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Abstract

Using a recently proposed model for combinatorial land-

scapes, Local Optima Networks (LON), we conduct

a thorough analysis of two types of instances of the

Quadratic Assignment Problem (QAP). This network

model is a reduction of the landscape in which the nodes

correspond to the local optima, and the edges account for

the notion of adjacency between their basins of attraction.

The model was inspired by the notion of ‘inherent net-

work’ of potential energy surfaces proposed in physical-

chemistry. The local optima networks extracted from the

so called uniform and real-like QAP instances, show fea-

tures clearly distinguishing these two types of instances.

Apart from a clear confirmation that the search difficulty

increases with the problem dimension, the analysis pro-

vides new confirming evidence explaining why the real-

like instances are easier to solve exactly using heuristic

search, while the uniform instances are easier to solve ap-

proximately. Although the local optima network model

is still under development, we argue that it provides a

novel view of combinatorial landscapes, opening up the

possibilities for new analytical tools and understanding of

problem difficulty in combinatorial optimization.
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1 Introduction

In a series of papers we introduced a novel representation

for combinatorial landscapes that we called local optima

network [1, 2, 3]. This is a view of landscapes derived

from a previously proposed one for continuous energy

landscapes by Doye [4, 5] but it has been modified and

adapted to work for discrete combinatorial spaces. It is

based on the idea of compressing the information given

by the whole problem configuration space into a smaller

mathematical object which is the graph having as vertices

the optima configurations of the problem and as edges

the possible weighted transitions between these optima.

The methodology is intended to be a descriptive one in

the first place; for example, some measures on the optima

networks have been found to be related with problem dif-

ficulty. In the longer term, the methodology is expected

to be useful for suggesting improvements in local search

heuristics and perhaps even for suggesting new ones. In

recent work we have studied by this method the family

of Kauffman’s NK-landscapes [6], for which we have

shown that some optima network statistics can be related

to the tunable difficulty of these landscapes. Moreover,

since to obtain the local optima of the configuration space

we need to explore the corresponding basins, the above

graph is also a description of the basins and of their con-

nectivity. In this way we have been able to find previ-

ously known properties of these basins, as well as new

ones [2, 3]. However, although useful for classification

purposes, the NK family of landscapes is a highly artifi-

cial one. For this reason, in the present paper we study

the more realistic problem called the quadratic assign-

ment problem (QAP). The quadratic assignment problem,

as introduced by Koopmans and Beckmann [7] in 1957,



is a combinatorial optimization problem which is known

to be NP-hard [8]. This paper presents preliminary re-

sults of an exhaustive analysis of small instances’ fitness

landscapes by means of extracting the networks of local

optima and evaluating their statistics.

The QAP deals with the relative location of units that

interact with one another. The objective is to minimize the

total cost of interactions. The problem can be stated in this

way: there are n units or facilities to be assigned to n pre-

defined locations, where each location can accommodate

any one unit; location i and location j are separated by a

distance aij , generically representing the per unit cost of

interaction between the two locations; a flow of value bij
has to go from unit i to unit j; the objective is to find and

assignment, i.e. a bijection from the set of facilities onto

the set of locations, which minimizes the sum of products

flow × distance. Mathematically it can be formulated as:

min
π∈P (n)

C(π) =

n∑

i=1

n∑

j=1

aijbπiπj
(1)

where A = {aij} and B = {bij} are the two n × n dis-

tance and flow matrixes, πi gives the location of facility i
in permutation π ∈ P (n), and P (n) is the set of all per-

mutations of {1, 2, ..., n}, i.e. the QAP search space. The

structure of the distance and flow matrices characterize

the class of instances of the QAP problem. Later in the

article it is explained which are the classes of instances

used in the present work.

The paper is structured as follows. The next section

gives a number of concepts, definitions and algorithms

used to obtain and describe the optima networks of the

QAP problem. Section 3 discusses the analysis of the net-

work data thus obtained. The discussion applies to both

the optima graph, as well as to the associated basins of

attraction. Finally, section 4 presents our conclusions and

suggestions for further work.

