpot(Q).

This function of λ has a strict global minimizer in λ = 1, which yields the following
Manev virial identity:

∥∥|v|2Q
∥∥
L1 −

1

2
EPpot(Q)− κEMpot(Q) = 0. (3.7)

Moreover we recall that Q satisfies
∥∥|v|2Q

∥∥
L1 − EPpot(Q)− κEMpot(Q) = I(M1,Mj).

Combining this two equalities, we get

1

2
EPpot(Q) = −I(M1,Mj). (3.8)

Let us now use this identity for the two minimizers Q0 and Q1. From (3.8) and
(2.1), one deduces that

EPpot(Q0) = EPpot(Q1) > 0.

Moreover, from (3.6) and Appendix A, one gets

EPpot(Q1) = αEPpot(Q0).

This yields α = 1, which ends the proof of Theorem 1.2. �

3.2. Orbital stability of the minimizers, proof of Theorem 1.3. In this sub-
section, we prove Theorem 1.3.

Let Q be a minimizer of (1.14) and assume that Theorem 1.3 is false. Then there
exist ε > 0 and sequences fn0 ∈ Ej , tn > 0, such that

lim
n→+∞

‖fn0 −Q‖Ej
= 0, (3.9)

and
∀n ≥ 0, ∀x0 ∈ R

3, ‖fn(tn, x, v)−Q(x+ x0, v)‖Ej
≥ ε, (3.10)

where fn(t, x, v) is a solution to (1.1) with initial data fn0 .
Let gn(x, v) = fn(tn, x, v). From (3.9), one deduces that

lim
n→+∞

H(fn0 ) = I(M1,Mj), lim
n→+∞

‖fn0 ‖L1 =M1, lim
n→+∞

‖j(fn0 −Q0)‖L1 = 0.

(3.11)
In particular, fn0 converges to Q in the strong Lp topology and hence almost every-
where, up to a subsequence.

Now, by the conservation properties of the Vlasov-Manev system (1.1), we have

lim
n→+∞

H(gn) = I(M1,Mj), lim
n→+∞

‖gn‖L1 =M1, lim
n→+∞

‖j(gn)‖L1 =Mj , (3.12)



18 MOHAMMED LEMOU, FLORIAN MÉHATS, AND CYRIL RIGAULT

and, for all t ≥ 0,

meas{(x, v) ∈ R
3, gn(x, v) > t} = meas{(x, v) ∈ R

3, fn0 (x, v) > t}. (3.13)

From Appendix A, let us define

gn(x, v) = γngn

(
γ
1/3
n

λ
1/3
n

x, v

)

such that ‖gn‖L1 =M1 and ‖j(gn)‖L1 =Mj . Then, from (3.12),

γn → 1, µn → 1, (3.14)

and

lim
n→+∞

H(gn) = lim
n→+∞

H(gn) = I(M1,Mj).

Hence gn is a minimizing sequence of (1.14). From Theorem 1.1, gn is relatively
strongly compact in Ej and converges to a ground state Q1, up to a subsequence
and up to a translation shift. Hence, by (3.14), we have

gn → Q1 ∈ Ej (3.15)

up to a subsequence and up to a translation shift.
Let us now prove that the equimeasurability (3.13) and the L1 convergences of

gn and fn0 imply the equimeasurability of Q and Q1. Indeed, we remark that, for
t > 0 and 0 < ε < t,





{gn > t} ⊂ ({|gn −Q1| < ε} ∩ {Q1 > t− ε}) ∪ {|gn −Q1| ≥ ε},

{gn > t} ⊃ {|gn −Q1| < ε} ∩ {Q1 > t+ ε}.
By passing to the limit as n→ +∞, one gets





lim sup
n→+∞

meas{gn > t} ≤ meas{Q1 > t− ε},

lim inf
n→+∞

meas{gn > t} ≥ meas{Q1 > t+ ε}.