2 Definitions and Algorithms

Given a fitness landscape for an instance of the QAP prob-

lem, we have to define the associated optima network by

providing definitions for the nodes and the edges of the

network. The vertexes of the graph can be straightfor-

wardly defined as the local minima of the landscape. This

work is a first step toward the network characterization

of QAP landscapes: we present the analysis of small in-

stances (see Sect. 3.1). For these instances, it is feasible

to obtain the nodes of the graph exhaustively by running a

best-improvement local search algorithm from every con-

figuration of the search space as described below. Before

explaining how the edges of the network are obtained, a

number of relevant definitions are summarized.

A Fitness landscape [9] is a triplet (S, V, f) where S is

a set of potential solutions i.e. a search space, V : S −→
2S , a neighborhood structure, is a function that assigns to

every s ∈ S a set of neighbors V (s), and f : S −→ R is

a fitness function that can be pictured as the height of the

corresponding solutions. For the QAP problem, a search

space configuration is a permutation of the facility loca-

tions of length n, therefore the search space size is n!. The

neighborhood of a configuration is defined by the pair-

wise exchange operation, which is the most basic opera-

tion used by many meta-heuristics for QAP. This opera-

tor simply exchanges any two positions in a permutation,

thus transforming it into another permutation. The neigh-

borhood size is thus |V (s)| = n(n − 1)/2. Finally the

fitness value of a solution can be simply set to be equal to

the opposite of the assignment cost defined in eq. 1.

The HillClimbing algorithm used to determine the lo-

cal optima and therefore define the basins of attraction,

is given in Algorithm 1. It defines a mapping from the

search space S to the set of locally optimal solutions

S∗, where a local optimum is a solution s∗ such that

∀s ∈ V (s∗), f(s) < f(s∗).

Algorithm 1 Hill-Climbing

Choose initial solution s ∈ S
repeat

choose s
′

∈ V (s) such that f(s
′

) =
maxx∈V (s) f(x)

if f(s) < f(s
′

) then

s← s
′

end if

until s is a Local optimum

The basin of attraction of a local optimum i ∈ S is the

set bi = {s ∈ S |HillClimbing(s) = i}. The size of the

basin of attraction of a local optimum i is the cardinality

of bi. Notice that for non-neutral fitness landscapes, the



basins of attraction as defined above produce a partition of

the configuration space S. Therefore, S = ∪i∈S∗bi and

∀i ∈ S ∀j 6= i, bi ∩ bj = ∅.
We can now define the edge of a weight that connects two

feasible solutions in the fitness landscape. For each pair

of solutions s and s
′

, p(s → s
′

) is the probability to pass

from s to s
′

with the given neighborhood structure. For

the search space of permutations of n elements, and the

pairwise exchange operation, there are n(n− 1)/2 neigh-

bors for each solution, therefore:

if s
′

∈ V (s) , p(s→ s
′

) = 1
n(n−1)/2 and

if s
′

6∈ V (s) , p(s→ s
′

) = 0.

The probability to pass from a solution s ∈ S to a solution

belonging to the basin bj , is defined as:

p(s→ bj) =
∑

s′∈bj

p(s→ s
′

)

Notice that p(s → bj) ≤ 1. Thus, the total probability

of going from basin bi to basin bj is the average over all

s ∈ bi of the transition probabilities to solutions s
′

∈ bj :

p(bi → bj) =
1

♯bi

∑

s∈bi

p(s→ bj)

♯bi is the size of the basin bi.
Now we can define a Local Optima Network (LON) G =
(S∗, E) as being the graph where the nodes are the local

optima, and there is an edge eij ∈ E with weight wij =
p(bi → bj) between two nodes i and j if p(bi → bj) > 0.

Notice that since each maximum has its associated basin,

G also describes the interconnection of basins.

According to our definition of edge weights, wij =
p(bi → bj) may be different than wji = p(bj → bi).
Thus, two weights are needed in general, and we have an

oriented transition graph. Clearly, different move opera-

tors and thus different neighborhood structure will induce

different LONs.

3 Analysis of the local optima net-

work

3.1 Experimental settings

In order to perform a statistical analysis, a sufficient num-

ber of instances have to be considered. Well-known

benchmark instances producing two distinct categories

of QAP problems are those of Knowles and Corne [10]

which have been adapted and used here for the single-

objective QAP.

The first generator produces uniformly random in-

stances where all flows and distances are integers sampled

from uniform distributions in [1, fmax] and [1, dmax] re-

spectively; this leads to the same kind of problem known

in literature as Tainna, being nn the problem dimen-

sion [11]1. Distance matrix entries are, in both cases, the

Euclidean distances between points in the plane.

The second generator permits to obtain clusters of 1 to

K points that are uniformly distributed in small circular

regions of radius m, with these regions distributed in a

larger circle of radius M . In this case then, the flow en-

tries are non-uniform random values, controlled by two

parameters, A and B, with A < B, and B > 0. Let X
be a random variable uniformly distributed in [0, 1], then

a flow entry is given by integer rounding 10(B−A)∗X+A.

When the values of A is negative, the flow matrix is sparse

and non-zero entries are non-uniformly distributed. This

procedure, detailed in [10], follows the one introduced

by Taillard [11] and produces random instances of type

Tainnb which have the so called “real-like” structure.

For the following analysis, 30 random uniform and

30 random real-like instances have been generated for

each problem dimension in {5, ..., 10}; as for the distance

matrix, values of 100 for dmax in the first case and of

(0, 1, 100) for (M,K,m) in the second have been cho-

sen2; as for the flow matrix, the parameters used have

been fmax = 100 for the uniform instances, A = −10
and B = 5 for the others. The latter choice, in partic-

ular, results in a flow matrix with roughly two thirds of

out-diagonal zeros in the real-like case.

3.2 General network features

3.2.1 Nodes and Edges

Figure 1 (top) reports, for each problem dimension, the

average number of nodes found in the local optima net-

works. The search difficulty of these landscape is ex-

pected to increase with the number of local optima, and

1there, though, random values are uniformly distributed in [0, 99]
2with this choice for units position distribution, real-like instances

really differ from uniform one only from the flow matrix point of view.



this value grows exponentially with the problem dimen-

sion. Real-like instances, though, result in much smaller

networks (small number of vertexes); the size difference

between the two classes of QAP also grows almost expo-

nentially with the problem dimension.

Figure 1 (bottom) shows a similar growth for the aver-

age number of edges. Indeed, the graphs are almost fully

connected, i.e. the number of oriented edges is close to

the squared number of nodes.

3.2.2 Basins of attraction

Figure 2 depicts the average size of the basin of attraction

of the global optimum divided by the size of the search

space. This value decreases exponentially with the prob-

lem dimension for both considered classes of QAP in-

stances. The real-like instances present larger global opti-

mum basins, which can be explained by their smaller lo-

cal optima networks (this suggested explanation is further

elaborated below). The relative size of the global opti-

mum basin gives the probability of finding the best solu-

tion with a hill-climbing algorithm from a random starting

point. The exponential decrease confirms that the higher

the problem dimension, the lower the probability for a

stochastic search algorithm to locate the basin of attrac-

tion of the global minimum. Considering the separation

between the curves in fig. 2, it looks surprisingly easier

to solve exactly a real-like instance rather than a uniform

one.

The distribution of basins sizes is very asymmetrical,

thus the median and maximum sizes are used as represen-

tatives3. These statistics are divided by the search space

size and plotted against the number of local optima (fig-

ure 3) in order to convey a view independent of problem

dimension and LON cardinality.

The median and maximum basin sizes follow a power-

law relationship with the number of local optima. The

difference between the two values tends to diverge expo-

nentially with the LON size. This suggests that the land-

scapes are characterized by many small basins and few

larger ones. The correlation coefficients of the real-like

and uniform instances are similar. Both instance classes

seem to have the same size distribution with respect to the

local optima network cardinality. This fact, coupled with

3the average basins size, equal to the number of possible configura-

tion in the search space divided by the number of local optima, is not

informative

the different number of local optima but a similar distri-

bution of basin sizes, can explain how real-like instances

have larger global optimum basin compared to uniform

instances of the same problem dimension.

Figure 4 plots the correlation coefficients between the

logarithm of local optima basin sizes and their fitness

value. There is a strong positive correlation. In other

words, generally the better the fitness value of an opti-

mum, the wider its basin of attraction. It is worth notic-

ing, however, that the relative size of the global optimum

(to the search space dimension), decreases exponentially

as the problem size increases (see fig.2). Real-like and

uniform instances show a similar behavior but the former

present higher variability and slightly lower correlation

figures.