Finally, passing to the limit as ε → 0, we have meas{gn > t} → meas{Q1 > t} for
almost all t > 0 and similarly meas{f0n > t} → meas{Q > t} for almost all t > 0.
Remarking now that, the functions t 7→ meas{Q > t} and t 7→ meas{Q1 > t} are
right-continuous, we obtain the equimeasurability of Q and Q1.

Therefore, one can use the characterization of ground states in Theorem 1.1 and
the property of uniqueness of minimizers given by Theorem 1.2, to conclude that,
Q = Q1, up to a space translation shift. Finally, (3.15) contradicts (3.10) and the
proof of Theorem 1.3 is complete. �

Appendix A. Rescalings

Let f ∈ Ej and let γ > 0, λ > 0 and µ > 0. Then the rescaled function f̃ defined

by f̃(x, v) = γf(xλ , µv) satisfies the following identities.

Norms

‖f̃‖1 = γ
λ3

µ3
‖f‖1 ; ‖j(f̃ )‖1 =

λ3

µ3
‖j(γf)‖1 ;

∥∥∥|v|2f̃
∥∥∥
1
= γ

λ3

µ5
∥∥|v|2f

∥∥
1
.
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Functions

ρf̃ (x) =
γ

µ3
ρf

(x
λ

)
; φP

f̃
(x) = γ

λ2

µ3
φPf

(x
λ

)
; φM

f̃
(x) = γ

λ

µ3
φMf

(x
λ

)
.

Potential energy

EPpot(f̃) = γ2
λ5

µ6
EPpot(f) ; EMpot(f̃) = γ2

λ4

µ6
EMpot(f).

Lemma A.1. Let f ∈ Ej\{0} and M1,Mj > 0. Then there exists an unique pair

of positive constants (γ, λ) such that the rescaled function f̃ defined by

f̃(x, v) = γf

(
γ1/3

λ1/3
x, v

)
(A.1)

belongs to F(M1,Mj). Moreover, γ and λ satisfy

λ =
M1

‖f‖1
and min(γp1−1, γp2−1) ≤ Mj ‖f‖1

M1 ‖j(f)‖1
≤ max(γp1−1, γp2−1). (A.2)

Proof. The rescaling (A.1) gives immediately

‖f̃‖1 = λ‖f‖1 and ‖j(f̃ )‖1 =
λ

γ
‖j(γf)‖1.

Hence, we have f̃ ∈ F(M1,Mj) as soon as

λ =
M1

‖f‖1
and

‖j(γf)‖1
γ ‖j(f)‖1

=
Mj ‖f‖1
M1 ‖j(f)‖1

.

The first parameter λ is then uniquely determined. Notice also that (A.2) is a
direct consequence of the nondichotomy condition (1.10). It remains to prove the
existence of a unique suitable γ.

Consider now the function of γ ∈ R
∗
+ defined by

h(γ) =
‖j(γf)‖1
γ ‖j(f)‖1

.

From the nondichotomy condition (1.10), we have

lim
γ→0

h(γ) = 0, lim
γ→+∞

h(γ) = +∞.

Moreover, from a direct calculation, one gets

h′(γ) =
‖j′(γf)f‖1
γ ‖j(f)‖1

− ‖j(γf)‖1
γ2 ‖j(f)‖1

≥ (p1 − 1)
‖j(γf)‖1
γ2 ‖j(f)‖1

> 0,

where we used Assumption (H3) on the function j. Hence, there exists a unique
γ ∈ R

∗
+ such that

h(γ) =
Mj‖f‖1
M1‖j(f)‖1

and the Lemma is proved. �
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Appendix B. Decay at the infinity of radially symmetric potentials

Proposition B.1. For all k > 3, there exist a positive constant C such that for all
f ∈ Ej radially symmetric and for all |x| > 1

|φf (x)| ≤
C

|x|2− 3
k

‖ρf‖k′ .

Proof. Recall that

φPf (x) = −
∫

R3

ρf (y)

4π|x− y|dy and φMf (x) = −
∫

R3

ρf (y)

2π2|x− y|2 dy.