From what has been studied, real-like instances are eas-

ier to solve exactly using heuristic search. However, Merz

and Freisleben [12] have shown that the quality of local

optima decreases when there are few off-diagonal zeros in

the flow matrix: the cost contributions to the fitness value

in eq.1 are in that case more interdependent, as there was

a higher epistasis. Thus it should be easier to find a sub-

optimal solution for a uniform instance than for a real-

like one. To confirm this result in another way, figure 5

shows the proportion of solutions from whose a best im-

provement hill-climbing conducts to a local optima within

a 5% value from the global optimum cost. As problem

size grows, sub-optimal solutions are distinctively easier

to reach in the uniform case, i.e. uniform instances are

easier to be solved approximatively. This also agrees with

the fact that for large enough instances, the cost ratio be-

tween the best and the worst solution has been proved to

converge to one in the random uniform case [13].

3.2.3 Transition probabilities

Figure 6 (top) reports for each problem dimension the av-

erage weight wii of self-loop edges. These values rep-

resent the one-step probability of remaining in the same

basin after a random move. The higher values observed

for real-like instances are related to their fewer optima but

bigger basins of attraction. However, the trend is gener-

ally decreasing with the problem dimension. This is an-

other confirmation that basins are shrinking with respect

to their relative size.

A similar behavior characterizes the average weight



wij of the outgoing links from each vertex i, as figure 6

(bottom) reports. Since j 6= i, these weights represent

the probability of reaching the basin of attraction of one

of the neighboring local optima. These probabilities de-

crease with the problem dimension. The difference be-

tween the two classes of QAP could be explained here by

their different LON size.

A clear difference in magnitude between wii and wij

can be observed. This means that, after a move operation,

it is more likely to remain in the same basin than to reach

another basin. Moreover, the decreasing trend with the

problem dimension is stronger for wij than for wii, espe-

cially for the uniform QAP (whose LON grows faster with

the problem dimension). Therefore, even for these small

instances, the probability of reaching a particular neigh-

boring basin becomes rapidly smaller than the probability

of staying in the same basin, by an order of magnitude.

3.2.4 Weighted connectivity

In weighted networks, the degree of nodes is extended by

defining the node strength si as the sum of all the weights

wij of the links attached to it. This value gathers infor-

mation from both the connectivity of a node and the im-

portance of its links [14]. In our definition, the out-going

weights always sum up to 1, so the out-going strength is

just 1 − wii. Therefore, a study of si associated to the

in-coming links would be more informative.

Figure 7 reports the average vertex strength for connec-

tions entering the considered basin. The increase with the

problem dimension and the separation between the two

QAP classes should come as no surprise since strength is

related to vertex degree (which is higher for bigger LONs,

given that they are almost complete). In particular, if the

distribution of weights were independent of topology, the

strength would be simply equal to the vertex degree multi-

plied by the mean edge weight. These expected curves are

plotted in dotted form and, although there is some clear

correlation, the actual strengths are distinctively lower.

Figure 8 shows the aggregated average of si with re-

spect to the vertex in-degree ki for all the instances of

dimension 10. As the figure suggests, a fit with the law

s = w ∗ k does not hold. Given the high connectivity of

these LONs, the degree values are all close to the max-

imum possible for each network. Thus, the strength of

vertexes must grow much faster than their degree in order

to give the averages seen in fig. 7. It can be observed that,

for uniform QAP instances, the scatter plot of fig. 8 is

constituted by several curves that are almost vertical even

in log-log scale. Real-like instances, on the contrary, have

so smaller and densely connected LONs that an analogue

behavior can not be spotted. However, for both instance

classes, fig. 8 clearly suggests that the strength is far from

being simply proportional to the vertex degree. Therefore,

we have a confirmation that the distribution of weights, as

we have defined them, strongly depends on the network

topology.

Figure 9 reports the correlation coefficients between the

in-coming strength of a vertex and the fitness value of its

local optimum. The correlation is positive and strong,

which suggests that basins with high fitness generally

have more heavy weighted connectivity. Our explanation

to this observation is the following: with our definition of

transition probabilities, basin sizes have an influence on

weight values. Also, there is a high correlation between

the logarithmic size of a basin and its fitness value (see

fig. 4).The same considerations made there still hold here,

with the difference that the link between strength and fit-

ness seems less tight as the size of problem grows. This

could add to the search difficulty.

3.3 Advanced network features

3.3.1 Transitivity

Transitivity measures the probability that the adjacent ver-

texes of a vertex are connected [15], this feature is mea-

sured with the so called clustering coefficient. The tra-

ditional definition of this coefficient does not consider

weights, thus, it has been extended in several ways to a

weighted clustering coefficient [14]. Since our studied

LONs from the QAP instances are close to be complete

graphs, we selected the simplest definition. All the in-

stances were found to have a transitivity value higher than

0.90: real-like instances have a value above 0.99, whereas

uniform instances present a slight decrease with respect to

the size of the problem. We also observed that this mea-

sure has a lower variability when compared to the other

networks statistics. Thus, a very high clustering coeffi-

cient appears to be an instance independent characteristic

of QAP with the given definition of LON.



3.3.2 Disparity

Another network statistic, which measures how heteroge-

neous are the contributions of the edges of a node i to its

strength si, is disparity [14]. Disparity could be defined

as Y2(i) =
∑

j 6=i(
wij

si
)2 and could be averaged over the

nodes with the same degree k. If all the weights wij are

close to si/ki, then Y2(i) ≈ 1/ki for nodes of degree ki.
Figure 10 reports the simple mean of disparity coeffi-

cient averaged on all instances of both classes with respect

to problem dimension. The decreasing trend could render

the fact that as the size of the problem rises, the out-going

transition to different optima neighbors tend to become

equally probable and the search becomes more random.

That could be more evident for uniform instances whose

LONs have higher cardinality. Real-like instances, actu-

ally, appear to maintain a disparity value less close to the

random curve of 1/k.

In figure 11 the aggregate average of Y2(i) to ki is plot-

ted on double logarithmic scale. Here just instances of

problem dimension 10 have been considered. Disparity

as a function of the node out-degree seems to follow a

power-law, but as seen in fig. 10 that law is not the simple

1/ki. Thus it can be observed that, even if the weights

wij are not all equal to si/ki, it remains difficult to spot

an out-going connection whose probability dominates the

others, except for really small problem instances4. Ac-

cording to the disparity measure, the real-like instances

are not more difficult than uniform instances. No direc-

tion is pointed out by the weights distribution, and it must

be considered to design efficient heuristics for QAP.

3.3.3 Shortest paths

A distance between two neighboring local optima i and j
can be computed as the inverse of the transition probabil-

ity between them: 1/wij . This value can be interpreted

as the expected number of random moves needed to hop

from basin i to basin f j. The average path length can

then be calculated as the average of all the shortest paths

between any two nodes (see figure 12 (top)).

Figure 12 (bottom), reports a related measure, namely

the mean shortest distance from each node to the global

optimum. This metric can be more interesting from the

4the one connection who really could rise disparity figures is the self-

loop, but that has to be excluded by definition from the calculation of Y2

point of view of a stochastic local search heuristic trying

to solve the considered QAP instance. The clear trend

is that this path, as any other, increases with the prob-

lem size. Values are noticeable higher for the uniform

instances, which have a larger number of local optima

than the real-like instance for the same problem dimen-

sion. The figures confirm that the search difficulty in-

creases with the domain size and the ruggedness of the

fitness landscape (i.e. the number of local optima).

4 Discussion and Conclusions

We have used the recently proposed Local Optima Net-

work (LON) model to analyze the landscape of the well-

known Quadratic Assignment Problem (QAP). Two types

of instances: uniform and real-like, were analyzed and

compared. The comparative analysis, show features

clearly distinguishing these two types of QAP instances.

Apart from a clear confirmation that the search difficulty

increases with the problem dimension, the results provide

new confirming evidence explaining why the real-like in-

stances are easier to solve exactly, while the uniform in-

stances are easier to solve approximately using stochastic

local search.

A comparison of the LON of QAP against those of the

previously studied NK landscapes [1, 2, 3], suggests that

the distributions of basin sizes, including the global opti-

mum basin, are similar for comparable instances of QAP

and NK. The main difference lies in the connectivity:

whereas the LON is nearly a complete graph for QAP,

this is not the case for NK landscapes. This could be

due to the larger neighborhood size in the permutation

space, as compared with the binary space. With the cur-

rent move operations, the probability of exploring another

basin from a solution by a random move is higher for com-

parable QAP and NK instances. This suggests that the

most efficient local searcher (based on those moves), for

each problem should be different: the tradeoff between

exploration and exploitation should not be the same. The

aforementioned comparison could also permit to better

explain the parallel between some flow matrix character-

istics of QAP and the epistasis value of NK. In particu-

lar, the influence of flow dominance, a metric often used

to characterize QAP instances, has not been directly ad-

dressed in this paper, and it surely deserves more attention



and space. There may be also a connection between the

present work and the concept of elementary landscapes,

as QAP spaces or parts thereof might be spectrally de-

composable in such way [9].