Passing to the spherical coordinate s = |y| and x · y = 2rs cos θ, one gets




φPf (x) = −
∫ +∞

0

∫ π

0

ρf (s) sin θ

2 (s2 + r2 − 2rs cos θ)1/2
s2dsdθ = −

∫ +∞

0
ρf (s)g

P
r (s)s

2ds,

φMf (x) = − 1

π

∫ +∞

0

∫ π

0

ρf (s) sin θ

s2 + r2 − 2rs cos θ
s2dsdθ = − 1

π

∫ +∞

0
ρf (s)g

M
r (s)s2ds,

where

gPr (s) =
1{s<r}(s)

r
+

1{s>r}(s)

s
and gMr (s) =

1

sr
ln

∣∣∣∣
r + s

r − s

∣∣∣∣ .

We have immediately gPr ∈ Lk((0,+∞), s2ds) for all k > 3 and a simple analysis
gives that gMr ∈ Lk((0,+∞), s2ds) for all k > 3/2. Moreover, we remark that

gPr (s) =
1

r
gP1

(s
r

)
and gMr (s) =

1

r2
gM1

(s
r

)
,

which implies
∥∥gPr

∥∥
Lk((0,+∞),s2ds)

≤ CP

r1−
3
k

and
∥∥gMr

∥∥
Lk((0,+∞),s2ds)

≤ CM

r2−
3
k

.

We finally conclude by using the Hölder inequality. Remark that, thanks to in-
terpolation inequalities, under Assumption (H2), f ∈ Ej implies that ρf ∈ L1 ∩
L3/2((0,+∞), s2ds). �

Appendix C. Hölder continuity of the Manev potential

Lemma C.1. Let ρ ∈ L1(R3)∩Lq(R3) with q > 3. Then the function φ defined by

φ(x) =

∫

R3

ρ(y)

|x− y|2dy

belongs to C
0,γ for all γ ∈ (0, 1 − 3

q ).

Proof. Let x1, x2 ∈ R
3, x1 6= x2 and let α = 1 − 3

q ∈ (0, 1). Let ε ∈ (0, α) and

R > 0. The function

vR(x) : x 7→ 1BR
(x)

|x|2+ε
satisfies

‖vR(x)‖ 3
2+α

= CRα−ε.

Hence, by the Hölder inequality, vR ∗ ρ belongs to L∞. Let us decompose

φ(x1)− φ(x2) = I1 + I2
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with

I1 =

∫

R3

ρ(y)

(
1BR

(x1 − y)

|x1 − y|2 − 1BR
(x2 − y)

|x2 − y|2
)
dy

and

I2 =

∫

R3

ρ(y)

(
1Bc

R
(x1 − y)

|x1 − y|2 −
1Bc

R
(x2 − y)

|x2 − y|2
)
dy.

Setting δ = |x1−x2|
2 and X = x2−x1

|x2−x1|
. Performing the change of variable u =

1
δ (y −

x1+x2
2 ), one gets

I1 = δ

∫

R3

ρ(u)

(
1BR/δ

(−X − u)

| −X − u|2 −
1BR/δ

(X − u)

|X − u|2

)
dy

= δ
(
vR/δ ∗ ρ

)
(−X) − δ

(
vR/δ ∗ ρ

)
(X),

where ρ(u) = ρ(δu+ x1+x2
2 ), which implies ‖ρ‖r = δ−3/r‖ρ‖r. Notice that

‖vR/δ ∗ ρ‖∞ ≤ C|ρ|r
(
R

δ

)α−ε
δ−3/r = C‖ρ‖rRα−εδε−1.

We have then |I1| ≤ C1δ
εRα−ε. Let us now estimate I2. We have

|I2| ≤
C

R2
‖ρ‖1.

Finally, we have proved that

|φ(x1)− φ(x2)| ≤ C

(
|x2 − x1|εRα−ε +

1

R2

)
.

After an optimization, for all ε ∈ (0, α), one finds

|φ(x1)− φ(x2)| ≤ C|x2 − x1|γ

with γ = 2ε
2+α−ε . We conclude by remarking that γ converge to α as ε→ α. �
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