There are several directions for future work. Our cur-

rent definition of transition probabilities, although very

informative, may produce highly connected networks,

which are not easy to study. Therefore, we are currently

considering alternative definitions based on threshold val-

ues for the connectivity. A high variability (across in-

stances) on some metrics was observed, especially for the

real-like class. Therefore, further analysis may need to be

focused on particular instances, instead of on a statistical

aggregation of a set of instances of (arguably) the same

class. Moreover, our current methodology is only appli-

cable to small problem instances. Good sampling tech-

niques are required in order to extend the applicability of

the model. The consideration of a permutation space in

this article, opens up the possibility of analyzing other

permutation based problems such as the traveling sales-

man and the permutation flow shop problems. In addi-

tion, it would be useful to compare results based on LON

representation with those arising from theoretical analy-

ses such as [16].

Finally, although the local optima network model is still

under development, we argue that it offers an alternative

view of combinatorial fitness landscapes, which can po-

tentially contribute to both our understanding of problem

difficulty, and the design of effective heuristic search al-

gorithms, including evolutionary algorithms.
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Figure 1: Average number of nodes (top) and edges (bot-

tom) on log-lin scale. Triangular points correspond to

real-like problems, rounded points to uniform ones; bars

show 95% Wald C.I. on the means; for each problem

dimension, averages from 30 independent and randomly

generated instances are shown.
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Figure 2: Average relative size of the global optimum

basin-of-attraction on log-lin scale. Triangular points cor-

respond to real-like problems, rounded points to uniform

ones; bars show 95% Wald C.I. on the means; for each

problem dimension, averages from 30 independent and

randomly generated instances are shown.
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Figure 3: Relative size of the largest (top) and of the me-

dian (bottom) basin of attraction vs number of nodes. Tri-

angular points correspond to real-like instances, rounded

points to uniform ones. Each figure reports in dotted form

the regression lines of the other.
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climb to a fitness value within 5% from the global best

value. Triangular points correspond to real-like problems,

rounded points to uniform ones; for each problem dimen-

sion, averages from 30 independent and randomly gener-

ated instances are shown.
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Figure 6: Average weights wii for self-loop (top) and

wij for out-going links (bottom). Triangular points cor-

respond to real-like instances, rounded points to uniform

ones; bars show 95% Wald C.I. on the means; for each

problem dimension, averages from 30 independent and

randomly generated instances are shown.

5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Problem Dimension

A
ve

ra
ge

 in
−

S
i

●

●

●

●

●

●
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points to uniform ones; bars show 95% Wald C.I. on the
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multiplied by the mean edge weight; for each problem

dimension, averages from 30 independent and randomly

generated instances are shown.
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Figure 8: Aggregated average of in-strength to vertex in-

degree on log-log scale. Triangular points correspond to

real-like problems, rounded points to uniform ones; all 30

independent and randomly generated instances of prob-

lem dimension 10 are shown. Dotted lines report the

s = w ∗ k relation.
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Figure 9: Average Fit.Value vs In-Strength Correlation

Coefficient. Triangular points correspond to real-like

problems, rounded points to uniform ones; bars show 95%

Wald C.I. on the means; for each problem dimension, av-

erages from 30 independent and randomly generated in-

stances are shown.
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points correspond to real-like instances, rounded points to

uniform ones; bars show 95% Wald C.I. on the means; for

each problem dimension, averages from 30 independent

and randomly generated instances are shown.
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Figure 11: Aggregated average of disparity coefficient to

vertex out-degree. Triangular points correspond to real-

like instances, rounded points to uniform ones; all 30 in-

dependent and randomly generated instances for problem

size 10 are shown. Dotted lines report the inverse of the

out-going degree.
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Figure 12: Average path length (top) average shortest

path to global optimum (bottom). Triangular points cor-

respond to real-like problems, rounded points to uniform

ones; bars show 95% Wald C.I. on the means; for each

problem dimension, averages from 30 independent and

randomly generated instances are shown.


